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Chaos and the quantum phase transition in the Dicke model
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We investigate the quantum-chaotic properties of the Dicke Hamiltonian; a quantum-optical model that
describes a single-mode bosonic field interacting with an ensemidewb-level atoms. This model exhibits
a zero-temperature quantum phase transition inNkeco limit, which we describe exactly in an effective
Hamiltonian approach. We then numerically investigate the system at Rhisnd by analyzing the level
statistics, we demonstrate that the system undergoes a transition from quasi-integrability to quantum chaotic,
and that this transition is caused by the precursors of the quantum phase transition. Our considerations of the
wave function indicate that this is connected with a delocalization of the system and the emergence of
macroscopic coherence. We also derive a semiclassical Dicke model that exhibits analogues of all the impor-
tant features of the quantum model, such as the phase transition and the concurrent onset of chaos.
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[. INTRODUCTION study exhibits a quantum phase transitiae., one at zero
temperaturd 18]) in the thermodynamic limit oN—« at a
Chaos plays a key role in considerations concerning theritical value of the parametex,;.
boundary between the classical and quantum worlds, not just The influence of a quantum phase transiti@¥T) on the
because of the importance of chaos in classical phydits transition to chaos has been studied in a handful of cases.
but because there is no direct analog of chaos in quantutmportant examples include the three-dimensional Anderson
mechanicg$2]. The linearity of quantum dynamics precludes model, where the metal-insulator transition is accompanied
the characteristic exponential sensitivity to initial conditionsby a change in the level statisti¢8], and models of spin
of classical chaos, and forces us to look for what are knowmlass shardgl0], which have found topical application in the
as “signatures of quantum chaos"—properties whose presstudy of the effects of quantum chaos on quantum computing
ence in the quantum system would lead us to expect thgll]. Heiss and co-workers have investigated the connection
corresponding classical motion to be chadt]. Several between the onset of chaos near a QPT and the exceptional
such signatures have been identified, such as level statistigwints of the spectrunil9], both generically, and for the
[4,5], level dynamicg 6], and sensitivity to initial perturba- specific example of the Lipkin modg20].
tion [7]. In order to investigate the impact of QPT on the signa-
An often encountered feature of quantum-chaotic systemtures of quantum chaos, we study the Dicke Hamiltonian
is that as some parameter is varied, these signatures bespdaitd) [21], which is of key importance as a model describing
a crossover from integrable to quantum-chaotic behaviotthe collective effects in quantum optif22,23. We demon-
This parameter may, for example, describe the character aftrate that there is a clear connection between the precursors
boundary conditions, such as the shape of a quantum billiardf the QPT and the onset of quantum chaos as manifested in
[5], the distribution of random fluctuations in disorder mod-the level statistics. We are able to understand this connection
els [8—11], or the strength of some nonlinear potential orby studying the wave functions of the system, and by deriv-
interaction[12-17. A large class of models may be de- ing a semiclassical analog of this intrinsically quantum sys-

scribed by a Hamiltonian of the form tem. This paper is an extension of our previous wW@&#|.
In the form considered here, the DH describes a collection
H=Hgy+\V, (1) of N two-level atoms interacting with a single bosonic mode

via a dipole interaction with an atom-field coupling strength
where althougiH, is integrable, the full Hamiltoniai is ~ A. The DH may be written as
not for any A#0. Here, increasing the parameterfrom
zero upwards gradually drives the system away from integra- A
bility and towards chaos. A well studied, albeit time- H=fwyl,thwa’a+t —(a'+a)(J,+J.), (2
dependent, example is the kicked rotat8}, where the pa- V2j
rameter\ is the kick strength.
In this paper, we consider a system of the type describedherea, a’ describe a bosonic mode of frequeney and
by Hamiltonian(1), but unlike the typically one-dimensional the angular momentum operatdik ; i=z,=} describe the
or noninteracting models, we shall consider a systenNof ensemble of two-level atoms of level-splitting, in terms of
interacting particles, in a situation where many-body anda pseudospin of length=N/2. The thermodynamic limit of
collective effects are critical. Specifically, the model we N—o is thus equivalent to making the length of the pseu-
dospin tend to infinityj —o. The DH is usually considered
in the standard quantum optics approach of the rotating-wave
*Email address: emary@theory.phy.umist.ac.uk approximation(RWA), which is valid for small values of the
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coupling X\, and involves neglecting the counter-rotating Graham and Hianerbach have contributed extensively to the
termsa’J, andaJ_ . This makes the DH integrable, simpli- discussior[32], especially in relation to the special case of
fying the analysis but also removing the possibility of quan-spin-1/2 (the Rabi Hamiltonia)y and have outlined many
tum chaos. Dicke used this model to illustrate the importancéemiclassical and approximate schemes for these systems.
of collective effects in the atom-light interacti¢@l], lead- ~Moreover, they have provided a preliminary analysis of the
ing to the concept of super-radiance, where the atomic erleVel statistics of the DH, concluding that spectra of the type
semble spontaneously emits with an intensity proportional t&Ssociated with quantum chaos do occur for certain, isolated
N2 rather thanN, as one would expect if the atoms were Parameter valueg33]. Several authors have conducted stud-
radiating incoherentlj23]. ies on chaos in variousemijclassical models related'to DH
The phase transition in the DH was first described by[ses—sq. That there have been several different semiclassical

. : models is a consequence of the ambiguity in describing
;'gg&i?}? besdzfc])’v%r;%%m\?\jgﬁmggga%&? r?r;reanigﬁtemquantum spins in classical terms. The influence of the QPT
sidered the the?modynam?/cs of ?he model in. the BIQWA an Iso seems to have been overlooked in these semiclassical

odels.
concluded that for a coupling of< Jwwo no phase transi-  \e consider the quantum-mechanical system away from
tion occurs for any temperature, whereasXor Jwwq there  the thermodynamic limit by using numerical diagonalization,
exists a critical temperaturg; given by and examine the energy spectra of the system for signatures
of quantum chaos. We consider the nearest-neighbor level-
1 20 0w spacing distribution functiorP(S), which is perhaps the
= —arctan?ﬁ —) , (3)  best-known signature of quantum ch&d$ We calculate the
keTc  @o P(S) for various values oN and\ and demonstrate a clear

connection between the changeH(S) from quasiintegrable
at which point the system undergoes a phase transitiod® quantum chaotic and the coupling at which the QPT oc-
Above the critical temperature, the system is in the effeccurs,\¢. We then proceed to consider the wave functions of

tively unexcited “normal phase," whereas for TC the sys- the System .at f|n|té\l Using an abstract pOSition'momentUm

cited and highly collective state that possesses the potentigPrs of the QPT give rise to a localization-delocalization

to super-radiate. f[ransmon in whlch the ground.-tstate wave function bifurcates
In contrast to this earlier work, we shall consider thisNtC @ macroscopic superposition for aNy<c. o

phase transition at zero temperature, where increasing the AS mentioned above, much work has been done in trying

coupling A through a critical value ol .= wwy/2 drives to fmo_l a_semlclasswal analog of the DF36-39. The

the system to undergo a transition from the normal to thdPosonization procedure that we employ here allows us to

super-radiant phadghe difference between this critical cou- write thg DH in terms of a pair of coup!ed hqrmonlc oscilla-
ors. This suggests a very natural semiclassical analog of the

pling A and the value quoted for the finite-temperature casi%H btained by simpl lacing th i illat
arises because the latter has been derived in the RWA, which. ’ obtained by simply replacing the quantum osciiators
with classical ones. We demonstrate that our semiclassical

renormalizes the critical coupling by a factor 0f27,28).
Here, we derive exact results without the RWA for the energW‘

spectrum and eigenfunctions in the thermodynamic limit byV|ous studies. Specifically, our semiclassical model exhibits a

employing a bosonization technique based upon théymmetry-breaking phase transition in Fhe Iimit. that»co, .
Holstein-Primakoff transformation of the angular momentuma_nd we show that the Precursors of this _classmal transition
algebrd29,30. This enables us to derive an effective Hamil- give rise to the onset of classical chaos, in close agre_ement
tonian to describe the system in each of its two phases. On‘@'th thg_qugntum m0(_jel. An analog of the_ Macroscopic su-
important step that we take is the introduction of an abstracp®rposition is also ewden;. In our conc!usmnsz We pay Spe-
position-momentum representation for both field and atomic'@ attention to the meaning of a classical “.m't fo'r the DH
systems. This not only facilitates the formulation of the exacland_' in particular, the relevance of the semiclassical model
solutions, but also provides us with a useful way of visual—der'ved here._ _ _
izing the wave functions across the phase transition. There i% The paper is orgamzeq as follows. In Sec. Il, we introduce
a discrete “parity” symmetry associated with this model, andN® I_DH.fu.IIy_. Exact SOIUUO”TQ‘ are derived in the th.ermody—
at the phase transition this symmetry becomes broken. Th amic "”.‘".'” sec. lll. Sectlon IV sees an analysis c.)'f.the
QPT has been discussed in the RWA by Hillery and Mlodi- evel stat'lstlcs'and wave funcngns O.f the system a} fipite
now [31], using an effective Hamiltonian method that is Our sgmlclasswal m_odel IS dgrlved in Sec. V. and its p_hase
similar to ours. However, having illustrated the existence ofifansition an_d chaotic properties are discussed. We dlsc_uss
the QPT, they concentrated solely on the normal phase, a |e_fly _the dn‘reren(_:es between the full DH and th_e Hamil-
were not interested in chaos. tonian in lthe RWA in Sec. VI before we draw our final con-
Away from the thermodynamic limit at finit8l andj, the clusions in Sec. VILI. Sor_ne of our exact expressions are re-
DH is, in general, nonintegrable. Quantum-chaotic propertieg’rOduced in the Appendix.
of the DH have been discussed by several authg®s-39
but, to the best of our knowledge, have never been connected
with the QPT, and a systematic study of the dependence of The full Dicke Hamiltonian(DH) models the interaction
the systems behavior on the number of atdwis lacking.  of N atoms with a number of bosonic field modes via dipole

II. THE DICKE HAMILTONIAN
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interactions within an ideal cavif{21]. We initially represent

the atoms as a collection &f identical, but distinguishable,

two-level systems each with level splitting,. Theith atom +1
is described by the spin-1/2 operat¢s§’ ; k=z,+}, obey-

ing the commutation rulegs,,s.]=*s.; [Sy,s_]=2s,.

