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Chaos and the quantum phase transition in the Dicke model

Clive Emary* and Tobias Brandes
Department of Physics, UMIST, P.O. Box 88, Manchester M60 1QD, United Kingdom

~Received 15 January 2003; published 12 June 2003!

We investigate the quantum-chaotic properties of the Dicke Hamiltonian; a quantum-optical model that
describes a single-mode bosonic field interacting with an ensemble ofN two-level atoms. This model exhibits
a zero-temperature quantum phase transition in theN→` limit, which we describe exactly in an effective
Hamiltonian approach. We then numerically investigate the system at finiteN, and by analyzing the level
statistics, we demonstrate that the system undergoes a transition from quasi-integrability to quantum chaotic,
and that this transition is caused by the precursors of the quantum phase transition. Our considerations of the
wave function indicate that this is connected with a delocalization of the system and the emergence of
macroscopic coherence. We also derive a semiclassical Dicke model that exhibits analogues of all the impor-
tant features of the quantum model, such as the phase transition and the concurrent onset of chaos.
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I. INTRODUCTION

Chaos plays a key role in considerations concerning
boundary between the classical and quantum worlds, not
because of the importance of chaos in classical physics@1#,
but because there is no direct analog of chaos in quan
mechanics@2#. The linearity of quantum dynamics preclud
the characteristic exponential sensitivity to initial conditio
of classical chaos, and forces us to look for what are kno
as ‘‘signatures of quantum chaos’’—properties whose pr
ence in the quantum system would lead us to expect
corresponding classical motion to be chaotic@3#. Several
such signatures have been identified, such as level stati
@4,5#, level dynamics@6#, and sensitivity to initial perturba
tion @7#.

An often encountered feature of quantum-chaotic syste
is that as some parameter is varied, these signatures bes
a crossover from integrable to quantum-chaotic behav
This parameter may, for example, describe the characte
boundary conditions, such as the shape of a quantum bill
@5#, the distribution of random fluctuations in disorder mo
els @8–11#, or the strength of some nonlinear potential
interaction @12–17#. A large class of models may be de
scribed by a Hamiltonian of the form

H5H01lV, ~1!

where althoughH0 is integrable, the full HamiltonianH is
not for any lÞ0. Here, increasing the parameterl from
zero upwards gradually drives the system away from integ
bility and towards chaos. A well studied, albeit tim
dependent, example is the kicked rotator@3#, where the pa-
rameterl is the kick strength.

In this paper, we consider a system of the type descri
by Hamiltonian~1!, but unlike the typically one-dimensiona
or noninteracting models, we shall consider a system oN
interacting particles, in a situation where many-body a
collective effects are critical. Specifically, the model w
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study exhibits a quantum phase transition~i.e., one at zero
temperature@18#! in the thermodynamic limit ofN→` at a
critical value of the parameter,lc .

The influence of a quantum phase transition~QPT! on the
transition to chaos has been studied in a handful of ca
Important examples include the three-dimensional Ander
model, where the metal-insulator transition is accompan
by a change in the level statistics@8#, and models of spin
glass shards@10#, which have found topical application in th
study of the effects of quantum chaos on quantum compu
@11#. Heiss and co-workers have investigated the connec
between the onset of chaos near a QPT and the except
points of the spectrum@19#, both generically, and for the
specific example of the Lipkin model@20#.

In order to investigate the impact of QPT on the sign
tures of quantum chaos, we study the Dicke Hamilton
~DH! @21#, which is of key importance as a model describi
the collective effects in quantum optics@22,23#. We demon-
strate that there is a clear connection between the precu
of the QPT and the onset of quantum chaos as manifeste
the level statistics. We are able to understand this connec
by studying the wave functions of the system, and by de
ing a semiclassical analog of this intrinsically quantum s
tem. This paper is an extension of our previous work@24#.

In the form considered here, the DH describes a collect
of N two-level atoms interacting with a single bosonic mo
via a dipole interaction with an atom-field coupling streng
l. The DH may be written as

H5\v0Jz1\va†a1
l

A2 j
~a†1a!~J11J2!, ~2!

wherea, a† describe a bosonic mode of frequencyv, and
the angular momentum operators$Ji ; i 5z,6% describe the
ensemble of two-level atoms of level-splittingv0 in terms of
a pseudospin of lengthj 5N/2. The thermodynamic limit of
N→` is thus equivalent to making the length of the pse
dospin tend to infinityj→`. The DH is usually considered
in the standard quantum optics approach of the rotating-w
approximation~RWA!, which is valid for small values of the
©2003 The American Physical Society03-1



g
i-
n

nc

e
l t
re

b
n

n

io
ec

x
nt

is
t

th
-

as
hi

rg
b
th
m
il-
O
ra
m
ac
al
re
nd
Th
di
is
o
a

tie

ct
e

he
of

ems.
he
pe
ted
d-

ical
ing
PT
sical

om
n,
ures
vel-

r

oc-
of

m
cur-
on
tes

ing

to
a-
f the
rs
ical
pre-
ts a

tion
ent

su-
pe-
H
del

ce
y-
he

ase
cuss
il-
n-
re-

le
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coupling l, and involves neglecting the counter-rotatin
termsa†J1 andaJ2 . This makes the DH integrable, simpl
fying the analysis but also removing the possibility of qua
tum chaos. Dicke used this model to illustrate the importa
of collective effects in the atom-light interaction@21#, lead-
ing to the concept of super-radiance, where the atomic
semble spontaneously emits with an intensity proportiona
N2 rather thanN, as one would expect if the atoms we
radiating incoherently@23#.

The phase transition in the DH was first described
Hepp and Lieb@25#, and a mathematically more transpare
treatment was provided by Wang and Hioe@26#. They con-
sidered the thermodynamics of the model in the RWA, a
concluded that for a coupling ofl,Avv0 no phase transi-
tion occurs for any temperature, whereas forl.Avv0 there
exists a critical temperatureTc given by

1

kBTc
5

2v

v0
arctanhS vv0

l2 D , ~3!

at which point the system undergoes a phase transit
Above the critical temperature, the system is in the eff
tively unexcited ‘‘normal phase,’’ whereas forT,Tc the sys-
tem is in the ‘‘super-radiant phase,’’ a macroscopically e
cited and highly collective state that possesses the pote
to super-radiate.

In contrast to this earlier work, we shall consider th
phase transition at zero temperature, where increasing
coupling l through a critical value oflc5Avv0/2 drives
the system to undergo a transition from the normal to
super-radiant phase~the difference between this critical cou
pling lc and the value quoted for the finite-temperature c
arises because the latter has been derived in the RWA, w
renormalizes the critical coupling by a factor of 2@27,28#!.
Here, we derive exact results without the RWA for the ene
spectrum and eigenfunctions in the thermodynamic limit
employing a bosonization technique based upon
Holstein-Primakoff transformation of the angular momentu
algebra@29,30#. This enables us to derive an effective Ham
tonian to describe the system in each of its two phases.
important step that we take is the introduction of an abst
position-momentum representation for both field and ato
systems. This not only facilitates the formulation of the ex
solutions, but also provides us with a useful way of visu
izing the wave functions across the phase transition. The
a discrete ‘‘parity’’ symmetry associated with this model, a
at the phase transition this symmetry becomes broken.
QPT has been discussed in the RWA by Hillery and Mlo
now @31#, using an effective Hamiltonian method that
similar to ours. However, having illustrated the existence
the QPT, they concentrated solely on the normal phase,
were not interested in chaos.

Away from the thermodynamic limit at finiteN and j, the
DH is, in general, nonintegrable. Quantum-chaotic proper
of the DH have been discussed by several authors@32–39#
but, to the best of our knowledge, have never been conne
with the QPT, and a systematic study of the dependenc
the systems behavior on the number of atomsN is lacking.
06620
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Graham and Ho¨hnerbach have contributed extensively to t
discussion@32#, especially in relation to the special case
spin-1/2 ~the Rabi Hamiltonian!, and have outlined many
semiclassical and approximate schemes for these syst
Moreover, they have provided a preliminary analysis of t
level statistics of the DH, concluding that spectra of the ty
associated with quantum chaos do occur for certain, isola
parameter values@33#. Several authors have conducted stu
ies on chaos in various~semi!classical models related to DH
@36–39#. That there have been several different semiclass
models is a consequence of the ambiguity in describ
quantum spins in classical terms. The influence of the Q
also seems to have been overlooked in these semiclas
models.

We consider the quantum-mechanical system away fr
the thermodynamic limit by using numerical diagonalizatio
and examine the energy spectra of the system for signat
of quantum chaos. We consider the nearest-neighbor le
spacing distribution functionP(S), which is perhaps the
best-known signature of quantum chaos@3#. We calculate the
P(S) for various values ofN andl and demonstrate a clea
connection between the change inP(S) from quasiintegrable
to quantum chaotic and the coupling at which the QPT
curs,lc . We then proceed to consider the wave functions
the system at finiteN using an abstract position-momentu
representation. This enables us to conclude that the pre
sors of the QPT give rise to a localization-delocalizati
transition in which the ground-state wave function bifurca
into a macroscopic superposition for anyN,`.

As mentioned above, much work has been done in try
to find a semiclassical analog of the DH@36–39#. The
bosonization procedure that we employ here allows us
write the DH in terms of a pair of coupled harmonic oscill
tors. This suggests a very natural semiclassical analog o
DH, obtained by simply replacing the quantum oscillato
with classical ones. We demonstrate that our semiclass
model reflects the quantum behavior better than those of
vious studies. Specifically, our semiclassical model exhibi
symmetry-breaking phase transition in the limit thatN→`,
and we show that the precursors of this classical transi
give rise to the onset of classical chaos, in close agreem
with the quantum model. An analog of the macroscopic
perposition is also evident. In our conclusions, we pay s
cial attention to the meaning of a classical limit for the D
and, in particular, the relevance of the semiclassical mo
derived here.

The paper is organized as follows. In Sec. II, we introdu
the DH fully. Exact solutions are derived in the thermod
namic limit in Sec. III. Section IV sees an analysis of t
level statistics and wave functions of the system at finitej.
Our semiclassical model is derived in Sec. V, and its ph
transition and chaotic properties are discussed. We dis
briefly the differences between the full DH and the Ham
tonian in the RWA in Sec. VI before we draw our final co
clusions in Sec. VII. Some of our exact expressions are
produced in the Appendix.

