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Dynamical aspects of quantum entanglement for weakly coupled kicked tops
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We investigate how the dynamical production of quantum entanglement for weakly coupled, composite
quantum systems is influenced by the chaotic dynamics of the corresponding classical system, using coupled
kicked tops. The linear entropy for the subsystem~a kicked top! is employed as a measure of entanglement. A
perturbative formula for the entanglement production rate is derived. The formula contains a correlation
function that can be evaluated only from the information of uncoupled tops. Using this expression and the
assumption that the correlation function decays exponentially which is plausible for chaotic tops, it is shown
that the increment in the strength of chaos does not enhance the production rate of entanglementwhen the
coupling is weak enough and the subsystems~kicked tops! are strongly chaotic. The result is confirmed by
numerical experiments. The perturbative approach is also applied to a weakly chaotic region, where tori and
chaotic sea coexist in the corresponding classical phase space, to reexamine a recent numerical study that
suggests an intimate relationship between the linear stability of the corresponding classical trajectory and the
entanglement production rate.
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I. INTRODUCTION

Quantum entanglement~in short, entanglement! in com-
posite systems has been discussed as a paradoxical issu@1#,
but it is experimentally confirmed and utilized in quantu
information processing@2#. Although the definition of en-
tanglement itself is not of dynamical nature, entangled sta
are often generateddynamically @3#; that is, even if sub-
systems are not entangled initially, the interaction betw
them produces entanglement in the system as time elaps
is easily expected that the dynamical production of quan
entanglement heavily depends on the qualitative nature
dynamics. An important qualitative distinction of quantu
dynamics is provided by the corresponding classical dyn
ics, whether it is regular or chaotic, as is well known in t
literature of ‘‘quantum chaos’’@4#. Hence, there have bee
investigations to answer the following question@5–9#: Does
the production of entanglement depend on whether the
responding classical system is chaotic or regular?The au-
thors of Refs.@5–9# concluded that chaotic systems tend
produce larger entanglement than the regular systems in
eral ~exceptions are shown in Refs.@6,10#!. Accordingly, it is
natural to raise the next question:For chaotic systems, doe
the strength of chaos increase the degree of entanglem
This issue was first investigated by Miller and Sarkar@11#.
They employed coupled kicked tops~CKTs! as their model
system, and numerically found that the von Neumann
tropy of the subsystem linearly depends on the sum of p
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tive ~finite-time! Lyapunov exponents of the correspondin
classical systems. To the best of authors’ knowledge, h
ever, there has been no theoretical explanation for their
sult.

In this paper, we examine the same system~CKTs! to
elucidate the mechanism of the entanglement production
particular, we clarify how dynamical aspects of quantum e
tanglement for CKTs are affected by the chaotic dynamics
the corresponding classical CKTs when the coupling is w
and the chaos is strong enough. This limiting case should
examined first, and has not been fully investigated in pre
ous studies.

This paper is organized as follows. In Sec. II, we intr
duce a quantum kicked top and its classical counterpart.
though this system is well known in the literature, we aga
mention them for this paper to be self-contained. In Sec.
we introduce the coupled kicked tops~CKTs!. We also intro-
duce the von Neumann and linear entropies of the subsys
as measures of entanglement. We numerically find that,
bothvon Neumann and linear entropies, the time variation
nearly a linear function of time when the nonlinearity para
eterk is large enough. We also find that, when the coupling
weak, the production rate of the linear entropy is nearly p
portional toe2, wheree is the interaction strength betwee
two tops. This result implies that a perturbative treatmen
possible. In Sec. IV, we derive a perturbative expression
the linear entropy of CKTs. It consists of a correlation fun
tion for a single kicked top which decays rapidly when t
kicked top is chaotic. We also compare numerical resu
with the perturbative expression, and show that the ag
ment is good up to the long time where the entanglem
production rate can be defined. In Sec. V, using the form
in the preceding section, we show that the increment in
©2003 The American Physical Society01-1



d
ll
T
ul
lly

-

at
-
e
t

of

e

d

n

oy

th

e

.
and
ent

i

bu-
on

in-
f
er
t
or-
ical

ise
t as
n in

g. 3.
e
ana-

as

dic

ur-
ithin

lue
u-
ns
is

ha-
or-
we
r
Ts

FUJISAKI, MIYADERA, AND TANAKA PHYSICAL REVIEW E 67, 066201 ~2003!
strength of chaos does not enhance the entanglement pro
tion rate in the strongly chaotic region. We also numerica
confirm that this phenomenon actually happens for CK
@12#. The relationship between our result and previous res
for the weakly chaotic region is discussed in Sec. VI. Fina
we summarize this paper in Sec. VII.