These two-level atoms interact withh bosonic modes, which m o
have frequencie§w,}, interact with coupling strengths

{\,}, and are described by the bosonic creation and annihi-

lation operatorda} and{a,}. In terms of these quantities, -1
the full DH is given by 0 1 2 3 4 —=

=

M n

N
= (i) T
H “’021 Sz *; @aBaBa FIG. 1. Schematic lattice representation of the states of the

Dicke model withj=1. Shadedunshadefdots denote states of
Mo N ) ) positive (negative parity, with solid lines representing the cou-
Z Z —=(al+a,) (s +s), (4)  plings between the states.

e

where we have sét=1. The origin of the factor /N in the
interaction is the fact that the original dipole coupling
strength is proportional to ¥, whereV is the volume of
the cavity. By writingp=N/V, wherep is the density of the
atoms in the cavity, this become&/N and by subsuming
the density into the coupling constariis,}, we obtain 1{/N N
explicitly in the coupling. H=wgl,+wa'a+ —(a'+a)(J, +J.). @)
In Eq. (4), we have not made the usual RWA under which @
one would neglect the counter-rotating terra§s{’ and
a, st . We shall consider aspects of the RWA in Sec. VI.
We now specialize the Hamiltonian to consider a single-
mode bosonic field, and thus we drop the subsatipiThe
analysis of this Hamiltonian is further simplified by the in-

sectors. Thus, the collection &f two-level systems is de-
scribed as a singleN+ 1)-level system, which is viewed as
a large pseudospin vector of lengtk N/2.

In terms of the collective operators, the single-mode DH
may be written as

In the following, when we refer to the Dicke Hamiltonian we
shall mean the single-mode Hamiltonian, unless otherwise
stated. The resonance conditiords wg, and when plotting
results we generally work on a scaled resonance, such that

; ; ; w=wy=1.

troduction of collective atomic operators Associated with the DH is a conserved palility such that

N N [H,II1=0, which is given by

3= W .= s, (5)

=1 =1 M=expliwN}, N=a'a+J,+j, 8)
These operators obey the usual angular momentum commu-
tation relations where N is the “excitation number” and counts the total

number of excitation quanta in the systekh.possesses two
[J,,+]=*xd.; [J.,)_]=27,. (6) eigenvalues+1, depending on whether the number of

guanta is even or odd, and, correspondingly, the Hilbert
The Hilbert space of this algebra is spanned by the ketspace of the total system is split into two noninteracting sub-
{li,m); m=—j,—j+1,. —1,j}, which are known as spaces.
the Dicke states, and are elgenstatesﬁofand\] J,|j,m) If we express the Hilbert space of the total system in
=mlj,m) a”dJZ|J ,my=j(j+1)|j,m). The raising and low- terms of the basi§|n)®|j,m)}, where|n) are number states
ering operators act on these states in the following wayof the field,a’ajn)=n|n), and|j,m) are the Dicke states,
J.|j,my=Vj(j+1)—m(m=1) |j,m=1). Note thaf corre- the DH and the significance of the parity operator may be
sponds to Dicke’s “cooperation number,” which takes theviewed in a simple lattice analogy. We construct a two-
valuess,3, ... ,N/2 for N odd, and 0,1. .. ,N/2 forN even.  dimensional lattice, each point of which represents a basis
For example, witiN=2 atoms,j can take the values 0 and vector and is labeledn{m). An example of this lattice with
1. In terms of thes, values of the individual spins, the sector j=1 is shown in Fig. 1. Note that the lattice is finite in the
with j=1 contains the triplet state$||), 2 Y2(|7]) “m” direction, but infinite in the h’ direction, reflecting the
+[11)), and|171). Thej=0 sector contains only the singlet dimensionality of the Hilbert space. In this picture, we see
state 272(|71)—|[11)). In general, the set of atomic con- that because the interaction conserves the palfitystates
figurations forN>2 is nontrivial[40] and, in terms of the with an even total excitation number-m+-j interact only
individual atom configurations, the states are nonseparableith other even states, and odd states interact only with odd
and contain entanglemefl]. In this work, we shall tak¢  states. This has the effect of dividing the total lattice into two
to have its maximal valug=N/2, and once set, this value of interweaved sublattices, which correspond to the two differ-
j is constant, since the interaction in the DH does not mix ent parity sectors.
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I1l. THERMODYNAMIC LIMIT This representation will be particularly useful when we come
to consider the wave functions of the system. Expressing the

We begin by considering the DH in the thermodynamic, . uionianH(®) in terms of these operators, we obtain

limit, in which the number of atoms becomes infinite,

N—o, and hencg —oe. In this limit, the DH undergoes a 1
- . : )T, 202, 124 22 2 o

QPT at a critical value of the atom-field coupling strength H —Z{w X+ py+ wgy +pyt 4N Jowy Xy—wg— o}

A= Vwwyl2, at which point the symmetry associated with

the parity operatoil of Eq. (8) is broken. To describe this —jwg, (14

QPT we shall derive two effective Hamiltonians, one to de-

scribe the system in the normal phase ). and one to Which may be diagonalized by rotating the coordinate system

describe it in the broken-symmetry, super-radiant phase in the following way:

>\.. It should be noted that the results derived below are

= (1) im A1) — im (1) (1)
exact in this limit, and this allows us to understand the nature X~ 91€0SY" T d2SINY™5 Y= —Q;SINy*" "+ Q2C08y"",

of this system in a very detailed way. (19
In this analysis, we shall make an extensive use of thgyhere the angle/?) is given by
Holstein-Primakoff representation of the angular momentum
operators, which represents the operators in terms of a single AN \/w—w0
bosonic mode in the following wa29,30: tan2yM)= ———. (16)
(1)0— w

J.=b"2j—bTb, J_=2j—b'b b,

On resonancep=wg, YV=1/4, so thatx=(q,+0,)/y2

J,=(b'b—1j), (99 andy=(—q;+ 0,)/\/2. This rotation eliminates they in-
teraction term in the Hamiltonian, which then assumes the
where the introduced Bose operators opeyb']=1. form of two uncoupled oscillators,

Making these substitutions into the DH of E(}), we

. _ . . . 1
obtain the two-mode bosonic Hamiltonian H(1)=§{s(})2q§+ 02+ £ M202 4 p2— w— wo} — j w.

H=wq(b’™b—j)+wa'a (17
b'b \/ b'b We now re izeH™®) wi i i
+ t _ob _ob quantized'* with the introduction of two new
+A(a'+a)| b \/1 2j vl 2 bj. (10 bosonic modes defined by
In this representation, the parity operatérbecomes 1 + Y +
Q1=ﬁ(01+01), P1=1\ —(c1=c),
I=exgin[ata+b'b]}, (11) 2e>
and the analogy with the standard parity operator of a two- 1 + S t
dimensional harmonic operator is thus appaféa. Qf—\/m(cﬁ C2), P2=i\[—5H(c2=¢Cr), (18
+
A. Normal phase and arrive at the final diagonal form
We derive an effective Hamiltonian for the system in the 1
normal phase by simply neglecting terms wjtin the de- ~ HW=Wclc, +WMele,+ = (6P +eW - w—wo) —jwo.
nominator in the full Hamiltonian of Eq10). This approxi- 2
mates the square root in the Holstein-Primakoff mapping (19
with unity, and we obtain the effective Hamiltoniat()

The bosonic operator$c,,cl,c,,ch}, in terms of which

H® is diagonal, are linear combinations of the original op-
HO=wobb+ wata+r(a’+a)(bT+b)—jw,, (12)  erators{a,a’,b,b"}, as detailed in Appendix A, and describe

collective atom-field excitations. The energies of the two in-

which is bilinear in the bosonic operators and can thus be&ependent oscillator modeﬁf) are given by

simply diagonalized. This is most easily facilitated by the

introduction of position and momentum operators for the two

bosonic modes,

given by

1
SQ)ZZE{w2+ wgi \/(wg— 0?)?+ 16\ %wwy}.  (20)

. _ ) Crucially, we see that the excitation energy is real only
X:E(a +a), px=iyza-a), when 02+ w3= (05— 0?)?+ 16\ 2w, or equivalentlyx
< Jwwy/2=\.. Thus, we see that") remains valid forx
<\, i.e., in the normal phase. In this phase, the ground-
(bT+b), py=i “Obt—b). (13 state energy is given bED=—jw,, which is O(j),
whereas the excitation energie&” are O(1). This means

1
y_ \ 2(1)0
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k
above the ground state becomes quasicontinuous inj the H®=wc’ C+[w0+ ” \/ '[j ]de [ \/'g—j—w\/Z}

—oo limit; that is to say that the excitation energies differ by

an infinitesimal amount fronk .
It should be noted thaH®) commutes with the parity
operatorII, and thus the eigenstates laf*) have a definite

parity, with the ground state having positive parity. This can

been seen from the fact that a=0, the ground state is
[0)|j,—]) in the original|n}|j,m) basis, which clearly has
an even excitation numbean+m-+j=0. As the energy lev-

els in the normal phase are nondegenerate, the continuity of

the ground state with increasingensures that it always has
positive parity in this phase.