II. THE DICKE HAMILTONIAN

The full Dicke Hamiltonian~DH! models the interaction
of N atoms with a number of bosonic field modes via dipo
3-2
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CHAOS AND THE QUANTUM PHASE TRANSITION IN . . . PHYSICAL REVIEW E67, 066203 ~2003!
interactions within an ideal cavity@21#. We initially represent
the atoms as a collection ofN identical, but distinguishable
two-level systems each with level splittingv0. The i th atom
is described by the spin-1/2 operators$sk

( i ) ; k5z,6%, obey-
ing the commutation rules@sz ,s6#56s6 ; @s1 ,s2#52sz .
These two-level atoms interact withM bosonic modes, which
have frequencies$va%, interact with coupling strength
$la%, and are described by the bosonic creation and ann
lation operators$aa

†% and$aa%. In terms of these quantities
the full DH is given by

H5v0(
i 51

N

sz
( i )1 (

a51

M

vaaa
†aa

1 (
a51

M

(
i 51

N
la

AN
~aa

†1aa!~s1
( i )1s2

( i )!, ~4!

where we have set\51. The origin of the factor 1/AN in the
interaction is the fact that the original dipole couplin
strength is proportional to 1/AV, whereV is the volume of
the cavity. By writingr5N/V, wherer is the density of the
atoms in the cavity, this becomesAr/N and by subsuming
the density into the coupling constants$la%, we obtain 1/AN
explicitly in the coupling.

In Eq. ~4!, we have not made the usual RWA under whi
one would neglect the counter-rotating termsaa

†s1
( i ) and

aas2
( i ) . We shall consider aspects of the RWA in Sec. VI.

We now specialize the Hamiltonian to consider a sing
mode bosonic field, and thus we drop the subscripta. The
analysis of this Hamiltonian is further simplified by the i
troduction of collective atomic operators

Jz[(
i 51

N

sz
( i ) ; J6[(

i 51

N

s6
( i ) . ~5!

These operators obey the usual angular momentum com
tation relations

@Jz ,J6#56J6 ; @J1 ,J2#52Jz . ~6!

The Hilbert space of this algebra is spanned by the k
$u j ,m&; m52 j ,2 j 11, . . . ,j 21,j %, which are known as
the Dicke states, and are eigenstates ofJ2 and Jz : Jzu j ,m&
5mu j ,m& andJ2u j ,m&5 j ( j 11)u j ,m&. The raising and low-
ering operators act on these states in the following w
J6u j ,m&5Aj ( j 11)2m(m61) u j ,m61&. Note thatj corre-
sponds to Dicke’s ‘‘cooperation number,’’ which takes t
values1

2 , 3
2 , . . . ,N/2 for N odd, and 0,1, . . . ,N/2 for N even.

For example, withN52 atoms,j can take the values 0 an
1. In terms of thesz values of the individual spins, the sect
with j 51 contains the triplet statesu↓↓&, 221/2 (u↑↓&
1u↓↑&), andu↑↑&. The j 50 sector contains only the single
state 221/2 (u↑↓&2u↓↑&). In general, the set of atomic con
figurations forN.2 is nontrivial @40# and, in terms of the
individual atom configurations, the states are nonsepar
and contain entanglement@41#. In this work, we shall takej
to have its maximal valuej 5N/2, and once set, this value o
j is constant, since the interaction in the DH does not mj
06620
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sectors. Thus, the collection ofN two-level systems is de
scribed as a single (N11)-level system, which is viewed a
a large pseudospin vector of lengthj 5N/2.

In terms of the collective operators, the single-mode D
may be written as

H5v0Jz1va†a1
l

A2 j
~a†1a!~J11J2!. ~7!

In the following, when we refer to the Dicke Hamiltonian w
shall mean the single-mode Hamiltonian, unless otherw
stated. The resonance condition isv5v0, and when plotting
results we generally work on a scaled resonance, such
v5v051.

Associated with the DH is a conserved parityP, such that
@H,P#50, which is given by

P5exp$ ipN̂%, N̂5a†a1Jz1 j , ~8!

where N̂ is the ‘‘excitation number’’ and counts the tota
number of excitation quanta in the system.P possesses two
eigenvalues61, depending on whether the number
quanta is even or odd, and, correspondingly, the Hilb
space of the total system is split into two noninteracting s
spaces.

If we express the Hilbert space of the total system
terms of the basis$un& ^ u j ,m&%, whereun& are number states
of the field,a†aun&5nun&, and u j ,m& are the Dicke states
the DH and the significance of the parity operator may
viewed in a simple lattice analogy. We construct a tw
dimensional lattice, each point of which represents a ba
vector and is labeled (n,m). An example of this lattice with
j 51 is shown in Fig. 1. Note that the lattice is finite in th
‘‘ m’’ direction, but infinite in the ‘n’ direction, reflecting the
dimensionality of the Hilbert space. In this picture, we s
that because the interaction conserves the parityP, states
with an even total excitation numbern1m1 j interact only
with other even states, and odd states interact only with
states. This has the effect of dividing the total lattice into tw
interweaved sublattices, which correspond to the two diff
ent parity sectors.

FIG. 1. Schematic lattice representation of the states of
Dicke model with j 51. Shaded~unshaded! dots denote states o
positive ~negative! parity, with solid lines representing the cou
plings between the states.
3-3
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III. THERMODYNAMIC LIMIT

We begin by considering the DH in the thermodynam
limit, in which the number of atoms becomes infinit
N→`, and hencej→`. In this limit, the DH undergoes a
QPT at a critical value of the atom-field coupling streng
lc5Avv0/2, at which point the symmetry associated w
the parity operatorP of Eq. ~8! is broken. To describe this
QPT we shall derive two effective Hamiltonians, one to d
scribe the system in the normal phasel,lc and one to
describe it in the broken-symmetry, super-radiant phasl
.lc . It should be noted that the results derived below
exact in this limit, and this allows us to understand the nat
of this system in a very detailed way.

In this analysis, we shall make an extensive use of
Holstein-Primakoff representation of the angular moment
operators, which represents the operators in terms of a si
bosonic mode in the following way@29,30#:

J15b†A2 j 2b†b, J25A2 j 2b†b b,

Jz5~b†b2 j !, ~9!

where the introduced Bose operators obey@b,b†#51.
Making these substitutions into the DH of Eq.~7!, we

obtain the two-mode bosonic Hamiltonian

H5v0~b†b2 j !1va†a

1l~a†1a!S b†A12
b†b

2 j
1A12

b†b

2 j
bD . ~10!

In this representation, the parity operatorP becomes

P5exp$ ip@a†a1b†b#%, ~11!

and the analogy with the standard parity operator of a tw
dimensional harmonic operator is thus apparent@42#.

A. Normal phase

We derive an effective Hamiltonian for the system in t
normal phase by simply neglecting terms withj in the de-
nominator in the full Hamiltonian of Eq.~10!. This approxi-
mates the square root in the Holstein-Primakoff mapp
with unity, and we obtain the effective HamiltonianH (1)

given by

H (1)5v0b†b1va†a1l~a†1a!~b†1b!2 j v0 , ~12!

which is bilinear in the bosonic operators and can thus
simply diagonalized. This is most easily facilitated by t
introduction of position and momentum operators for the t
bosonic modes,

x5
1

A2v
~a†1a!, px5 iAv

2
~a†2a!,

y5
1

A2v0

~b†1b!, py5 iAv0

2
~b†2b!. ~13!
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This representation will be particularly useful when we com
to consider the wave functions of the system. Expressing
HamiltonianH (1) in terms of these operators, we obtain

H (1)5
1

2
$v2x21px

21v0
2y21py

214lAvv0 xy2v02v%

2 j v0 , ~14!

which may be diagonalized by rotating the coordinate sys
in the following way:

x5q1cosg (1)1q2sing (1); y52q1sing (1)1q2cosg (1),
~15!

where the angleg (1) is given by

tan~2g (1)!5
4lAvv0

v0
22v2

. ~16!

On resonance,v5v0 , g (1)5p/4, so thatx5(q11q2)/A2
and y5(2q11q2)/A2. This rotation eliminates thexy in-
teraction term in the Hamiltonian, which then assumes
form of two uncoupled oscillators,

H (1)5
1

2
$«2

(1)2q1
21p1

21«1
(1)2q2

21p2
22v2v0%2 j v0 .

~17!

We now requantizeH (1) with the introduction of two new
bosonic modes defined by

q15
1

A2«2
(1) ~c1

†1c1!, p15 iA«2
(1)

2
~c1

†2c1!,

q25
1

A2«1
(1) ~c2

†1c2!, p25 iA«1
(1)

2
~c2

†2c2!, ~18!

and arrive at the final diagonal form

H (1)5«2
(1)c1

†c11«1
(1)c2

†c21
1

2
~«1

(1)1«2
(1)2v2v0!2 j v0 .

~19!

The bosonic operators$c1 ,c1
† ,c2 ,c2

†%, in terms of which
H (1) is diagonal, are linear combinations of the original o
erators$a,a†,b,b†%, as detailed in Appendix A, and describ
collective atom-field excitations. The energies of the two
dependent oscillator modes«6

(1) are given by

«6
(1)25

1

2
$v21v0

26A~v0
22v2!2116l2vv0%. ~20!

Crucially, we see that the excitation energy«2
(1) is real only

when v21v0
2>A(v0

22v2)2116l2vv0, or equivalentlyl
<Avv0/25lc . Thus, we see thatH (1) remains valid forl
<lc , i.e., in the normal phase. In this phase, the grou
state energy is given byEG

(1)52 j v0, which is O( j ),
whereas the excitation energies«6

(1) are O(1). This means
3-4
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that by scaling our energies withj, the excitation spectrum
above the ground state becomes quasicontinuous in tj
→` limit; that is to say that the excitation energies differ
an infinitesimal amount fromEG .

It should be noted thatH (1) commutes with the parity
operatorP, and thus the eigenstates ofH (1) have a definite
parity, with the ground state having positive parity. This c
been seen from the fact that atl50, the ground state is
u0&u j ,2 j & in the original un&u j ,m& basis, which clearly has
an even excitation number,n1m1 j 50. As the energy lev-
els in the normal phase are nondegenerate, the continui
the ground state with increasingl ensures that it always ha
positive parity in this phase.