II. QUANTUM AND CLASSICAL KICKED TOP

A kicked top @13# is described by the following Hamil
tonian:

H~ t !5
k

2 j
Jz

2(
n

d~ t2n!1
p

2
Jy , ~1!

where (Jx ,Jy ,Jz) are angular momentum operators that s
isfy @Jx ,Jy#5 iJz , etc.,j is their magnitude, which is a con
served quantity, andk is the nonlinear parameter. Since w
take\51, 1/j plays a role of an effective Planck’s constan
The nonlinear parameterk changes the qualitative nature
the classical dynamics@see Eqs.~5! below#. The classical
kicked top exhibits chaotic behavior, i.e., the phase spac
the classical top is dominated by chaotic seas, whenk*3.
On the other hand, the classical phase space is dominate
tori when k&2.5 @13#. A Floquet operator~i.e., a one-step
time-evolution operator! corresponding to the Hamiltonia
~1! is

U5exp~2 ikJz
2/2 j !exp~2 ipJy/2!. ~2!

In the numerical computations, we employ theu jm& repre-
sentation, where J2u jm&5 j ( j 11)u jm& and Jzu jm&
5mu jm&. Theu jm& representation ofU @Eq. ~2!# is ~note that
j is a conserved quantity!

Um8m5^ jm8ue2 ipJy/2u jm&e2 ikm2/(2 j )

5dm8m
( j )

~p/2!e2 ikm2/(2 j ), ~3!

wheredm8m
( j ) (b) is the Wigner rotational matrix@14,15# writ-

ten as

dm8m
( j )

~b!5(
l

~21! l 2m1m8

3
A~ j 1m!! ~ j 2m!! ~ j 1m8!! ~ j 2m8!!

~ j 1m2 l !! l ! ~ j 2 l 2m8!! ~ l 2m1m8!!

3cos(2 j 22l 1m2m8)~b/2!sin(2l 2m1m8)~b/2!. ~4!

In the numerical evaluation of the Wigner matrix, we empl
its Jacobi polynomial expression@15#.

The corresponding classical dynamics is described by
following mapping:

x85z cos~kx!1y sin~kx!, ~5a!

y852z sin~kx!1y cos~kx!, ~5b!

z852x, ~5c!
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where x5Jx / j , y5Jy / j , and z5Jz / j . Note that x21y2

1z2 is a conserved quantity, sincej is conserved. We henc
employ polar coordinatesu5cos21z and f5tan21(y/x) to
concisely describe both classical and quantum dynamics

In studying the correspondence between quantum
classical dynamics, it is useful to employ a spin-coher
stateuu,f& @16#

^ jmuu,f&5
g j 2m

~11ugu2! j
A 2 j !

~ j 1m!! ~ j 2m!!
, ~6!

whereg5eiftan(u/2). We accordingly employ the Husim
representation of a state vectoruC&,

Q~u,f!5u^u,fuC&u2. ~7!

Figures 1 and 2 show the classical dynamics of the distri
tion function, and quantum dynamics of the Husimi functi
for the kicked top in a semiclassical regime (j 580), respec-
tively. The initial state of the quantum system is a sp
coherent stateuu0 ,f0&. As the corresponding initial state o
the classical distribution function, we employ the Wign
representation ofuu0 ,f0& @17,18#. As is mentioned above, a
the initial stage of the dynamics, the quantum-classical c
respondence holds well; that is, both quantum and class
distribution functions behave very similarly. Such a prec
correspondence between the distribution functions is los
time elapses, due to quantum interference. However, eve
a much longer time period, the variances ofz(t)5Jz(t)/ j ,

scl
2 ~ t !5^z~ t !2&cl2^z~ t !&cl

2 , ~8!