B. Super-radiant phase

In order to describe the system above the phase transitio
we must incorporate the fact that both the field and th

an  [ak
><(cT+c)+[T ;—l-(j—ﬂ)—wo@}(d“rd)
apk

2k2 2 (2k+,3)(d*+d)2+—\f(1—

x(cT+ C)(dT+d)+’w0(,8—j)+wa— K =1/ azli

><(1+4k)}. (24)

We now eliminate the terms in thé(? that are linear in the
Bosonic operators by choosing the displacemanasid 3 so

e\that

atomic ensemble acquire macroscopic occupations. To do

this, we start with the Holstein-Primakoff transformed
Hamiltonian of Eq.(10) and displace the bosonic modes in

either of the following ways:

at—c+Va; bf—d"—p (21)

or
a*HcT—\/Z; b'—d'+ \/E

(22

| Bk
2\ Z—w

a=0 (25
and
4N?
(w—ju—/s)—wo) VB=0. (26)

The VB=a=0 solution of these equations recovers the
normal phase HamiltoniatH®). The nontrivial solution
gives

Crucially, we assume that the as yet, undetermined param-

etersa and B are of theO(j), equivalent to assuming that

both modes acquire nonzero, macroscopic mean fields above
In the following, we shall just consider the displace-

Ae¢.
ments given by Eq(21), as the calculation with the other
choice is identical but for a few changes of sign.

Making these displacements, the Hamiltonian of &d)
becomes

H=wo{dTd— VB(dT+d)+ B~} + w{cTc+ Va(cT+c)

+a}l+\ \/;kj(cT+c+2JE)(dT\/EJr Jed—2BVe),

(23

where for brevity we have written

d'd—VB(dT+d)
Ve= \/1— >

andk=2j— B. Taking the thermodynamic limit by expand-
ing the square root/¢ and then setting terms with overall
powers ofj in the denominator to zero, we obtain

i .
Va=—\J5(1=p?; VB=\i(1-w), @7
where we have defined
wwy )\2
B2 T\ 29

With these determinations, the effective Hamiltonian of Eq.
(24) becomes

H@=wclc+ ;—:(1+ﬂ)de+ wO(;;(lI)Jr(ij “) (d™+d)?
+Ap (cT+c)(dT+d)—j{2—7\2+wL2w]
8\?
2
o 1w (29

To facilitate the diagonalization of this bilinear Hamiltonian
we move to a position-momentum representation defined by

XE\/:CT—FC) PX—I\f(CT—C)

066203-5



C. EMARY AND T. BRANDES PHYSICAL REVIEW E67, 066203 (2003

1 o ’
Y=——(d"+d), Py=i \[E(dT—d), (30) '

where = (wo/2u)(1+ u). Note that this is not the same 2
representation as defined in E@.3). The diagonalization

then proceeds similarly as before, involving a rotation in theg 15
X-Y plane to the new coordinates

-- &, atomic branch
— ¢_ photon branch| -

X=Q; cosy?+Q, siny?,

Y=—Q;siny?+Q,cosy®, (31 *r }
with the angley® given by 0 5 >
2 2wwou?
a2y ”)=——-7—. (32) FIG. 2. The excitation energies of the Dicke Hamiltonian in the
@WoT M thermodynamic limit as a function of coupling The Hamiltonian

o . is on scaled resonance,=wy=1, and the vanishing of _ at A
A subsequent requantization in terms of two new modes., —q 5 signals the occurrence of the QPT.

e(f), corresponding to the rotated, decoupled oscillators

gives us the diagonal form for both of the two different choices of mean-field displace-
) ments. This operator commutes with the appropriate super-
2\? ojw radiant Hamiltoniaf H®), T1(?)]=0.
H(Z)ZS(Z)GIel-FS(f)e;ez—j{74-&] 1 ]
1 \2 C. Phase transition
w
+ E(s(f)Jr g?— 2—0(l+,u)—w— —(1—,u)>, Having derived the two effective Hamiltonians that de-
K @ scribe the system for all in the j—o limit, we now de-
(33 scribe the system’s properties in each of its two phases. The
fundamental excitations of the system are given by the ener-
with the oscillator energies being given by giese. , which describe collective modes, similar to polar-
iton modes in solid-state physi¢43]. The behavior of these
2
28&2)2=ﬁ+ w?+ \/ ¢

2

2 2 energies as a function of coupling strength is displayed in
2
— — w

2

+40’wi. (34  Fig. 2, where we have labeled the two branches as “atomic”

H and “photonic,” according to the nature of the excitation at
) ) _ o zero coupling. From this figure we see that as the coupling
The Bogoliubov transformations that induce this d'agona"approaches the critical value., the excitation energy of the
ization are given in Appendix A. The excitation enel@fﬁ), photonic mode vanishes, —0, ash— X\, demonstrating
and_henceH(®, remains real, provided thawf/u?) +®?  the existence of the QPT. In contrast, tends towards a
=\[(wp/ #*) — 0+ 4w’ w; or, equivalently\=\wwo2  value of Jwi+w? as\—\, from either direction. In the
=\¢. Thus, we see thati’® describes the system in the asymptotic limit of A, & — (returing to itsA =0
super-radiant phas& >\, in which the scaled ground-state valug, whereass , —4\?%/w. The critical exponents of this
energy is given bEP)j=—{(2\% w) + (wiw/8\?)}. QPT are manifested in the behavior of the excitation energies

If we choose the signs of the operator displacements a818]. As A — \. from either direction, the energy_ can be
per Eq.(22), we obtain exactly the same values®ofind 3, shown to vanish as
and an effective Hamiltonian identical in form to E®@3),
This clearly has the same spectrum and, therefore, each and 3A3w?
every level of the total spectrum is doubly degenerate above e-(A\=No)~ \/ =5 I\ MY2 (36)
the phase transition. What has occurred is that the symmetry 16\ +o

of the ground state, defined by the operdthbrhas become o .
spontaneously broken at,. The HamiltonianH®), for ei-  The vanishing of _ at A reveals this to be a second-order

ther choice of displacement, does not commute Withand phase transition. We define the characteristic length scale in
thus its eigenfunctions do not possess good parity symmetr§l’€ System in terms of this energy as

Although the global symmetryl becomes broken at the
phase transition, two new local symmetries appear, corre- l_=1/e_ . (37)
sponding to the operator

From Eq.(36), this length diverges ab\ — X\~ with the
@ =expin[c’c+d'd]} (35)  exponentv=1/4. We then write thate_ vanishes as
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FIG. 3. The scaled ground-state enefgy/j and its second derivative *d’Eg/d\? as a function of coupling.. Solid lines denote
results in the thermodynamic limit, whereas dashed lines correspond to the results for various finite \/jah&séf,S,S. The Hamiltonian
is on scaled resonance:=wy=1, \;=0.5.

=1

[N —N\¢|?", with the dynamical critical exponent being given illustrates the nature of the phase transition; in the normal

by z=2. At the phase transition point, we have phase, the system is only microscopically excited, whereas
) ) above A, both the field and the atomic ensemble acquire
HB ) =H®(\) macroscopic excitations. We may write the values of the

1 atomic inversion and the mean photon number aboyvén
= Jw?+ wicic,+ E( Vol+ wi—o—w0y) —jwo, the following fashion:

39) ()lj=Blj—1, (@'aMlj=alj; A>\.. (39
Thus, making clear the physical meaning of the displacement

from which we see that at; the system becomes effectively parametersy and 3 in Egs. (27).

one dimensional.
The ground-state energy of the systé&mg is shown in _
Fig. 3 and the analytic form expression is given in Table I. D. Ground-state wave function
Note that we scale all quantities pywhich means that the We now consider the ground-state wave functions of the
plottedEg/j is equal to Eg/N, twice the energy per atom. system above and below the phase transition. After diagonal-
We also plot the second derivative of the ground-state energigation, the two effective Hamiltonians are both of the form
with respect to\, which possesses a discontinuity X, of a pair of uncoupled harmonic oscillators. Thus, in the
clearly locating the phase transition. representation in which the Hamiltonians are diagonal, their
In Fig. 4, we plot the atomic inversiofJ,)/j and the wave functions will simply be the product of the appropriate
mean photon numbefn,)/j=(a’a)/j. This figure clearly harmonic oscillator eigenfunctions. Here, we seek to express

0 T T T T T T

02+

<n > /]

-0.8—

FIG. 4. The scaled atomic inversion and the mean photon number of the Dicke Hamiltonian as a function of couflatig lines
denote results in the thermodynamic limit, whereas dashed lines correspond to the results for various finite \ja#®$,§)13,5. The
Hamiltonian is on scaled resonanee= wy=1, \.=0.5.
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TABLE |. The ground-state energy, atomic inversion, and mean \P(Gl)(x,y)=G(_1)(X Cos'y(l)—ysiny(l))

photon number of the Dicke Hamiltonian in the thermodynamic
limit. xGWM(xsinyW+ycosy®), (42

A<Nc A>Ne and this wave function is plotted for various couplings in
E.J/i _ Fig. 5. AtA =0, the wave function is the product of orthogo-

Gl o ) . . .
M S nal Gaussians of equal widtfon resonande As coupling
0\ increases, the wave packet becomes stretched in a direction

()] -1 —\2/\2 determined by the angle(?) that on resonance is simply
(ata)/j 0 20\ =AY/ (w\)? equal torr/4. This stretching increases up xQ, where the

wave function diverges. We thus see the significance of the
length | _ introduced earlier—it is the extent of the wave
these wave functions in terms of the two-dimensioxal function in the direction of this stretching. Correspondingly,
representation of Eq13)—which corresponds to the origi- I_+ is the extent of the wave function in the orthogonal direc-
nal atomic and field degrees of freedom. tion. _ _