B. Super-radiant phase

In order to describe the system above the phase transi
we must incorporate the fact that both the field and
atomic ensemble acquire macroscopic occupations. To
this, we start with the Holstein-Primakoff transforme
Hamiltonian of Eq.~10! and displace the bosonic modes
either of the following ways:

a†→c†1Aa; b†→d†2Ab ~21!

or

a†→c†2Aa; b†→d†1Ab. ~22!

Crucially, we assume that the as yet, undetermined par
etersa andb are of theO( j ), equivalent to assuming tha
both modes acquire nonzero, macroscopic mean fields a
lc . In the following, we shall just consider the displac
ments given by Eq.~21!, as the calculation with the othe
choice is identical but for a few changes of sign.

Making these displacements, the Hamiltonian of Eq.~10!
becomes

H5v0$d
†d2Ab~d†1d!1b2 j %1v$c†c1Aa~c†1c!

1a%1lA k

2 j
~c†1c12Aa!~d†Aj1Ajd22AbAj!,

~23!

where for brevity we have written

Aj[A12
d†d2Ab~d†1d!

k

andk[2 j 2b. Taking the thermodynamic limit by expand
ing the square rootAj and then setting terms with overa
powers ofj in the denominator to zero, we obtain
06620
of
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H (2)5vc†c1H v01
2l

k
Aabk

2 j J d†d2H 2lAbk

2 j
2vAaJ

3~c†1c!1H 4l

k
Aak

2 j
~ j 2b!2v0AbJ ~d†1d!

1
l

2k2
Aabk

2 j
~2k1b!~d†1d!21

2l

k
A k

2 j
~ j 2b!

3~c†1c!~d†1d!1H v0~b2 j !1va2
l

k
Aabk

2 j

3~114k!J . ~24!

We now eliminate the terms in theH (2) that are linear in the
bosonic operators by choosing the displacementsa andb so
that

2lAbk

2 j
2vAa50 ~25!

and

H 4l2

v j
~ j 2b!2v0JAb50. ~26!

The Ab5Aa50 solution of these equations recovers t
normal phase HamiltonianH (1). The nontrivial solution
gives

Aa5
2l

v
A j

2
~12m2!; Ab5Aj ~12m!, ~27!

where we have defined

m[
vv0

4l2
5

lc
2

l2
. ~28!

With these determinations, the effective Hamiltonian of E
~24! becomes

H (2)5vc†c1
v0

2m
~11m!d†d1

v0~12m!~31m!

8m~11m!
~d†1d!2

1lmA 2

11m
~c†1c!~d†1d!2 j H 2l2

v
1

v0
2v

8l2 J
2

l2

v
~12m!. ~29!

To facilitate the diagonalization of this bilinear Hamiltonia
we move to a position-momentum representation defined

X[
1

A2v
~c†1c!, PX[ iAv

2
~c†2c!;
3-5
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Y[
1

A2ṽ
~d†1d!, PY[ iAṽ

2
~d†2d!, ~30!

where ṽ5(v0/2m)(11m). Note that this is not the sam
representation as defined in Eq.~13!. The diagonalization
then proceeds similarly as before, involving a rotation in
X-Y plane to the new coordinates

X5Q1 cosg (2)1Q2 sing (2),

Y52Q1 sing (2)1Q2 cosg (2), ~31!

with the angleg (2) given by

tan~2g (2)!5
2vv0m2

v0
22m2v2

. ~32!

A subsequent requantization in terms of two new mo
e6

(2) , corresponding to the rotated, decoupled oscillat
gives us the diagonal form

H (2)5«2
(2)e1

†e11«1
(2)e2

†e22 j H 2l2

v
1

v0
2v

8l2 J
1

1

2 S «1
(2)1«2

(2)2
v0

2m
~11m!2v2

2l2

v
~12m! D ,

~33!

with the oscillator energies being given by

2«6
(2)25

v0
2

m2
1v26AFv0

2

m2
2v2G 2

14v2v0
2. ~34!

The Bogoliubov transformations that induce this diagon
ization are given in Appendix A. The excitation energy«2

(2) ,
and henceH (2), remains real, provided that (v0

2/m2)1v2

>A@(v0
2/m2)2v2#214v2v0

2 or, equivalently,l>Avv0/2
5lc . Thus, we see thatH (2) describes the system in th
super-radiant phase,l>lc , in which the scaled ground-stat
energy is given byEG

(2)/ j 52$(2l2/v)1(v0
2v/8l2)%.

If we choose the signs of the operator displacements
per Eq.~22!, we obtain exactly the same values ofa andb,
and an effective Hamiltonian identical in form to Eq.~33!,
This clearly has the same spectrum and, therefore, each
every level of the total spectrum is doubly degenerate ab
the phase transition. What has occurred is that the symm
of the ground state, defined by the operatorP, has become
spontaneously broken atlc . The HamiltonianH (2), for ei-
ther choice of displacement, does not commute withP, and
thus its eigenfunctions do not possess good parity symm

Although the global symmetryP becomes broken at th
phase transition, two new local symmetries appear, co
sponding to the operator

P (2)[exp$ ip@c†c1d†d#% ~35!
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for both of the two different choices of mean-field displac
ments. This operator commutes with the appropriate su
radiant Hamiltonian@H (2),P (2)#50.

C. Phase transition

Having derived the two effective Hamiltonians that d
scribe the system for alll in the j→` limit, we now de-
scribe the system’s properties in each of its two phases.
fundamental excitations of the system are given by the e
gies«6 , which describe collective modes, similar to pola
iton modes in solid-state physics@43#. The behavior of these
energies as a function of coupling strength is displayed
Fig. 2, where we have labeled the two branches as ‘‘atom
and ‘‘photonic,’’ according to the nature of the excitation
zero coupling. From this figure we see that as the coup
approaches the critical valuelc , the excitation energy of the
photonic mode vanishes,«2→0, asl→lc , demonstrating
the existence of the QPT. In contrast,«1 tends towards a
value of Av0

21v2 as l→lc from either direction. In the
asymptotic limit of l→`, «2→v ~returning to itsl50
value!, whereas«1→4l2/v. The critical exponents of this
QPT are manifested in the behavior of the excitation energ
@18#. As l→lc from either direction, the energy«2 can be
shown to vanish as

«2~l→lc!;A 32lc
3v2

16lc
41v4

ulc2lu1/2. ~36!

The vanishing of«2 at lc reveals this to be a second-ord
phase transition. We define the characteristic length scal
the system in terms of this energy as

l 251/A«2 . ~37!

From Eq. ~36!, this length diverges asul2lcu2n with the
exponent n51/4. We then write that «2 vanishes as

FIG. 2. The excitation energies of the Dicke Hamiltonian in t
thermodynamic limit as a function of couplingl. The Hamiltonian
is on scaled resonance,v5v051, and the vanishing of«2 at l
5lc50.5 signals the occurrence of the QPT.
3-6
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FIG. 3. The scaled ground-state energyEG / j and its second derivativej 21d2EG /dl2 as a function of couplingl. Solid lines denote
results in the thermodynamic limit, whereas dashed lines correspond to the results for various finite values ofj 5 1

2 ,1,32 ,3,5. The Hamiltonian
is on scaled resonance:v5v051, lc50.5.
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ul2lcuzn, with the dynamical critical exponent being give
by z52. At the phase transition point, we have

H (1)~lc!5H (2)~lc!

5Av21v0
2c2

†c21
1

2
~Av21v0

22v2v0!2 j v0 ,

~38!

from which we see that atlc the system becomes effective
one dimensional.

The ground-state energy of the systemEG is shown in
Fig. 3 and the analytic form expression is given in Table
Note that we scale all quantities byj, which means that the
plottedEG / j is equal to 2EG /N, twice the energy per atom
We also plot the second derivative of the ground-state ene
with respect tol, which possesses a discontinuity atlc ,
clearly locating the phase transition.

In Fig. 4, we plot the atomic inversion̂Jz&/ j and the
mean photon number̂na&/ j [^a†a&/ j . This figure clearly
06620
.

gy

illustrates the nature of the phase transition; in the norm
phase, the system is only microscopically excited, wher
above lc both the field and the atomic ensemble acqu
macroscopic excitations. We may write the values of
atomic inversion and the mean photon number abovelc in
the following fashion:

^Jz&/ j 5b/ j 21, ^a†a&/ j 5a/ j ; l.lc . ~39!

Thus, making clear the physical meaning of the displacem
parametersa andb in Eqs.~27!.

D. Ground-state wave function

We now consider the ground-state wave functions of
system above and below the phase transition. After diago
ization, the two effective Hamiltonians are both of the for
of a pair of uncoupled harmonic oscillators. Thus, in t
representation in which the Hamiltonians are diagonal, th
wave functions will simply be the product of the appropria
harmonic oscillator eigenfunctions. Here, we seek to expr
FIG. 4. The scaled atomic inversion and the mean photon number of the Dicke Hamiltonian as a function of couplingl. Solid lines
denote results in the thermodynamic limit, whereas dashed lines correspond to the results for various finite values ofj 5 1

2 ,1,32 ,3,5. The
Hamiltonian is on scaled resonance:v5v051, lc50.5.
3-7
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C. EMARY AND T. BRANDES PHYSICAL REVIEW E67, 066203 ~2003!
these wave functions in terms of the two-dimensionalx-y
representation of Eq.~13!—which corresponds to the origi
nal atomic and field degrees of freedom.

We have already noted that in the Holstein-Primakoff re
resentation, the parity operator has the formP5exp$ip@a†a
1b†b#%. From our knowledge of the harmonic oscillator@42#,
we know that the action ofP in the x-y representation is to
perform the coordinate inversions,x→2x andy→2y, with
px andpy remaining unaffected. Thus, the operation ofP is
equivalent to a rotation ofp about the coordinate origin and
in the normal phase whereP is a good quantum number, th
wave functions will be seen to be invariant under this ro
tion.