squ
2 ~ t !5^z~ t !2&qu2^z~ t !&qu

2 , ~9!

have a good quantum-classical correspondence. See Fi
Here ^•••&cl and ^•••&qu are the expectation values for th
classical and the quantum systems, respectively. An expl
tion in terms of the classical phase-space dynamics is
follows. In the classically regular region (k50.5,1.0), trajec-
tories are trapped by tori, and the variances exhibit perio
modulations. According to the sizes~along theJz direction!
of the trapping tori, the variances take various values. F
thermore, the variances exhibit recurrence phenomena w
a rather short time period~not shown here!. On the other
hand, in the classically chaotic region (k53.0), bothscl

2 (t)
andsqu

2 (t) increase rather quickly and saturate to the va
ssat

2 51/3 that is estimated by assuming a uniform distrib
tion. In other words, the phase-space distribution functio
spread uniformly all over the whole phase space, which
bounded in the case of the top.

III. NUMERICAL EXPERIMENT OF QUANTUM
KICKED TOPS

Here, we return to our objective: How does classical c
otic dynamics affect the entanglement production of the c
responding quantum system? To investigate this issue,
employ CKTs, which is introduced by Miller and Sarka
@11#, as a target system of numerical experiments. The CK
1-2
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FIG. 1. Classical dynamics of the distribution function withk53.0. ~a!, ~b!, . . . , ~p! correspond tot50,1, . . . ,15,respectively. The
center of the classical distribution function that corresponds to the spin-coherent stateuu0 ,f0& ( j 580) @18# is located at (u0 ,f0)
5(0.89,0.63).
are described by the following Hamiltonian:

H~ t !5H1~ t !1H2~ t !1He~ t !, ~10!

where

H1~ t !5
k1

2 j
Jz1

2 (
n

d~ t2n!1
p

2
Jy1

, ~11!
06620
H2~ t !5
k2

2 j
Jz2

2 (
n

d~ t2n!1
p

2
Jy2

, ~12!

He~ t !5
e

j
Jz1

Jz2(n
d~ t2n!, ~13!

with @Jxl
,Jym

#5 iJzl
d lm , etc. (l ,m51,2). Herekl is the non-

linear parameter of thel th top, ande is the strength of the
1-3
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FIG. 2. Quantum dynamics of the Husimi function withj 580 andk53.0. ~a!, ~b!, . . . , ~p! correspond tot50, 1, . . . , 15,respectively.
The center of the initial spin-coherent state is located at (u,f0)5~0.89,0.63!.
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coupling between these two tops. Corresponding to
Hamiltonian, Eq.~10!, we employ a Floquet operator~a one-
step time-evolution operator!

U[UeU1U2 , ~14!

whereU15e2 ik1Jz1

2 /2je2 ipJy1
/2, U25e2 ik2Jz2

2 /2je2 ipJy2
/2, and

Ue5e2 i eJz1
Jz2

/ j .
Since we will consider only the case where the dens

operator of the total system at timet, r(t), describes a pure
state, we employ entropies of subsystems as measure
06620
e
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of

quantum entanglement@19#. More precisely, we employ von
Neumann and linear entropies of the first top as follows:

SvN~ t !52Tr1$r
(1)~ t !ln r (1)~ t !%, ~15!

Slin~ t !512Tr1$r
(1)~ t !2%, ~16!

wherer (1)(t)5Tr2$r(t)% is the reduced density operator fo
the first top. Note that the von Neumann entropy~or the
linear entropy! of the second top takes the same value as
1-4
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of the first top, when the whole system is in a pure state.
calculateSvN(t) andSlin(t) numerically, we use the eigenva
uesl i(t) of r (1)(t) as

SvN~ t !52(
i

l i~ t !ln l i~ t !, ~17!

Slin~ t !512(
i

$l i~ t !%2. ~18!