We have already noted that in the Holstein-Primakoff rep- N the super-radiant phase, the ground state is degenerate.

resentation, the parity operator has the fdim explimjala ~ We shall initially consider the ground-state wave function of
+b'b]}. From our knowledge of the harmonic oscillafgg], ~ the effective Hamiltoniar®) with displacements chosen in

we know that the action dfl in the x-y representation is to  E9: (2. This is diagonal in th®;-Q, representation of Eq.
perform the coordinate inversions,+ —x andy— —vy, with (31), and therefore its ground-state wave function is
px andp, remaining unaffected. Thus, the operationl bis @) ) @)
equivalent to a rotation of about the coordinate origin and, W'(Q1,Q2)=GX(Q1) G (Q2). (43
in the normal phase wheié is a good quantum number, the
wave functions will be seen to be invariant under this rota-Using Egqs(13), (21), (30), and(31) we may write this in the
tion. original x-y representation as

The ground-state wave function of a single harmonic os-

cillator in terms of its coordinate is a Gaussian with width ¢ 2)(x,y) = G@[(x— 2a/ w)cosy'? — Vwg /@
determined by the energy of the oscillator. Correspondingly,

we define the normalized Gaussian functions X (y+ 2Bl wg)sin Y G [ (x— V2alw)
(1,2)\ 1/4 (1.2) 2 = )
ey ey X N, J )
G&l'z)(q)=( * ) exp{ B _2 qz], (40) siny'“+ NVwg/o(y+ 2B/ wg)cosy ]
7 (44)

1,2 : : H H . . . . . .
wherez?) are the excitation energies encountered earlier. This expression contains displacements involving the macro-

In the normal phase, the effective Hamiltonief") is  scopic quantitiesr and 8, and so we define the new coordi-
diagonal in theq;-q, representation of Eq(15) and its natesx’ andy’ to remove them:
ground-state wave functio® ) in this representation is,

therefore, X'=x—A,, y'=y+Ay, (45)
WE(d1,02)=GH(01)G(p). (4D with
Moving to thex-y representation, we have A=V2alw, Ay=V2Blwo, (46)

-1 0 1-1 0 1-1 0 1-1 0 1
X X X X

FIG. 5. The ground-state wave functidn(Gl) of the low-coupling HamiltoniarH) in the x-y position-momentum representation for
couplingsh =0,0.3,0.49,0.499 999 9. The Hamiltonian is on scaled resonare@,=1, \.=0.5.
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-1 0 1-1 0 1-1 0 1-1 0 1
X X X X

FIG. 6. The ground-state wave functidrg) of the high-coupling Hamiltoniak ® in thex’-y’ position-momentum representation for
couplingsh =0.500 001,0.51,0.6,1.0. The Hamiltonian is on scaled resonane@,=1, \;=0.5.

which are both proportional tgj. The relationship between e’{—>cT, e,—C,
the coordinate systerX-Y of Eq. (30) and x’-y’ is very

simple, namelyx’ =X andy’=Vw/w, Y. The coordinate . 1 ; 1,

systemx’-y’ is useful because althougtY is the diagonal ez—>ﬁ(?>d +d), e— ﬁ(d +3d), (49
representation for the super-radiant phase, the definition of

these coordinates depends upemnd hence upoR, which jjjystrating the decoupling. Note that tieg simply reverts to
distorts the picture. In terms of these coordinates, the wavghe ¢ mode, whereas the, mode tends towards a linear
function becomes combination of the annihilation and creation operators. In

this limit, the wave function becomes

oot T

~ li i wwo ! !
—Vwglwy'siny?)GP(x"siny? (X' y )H(ﬁ) G (x")GP Y

+Vwolwy' cosy?). (47) [2N¢ F( 2@ rZ) (49)
T 2

Figure 6 showsl 2)(x’,y") for four different couplings. Just
above the phase transition the wave fur_lction is in a highlyynich is independent of.
deformed state, characterized by the divergent As the
coupling increases further abowg, the wave function re-
laxes back to a well localized state.

When considered in the originaty representation, the A bosonic field may said to be squeezed if the uncertainty
wave functionW@)(x',y") pictured in Fig. 6 is centered in either of its quadraturesk(or p,) is less than the uncer-
about the point ¢ A,,—A,), which lies in the lower-right tainty in a coherent stafd4]. A coherent state is a minimum
quadrant of thex-y plane. The complementary wave func-
tion, identical in shape with this one but determined by dis- 15|

V(X' ,y") = (ol 0)*GP(x' cosy®

E. Squeezing

T T
placement$22), is centered at{ A, ,+Ay) in the upper-left L =10 A=5 1
quadrant. The positions of these two centers as parametri 1+ AL A) =1 .
functions of coupling are shown in Fig. 7. These two wave - XY

functions, corresponding to the two choices of displacement, 051~ =
are separated from the origin by an amount proportional to 1
\Jj. It is thus clear that neither of these wave functions isY
symmetric under rotation ofr about the origin of thex-y
coordinate system, demonstrating once more thalkltlsgm- |
metry has been broken. There is, however, symmetry with n Ay -A)
respect to a rotation ofr about the origin of eacl’ -y’ I A=1 _
coordinate system, which corresponds to the existence of thr | - =
local symmetries associated with?) of Eq. (35). —_—

It is interesting to consider the behavior of the ground- /.1/2
state wave function aa—c. In this limit e€?—w, £? X7
—4\% o and the mixing angle of the two modes? tends FIG. 7. Parametric plot of théscaled displacements A,
to zero, meaning that the modes decouple. The Bogoliubov-A ) and —(A,,A,) as \ is varied between 0.5 and 10. The
transformations of the modes become Hamiltonian is on scaled resonanees wo=1.

A2 | .
/.] o A=0.5

0.5 -
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uncertainty state withAx)?(Ap,)2= 1/4 and with the uncer- 4
tainty apportioned evenly between the two quadratures. | — @ |-
Therefore, the field is squeezed whenev&x)? or (Ap,)? ' ]

has a value lower than 1{25]. 3|
We define the two quadrature variances of the original

field mode a by (Ax)?=(x?)—(x)2 and (Apy)?=(p2) i

—(p,)?, which may be seen to be equal to 2

— @y’
-~ @p)’|

1
(Ax)?=7-{1+(a"%)+(a%) +2(a'a) +((a") +(a))?},

(Ap)2=5 {1 (%)~ (a%)+2(a'a)+ ((a') +(a))?.
(50 % ' 05 1 ' 15

As we have introduced a bosonic algebra for the atomic col- _ _
lection, we now introduce an analogous definition for_ FIG. 8. The squeezing variances of the ground state of the DH

squeezing in the atoms, and say that in terms of the variancd the thermodynamic limit. The Hamiltonian is on scaled reso-
nance:w=wy=1, \,=0.5. Note that on resonanceAX)? and

o 1 2 2 5 (Ay)? are coincident forx<\., and the same forAp,)? and
(Ay) =2—wo{1+<bT )+(b?)+2(bTo)+((b")+(b)2},  (Ap)2

W of the momentum variances. In the super-radiant phase, the
(Apy)2=7{1—<b12>—<b2>+ 2(b™b)+((b"y+(b))?}, initially divergent values of £x)2 and (Ay)? reduce rapidly
(51) with increasing coupling. The behavior of these variances
reflects the nature of the wave functions plotted in Figs. 5
the atoms are squeezed if eithevy()? or (Ap,)?is less than ~and 6. Notice that a& —o=, (Ax)? and (Ap,)® return to
1/2. The squeezing of atomic ensembles is usually defined ifieir A=0 values, whereasAy)? and (Apy)® become
terms of the collective operatdi46,47). Because the angular Squeezed and antisqueezed, respectively. This is in agree-
momentum operators obey the commutation relatiorment with the results of Eq48), which show that thee,
[J,,J_]=2J,, the uncertainty relation A(JX)Z(AJy)Z mode becomes identical to tikenode, which is unsqueezed,
=2](J,)|? holds for any state. By substituting the Holstein- whereas thee, mode reverts to a linear superposition cbf
Primakoff forms into this expression and taking the thermo-andd" operators, which is a specific example of the Bogo-
dynamic limit, we see that this relation reduces toliubov transformation producing a squeezed sf4#.
(Ay)Z(Apy)2>1/4, demonstrating the equivalence in the
thermodynamic limit of our definition in terms gf and p,
and the usual one. In the normal phase, the expressions for
the variances are evaluated by simply making the appropriate As we have just demonstrated, the DH is exactly inte-
substitutions from Appendix A and taking their ground-stategrable in the thermodynamic limit. However, for finjt¢his
expectation value. In the super-radiant phase, it can bg not the case, and the possibility of quantum chaos remains.
shown that the variances of the original field and atomicThe signature of quantum chaos which we use to investigate
modes of Eqs(50) and(51) can be expressed in terms of the this possibility is the character of the energy spectrum as

IV. THE ONSET OF CHAOS

displaced coordinates as follows: quantified by the nearest-neighbor level distributi®(s).
5 o 5 ) o ) Bohigaset al. [5] first conjectured that the study of spectral
(Ax)7=(Ax")"=(AX)%, (AP =(Ap,)"=(APx)%, quantities such a®(S), and their comparison with the re-
sults from random matrix theory should give an indication of
(Ay)?=(Ay") 2=V wlwy(AY)? , quantum chaos. This may be understood by the following
argument. Classically integrable systems have high degrees
(Apy)2=(Ap§,)2=‘/Z)/wo(APY)Z. (520  of symmetry and hence their quantum counterparts have

many conserved gquantum numbers. This permits level cross-

This results from the fact that the squeezing variances do ndigs to occur in the spectrum, leading t&&S) with a maxi-
depend upon the displacements of the field modes, and thusum at small level spacing— 0, with aP(S) given by the
evaluating the super-radiant variances is as simple as in tHeoissonian distributioR(S) = exp(—S). We shall call quan-
normal phase. tum spectra with Poissonian statistics “quasiintegrable.”