The ground-state wave function of a single harmonic
cillator in terms of its coordinateq is a Gaussian with width
determined by the energy of the oscillator. Correspondin
we define the normalized Gaussian functions

G6
(1,2)~q!5S «6

(1,2)

p D 1/4

expH 2
«6

(1,2)

2
q2J , ~40!

where«6
(1,2) are the excitation energies encountered earli

In the normal phase, the effective HamiltonianH (1) is
diagonal in theq1-q2 representation of Eq.~15! and its
ground-state wave functionCG

(1) in this representation is
therefore,

CG
(1)~q1 ,q2!5G2

(1)~q1!G1
(1)~q2!. ~41!

Moving to thex-y representation, we have

TABLE I. The ground-state energy, atomic inversion, and me
photon number of the Dicke Hamiltonian in the thermodynam
limit.

l,lc l.lc

EG / j 2v0

2
2l2

v
2

2lc
4

l2v

^Jz&/ j 21 2lc
2/l2

^a†a&/ j 0 2(l42lc
4)/(vl)2
06620
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CG
(1)~x,y!5G2

(1)~x cosg (1)2y sing (1)!

3G1
(1)~x sing (1)1y cosg (1)!, ~42!

and this wave function is plotted for various couplings
Fig. 5. At l50, the wave function is the product of orthogo
nal Gaussians of equal width~on resonance!. As coupling
increases, the wave packet becomes stretched in a dire
determined by the angleg (1) that on resonance is simpl
equal top/4. This stretching increases up tolc , where the
wave function diverges. We thus see the significance of
length l 2 introduced earlier—it is the extent of the wav
function in the direction of this stretching. Corresponding
l 1 is the extent of the wave function in the orthogonal dire
tion.

In the super-radiant phase, the ground state is degene
We shall initially consider the ground-state wave function
the effective HamiltonianH (2) with displacements chosen i
Eq. ~21!. This is diagonal in theQ1-Q2 representation of Eq
~31!, and therefore its ground-state wave function is

CG
(2)~Q1 ,Q2!5G2

(2)~Q1!G1
(2)~Q2!. ~43!

Using Eqs.~13!, ~21!, ~30!, and~31! we may write this in the
original x-y representation as

CG
(2)~x,y!5G2

(2)@~x2A2a/v!cosg (2)2Av0 /ṽ

3~y1A2b/v0!sing (2)#G1
(2)@~x2A2a/v!

3sing (2)1Av0 /ṽ~y1A2b/v0!cosg (2)#.

~44!

This expression contains displacements involving the ma
scopic quantitiesa andb, and so we define the new coord
natesx8 andy8 to remove them:

x8[x2Dx , y8[y1Dy , ~45!

with

Dx[A2a/v, Dy[A2b/v0, ~46!

n

r
FIG. 5. The ground-state wave functionCG
(1) of the low-coupling HamiltonianH (1) in the x-y position-momentum representation fo

couplingsl50,0.3,0.49,0.499 999 9. The Hamiltonian is on scaled resonance:v5v051, lc50.5.
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FIG. 6. The ground-state wave functionCG
(2) of the high-coupling HamiltonianH (2) in thex8-y8 position-momentum representation fo

couplingsl50.500 001,0.51,0.6,1.0. The Hamiltonian is on scaled resonance:v5v051, lc50.5.
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which are both proportional toAj . The relationship between
the coordinate systemX-Y of Eq. ~30! and x8-y8 is very

simple, namely,x85X and y85Aṽ/v0 Y. The coordinate
systemx8-y8 is useful because althoughX-Y is the diagonal
representation for the super-radiant phase, the definitio
these coordinates depends uponṽ and hence uponl, which
distorts the picture. In terms of these coordinates, the w
function becomes

CG
(2)~x8,y8!5~v0 /ṽ !1/4G2

(2)~x8cosg (2)

2Av0 /ṽy8sing (2)!G1
(2)~x8sing (2)

1Av0 /ṽy8cosg (2)!. ~47!

Figure 6 showsCG
(2)(x8,y8) for four different couplings. Jus

above the phase transition the wave function is in a hig
deformed state, characterized by the divergentl 2 . As the
coupling increases further abovelc , the wave function re-
laxes back to a well localized state.

When considered in the originalx-y representation, the
wave functionCG

(2)(x8,y8) pictured in Fig. 6 is centered
about the point (1Dx ,2Dy), which lies in the lower-right
quadrant of thex-y plane. The complementary wave fun
tion, identical in shape with this one but determined by d
placements~22!, is centered at (2Dx ,1Dy) in the upper-left
quadrant. The positions of these two centers as param
functions of coupling are shown in Fig. 7. These two wa
functions, corresponding to the two choices of displacem
are separated from the origin by an amount proportiona
Aj . It is thus clear that neither of these wave functions
symmetric under rotation ofp about the origin of thex-y
coordinate system, demonstrating once more that theP sym-
metry has been broken. There is, however, symmetry w
respect to a rotation ofp about the origin of eachx82y8
coordinate system, which corresponds to the existence o
local symmetries associated withP (2) of Eq. ~35!.

It is interesting to consider the behavior of the groun
state wave function asl→`. In this limit «2

(2)→v, «1
(2)

→4l2/v and the mixing angle of the two modesg (2) tends
to zero, meaning that the modes decouple. The Bogoliu
transformations of the modes become
06620
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e1
†→c†, e1→c,

e2
†→ 1

2A2
~3d†1d!, e2→

1

2A2
~d†13d!, ~48!

illustrating the decoupling. Note that thee1 simply reverts to
the c mode, whereas thee2 mode tends towards a linea
combination of the annihilation and creation operators.
this limit, the wave function becomes

CG
(2)~x8,y8!→S vv0

2l2 D 1/4

G2
(2)~x8!G1

(2)SA2lc

l
y8D

5A2lc

p
expS 2v0y822

v

2
x82D , ~49!

which is independent ofl.

E. Squeezing

A bosonic field may said to be squeezed if the uncertai
in either of its quadratures (x or px) is less than the uncer
tainty in a coherent state@44#. A coherent state is a minimum

FIG. 7. Parametric plot of the~scaled! displacements (Dx ,
2Dy) and 2(Dx ,Dy) as l is varied between 0.5 and 10. Th
Hamiltonian is on scaled resonance;v5v051.
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uncertainty state with (Dx)2(Dpx)
251/4 and with the uncer-

tainty apportioned evenly between the two quadratu
Therefore, the field is squeezed whenever (Dx)2 or (Dpx)

2

has a value lower than 1/2@45#.
We define the two quadrature variances of the origi

field mode a by (Dx)2[^x2&2^x&2 and (Dpx)
2[^px

2&
2^px&

2, which may be seen to be equal to

~Dx!25
1

2v
$11^a†2&1^a2&12^a†a&1~^a†&1^a&!2%,

~Dpx!
25

v

2
$12^a†2&2^a2&12^a†a&1~^a†&1^a&!2%.

~50!

As we have introduced a bosonic algebra for the atomic
lection, we now introduce an analogous definition f
squeezing in the atoms, and say that in terms of the varia

~Dy!25
1

2v0
$11^b†2&1^b2&12^b†b&1~^b†&1^b&!2%,

~Dpy!25
v0

2
$12^b†2&2^b2&12^b†b&1~^b†&1^b&!2%,

~51!

the atoms are squeezed if either (Dy)2 or (Dpy)
2 is less than

1/2. The squeezing of atomic ensembles is usually define
terms of the collective operators@46,47#. Because the angula
momentum operators obey the commutation relat
@J1 ,J2#52Jz , the uncertainty relation (DJx)

2(DJy)
2

> 1
4 u^Jz&u2 holds for any state. By substituting the Holstei

Primakoff forms into this expression and taking the therm
dynamic limit, we see that this relation reduces
(Dy)2(Dpy)

2>1/4, demonstrating the equivalence in t
thermodynamic limit of our definition in terms ofy and py
and the usual one. In the normal phase, the expression
the variances are evaluated by simply making the approp
substitutions from Appendix A and taking their ground-sta
expectation value. In the super-radiant phase, it can
shown that the variances of the original field and atom
modes of Eqs.~50! and~51! can be expressed in terms of th
displaced coordinates as follows:

~Dx!25~Dx8!25~DX!2, ~Dpx!
25~Dpx8!25~DPX!2,

~Dy!25~Dy8!25Aṽ/v0~DY!2 ,

~Dpy!25~Dpy8!25Aṽ/v0~DPY!2. ~52!

This results from the fact that the squeezing variances do
depend upon the displacements of the field modes, and
evaluating the super-radiant variances is as simple as in
normal phase.

The analytic values of these variances in the ground s
are shown in Appendix B and are plotted as functions
coupling in Fig. 8. In the normal phase, asl approacheslc
there is a sharp increase, and eventually a divergence
(Dx)2 and (Dy)2. This is accompanied by a slight squeezi
06620
s.

l

l-
r
es

in

n

-

for
te

e
c

ot
us
he

te
f

in

of the momentum variances. In the super-radiant phase,
initially divergent values of (Dx)2 and (Dy)2 reduce rapidly
with increasing coupling. The behavior of these varianc
reflects the nature of the wave functions plotted in Figs
and 6. Notice that asl→`, (Dx)2 and (Dpx)

2 return to
their l50 values, whereas (Dy)2 and (Dpy)

2 become
squeezed and antisqueezed, respectively. This is in ag
ment with the results of Eq.~48!, which show that thee1
mode becomes identical to thec mode, which is unsqueezed
whereas thee2 mode reverts to a linear superposition ofd
and d† operators, which is a specific example of the Bog
liubov transformation producing a squeezed state@48#.