We numerically examine the productions of quantum
tanglement, using separable states as initial states. In par
lar, we focus on the system parameter dependence, i.e.k1 ,
k2 , and e dependence, of the entanglement productio
~measured by the entropies of the subsystems!. For simplic-
ity, we only show the cases wherek5k15k2 . As an initial
state, we employ the following pure and separable state

r~0!5uC~0!&^C~0!u, ~19!

where uC(0)&5uu1 ,f1& ^ uu2 ,f2& is a direct product of
spin-coherent states. In studying the chaotic region, the
ter of the initial spin coherent state is located in the chao
sea. Even such numerical experiments with a restricted c
of initial states provide an insight about thetypical behavior
of chaotic CKTs, when the fraction of tori is small in pha
space for the corresponding classical system~in the case of
CKTs, k.3.0).

Figure 4 shows the time evolutions of the entropies w
various values ofk. The entropies stick to nearly zero un
the ‘‘rising time,’’ and then they increase nearly linearly as
function of time for chaotic cases@see Figs. 4~b!–4~d!#.
Though not shown here, they saturate to finite values a
the long-time evolution, due to the finiteness of the dime
sion of the Hilbert space. In the following, we focus on t
‘‘intermediate’’ region where the entropies increase mon
tonically as a function of time. Our extensive numerical e
periments conclude that, in the intermediate region, the
ear entropy as well as the von Neumann entropy increa

FIG. 3. Time evolution of the variances for~a! the classical and
~b! quantum kicked tops. The dotted, dashed, and solid lines co
spond tok50.5, 1.0, and 3.0, respectively. The initial states of~a!
and ~b! are the same as in Figs. 1 and 2, respectively. Since
regular evolutions (k50.5,1.0) are trapped by tori whose sizes a
large in theJz direction, the variances take larger value than that
the chaotic case (k53.0).
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nearly linearly as a function of time, when the chaos
strong enough and the coupling is weak enough.

Figure 5 showse dependence of the linear and von Ne
mann entropies atT5128. When the coupling is weak~i.e.,
e,1023), the linear entropy obeys a perturbative behav
Slin(T)}e2 @see Fig. 5~a!#. At the same time, the time ste
T5128 belongs to the region where the linear entropy
creases linearly in time. In contrast to this, whene is much
larger than 1023, the entropy does not belong to the pertu
bative region, and saturates to a finite value, which is de
mined by the finite size of the Hilbert space of CTKs. The
observations suggest us to analyze the behavior of the li
entropy using a perturbative treatment for the interact
strengthe. This is the subject of the following section. O

e-

e

r

FIG. 4. Time evolutions of the linear~dashed line! and von
Neumann~solid line! entropies. Parameters aree51023 ~in the
weak coupling region! and j 580 ~in a semiclassical region!. The
initial state is given by Eq.~19! with u15u250.89 andf15f2

50.63. The center of the initial state is located in the chaotic s
for the cases of~b!, ~c!, and~d!.

FIG. 5. e dependence of~a! the linear and~b! von Neumann
entropies atT5128 with k53.0. The dashed lines denote 106e2

and 106e1.8 for ~a! and~b!, respectively. The initial state is the sam
as in Fig. 3.
1-5
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the other hand, we confirmed thatSvN(T)}e1.8, when e is
small enough@Fig. 5~b!#. It seems that an usual perturbativ
treatment is difficult to explain the exponent 1.8, so we w
concentrate on the linear entropy below.

IV. PERTURBATIVE EXPRESSION
FOR THE LINEAR ENTROPY

A. Perturbative treatment

We evaluateSlin(t), Eq. ~16!, the linear entropy of the
first top, by using the time-dependent perturbation the
with a small parametere. First, we introduce the interactio
pictures of the density matrixr̃(t)5U0

†(t)r(t)U0(t), and of

the operator Â(t)5U0
†(t)AU0(t), where U0(t)5(U1

^ U2) t; that is,Â(t) corresponds to the ‘‘free’’ evolution o
the operatorA. Accordingly, the time evolution ofr̃(t) is
described by the unitary mappingr̃(t)5Ûe(t) r̃(t
21)Ûe

†(t), where the expansion ofÛe(t) in terms ofe takes
the following form:

Ûe~ t !512
i e

j
V̂~ t !2

e2

2 j 2
V̂2~ t !1O~e3! ~20!

with V̂(t)5 Ĵz1(t) Ĵz2(t). Hence, the unitary mapping ofr̃(t)
becomes

r̃~ t !5 r̃~ t21!1
i e

j
@ r̃~ t21!,V̂~ t !#

2
e2

2 j 2
†@ r̃~ t21!,V̂~ t !#,V̂~ t !‡1O~e3!. ~21!