The analytic values of these variances in the ground stat€onversely, classically chaotic systems have no such inte-
are shown in Appendix B and are plotted as functions ofgrals of motion and we thus expect their quantum energy
coupling in Fig. 8. In the normal phase, Rsapproached..  spectra to be highly correlated and absent of crossings, lead-
there is a sharp increase, and eventually a divergence, ing to P(S)—0 asS—0. Although the precise form of the
(Ax)? and (Ay)2. This is accompanied by a slight squeezing P(S) for chaotic systems depends on the symmetries of the
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model, we shall find that only the Wigner-Dyson distribution, j=2 g
Pw(S)=mS/2 exp(—7S/4), is of relevance hergt9].
Despite its popularity, it should be pointed out that the
correspondence between tRéS) distribution and the inte-
grability or otherwise of the classical system is not absolute,
and exceptions do exi§b0,51. Despite this, thd>(S) does _ —
provide a convenient and useful indication of quantum *  ospMa
chaos, and the conjecture does hold true in countless ex -
amples. In the present case, this signature turns out to bj=15 4~
very accurate, as will be evinced when we compareR(s) O3 My
results with those of our semiclassical model.

I
1= P Uy

A. Numerical diagonalization L

/
/
i
0

0 2 0 2 0 2
Exact solutions for the DH at finitedo not exist, except A=02 A=05 A=0.8

in the very special case of=1/2, where isolated exact . o
“ o . FIG. 9. Plots of nearest-neighbor distributioR{S) for the
(*Juddian) solutions may be founf52,53. Consequently, Dicke Hamiltonian for different couplings and pseudospij Also

we employ numerical diag_onaliza.tion_ to investigate the SYShiotted are the universal Poissoniaioty to Wigner (dashek dis-
tem. To perform these diagonalizations we use the baSlE‘ibutions. The Hamiltonian is on scaled resonanee: wg=1,

{In)®|j,m)}, where|n) are number states of the field and |, _
|j,m) are the Dicke states. In performing the diagonalization, ¢

we truncate the bosonic Hilbert space, but always maintain,onic oscillator§4]. The RH is unusual and must be treated
the full Hilbert space of the pseudospin. The size of theyg 4 special case because, although it has never been shown
matrices requiring diagonalization is reduced by restricting pe integrable, isolated exact solutions do ef&2,53.

ourselves to a single-parity subspace, which is achieved bMIoreover, the model is separable and may be reduced to a
only considering states with+m+j even or odd for posi- single degree of freedoi2].

tive and negative parity, respectively. Wittfinite, II is a Returning to theP(S) distributions, we see that at low
good quantum number, mdgpenden.t of coupling, and th%ouplings)\<)\c [for example,\=0.2 in Fig. (9)], as we
ground state always has positive parity. increasej, the P(S) loses its nongeneric features and ap-

The results obtained via this diagonalization for the
ground-state energy and its second derivative for a sequencg,q anove the critical coupling.€ 0.5 and 0.8 in Fig. B

of finite j values are plotted alongside the-< results in e spectrum is seen to converge onto the Wigner-Dyson
Fig. 3, while the corresponding atomic inversions and meanjistribution Pw(S) asj is increased.

photon numbers are plotted in Fig. 4. These figures demon- tnq nature of the change in tR(S) distribution may be
strate how rapidly the finit¢ results approach their thermo- characterized by the quantity

dynamic limits ag is increased.

groaches even closer the Poissonian distribuBg(S). At

So
B. Level statistics fo [P(S)—Pw(S)]dS
Having numerically obtained the energy spectra of the 7=\ s ; (54)
DH, we can construct the nearest-neighbor level-spacing dis- f [Pp(S)—Pw(S)]dS
tribution P(S). This is formed from a large number of levels 0
from the spectrum, which we initially unfold to remove secu- )
lar variation[49]. We then calculate the level spacings where $,=0.4729B .. ., thevalue of S at which the two
generic distribution®(S) andPy,(S) first intersec{10]. »
Sy=Eni1—En, (53)  measures the degree of similarity of the calculaf&®) to

the Wigner surmisd?,y(S), and is normalized such that if

where{E,; n=0,1, ...} is the set of eigenenergies of the P(S)=P(S) then =0, and if P(S)=Pp(S) then n=1.
DH with positive parity, and construct their distribution func- The behavior ofy as a function of coupling foj=5 and]
tion P(S). Finally, we normalize the results for comparison =20 is shown in Fig. 10. Considering the=20 case first,
with the universal ensembles of random matrix thel@r9). we see that the spectrum is strongly Poissonian at low cou-

Figure 9 shows thd(S) distributions obtained for the plings, and that ax is increased towards, it becomes more
DH at various values ok andj. At low j (j<3), theP(S) Wigner-Dyson-like. This proceeds until we reach, about
clearly do not correspond to any of the universal ensemblesyhich the spectrum is remarkably well describedfy(S).
but rather to nongeneric distributions consisting of severaNote that forh <\ . the value ofy drops steadily with cou-
isolated peaks. This is most obvious in the1/2 case(not  pling, whereas abovk, it maintains an approximately con-
shown herg which is known as the Rabi HamiltonidRH) stant value close to zero. For the5 case, a similar transi-
[54]. The RH has a spectrum that is of “picket-fence” char- tion is observed, but it is not as pronounced and the
acter [35], which is characteristic of genuinely integrable agreement with the universal distributions is not as good as
models such as one-dimensional systems and systems of hai-the higherj case.
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0.29
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08
=20 -
015

0.6

0.4

02 0.05—

FIG. 10. The modulus of;, Eq. (54), plotted as a function of FIG. 11. Nearest-neighbor spaciBg=E;,—E, vs eigenvalue
coupling for systems of=5 andj =20. A value ofy=1 indicates numbern plot for j=5 Wlth ).\:4. Horlzontal crosses: results for
Poissonian statistics ang=0 corresponds to the Wigner-Dyson the integrablé.—cc Hamiltonian. Insetj =5 results witin =2 and
distribution. The system is on scaled resonanse fo=1). )‘;% The Hamiltonian is on scaled resonanaes= wo=1, A.

Thus, for sufficiently high, we see a significant change in | . i
P(S) as\ is increased from zero through the critical value POiSSonian one, as one might expect, but rather through a

\c. Below \,, there is a significant amount of level cross- S€duence illustrated in Fig. 11. For couplings sufficiently
ing, which decreases as we approagh Above), there is higher than)\c,_ the speptrum becomes very regular at low
practically none, to within statistical error. Thus, we con-ENergy, where it approximates the- < results very closely.
clude that the precursors of the QPT in this model lead to &£Utside the regular region the spectrum is well described by

crossover from quasiintegrable to quantum-chaotic behavid€ Wigner surmise, and the energy scale over which the
at \~\. for sufficiently highj. change between the two regimes occurs is seen to be surpris-

ingly narrow. As coupling is increased, the size of the low-
energy integrable window increases, until it eventually en-
gulfs the whole spectrum as—o. This division of the

A further transition between integrable and chaotic behavspectrum into regions is close to Percival's conception of
ior is observed in the sequence of level spaciBgsas the how regular and irregular behavior would manifest itself in
coupling is increased from to . In the \—o limit, the  quantum systemfs5].
DH is integrable for arbitrary and equivalent to

C. Regularity at low energy

D. Wave functions for finite j

We now consider the wave functions of the DH at fiite
To do this, we shall use the position-momentum representa-
tion of Eq.(13) used earlier in discussing the wave functions
in the thermodynamic limit. We begin with the eigenfunc-

A
H, .=wa'lat2—(a'+a)J,. 55
A \/z( ) X ( )

The eigenstates adfl,_,.. are obviously eigenstates df ,

and thus tions obtained from numerical diagonalization, which are of
N the form
_ ot t
Hy_..=o0a a+2m\/?j(a +a), (56) e+
|q,nm>: E z ) C%ng|n>|1 !m>! (58
wherem=—j, ... ,j is the eigenvalue of,. This bosonic n=0m=-j

Hamiltonian is diagonalized by the displacememt-a

—2m\/\2], giving the eigenvalues to be wheren. is the maximum boson number in the artificially

truncated Fock space, anff), are coefficients. The position

o 2)\2 representatives of the number states of the figjdare sim-
Ekmzj—k— —.2m2, (57) ply the usual harmonic oscillator eigenfunctions
]
wherek=0,1,2 . ... Theenergy levels with+ m and —m (x|n)= 1 \/Ee(l/Z)wszn(\/Ex), (59)
are degenerate. 2™t Vm

As \ is increased from\. to approach this\—co limit
with j fixed, the spectrum reverts from Wigner-like to inte- where H, is the nth Hermite polynomial. For the angular
grable. However, it does not follow the usual transition se-momentum part of the basis vector, we recall that under the
quence of the Wigner distribution, gradually changing into aHolstein-Primakoff mapping,J,—b'b—j and, thus, the
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49 function starts as a single lobe centered at the origin for low
coupling. As the coupling increases, the two modes start
mixing, leading to a stretching of the single-peaked wave
function, which then splits into two as coupling is increased
through a coupling approximately equal X@. On further

48 increasing the coupling, the two lobes move away from each
other in their respective quadrants of the plane.
The key observation regarding the two lobes formed
abovel . is that, provided and\ are both sufficiently large,
—4.5

is their displacement from each other is proportiona{/fo and
that this is a macroscopic quantity. The excited states exhibit
. a similar behavior, having an extent proportionaljoabove
the phase transition.
Therefore, around the critical coupling=\., the wave

41 functions of the system become delocalized, and the extent
of this delocalization is proportional tgj. As this is a mac-
roscopic quantity, we see that abavg, the system at finite

. j develops macroscopic coherence in its wave functions. The

45 most striking example of this is the ground state, where the

45 0 45 -45 45

two macroscopically different lobes are reminiscent of the
two states of a Schdinger cat.