IV. THE ONSET OF CHAOS

As we have just demonstrated, the DH is exactly in
grable in the thermodynamic limit. However, for finitej this
is not the case, and the possibility of quantum chaos rema
The signature of quantum chaos which we use to investig
this possibility is the character of the energy spectrum
quantified by the nearest-neighbor level distributionP(S).
Bohigaset al. @5# first conjectured that the study of spectr
quantities such asP(S), and their comparison with the re
sults from random matrix theory should give an indication
quantum chaos. This may be understood by the follow
argument. Classically integrable systems have high deg
of symmetry and hence their quantum counterparts h
many conserved quantum numbers. This permits level cr
ings to occur in the spectrum, leading to aP(S) with a maxi-
mum at small level spacing,S→0, with aP(S) given by the
Poissonian distributionPP(S)5exp(2S). We shall call quan-
tum spectra with Poissonian statistics ‘‘quasiintegrabl
Conversely, classically chaotic systems have no such i
grals of motion and we thus expect their quantum ene
spectra to be highly correlated and absent of crossings, l
ing to P(S)→0 asS→0. Although the precise form of the
P(S) for chaotic systems depends on the symmetries of

FIG. 8. The squeezing variances of the ground state of the
in the thermodynamic limit. The Hamiltonian is on scaled res
nance:v5v051, lc50.5. Note that on resonance, (Dx)2 and
(Dy)2 are coincident forl,lc , and the same for (Dpx)

2 and
(Dpy)

2.
3-10
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CHAOS AND THE QUANTUM PHASE TRANSITION IN . . . PHYSICAL REVIEW E67, 066203 ~2003!
model, we shall find that only the Wigner-Dyson distributio
PW(S)5pS/2 exp(2pS2/4), is of relevance here@49#.

Despite its popularity, it should be pointed out that t
correspondence between theP(S) distribution and the inte-
grability or otherwise of the classical system is not absolu
and exceptions do exist@50,51#. Despite this, theP(S) does
provide a convenient and useful indication of quantu
chaos, and the conjecture does hold true in countless
amples. In the present case, this signature turns out to
very accurate, as will be evinced when we compare theP(S)
results with those of our semiclassical model.

A. Numerical diagonalization

Exact solutions for the DH at finitej do not exist, except
in the very special case ofj 51/2, where isolated exac
~‘‘Juddian’’! solutions may be found@52,53#. Consequently,
we employ numerical diagonalization to investigate the s
tem. To perform these diagonalizations we use the b
$un& ^ u j ,m&%, whereun& are number states of the field an
u j ,m& are the Dicke states. In performing the diagonalizati
we truncate the bosonic Hilbert space, but always main
the full Hilbert space of the pseudospin. The size of
matrices requiring diagonalization is reduced by restrict
ourselves to a single-parity subspace, which is achieved
only considering states withn1m1 j even or odd for posi-
tive and negative parity, respectively. Withj finite, P is a
good quantum number, independent of coupling, and
ground state always has positive parity.

The results obtained via this diagonalization for t
ground-state energy and its second derivative for a sequ
of finite j values are plotted alongside thej→` results in
Fig. 3, while the corresponding atomic inversions and m
photon numbers are plotted in Fig. 4. These figures dem
strate how rapidly the finitej results approach their thermo
dynamic limits asj is increased.

B. Level statistics

Having numerically obtained the energy spectra of
DH, we can construct the nearest-neighbor level-spacing
tribution P(S). This is formed from a large number of leve
from the spectrum, which we initially unfold to remove sec
lar variation@49#. We then calculate the level spacings

Sn5En112En , ~53!

where $En ; n50,1, . . .% is the set of eigenenergies of th
DH with positive parity, and construct their distribution fun
tion P(S). Finally, we normalize the results for compariso
with the universal ensembles of random matrix theory@49#.

Figure 9 shows theP(S) distributions obtained for the
DH at various values ofl and j. At low j ( j <3), theP(S)
clearly do not correspond to any of the universal ensemb
but rather to nongeneric distributions consisting of seve
isolated peaks. This is most obvious in thej 51/2 case~not
shown here!, which is known as the Rabi Hamiltonian~RH!
@54#. The RH has a spectrum that is of ‘‘picket-fence’’ cha
acter @35#, which is characteristic of genuinely integrab
models such as one-dimensional systems and systems o
06620
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monic oscillators@4#. The RH is unusual and must be treat
as a special case because, although it has never been s
to be integrable, isolated exact solutions do exist@52,53#.
Moreover, the model is separable and may be reduced
single degree of freedom@32#.

Returning to theP(S) distributions, we see that at low
couplingsl,lc @for example,l50.2 in Fig. ~9!#, as we
increasej, the P(S) loses its nongeneric features and a
proaches even closer the Poissonian distributionPP(S). At
and above the critical coupling (l50.5 and 0.8 in Fig. 9!,
the spectrum is seen to converge onto the Wigner-Dy
distributionPW(S) as j is increased.

The nature of the change in theP(S) distribution may be
characterized by the quantity

h[U E
0

S0
@P~S!2PW~S!#dS

E
0

S0
@PP~S!2PW~S!#dS

U , ~54!

whereS050.472 913 . . . , thevalue of S at which the two
generic distributionsPP(S) andPW(S) first intersect@10#. h
measures the degree of similarity of the calculatedP(S) to
the Wigner surmisePW(S), and is normalized such that i
P(S)5PW(S) then h50, and if P(S)5PP(S) then h51.
The behavior ofh as a function of coupling forj 55 and j
520 is shown in Fig. 10. Considering thej 520 case first,
we see that the spectrum is strongly Poissonian at low c
plings, and that asl is increased towardslc it becomes more
Wigner-Dyson–like. This proceeds until we reachlc , about
which the spectrum is remarkably well described byPW(S).
Note that forl,lc the value ofh drops steadily with cou-
pling, whereas abovelc it maintains an approximately con
stant value close to zero. For thej 55 case, a similar transi
tion is observed, but it is not as pronounced and
agreement with the universal distributions is not as good
in the higherj case.

FIG. 9. Plots of nearest-neighbor distributionsP(S) for the
Dicke Hamiltonian for different couplingsl and pseudospinj. Also
plotted are the universal Poissonian~dots! to Wigner ~dashes! dis-
tributions. The Hamiltonian is on scaled resonance:v5v051,
lc50.5.
3-11
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C. EMARY AND T. BRANDES PHYSICAL REVIEW E67, 066203 ~2003!
Thus, for sufficiently highj, we see a significant change
P(S) asl is increased from zero through the critical val
lc . Below lc , there is a significant amount of level cros
ing, which decreases as we approachlc . Abovelc , there is
practically none, to within statistical error. Thus, we co
clude that the precursors of the QPT in this model lead t
crossover from quasiintegrable to quantum-chaotic beha
at l'lc for sufficiently highj.

C. Regularity at low energy

A further transition between integrable and chaotic beh
ior is observed in the sequence of level spacingsSn as the
coupling is increased fromlc to `. In the l→` limit, the
DH is integrable for arbitraryj and equivalent to

Hl→`5va†a12
l

A2 j
~a†1a!Jx . ~55!

The eigenstates ofHl→` are obviously eigenstates ofJx ,
and thus

Hl→`5va†a12m
l

A2 j
~a†1a!, ~56!

wherem52 j , . . . ,j is the eigenvalue ofJx . This bosonic
Hamiltonian is diagonalized by the displacementa→a
22ml/A2 j , giving the eigenvalues to be

Ekm5
v

j
k2

2l2

v j 2
m2, ~57!

wherek50,1,2, . . . . Theenergy levels with1m and 2m
are degenerate.

As l is increased fromlc to approach thisl→` limit
with j fixed, the spectrum reverts from Wigner-like to int
grable. However, it does not follow the usual transition
quence of the Wigner distribution, gradually changing into

FIG. 10. The modulus ofh, Eq. ~54!, plotted as a function of
coupling for systems ofj 55 and j 520. A value ofh51 indicates
Poissonian statistics andh50 corresponds to the Wigner-Dyso
distribution. The system is on scaled resonance (v5v051).
06620
-
a
or

-

-
a

Poissonian one, as one might expect, but rather throug
sequence illustrated in Fig. 11. For couplings sufficien
higher thanlc , the spectrum becomes very regular at lo
energy, where it approximates thel→` results very closely.
Outside the regular region the spectrum is well described
the Wigner surmise, and the energy scale over which
change between the two regimes occurs is seen to be sur
ingly narrow. As coupling is increased, the size of the lo
energy integrable window increases, until it eventually e
gulfs the whole spectrum asl→`. This division of the
spectrum into regions is close to Percival’s conception
how regular and irregular behavior would manifest itself
quantum systems@55#.

D. Wave functions for finite j

We now consider the wave functions of the DH at finitej.
To do this, we shall use the position-momentum represe
tion of Eq.~13! used earlier in discussing the wave functio
in the thermodynamic limit. We begin with the eigenfun
tions obtained from numerical diagonalization, which are
the form

uCnm&5 (
n50

nc

(
m52 j

1 j

cnm
( j ) un&u j ,m&, ~58!

wherenc is the maximum boson number in the artificial
truncated Fock space, andcnm

( j ) are coefficients. The position
representatives of the number states of the fieldun& are sim-
ply the usual harmonic oscillator eigenfunctions

^xun&5
1

2nn!
Av

p
e2(1/2)vx2

Hn~Avx!, ~59!

where Hn is the nth Hermite polynomial. For the angula
momentum part of the basis vector, we recall that under
Holstein-Primakoff mapping,Jz→b†b2 j and, thus, the

FIG. 11. Nearest-neighbor spacingSn5En112En vs eigenvalue
numbern plot for j 55 with l54. Horizontal crosses: results fo
the integrablel→` Hamiltonian. Inset:j 55 results withl52 and
l53. The Hamiltonian is on scaled resonance:v5v051, lc

50.5.
3-12
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CHAOS AND THE QUANTUM PHASE TRANSITION IN . . . PHYSICAL REVIEW E67, 066203 ~2003!
Dicke states are eigenstates ofb†b with eigenvalue (j
1m): b†bu j ,m&5( j 1m)u j ,m&, 2 j <m< j . Consequently,
we may represent the Dicke states in the same way as
Fock states above, allowing us to write the total wave fu
tion in the two-dimensional position representation as

Cnm~x,y!5
Avv0

p
e21/2(vx21v0y2) (

n50

nc

(
m52 j

1 j

cnm
( j )

3
Hn~Avx!H j 1m~Av0y!

2(n1 j 1m) n! ~ j 1m!!
. ~60!

This is a very productive representation in which to stu
this Hamiltonian. It does, however, suffer from the drawba
that whereas the set of oscillator eigenfunctions Eq.~59!
forms an orthonormal set in thex direction, this is not the
case in they direction as we only keep up to the (2j )th
oscillator eigenfunction in this direction. This means, for e
ample, that we could not go from an arbitrary wave functi
in they direction to a description in terms of the Dicke stat
because we do not have a complete set of functions in
direction. Specifically, the significant width of the wav
function is limited in they direction by the maximum sig
nificant extent of the highest Hermite polynomialH2 j . How-
ever, if we know the value ofj and only consider wave
functions that are describable in terms of these, then the
resentation is unique.