By induction, we have

r̃~ t !5r~0!1
i e

j (
l 51

t

@r~0!,V̂~ l !#

2
e2

j 2 (
l 52

t

(
m51

l 21

†@r~0!,V̂~ l !#,V̂~m!‡

2
e2

2 j 2 (
l 51

t

†@r~0!,V̂~ l !#,V̂~ l !‡1O~e3!. ~22!

By tracing out the second system, we have

r̃ (1)~ t !5r (1)~0!1
i e

j (
l 51

t

@r (1)~0!,Ĵz1~ l !#^Ĵz2~ l !&2

1
e2

2 j 2 (
l 51

t

$@ Ĵz1~ l !r (1)~0!,Ĵz1~ l !#

1@ Ĵz1~ l !,r (1)~0!Ĵz1~ l !#%^Ĵz1
2 ~ l !&2

1
e2

j 2 (
l 52

t

(
m51

l 21

$@ Ĵz1~ l !,r (1)~0!Ĵz1~m!#
06620
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3^Ĵz2~m!Ĵz2~ l !&21@ Ĵz1~m!r (1)~0!,Ĵz1~ l !#

3^Ĵz2~ l !Ĵz2~m!&2%1O~e3!, ~23!

where ^A&25Tr2$r
(2)(0)A% is an average for subsystem

Finally, we obtain a second-order perturbation formula
Slin(t)5Slin

PT(t)1O(e3):

Slin
PT~ t !5S0(

l 51

t

(
m51

t

D~ l ,m!, ~24!

whereS052e2 j 2 andD( l ,m) is a correlation function of the
uncoupled system. Since the interaction HamiltonianHe(t),
Eq. ~13!, is in a bilinear form,D( l ,m) is decomposed into a
product of correlation functions of uncoupled subsystems

D~ l ,m!5C1~ l ,m!C2~ l ,m!, ~25!

where

Ci~ l ,m!5^zî~ l !zî~m!& i2^zî~ l !& i^zî~m!& i ~26!

andzî( l )5 Ĵzi
( l )/ j ( i 51,2). In the perturbation formula, Eq

~24!, S0 is a rather trivial factor implyingSlin
PT(t)}e2 as is

observed in Fig. 5~a!. The nature of the dynamics for the top
is reflected inD( l ,m).

Let us remark following important points of our perturb
tion formula.

~i! In common with the exact case,Slin
PT(t) has a symmet-

ric form about the exchange of the first and the second to
that is, our perturbative treatment preserves this symme
although we start from a perturbative treatment of the lin
entropy of the first top.

~ii ! Our formula has a similarity with those in phenom
enological descriptions of linear irreversible processes@20#,
in the sense that these theories use time correlation funct
to describe relaxation phenomena. This is useful both
making phenomenological arguments and for establishin
link between a phenomenological theory and a microsco
theory ~cf. the linear response theory of nonequilibrium s
tistical mechanics@20#!.

~iii ! The validity of our perturbative approach is obvious
determined by the magnitude of the expansion coefficiene.
At the same time, we note that the time-dependent pertu
tion theory, which is a short-time expansion, generally wo
only in a limited time scale. Hence, we examine whether
perturbative formula really describes the entanglement p
duction ~e.g., Fig. 4! in the following section@21#.

~iv! Furthermore, we note that the validity of the tim
dependent perturbation theory employed here is simila
that of the Rayleigh-Schro¨dinger type perturbation expansio
for stationary states. The resonances due to spectral de
eracies of the unperturbed system can quickly induce
breakdown of the perturbation formula. We mention that
influence of such a resonance on quantum entanglement
~classically regular! kicked rotor coupled with a spin-1/2 i
examined in Ref.@6#. On the contrary, in our numerical ex
periments shown here, since the magnitude of nonlinearit
moderately large (k>1), the spectral degeneracies of th
1-6
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unperturbed system are almost destroyed@6#. This allows us
to ignore the effect of resonances.