FIG. 12. The modulus of the ground-state wave functigr,y) The delocalization and the accompanying macroscopic
of the Dicke Hamiltonian in the abstracty representation for finitt  ~gherence are rather general features of the onset of chaos
j=5, atcouplings oR/A.=0.4, 1.0, 1.2, 1.4. Black corresponds 10 44 gre natural consequences of the exponential divergence
max| and white corresponds to zero. The Hamiltonian is on scaleq, trajectories in a classically chaotic systé5]. If we con-
resonances=wo=1, A;=0.5. sider a small volume of initial conditions in the classical

. . . . . phase space well-localized initial wave packgtand let the
Dicke states are eigenstates bfb with eigenvalue | system evolve chaotically, this initial volume rapidly be-

+m): bib|j,m)=(j+m)|j,m), —j=m=]. Consequently, comes blurred out over the entire phase space accessible to

we may represent the D_|cke states in the same way as ”IE‘ This is reflected in the quantum system by the delocaliza-
Fock states above, allowing us to write the total wave func-tion of the wave functions. That such systems are macro-

tion in the two-dimensional position representation as scopically coherent may be seen from the observation that

0
X X

oo ne i under Hamiltonian dynamics, the volume of the initial
Voo 2,2 . « " . T i
V(X y)=———e R toy) ¥ ) wave packet” remains constant in timgiouville's theo

™ n=0 m=—| rem). This means that the exponential divergence in some

direction leads to the exponential contraction in others. This
contraction will continue until the size of the packet becomes
of the order ofi and quantum effects come into play. If we
imagine that the wave packet becomes narrow in the direc-
This is a very productive representation in which to studytion of momentunp, then the uncertaintgp becomes very
this Hamiltonian. It does, however, suffer from the drawbacksmall. In order that the Heisenberg uncertainty relation holds,
that whereas the set of oscillator eigenfunctions Exf)  the uncertainty in the corresponding coordinAte must be-
forms an orthonormal set in thedirection, this is not the come very large, and this leads to the emergence of macro-
case in they direction as we only keep up to the j)zh  scopic coherence in the system.
oscillator eigenfunction in this direction. This means, for ex- This effect is what was observed in the variances calcu-
ample, that we could not go from an arbitrary wave functionlated earlier in connection with squeezing in the thermody-
in they direction to a description in terms of the Dicke statesnamic limit. As\ —\ from below, the variances\x)? and
because we do not have a complete set of functions in thiéAy)? diverged, with Ap,)? and (A py)2 remaining near
direction. Specifically, the significant width of the wave their quantum limit of 1/2. The behavior of these variances
function is limited in they direction by the maximum sig- then reflects the onset of quantum chaos and the macroscopic
nificant extent of the highest Hermite polynomi#y; . How-  coherence of the wave functions. A vital difference between
ever, if we know the value of and only consider wave thej—o and the finitej results thus emerges in the super-
functions that are describable in terms of these, then the repadiant phase. In the thermodynamic limit, the variances
resentation is unique. (Ax)? and (Ay)? reduce as\ is increased from ., indicat-
Figure 12 shows the ground-state wave function of theng that the wave functions become localized and lose this
DH with j=5 for a series of increasing couplings. Note thatmacroscopic coherence. This is in contrast with the fipite
the wave function is always invariant under a rotationmof ~where sufficiently abova . the wave function is always de-
about the origin as demanded by fiesymmetry. This wave localized and the variances a@(y/j). This is because,

XHn%x)HHm(Jw_oy)

200F1FM 01 (j+m)!

(60)
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whereas at finit¢ we obeyll symmetry and thus have both we may write this Hamiltonian in the position-momentum
the lobes of the wave function, in the thermodynamic limitrepresentation,
we consider each lobe separately under the broken symme-
try. The individual lobes are themselves localized and this is 1
where the discrepancy arises. This is, we believe, the reasti= —jw,+ = (0?X*+ pZ— 0+ way?+ pf/— wo)
why, although the spectrum is of the Wigner-Dyson type for 2
largej, the spectrum in thg—ce limit is integrable, since in i i
this limit the wave functions possess no delocalization and +)\\/ww0x((y— —py) V1—n+1- n(y+ —py> }
no macroscopic coherence. ®o @o
This picture also provides us with an explanation of why (63
P(S) for very smallj are of the nongeneric one-dimensional
type. As the extent of the wave function in thelirectionis | 1016 \we have written
effectively constrained by the number of harmonic eigen-
functions in that direction, which is determined jyhaving 2o _
a smallj prevents full delocalization in this direction, inhib- 7= (woy + py— wo)/ (4jwo). (64)
iting the chaoticity of the quantum system.

We now move very naturally from this quantum-mechanical
V. THE SEMICLASSICAL MODEL Hamiltonian to a semiclassical one by setting the position-

As noted in the Introduction, there have been many dif_momentum commutators 1o zero, i.&.x,p,]=0, and

ferent semiclassical models derived from the [86—39. Ly,py]=0. This causes the interaction term to become real,

That there have been so many different approaches is a rél! d'in terms of classical variables we have

flection of the fact that the quantum-mechanical spin pos-
sesses no direct classical analog. Nevertheless, semiclassical
models can be constructed, and in the following we shall
propose a different approach. Before this, let us briefly ex-
amine some of the previous work. \/ wgy*+ps—wg

A widely discussed approach is that of a Hartree-Fock— +2 N Jwwexy\/ 1- T(DO- (65)
type approximation in which one derives the Heisenberg
equations of motion for the system and replaces the operators ) o , o
in these equations by their expectation vallg%. These are Unusually, this Hamiltonian contains an intrinsic con-
treated as classical variables and a set of nonlinear equatiof@int that is determined by the requirement that the square
of motion are obtained for them, which show classical chao§00t must remain real for the system to remain Hamiltonian.
for certain parameter rangd87]. Despite this, the above |hiS means that the inequality
approach is not completely satisfactory as the motion only
depends orj in a trivial way. Furuyaet al. have studied a 20 2
classical model similar to the one we propose be[@6]. n= m(ﬂ)oy +py—wo)<1 (66)
They derived their semiclassical Hamiltonian by evaluating
the expectation value of the DH in a state composed of a o .
product of photonic and atomic coherent states, and this sy4s satisfied for all times.
tem was also shown to exhibit chaos. Despite the similarity
of their model to ours, they did not discuss the role of the
phase transition in determining the chaoticity of the model,

]
Hee= —jwo+ 5 (0™ + pi— o+ wiy?+ pj— o)

A. Classical phase transition

which is a key feature of our model. The HamiltoniarH . undergoes a spontaneous symmetry-
We start with the DH in the bosonic form of E(LO): breaking phase transition that is directly analogous to the
QPT of the quantum model. The exact correspondence be-

H=wo(b’™b—j)+wa'a tween the classical and quantum Hamiltonians in the thermo-

dynamic limit is because in this limit the system is exactly
bt \/1_ N_b+ \/1_ @b described with a mean-field theory as used earlier, and the
2] 2j use of classical variables as we have done here is equivalent
to a mean-field theory. Consequently, we are able to derive

By using the inverse of the relations in Eg.3), namely classical effective Hamiltonians exactly as we did in the

a — , a —| x _Opx

phase is derived by simply letting— (i.e., »—0) in the
' Hamiltonian of Eq.(65). This gives us
1
g i " o i H(S%)=—{a)2X2+ p)2(+ wgyz-l- p§+4)\\/ww0 Xy— wg— w}
b=\ S|yt Py, b=\ |y——py), 2
0
(62) —Jjwo, (67)

+x(at+a) . (6D

[
X+ —
o Px
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which is identical to Eq(14) from the quantum analysis, and ~ We now determine the fixed points of this flow at finjte

may be diagonalized with the same rotation. The equilibriurrby settingx=y=0, p,= by=0- The simplest fixed point is

position of HamiltonianH$) is the origin:x=y= p,=p,  given byx=y=p,=p,=0, the coordinate origin. By calcu-

=0. lating the Hessian stability matrix from the second deriva-
An effective Hamiltonian for the super-radiant phase istives of H, we see that this fixed point is only stable when

derived in the same way as in the quantum case, by displac-

ing the coordinates as in E@45), so thatx—x'*A,,y 1 -

—y'FA,, where the displacements are the same as before: §{w2+w§_ V(w?— )+ 1602 wwo(1+1/(4)))}>0,

Ay=V2alw andA =2/ wy. Making these displacements (71

and then taking the thermodynamic limit results in a Hamil-_

tonian H® that is identical with the quantum Hamiltonian i-€- when

H®) of Eq. (29) in the appropriate position-momentum rep-

resentation, which may thus be diagonalized with the same A< Ac

rotation. The equilibrium positions oH? are (+A,, Vi+1/(4))

—Ay) and (—A,,+A,). _ _ _
The bounds on the existence of these classical effectivéhere are two other fixed points, both of which havg

Hamiltonians are exactly as in the quantum case—the exci=Py=0, and withx andy given by

tation energies™) and='? of the decoupled modes remain

real only on their respective sides of the critical coupling - 2\ \/j [ ( " 1 )2 )\‘C‘]
O_ - R s )
(0] [0) 4j

(72)

which has the same value as in the quantum case. Clearly, N
the semiclassical system is completely integrable in this ther-

modynamic limit. : 5
2j I
Yo=7F 1+ ———]. (73

B. Equations of motion o 4 N2
To analyze the behavior of this semiclassical system fo
finite j, we form Hamilton’s equations of motion from the

derivatives ofH. [57]

These two quantities only remain real, provided that 1
+(1/4j)—()\§/)\2)>0, which corresponds to the condition

X=Px, S (74)
Ji+1/(4j)°
y= Dy( 1— i\ /2L> , Provided that the above condition is fulfilled, the fixed points
2] Vo179 given by (+Xq,—Yo) and (—Xg,+Ygp) exist and are stable.