Figure 12 shows the ground-state wave function of
DH with j 55 for a series of increasing couplings. Note th
the wave function is always invariant under a rotation ofp
about the origin as demanded by theP symmetry. This wave

FIG. 12. The modulus of the ground-state wave functionc(x,y)
of the Dicke Hamiltonian in the abstractx-y representation for finite
j 55, at couplings ofl/lc50.4, 1.0, 1.2, 1.4. Black corresponds
maxucu and white corresponds to zero. The Hamiltonian is on sca
resonancev5v051, lc50.5.
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function starts as a single lobe centered at the origin for
coupling. As the coupling increases, the two modes s
mixing, leading to a stretching of the single-peaked wa
function, which then splits into two as coupling is increas
through a coupling approximately equal tolc . On further
increasing the coupling, the two lobes move away from e
other in their respective quadrants of thex-y plane.

The key observation regarding the two lobes form
abovelc is that, providedj andl are both sufficiently large,
their displacement from each other is proportional toAj , and
that this is a macroscopic quantity. The excited states exh
a similar behavior, having an extent proportional toAj above
the phase transition.

Therefore, around the critical couplingl'lc , the wave
functions of the system become delocalized, and the ex
of this delocalization is proportional toAj . As this is a mac-
roscopic quantity, we see that abovelc , the system at finite
j develops macroscopic coherence in its wave functions.
most striking example of this is the ground state, where
two macroscopically different lobes are reminiscent of t
two states of a Schro¨dinger cat.

The delocalization and the accompanying macrosco
coherence are rather general features of the onset of ch
and are natural consequences of the exponential diverg
of trajectories in a classically chaotic system@56#. If we con-
sider a small volume of initial conditions in the classic
phase space~a well-localized initial wave packet!, and let the
system evolve chaotically, this initial volume rapidly b
comes blurred out over the entire phase space accessib
it. This is reflected in the quantum system by the delocali
tion of the wave functions. That such systems are mac
scopically coherent may be seen from the observation
under Hamiltonian dynamics, the volume of the initi
‘‘wave packet’’ remains constant in time~Liouville’s theo-
rem!. This means that the exponential divergence in so
direction leads to the exponential contraction in others. T
contraction will continue until the size of the packet becom
of the order of\ and quantum effects come into play. If w
imagine that the wave packet becomes narrow in the di
tion of momentump, then the uncertaintyDp becomes very
small. In order that the Heisenberg uncertainty relation ho
the uncertainty in the corresponding coordinateDx must be-
come very large, and this leads to the emergence of ma
scopic coherence in the system.

This effect is what was observed in the variances cal
lated earlier in connection with squeezing in the thermo
namic limit. Asl→lc from below, the variances (Dx)2 and
(Dy)2 diverged, with (Dpx)

2 and (Dpy)
2 remaining near

their quantum limit of 1/2. The behavior of these varianc
then reflects the onset of quantum chaos and the macrosc
coherence of the wave functions. A vital difference betwe
the j→` and the finitej results thus emerges in the supe
radiant phase. In the thermodynamic limit, the varianc
(Dx)2 and (Dy)2 reduce asl is increased fromlc , indicat-
ing that the wave functions become localized and lose
macroscopic coherence. This is in contrast with the finitej,
where sufficiently abovelc the wave function is always de
localized and the variances areO(Aj ). This is because

d
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C. EMARY AND T. BRANDES PHYSICAL REVIEW E67, 066203 ~2003!
whereas at finitej we obeyP symmetry and thus have bot
the lobes of the wave function, in the thermodynamic lim
we consider each lobe separately under the broken sym
try. The individual lobes are themselves localized and thi
where the discrepancy arises. This is, we believe, the rea
why, although the spectrum is of the Wigner-Dyson type
large j, the spectrum in thej→` limit is integrable, since in
this limit the wave functions possess no delocalization a
no macroscopic coherence.

This picture also provides us with an explanation of w
P(S) for very smallj are of the nongeneric one-dimension
type. As the extent of the wave function in they direction is
effectively constrained by the number of harmonic eige
functions in that direction, which is determined byj, having
a smallj prevents full delocalization in this direction, inhib
iting the chaoticity of the quantum system.

V. THE SEMICLASSICAL MODEL

As noted in the Introduction, there have been many d
ferent semiclassical models derived from the DH@36–39#.
That there have been so many different approaches is a
flection of the fact that the quantum-mechanical spin p
sesses no direct classical analog. Nevertheless, semicla
models can be constructed, and in the following we sh
propose a different approach. Before this, let us briefly
amine some of the previous work.

A widely discussed approach is that of a Hartree-Foc
type approximation in which one derives the Heisenb
equations of motion for the system and replaces the opera
in these equations by their expectation values@32#. These are
treated as classical variables and a set of nonlinear equa
of motion are obtained for them, which show classical ch
for certain parameter ranges@37#. Despite this, the above
approach is not completely satisfactory as the motion o
depends onj in a trivial way. Furuyaet al. have studied a
classical model similar to the one we propose below@36#.
They derived their semiclassical Hamiltonian by evaluat
the expectation value of the DH in a state composed o
product of photonic and atomic coherent states, and this
tem was also shown to exhibit chaos. Despite the simila
of their model to ours, they did not discuss the role of t
phase transition in determining the chaoticity of the mod
which is a key feature of our model.

We start with the DH in the bosonic form of Eq.~10!:

H5v0~b†b2 j !1va†a

1l~a†1a!S b†A12
b†b

2 j
1A12

b†b

2 j
bD . ~61!

By using the inverse of the relations in Eq.~13!, namely

a[Av

2 S x1
i

v0
pxD , a†[Av

2 S x2
i

v0
pxD ,

b[Av0

2 S y1
i

v0
pyD , b†[Av0

2 S y2
i

v0
pyD ,

~62!
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we may write this Hamiltonian in the position-momentu
representation,

H52 j v01
1

2
~v2x21px

22v1v0
2y21py

22v0!

1lAvv0xH S y2
i

v0
pyDA12h1A12hS y1

i

v0
pyD J ,

~63!

where we have written

h5~v0
2y21py

22v0!/~4 j v0!. ~64!

We now move very naturally from this quantum-mechani
Hamiltonian to a semiclassical one by setting the positi
momentum commutators to zero, i.e.,@x,px#50, and
@y,py#50. This causes the interaction term to become re
and in terms of classical variables we have

Hsc52 j v01
1

2
~v2x21px

22v1v0
2y21py

22v0!

12lAvv0xyA12
v0

2y21py
22v0

4 j v0
. ~65!

Unusually, this Hamiltonian contains an intrinsic co
straint that is determined by the requirement that the squ
root must remain real for the system to remain Hamiltoni
This means that the inequality

h5
1

4 j v0
~v0

2y21py
22v0!<1 ~66!

is satisfied for all times.

A. Classical phase transition

The HamiltonianHsc undergoes a spontaneous symmet
breaking phase transition that is directly analogous to
QPT of the quantum model. The exact correspondence
tween the classical and quantum Hamiltonians in the ther
dynamic limit is because in this limit the system is exac
described with a mean-field theory as used earlier, and
use of classical variables as we have done here is equiva
to a mean-field theory. Consequently, we are able to de
classical effective Hamiltonians exactly as we did in t
quantum case. The effective Hamiltonian for the norm
phase is derived by simply lettingj→` ~i.e., h→0) in the
Hamiltonian of Eq.~65!. This gives us

Hsc
(1)5

1

2
$v2x21px

21v0
2y21py

214lAvv0 xy2v02v%

2 j v0 , ~67!
3-14
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CHAOS AND THE QUANTUM PHASE TRANSITION IN . . . PHYSICAL REVIEW E67, 066203 ~2003!
which is identical to Eq.~14! from the quantum analysis, an
may be diagonalized with the same rotation. The equilibri
position of HamiltonianHsc

(1) is the origin: x5y5 px5py

50.
An effective Hamiltonian for the super-radiant phase

derived in the same way as in the quantum case, by disp
ing the coordinates as in Eq.~45!, so that x→x86Dx ,y
→y87Dy , where the displacements are the same as bef
Dx[A2a/v andDy[A2b/v0. Making these displacement
and then taking the thermodynamic limit results in a Ham
tonian Hsc

(2) that is identical with the quantum Hamiltonia
H (2) of Eq. ~29! in the appropriate position-momentum re
resentation, which may thus be diagonalized with the sa
rotation. The equilibrium positions ofHsc

(2) are (1Dx ,
2Dy) and (2Dx ,1Dy).

The bounds on the existence of these classical effec
Hamiltonians are exactly as in the quantum case—the e
tation energies«2

(1) and«2
(2) of the decoupled modes rema

real only on their respective sides of the critical couplinglc ,
which has the same value as in the quantum case. Cle
the semiclassical system is completely integrable in this th
modynamic limit.

B. Equations of motion

To analyze the behavior of this semiclassical system
finite j, we form Hamilton’s equations of motion from th
derivatives ofHsc @57#

ẋ5px ,

ẏ5pyS 12
l

2 j
A v

v0

xy

A12h
D ,

ṗx52v2x22lAvv0 yA12h,

ṗy52v0
2y22lAvv0xA12hS 12

v0y2

4 j ~12h! D , ~68!

where as before

h5
1

4 j v0
~v0

2y21py
22v0!. ~69!

It is not a priori obvious that this flow should preserve th
condition set out in Eq.~66!. However, we have demon
strated numerically that, provided we choose initial con
tions that satisfy Eq.~66!, then this condition is always sa
isfied. Although we have not shown this analytically, it can
least be seen to be plausible. Calculatingḣ5dh/dt
5$H,h%, where$•••% denote Poisson brackets, we find th

ḣ52
l

j
A v

v0
xpyA12h, ~70!

so that ash approaches unity its rate of change approac
zero, implying that it is bound appropriately.
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We now determine the fixed points of this flow at finitej

by settingẋ5 ẏ50, ṗx5 ṗy50. The simplest fixed point is
given byx5y5px5py50, the coordinate origin. By calcu
lating the Hessian stability matrix from the second deriv
tives of H, we see that this fixed point is only stable whe

1

2
$v21v0

22A~v22v0
2!116l2vv0~111/~4 j !!%.0,

~71!

i.e., when

l,
lc

A111/~4 j !
. ~72!

There are two other fixed points, both of which havepx
5py50, and withx andy given by

x056
2l

v
A j

v H S 11
1

4 j D
2

2
lc

4

l4J ,

y057A2 j

v S 11
1

4 j
2

lc
2

l2D . ~73!

These two quantities only remain real, provided that
1(1/4j )2(lc

2/l2).0, which corresponds to the condition

l.
lc

A111/~4 j !
. ~74!

Provided that the above condition is fulfilled, the fixed poin
given by (1x0 ,2y0) and (2x0 ,1y0) exist and are stable
So, below the couplinglc /A111/(4j ), only one fixed point
exists, which lies at the coordinate origin and is stab
Above l5lc /A111/(4j ), this fixed point becomes un
stable and two new stable fixed points appear at the coo
nates (1x0 ,2y0) and (2x0 ,1y0). Note that these expres
sions give us the first correction to the location of the critic
coupling in terms of a perturbation series inj. We can con-
sider this semiclassical system as a particle moving in
two-dimensional, momentum-dependent potential

U~x,y,py!5
1

2
~v2x21v0

2y2!

12lAvv0xyA12
1py

22v0

4 j v0
. ~75!

Maps of this potential for different values of increasing co
pling and for two different values ofpy are shown in Fig. 13.
First, note how significantly the value ofpy affects the shape
of the potential felt by the ‘‘particle.’’ For example, abovelc
at l50.8, withpy50, the potential bifurcates into two sepa
rate wells, whereas forpy53 it does not. Also note the simi
larity between the plot ofU(x,y,py) for py50 and the plot
of the wave function in Fig. 12. It is clear that thepy50
potential largely determines the structure of the wave fu
3-15
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FIG. 13. The momentum-dependent potentialU(x,y,py) at two different values of momentumpy50 ~left! andpy53 ~right! for a series
of couplings the same as in Fig.~12!. Note the difference in scales between the two plots. The Hamiltonian is on scaled resonav
5v051, lc50.5.
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tion at finite j, presumably because the location of the fix
points are determined withpy50.

C. Chaos in the semiclassical model

We numerically integrate Hamilton’s equations of moti
for the semiclassical system for a variety of different para
eters and initial conditions. In order to analyze the trajec
ries resulting from these integrations, we use Poincare´ sec-
tions through the four-dimensional phase space. As
system is Hamiltonian, the energy

E52 j v01
1

2
~v2x21px

22v1v0
2y21py

22v0!

12lAvv0 xyA12h ~76!

is conserved, and thus we define our surface of section
px50 with, py being fixed by the energyE. We only record
traversals forpy.0. Poincare´ sections for illustrative param
eter values are shown in Fig. 14.

At low l (l<0.4 in Fig. 14!, the Poincare´ sections con-
sist of a series of regular, periodic orbits. Approaching
critical coupling (l50.44,0.5 in Fig. 14!, we see a change in
the character of the periodic orbits, and also the emerge
of a number of chaotic trajectories. Increasing the coupl
further results in the breakup of the remaining periodic orb
and the whole phase space becomes chaotic for couplin
little over the critical value (l50.6 in Fig. 14!. This transi-
tion to chaos in the classical system mirrors very closely t
seen in the quantum system, especially in the way that m
of the change in the nature of the behavior is centered a
the critical coupling determined by the phase transition.
interesting feature of this classical Hamiltonian is that
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~re!quantization of this Hamiltonian is not unique. This
because the potentialU(x,y,py) depends on the momentum
py , a situation that may be compared to the quantization
Lagrangian for an electron in a magnetic field, where
extra ‘‘rule’’ is required to obtain the correct quantizatio
We may requantizeHsc by simply reversing the steps in Eq
~61!–~65!. However this is not the most obvious path, sin
it involves the addition of extra, imaginary,py-dependent
terms that have canceled in the final Hamiltonian. Altern
tively, one may simply requantize Eq.~65! as it stands,
which results in the Hamiltonian

H85v0~b†b2 j !1va†a1l~a†1a!~b†1b!A12
b†b

2 j
,

~77!

which is clearly different to the original bosonic Hamiltonia
of Eq. ~61!. This ambiguity disappears in the thermodynam
limit, since hereU(x,y,py) becomes momentum indepen
dent in this limit in both systems phases.

We note that the classical Hamiltonian

H952 j v01
1

2
~v2x21px

22v1v0
2y21py

22v0!

12lAvv0xyA12
v0

2y22v0

4 j v0
, ~78!

which is the same as the original Hamiltonian of Eq.~65!,
but with py

2 removed from the square root it displays a sim
lar behavior to that of the full Hamiltonian. The gain in sim
plicity in using this model suggests that it would be an ide
test model for further exploration of the dynamics of th
3-16
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FIG. 14. Poincare´ sections for the classical Dicke model for a sequence of increasing couplings, withj 55 andE523. The Hamiltonian
is on scaled resonancev5v051; lc50.5.
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type of Hamiltonian constrained by a square-root. The
havior of the HamiltonianH9, and the fact that thepy50
potential largely dominates the dynamics ofHcl and the
structure of the wave function of the original DH sugge
that the requantization route is not critical, provided thatj is
not small.

VI. THE RWA AND INTEGRABILITY

The DH in the RWA is given by

HRWA5v0Jz1va†a1
l

A2 j
~a†J21aJ1!. ~79!

It is in this form that the DH is generally studied and
which the thermodynamics of the phase transition w
originally discussed@25,26#. In the RWA, the QPT occurs a
a coupling that is twice that of the non-RWA critical valu
lc

RWA52lc5Avv0 @27,28#. This is simply a consequence o
the fact that in the non-RWA DH there are four terms in t
interaction, whereas here we only have two. As each t
contributes to the mean field, the critical coupling of t
RWA is twice as large as the non-RWA one.

In the RWA, the excitation numberN̂ of Eq. ~8! becomes
exactly conserved. This splits the total Hilbert space into
infinite number of subspaces, labeled by the excitation nu
ber n̂50,1,2, . . . , which in turn leads to level crossings an
to a Poisson distribution forP(S). The crossover betwee
06620
-

t

e

m

n
-

the RWA and non-RWAP(S) distributions has been studie
by treating the non-RWA terms as a perturbation@34#, and it
was found that as the strength of this perturbation is
creased from zero to one, a standard crossover between
sonian and Wigner-Dyson statistics is observed.

Here, we report two observations concerning the diff
ence between the RWA and non-RWA models. First, a ca
lational issue that arises when considering the RWA sys
in the thermodynamic limit. We may derive effective Ham
tonians in each phase by using the Holstein-Primakoff rep
sentation as before. In the normal phase, we obtain

HRWA
(1) 5v0b†b1va†a1l~a†b1b†a!2 j v0 . ~80!

The Bogoliubov transformations required to diagonalize t
Hamiltonian are much simpler in terms of annihilation a
creation operators than those for the non-RWA case. Spe
cally, the RWA diagonalizing transformations are

a→2c1sinb1c2cosb; b→c1cosb1c2sinb, ~81!

plus the Hermitian conjugate relations, where the rotat
angleb is given by

tan~2b!5
2l

v2v0
. ~82!

The transformation for annihilation operators only i
volves annihilation operators, and the same with the crea
3-17
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FIG. 15. The full energy schema of the~a! non-RWA and~b! RWA Dicke Hamiltonian forj 55. The Hamiltonian is on scaled resonanc
v5v051.
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operators. This is in contrast with the non-RWA transform
tions, which transform any given operator into a linear co
bination of all four operators. Therefore, in the RWA it
very simple to find the diagonalizing transformation in t
second quantized representation, whereas in the non-R
case, this diagonalization only becomes transparent w
one considers the first quantized position-momentum re
sentation of the operators. The converse of this stateme
true; it is hard to find the diagonalizing transformation in t
RWA if one works in the position-momentum representatio
We conjecture that this is a more general point than
applying here, and hope that this observation may be us
in other problems.

Our second observation concerns the comparison of
energy spectra at finitej of the RWA @58# and non-RWA
Hamiltonians. Figure 15 shows two typical spectra, w
coupling axes chosen for easy comparison. In terms of
appropriate critical coupling, the ground-state energy of
non-RWA spectrum is remarkably well approximated by t
caustic of all the energy levels in the RWA spectrum th
have negative slopes. Asj increases, this approximation be
comes better as the length of the individual line segme
become shorter, until, in the thermodynamic limit, the cor
spondence of the ground states becomes exact and bot
citation spectra become quasicontinuous.

VII. DISCUSSION

We have presented a coherent and comprehensive pi
of how the existence of a QPT in the thermodynamic lim
plays a crucial role in determining chaotic properties in
model interacting system. The DH exhibits a changeo
from quasiintegrability to chaos, and this transition is loca
by the precursors of the QPT around the critical point,lc .
This statement applies equally well to the original quant
system and to the semiclassical counterpart derived from

Our analysis of the DH in the thermodynamic limit co
sists of deriving an effective Hamiltonian to describe t
system in each of its normal and super-radiant phases.
arbitrary coupling, the system is described in terms of t
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decoupled modes, each of which is a collective photon-a
excitation, and it is the vanishing of the excitation ener
associated with the photonlike mode, that delimits the t
phases. Our approach is particularly useful because we
calculate exactly any property of the system in the therm
dynamic limit by simply utilizing the appropriate Bogoliu
bov transformations.

This analysis reveals that the QPT breaks the symm
associated with the parity operatorP. In the normal phase
where the system in effectively unexcited, the wave fun
tions of the system are invariant with respect toP. In the
super-radiant phase, however, this global symmetry is bro
and two new local symmetries appear, each of which
scribes an isolated wave function lobe, and the spectrum
doubly degenerate. This symmetry breaking, strictly only
curs in the thermodynamic limit and, at any finitej, these
lobes are joined together in a total wave function that isP
invariant. That these two lobes are separated by a ma
scopic amount, proportional to the square root of the sys
size, means that the onset of chaos is accompanied by
delocalization of the wave functions and the appearance
macroscopic coherence in the system.