So, below the coupling./y1+ 1/(4j), only one fixed point
Px=— 0’X—2\Jow, yV1-17, exists, which lies at the coordinate origin and is stable.
Above N=\./\J1+1/(4j), this fixed point becomes un-
, way? stable and two new stable fixed points appear at the coordi-
py=— 0oy — 2\ Jwwoxy1- 77( 1- 41(10—1)) (68 nates (+xq,—Yo) and (—Xq,+Yo). Note that these expres-

g sions give us the first correction to the location of the critical
coupling in terms of a perturbation seriesjinMe can con-
sider this semiclassical system as a particle moving in the
two-dimensional, momentum-dependent potential

where as before

- 2\,2 2_
1= Ay €OV TPy @0 (€9

U(x,y,py)= %(wzx2+w3y2)

It is not a priori obvious that this flow should preserve the

condition set out in Eq(66). However, we have demon- +p2—w0

strated numerically that, provided we choose initial condi- +2MJowxy\/1—- ———. (75
tions that satisfy Eq(66), then this condition is always sat- A g

isfied. Although we have not shown this analytically, it can atMaps of this potential for different values of increasing cou-

least be seen to be plausible. Calculating=d»/dt — pling and for two different values gf, are shown in Fig. 13.
={H, 7}, where{. - -} denote Poisson brackets, we find thatFirst, note how significantly the value pf, affects the shape
of the potential felt by the “particle.” For example, aboxe
: N o atA=0.8, withp, =0, the potential bifurcates into two sepa-
=— —\/—xp,1— - y—
7 i woxpy 1=, (70 rate wells, whereas fqu, = 3 it does not. Also note the simi-
larity between the plot ob(x,y,p,) for py=0 and the plot
so that asy approaches unity its rate of change approachesf the wave function in Fig. 12. It is clear that thgg=0
zero, implying that it is bound appropriately. potential largely determines the structure of the wave func-
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FIG. 13. The momentum-dependent potentlgk,y,p,) at two different values of momentupy=0 (left) andp,=3 (right) for a series
of couplings the same as in Figl2). Note the difference in scales between the two plots. The Hamiltonian is on scaled resamance:
=wy=1, \.=0.5.

tion at finitej, presumably because the location of the fixed(re)quantization of this Hamiltonian is not unique. This is

points are determined with,=0. because the potential(x,y,py) depends on the momentum
py. a situation that may be compared to the quantization of a
C. Chaos in the semiclassical model Lagrangian for an electron in a magnetic field, where an

) _ L ) . extra “rule” is required to obtain the correct quantization.

We numgrlcally integrate Hamllton_s equatl_ons of motionye may requantizél.. by simply reversing the steps in Eqs

for the semlc_:l_assmal gystem for a variety of different param-g1)_(65). However this is not the most obvious path, since
eters and initial conditions. In order to analyze thg trajectoy; inyolves the addition of extra, imaginary, -dependent

ries resulting from these integrations, we use Poins@®  {ormng that have canceled in the final Hamiltonian. Alterna-

tions th_rough _the _four-dimensional phase space. As th'ﬁvely, one may simply requantize E65) as it stands,
system is Hamiltonian, the energy which results in the Hamiltonian

1
Jwg 2(00 X"T Py~ wT wgy py U-’O) H’:wo(bTb—j)—i-waTa+)\(aT+a)(bT+b) 1— Tj'
+ 20 Jowwg xyV1—7 (76) (77

is conserved. and thus we define our surface of section b\yhich is clearly different to the original bosonic Hamiltonian
px=0 with, p, being fixed by the energ§. We only record of Eq. (61). This ambiguity disappears in the thermodynamic

traversals fop,>0. Poincafesections for illustrative param- limit, since hereU(x,y,p,) becomes momentum indepen-
eter values are shown in Fig. 14. dent in this limit in both systems phases.

At low N (A<0.4 in Fig. 14, the Poincaresections con- We note that the classical Hamiltonian
sist of a series of regular, periodic orbits. Approaching the

critical coupling ()\:0.44.,0.5 in Fi_g. 14 we see a change in H"=—jwo+ }(w2x2+ pf— o+ w§y2+ p2— w;)

the character of the periodic orbits, and also the emergence 2 Y

of a number of chaotic trajectories. Increasing the coupling 5—

further results in the breakup of the remaining periodic orbits N \/TwOW \ /1_ “’Oy_ —@o (79)
and the whole phase space becomes chaotic for couplings a djiwg ’

little over the critical value X=0.6 in Fig. 14. This transi-

tion to chaos in the classical system mirrors very closely thawhich is the same as the original Hamiltonian of E65),
seen in the quantum system, especially in the way that modtut with pi removed from the square root it displays a simi-
of the change in the nature of the behavior is centered abouar behavior to that of the full Hamiltonian. The gain in sim-
the critical coupling determined by the phase transition. Anplicity in using this model suggests that it would be an ideal
interesting feature of this classical Hamiltonian is that thetest model for further exploration of the dynamics of this

066203-16



CHAOS AND THE QUANTUM PHASE TRANSITION IN . .. PHYSICAL REVIEW B57, 066203 (2003

3

4

|
[§)

FIG. 14. Poincarsections for the classical Dicke model for a sequence of increasing couplinggw&tndE = — 3. The Hamiltonian
is on scaled resonanee= wy=1; \.=0.5.

type of Hamiltonian constrained by a square-root. The bethe RWA and non-RWAP(S) distributions has been studied
havior of the HamiltoniarH”, and the fact that th@,=0 by treating the non-RWA terms as a perturbati8d], and it
potential largely dominates the dynamics ldf; and the was found that as the strength of this perturbation is in-
structure of the wave function of the original DH suggestcreased from zero to one, a standard crossover between Pois-
that the requantization route is not critical, provided thist ~ sonian and Wigner-Dyson statistics is observed.

not small. Here, we report two observations concerning the differ-
ence between the RWA and non-RWA models. First, a calcu-
VI. THE RWA AND INTEGRABILITY lational issue that arises when considering the RWA system

in the thermodynamic limit. We may derive effective Hamil-
The DH in the RWA is given by tonians in each phase by using the Holstein-Primakoff repre-

sentation as before. In the normal phase, we obtain
A
Hraa= 0o, + wa'a+ \/?j(aTJ,Jra\h). (79 H, = wob'b+ waa+\(aTb+b'a)—jwy.  (80)

The Bogoliubov transformations required to diagonalize this
éﬂamiltonian are much simpler in terms of annihilation and
creation operators than those for the non-RWA case. Specifi-
cally, the RWA diagonalizing transformations are

It is in this form that the DH is generally studied and in
which the thermodynamics of the phase transition wer
originally discussed25,26. In the RWA, the QPT occurs at

a coupling that is twice that of the non-RWA critical value
ARA=2)\ .= Jww, [27,28. This is simply a consequence of
the fact that in the non-RWA DH there are four terms in the
interaction, whereas here we only have two. As each terys the Hermitian conjugate relations, where the rotation
contributes to the mean field, the critical coupling of the ;i 3 is given by

RWA is twice as large as the non-RWA one.

In the RWA, the excitation numbey of Eq. (8) becomes

a— —c;sinB+c,cosB;  b—cycosB+c,sing, (81)

exactly conserved. This splits the total Hilbert space into an tan2pB)= o—on (82
N o 0

infinite number of subspaces, labeled by the excitation num-

bern=0,1,2 ..., which in turn leads to level crossings and  The transformation for annihilation operators only in-

to a Poisson distribution foP(S). The crossover between volves annihilation operators, and the same with the creation
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FIG. 15. The full energy schema of tk@ non-RWA and(b) RWA Dicke Hamiltonian forj =5. The Hamiltonian is on scaled resonance;
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operators. This is in contrast with the non-RWA transforma-decoupled modes, each of which is a collective photon-atom
tions, which transform any given operator into a linear com-excitation, and it is the vanishing of the excitation energy
bination of all four operators. Therefore, in the RWA it is associated with the photonlike mode, that delimits the two
very simple to find the diagonalizing transformation in the phases. Our approach is particularly useful because we can
second quantized representation, whereas in the non-RWéaiculate exactly any property of the system in the thermo-
case, this diagonalization only becomes transparent whefynamic limit by simply utilizing the appropriate Bogoliu-
one considers the first quantized position-momentum represqy transformations.

sentation of the operators. The converse of this statement is Thig analysis reveals that the QPT breaks the symmetry
true; it is hard to find the diagonalizing transformation in the ;o ciated with the parity operatfr. In the normal phase,
RWA if one works in the position-momentum representation.Where the system in effectively unexcited, the wave func-

We conjecture that this is a more general point than Jus{ilons of the system are invariant with respectlio In the

ﬁ]pgmg?pr:gﬁézgd hope that this observation may be USGfLéuper—radiant phase, however, this global symmetry is broken

Our second observation concerns the comparison of th%nq two new local symmetr|e§ appear, each of which de_—
energy spectra at finitg of the RWA [58] and non-RWA scribes an isolated wave function lobe, and the spectrum is