Similar features occur in the three-dimensional Anders
model. This model of a disordered electron system exhibi
metal-insulator transition, in which the wave functions a
localized for strong disorder and delocalized where the d
order is weak@8,59,60#. An analysis of the level statistic
shows thatP(S) changes from Poissonian to Wigner-Dyso
at the phase-transition point, which is determined by
magnitude of the random potential fluctuations. It is rema
able that our comparatively simple model should bear
many important features in common with complex disord
models, such as the Anderson model; although one featu
such models, for which we have found no evidence of in
DH, is the existence of a third universalP(S) distribution
precisely at the critical coupling@8#.

There are two different classical limits involved with th
Dicke model and, by extension, models of similar natu
involving quantum spins and boson fields. First, there is
3-18
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limit of j→`, in which the length of the spin becomes ma
roscopic. The second is the limit\→0, which we have per-
formed here when setting bosonic commutators equa
zero.

These limits may be applied independently and in eit
order. If we apply thej→` limit first to the DH, we obtain
the effective HamiltoniansH (1,2). Taking then\→0 by set-
ting the commutators of the collective modes to zero,
simply obtain Hsc

(1,2) , the two classical effective Hamilto
nians. Note that the integrability ofH (1,2) makes this ‘‘de-
quantization’’ direct and unambiguous. Applying this limit
the other order means that starting with the DH in t
Holstein-Primakoff representation, we set\→0 by setting
the original field and atom bosonic commutators to ze
which results in our semiclassical HamiltonianHsc. Subse-
quently, taking thej→` limit results in Hsc

(1,2) as above,
showing that we obtain the same result independent of
order in which the limits are taken.

After both limits, the system described byHsc
(1,2) is ‘‘the

classical’’ analog of the DH, describing a macroscopic c
lection of atoms in terms of classical variables. This syst
is completely integrable, and there is no sign of chaos ei
in it or its quantized counterpartH (1,2).

These results support the recent argument put forward
Ballentine concerning the existence of so-called ‘‘semiqu
tum chaos’’@61#. Semiquantum chaos is that which aris
from the coupling of a quantum and a classical system,
ther of which are by themselves chaotic. Ballentine studie
model of a massive particle of massm interacting with a
spin-1/2. By considering the semiclassical limit ofm→`,
the semiquantum system of a quantum spin interacting wi
classical particle was realized. He demonstrated that am
→`, the chaos in the system rapidly disappeared. Our
sults here may be seen as the complement to this sys
where the mass is kept constant but the length of the p
dospin is taken to the classical limitj→`. Given the inte-
grability of the DH is this limit, there is certainly no sem
quantum chaos in our system, which lends additional we
to Ballentine’s claim that semiquantum chaos does not ex

The question then arises; what is the status of the
systems obtained by only taking one of the two limits. In t
case of only taking thej→` limit, the answer is simple;
H (1,2) is a direct quantization ofHsc

(1,2) and describes quantum
fluctuations around classical mean fields. More interestin
the status ofHsc. We have shown here that its behavi
matches very closely that of the quantum DH, and that it
been derived in an almost canonical way, so its mathema
status as the semiclassical counterpart of the DH seems
sonably secure, but what is the relevance of this model to
physical system is less obvious.

The nature of the\→0 limit suggests that this mode
might be useful in describing the model when there are a
atoms~10–20! present, and almost-classical fields, i.e., c
herent states, are applied. Under these circumstances
original DH and semiclassical modelHsc might be fruitfully
compared.
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APPENDIX A: BOGOLIUBOV TRANSFORMATION

1. Normal phase

The two sets of bosons$a,b% and $c1 ,c2% may be ex-
pressed in terms of one another as

a†5
1

2 H cosg (1)

Av«2
(1) @~v1«2

(1)!c1
†1~v2«2

(1)!c1#

1
sing (1)

Av«1
(1) @~v1«1

(1)!c2
†1~v2«1

(1)!c2#J ,

a5
1

2 H cosg (1)

Av«2
(1) @~v2«2

(1)!c1
†1~v1«2

(1)!c1#

1
sing (1)

Av«1
(1) @~v2«1

(1)!c2
†1~v1«1

(1)!c2#J ,

b†5
1

2 H 2sing (1)

Av0«2
(1) @~v01«2

(1)!c1
†1~v02«2

(1)!c1#

1
cosg (1)

Av0«1
(1) @~v01«1

(1)!c2
†1~v02«1

(1)!c2#J ,

b5
1

2 H 2sing (1)

Av0«2
(1) @~v02«2

(1)!c1
†1~v01«2

(1)!c1#

1
cosg (1)

Av0«1
(1) @~v02«1

(1)!c2
†1~v01«1

(1)!c2#J , ~A1!

with the inverse relations

c1
†5

1

2 H cosg (1)

Av«2
(1) @~«2

(1)1v!a†1~«2
(1)2v!a#

2
sing (1)

Av0«2
(1) @~«2

(1)1v0!b†1~«2
(1)2v0!b#J ,

c15
1

2 H cosg (1)

Av«2
(1) @~«2

(1)2v!a†1~«2
(1)1v!a#

2
sing (1)

Av0«2
(1) @~«2

(1)2v0!b†1~«2
(1)1v0!b#J ,

c2
†5

1

2 H sing (1)

Av«1
(1) @~«1

(1)1v!a†1~«1
(1)2v!a#

1
cosg (1)

Av0«1
(1) @~«1

(1)1v0!b†1~«1
(1)2v0!b#J ,
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c25
1

2 H sing (1)

Av«1
(1) @~«1

(1)2v!a†1~«1
(1)1v!a#

1
cosg (1)

Av0«1
(1) @~«1

(1)2v0!b†1~«1
(1)1v0!b#J . ~A2!

The angleg (1) is the rotation angle of the coordinate syste
which eliminates the interaction in the position represen
tion, and is given by

tan~2g (1)!5
4lAvv0

v0
22v2

. ~A3!

2. Super-radiant phase

The analogous Bogoliubov transfomations in the sup
radiant phase are

c†5
1

2 H cosg (2)

Av«2
(2) @~v1«2

(2)!e1
†1~v2«2

(2)!e1#

1
sing (2)

Av«1
(2) @~v1«1

(2)!e2
†1~v2«1

(2)!e2#J ,

c5
1

2 H cosg (2)

Av«2
(2) @~v2«2

(2)!e1
†1~v1«2

(2)!e1#

1
sing (2)

Av«1
(2) @~v2«1

(2)!e2
†1~v1«1

(2)!e2#J ,

d†5
1

2 H 2sing (2)

Aṽ«2
(2)

@~ṽ1«2
(2)!e1

†1~ṽ2«2
(2)!e1#

1
cosg (2)

Aṽ«1
(2)

@~ṽ1«1
(2)!e2

†1~ṽ2«1
(2)!e2#J ,

d5
1

2 H 2sing (2)

Aṽ«2
(2)

@~ṽ2«2
(2)!e1

†1~ṽ1«2
(2)!e1#

1
cosg (2)

Aṽ«1
(2)

@~ṽ2«1
(2)!e2

†1~ṽ1«1
(2)!e2#J ; ~A4!
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,
-

r-

and

e1
†5

1

2 H cosg (2)

Av«2
(2)

@~«2
(2)1v!c†1~«2

(2)2v!c#

2
sing (2)

Aṽ«2
(2)

@~«2
(2)1ṽ !d†1~«2

(2)2ṽ !d#J ,

e15
1

2 H cosg (2)

Av«2
(2)

@~«2
(2)2v!c†1~«2

(2)1v!c#

2
sing (2)

Aṽ«2
(2)

@~«2
(2)2ṽ !d†1~«2

(2)1ṽ !d#J ,

e2
†5

1

2 H sing (2)

Av«1
(2)

@~«1
(2)1v!c†1~«1

(2)2v!c#

1
cosg (2)

Aṽ«1
(2)

@~«1
(2)1ṽ !d†1~«1

(2)2ṽ !d#J ,

e25
1

2 H sing (2)

Av«1
(2)

@~«1
(2)2v!c†1~«1

(2)1v!c#

1
cosg (2)

Aṽ«1
(2)

@~«1
(2)2ṽ !d†1~«1

(2)1ṽ !d#J , ~A5!

where the angleg (2) is given by

tan~2g (2)!5
2vv0m2

v0
22m2v2

~A6!

and where

ṽ[
v0

2 S 11
l2

lc
2D . ~A7!

APPENDIX B: SQUEEZING VARIANCES

The preceding Bogoliubov transformations may be us
to derive exact expressions for the squeezing variances o
ground-state wave function in the thermodynamic limit,
discussed in Sec. III. In the normal phase, they are given
~Dx!25
1

2v S 11
«1

(1)~v2«2
(1)!cos2g (1)1«2

(1)~v2«1
(1)!sin2g (1)

«2
(1)«1

(1) D ,

~Dpx!
25

v

2 S 11
~«2

(1)2v!cos2g (1)1~«1
(1)2v!sin2g (1)

v D , ~B1!
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~Dy!25
1

2v0
S 11

«1
(1)~v02«2

(1)!sin2g (1)1«2
(1)~v02«1

(1)!cos2g (1)

«2
(1)«1

(1) D ,

~Dpy!25
v0

2 S 11
~«2

(1)2v0!sin2g (1)1~«1
(1)2v0!cos2g (1)

v0
D , ~B2!

whereas in the super-radiant phase we find

~Dx!25
1

2v S 11
«1

(2)~v2«2
(2)!cos2g (2)1«2

(2)~v2«1
(2)!sin2g (2)

«2
(2)«1

(2) D ,

~Dpx!
25

v

2 S 11
~«2

(2)2v!cos2g (2)1~«1
(2)2v!sin2g (2)

v D , ~B3!

~Dy!25
1

2v0
S 11

«1
(2)~ṽ2«2

(2)!sin2g (2)1«2
(2)~ṽ2«1

(2)!cos2g (2)

«2
(2)«1

(2) D ,

~Dpy!25
v0

2 S 11
~«2

(2)2ṽ !sin2g (2)1~«1
(2)2ṽ !cos2g (2)

ṽ
D . ~B4!

These results are plotted in the main body of the text.
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