Hamiltonians. Figure 15 shows two typical spectra, withdoubly degenerate. This symmetry breaking, strictly only oc-

coupling axes chosen for easy comparison. In terms of th€Urs in the thermodynamic limit and, at any finjiethese
appropriate critical coupling, the ground-state energy of théobes: are joined together in a total wave function thaklis
non-RWA Spectrum is remarkab|y We” approximated by the|nvar|a.nt. That these two lobes are Separated by a macro-
caustic of all the energy levels in the RWA spectrum thatSCopic amount, proportional to the square root of the system
have negative slopes. Adncreases, this approximation be- Size, means that the onset of chaos is accompanied by the
comes better as the length of the individual line segmentgdelocalization of the wave functions and the appearance of
become shorter, until, in the thermodynamic limit, the corre-macroscopic coherence in the system.
spondence of the ground states becomes exact and both ex-Similar features occur in the three-dimensional Anderson
citation spectra become quasicontinuous. model. This model of a disordered electron system exhibits a
metal-insulator transition, in which the wave functions are
localized for strong disorder and delocalized where the dis-
order is weak{8,59,60. An analysis of the level statistics

We have presented a coherent and comprehensive pictusiows thatP(S) changes from Poissonian to Wigner-Dyson
of how the existence of a QPT in the thermodynamic limitat the phase-transition point, which is determined by the
plays a crucial role in determining chaotic properties in amagnitude of the random potential fluctuations. It is remark-
model interacting system. The DH exhibits a changeoveanble that our comparatively simple model should bear so
from quasiintegrability to chaos, and this transition is locatednmany important features in common with complex disorder
by the precursors of the QPT around the critical poiy, models, such as the Anderson model; although one feature of
This statement applies equally well to the original quantumsuch models, for which we have found no evidence of in the
system and to the semiclassical counterpart derived from itDH, is the existence of a third universB(S) distribution

Our analysis of the DH in the thermodynamic limit con- precisely at the critical couplinf8].
sists of deriving an effective Hamiltonian to describe the There are two different classical limits involved with the
system in each of its normal and super-radiant phases. F@icke model and, by extension, models of similar nature
arbitrary coupling, the system is described in terms of twanvolving quantum spins and boson fields. First, there is the

VII. DISCUSSION
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limit of j—co, in which the length of the spin becomes mac-and the UK Quantum Circuits Network.

roscopic. The second is the linit—0, which we have per-

formed here when setting bosonic commutators equal 10 AppENDIX A: BOGOLIUBOV TRANSEORMATION

zero.

These limits may be applied independently and in either
order. If we apply thg —« limit first to the DH, we obtain
the effective Hamiltoniansi(*2). Taking then%,—0 by set-
ting the commutators of the collective modes to zero, w
simply obtainH{}?, the two classical effective Hamilto-
nians. Note that the integrability df(*? makes this “de-
guantization” direct and unambiguous. Applying this limit in
the other order means that starting with the DH in the
Holstein-Primakoff representation, we det-0 by setting
the original field and atom bosonic commutators to zero,
which results in our semiclassical Hamiltonibh.. Subse-
quently, taking thej—o limit results in H{}? as above,
showing that we obtain the same result independent of the
order in which the limits are taken.

After both limits, the system described bi£1? is “the
classical” analog of the DH, describing a macroscopic col-
lection of atoms in terms of classical variables. This system
is completely integrable, and there is no sign of chaos either
in it or its quantized counterpaH (12,

These results support the recent argument put forward by
Ballentine concerning the existence of so-called “semiquan-
tum chaos”[61]. Semiquantum chaos is that which arises
from the coupling of a quantum and a classical system, nei-
ther of which are by themselves chaotic. Ballentine studied a
model of a massive particle of mass interacting with a
spin-1/2. By considering the semiclassical limit mf— oo,
the semiquantum system of a quantum spin interacting with a
classical particle was realized. He demonstrated thanhas
—oo, the chaos in the system rapidly disappeared. Our re-
sults here may be seen as the complement to this system,
where the mass is kept constant but the length of the pseu-
dospin is taken to the classical limjit-o0. Given the inte-
grability of the DH is this limit, there is certainly no semi-

1. Normal phase

The two sets of bosonga,b} and{c,,c,} may be ex-
epressed in terms of one another as

al=

1| cosy®
{ [(w+eM)c]+(w—eP)cy]

2| Jwe®
siny)

+
\/wstfj

1| cosyM)
21 L.

we >

[<w+s&1’>c£+<w—s$’>cz]],

a= [(w—eD)el+(w+eD)e,]

in A1)
Siny
+ <1>>c£+(w+s<f>>c2]],

,_(_jwsf [(w—&Y

1| —siny@®
P L A
b= | :

5 [(wo+eM)ei+(wo—eD)ey]

wo€

cosyV)

+ ——=[(wo+eM)cl+ (wo—eP)cy] 1,
\(1)084r

—[(wo— M)+ (wo+eP)cy]

1| —siny®
b= >
Wo€

cosy)

4+
\/w08_&

[(wo—eM)cl+ (wo+eM)c,]

guantum chaos in our system, which lends additional weighiith the inverse relations

to Ballentine’s claim that semiquantum chaos does not exist.

The question then arises; what is the status of the two
systems obtained by only taking one of the two limits. In the
case of only taking thg —oo limit, the answer is simple;
H(*? s a direct quantization dfi}? and describes quantum
fluctuations around classical mean fields. More interesting is
the status ofHg.. We have shown here that its behavior
matches very closely that of the quantum DH, and that it has
been derived in an almost canonical way, so its mathematical
status as the semiclassical counterpart of the DH seems rea-
sonably secure, but what is the relevance of this model to the
physical system is less obvious.

The nature of thea—0 limit suggests that this model
might be useful in describing the model when there are a few
atoms(10-2Q present, and almost-classical fields, i.e., co-
herent states, are applied. Under these circumstances, the
original DH and semiclassical model,. might be fruitfully
compared.
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[(eP+w)a’+(eP-w)a]

Ci=—
b2 Jwe®

f 1 | cosy®

in (1)
siny
-~ —1[(8(_1)+w0)bT+(s(_1)—wo)b]} :
wo€

[(eM-w)a+(eP+w)a]

1 [ cosy)

C e—
! 2 \/(;t)(?:,l
siny®

- \ w08_1

; 1{siny(l)
Cr=oi —=
2 2 T

[(s<1>—wo)b*+(g<1>+wo)b]] ,

[(eP+w)a’+(eP-w)a]

(1)
Ccosy
+—[(s&”+wo>b*+<s&”—wo>b]],

\ w08+1
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and

1| siny
’ [(eP-w)a’+ (P +w)a]

Cr==
22| Joe® : 1[c057(2)
(1) - we?
cos Vo

Y [(eW—wo)b™+ (e P+ we)b] . (A2)

+———[(s .
VWo€ 4 sin y(z)

——[(8(2)+Z))dT+(s(2)—Z))d]},

[(e@+w)cT+(eP—w)c]

we®

The angley!) is the rotation angle of the coordinate system, e
which eliminates the interaction in the position representa- -
tion, and is given by 1 [ cosy®
Y
e== —[(8(2) O))CT+(8(2)+0))C]
INNow 2 [ Vwe'’
tan(2yM) = ——. (A3)
Po— @ siny® - N
- ——[(¢¥W-w)d"+ (P +w)d] },
2. Super-radiant phase \/ws(,z)
The analogous Bogoliubov transfomations in the super- 1 sina@
. siny
radiant phase are egza[ [(8(2)+a))CT+(8(2)—w)C]
r_1)cosy® @)g! (2)
c'=5 Tz llot+e)e;+(v—e)eq] )
2| Jwe® cosy(? . ,
+ )[(s( )+ w)d™+(e@—w)d]},
(2) we'?
SI we
+¢—7(T[(w+s(2))ez+(w 8(2))e2]], '
WE 1| siny®
e,=— [(8(2)—w)CT+(8(2)+w)C]
1| cosy® @) ) 2| Jowe?
c=5 5 [(0—& )e +(w+e)eq]
Jwst® cosy? 5
inyt \/_[(s&) 0)dT+(e@+w)d]}, (A5)
el (o ie (ot oDl we!
wes where the angle/? is given by
1[ —siny® _ ~ 2
df=—! ——T[(0+eP)e]+(w—eP)e;] @ wwo#
2[ ARE) L ! tan(2y*) = 220 (AB)
(2) and where
cosy - ~
+ ——[(0+e?)el+(0—eP)e,], ,
we? ~ Wg A
+ wE7 1+5]- (A7)
Lf=siny® o g~ @ C
d=3 NG [(o—&)e;+(wt+e’)e] APPENDIX B: SQUEEZING VARIANCES
The preceding Bogoliubov transformations may be used
cosy(? et L~ 1 (2) to derive exact expressions for the squeezing variances of the
+ [(w-e@)es+(w+ePe]t; (A4) ground-state wave function in the thermodynamic limit, as

discussed in Sec. lll. In the normal phase, they are given by

A . 1 1+89)((1)—89))0052’}/(1)4—89)((0—S(Jrl))sinzy(l)
(&0 20 s(_l)s(f) '
@ 24/(1) D )sirP+ D
] e’—w)co +(e )Si
(Apy)?=7 ( 4 w( - Y ) (B1)
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whereas in the super-radiant phase we find

) : (B2)

wo

s(f)(w— 8(_2))00527(2)+ s(_z)(a)— s(f))sinz'y(z)

(Am2=§%(1+

1+

(@ - w)cofyP+ (P — w)sirt y?

RERE) ) |

w
(Apx)ZZE

|

w

@ (w—e@)sity@+eP(w—e®)cogy®

1
2_
(Ay) = 2wy ( 1+

(@)= w)sirty D+ (P —w)cogy?

RORD) )

@o
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These results are plotted in the main body of the text.

). (B4)
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