B. Comparison with numerical results

We numerically examine our formula, Eq.~24!. In Fig. 6,
we plot bothSlin(t) andSlin

PT(t) for the intermediate coupling
and weak coupling cases with regular and chaotic conditio
The initial state is the direct product of the spin-coher
states as before. As shown in Fig. 5,e51024 is the pertur-
bative region, so the agreement betweenSlin(t) andSlin

PT(t) is
very good for differentk’s up to t.100@Figs. 6~a! and 6~b!#.
Note that our perturbative expression works for such a lo
time to reproduce the linear increment of the entanglem
productions in time. Such a correspondence degradese
gets larger, of course, as shown in Figs. 6~c! and 6~d!. How-
ever, as far as concerning the chaotic casek53.0, our ex-
pression describes the entanglement production, at le
qualitatively.

V. DYNAMICAL ASPECTS OF ENTANGLEMENT

A. Harder chaos does not mean larger entanglement production

In this section, the perturbative formula, Eq.~24!, is em-
ployed to answer the following question. How does t
strength of chaos influence the entanglement production
in the strongly chaotic regions where the influences from
are negligible?

FIG. 6. Estimations of linear entropies by the perturbative f
mula, Eq.~24!. It is compared with the exact numerical result~in
dashed lines!. The parameters are~a! e51024 ~perturbative region!
with k51 ~regular! ~b! e51024 ~perturbative region! with k53
~chaotic!, ~c! e51023 ~intermediate region! with k51 ~regular!,
and ~d! e51023 ~intermediate region! with k53 ~chaotic!.
06620
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We examineCi( l ,m), Eq. ~26!, which describes the fluc
tuation ofzi5Jzi

/ j . Since the tops are strongly chaotic, w

impose several phenomenological assumptions onCi( l ,m).
Since the phase space of the kicked top is bounded, the
tribution function in the phase space becomes quickly u
form in the strongly chaotic region. Hence we assu
Ci( l ,l ).ssat

2 , where we ignore a short transient before t
distribution function becomes uniform~see Fig. 3!. The mag-
nitude of the fluctuationssat

2 51/3 is determined by the as
sumption that the distribution function is uniform on sphe
(u,f). The boundedness of the phase space allows u
employ another assumption that the relaxation ofCi( l ,m)
( lÞm) is exponential with an exponentg i @22#. Further-
more, it is natural to assume that the exponentg i becomes
larger as the positive Lyapunov exponent of the correspo
ing classical system becomes larger. The simplest func
that satisfies the above assumptions is

Ci~ l ,m!.ssat
2 e2g i u l 2mu. ~27!

HenceD( l ,m), Eq. ~25!, becomes

D~ l ,m!.D0e2gu l 2mu, ~28!

whereD05ssat
4 andg5g11g2 . Accordingly, Eq.~24! pro-

vides the following evaluation of the linear entropy

Slin
PT~ t !.S0D0Fcoth~g/2!t2

12e2gt

sinhg21G . ~29!

When the relaxation time ofD( l ,m) is much shorter than the
time scale of the stationary entanglement production reg
we have anentanglement production rateG

G[
dSlin

PT~ t !

dt
U

t@1/g

.G0coth~g/2!, ~30!

whereG0[S0D0 . From this relation, it is shown thatG de-
creases asg becomes larger, i.e., the chaos of the cor
sponding classical system becomes stronger. That is,the in-
crement in the strength of chaos does not enhance
production rate of entanglement. Furthermore, in the limit
g→`, G quickly saturatesto a finite valueG0 .

At first glance, our prediction seems to be counterint
tive. Hence we provide an explanation of the prediction
summarize this section. The entanglement productions
induced by the fluctuation of the interaction Hamiltonia
He(t), in the interaction picture. Since the time dependen
of He(t) looks like very ‘‘random’’ in classically chaotic
systems, the contribution fromHe(t) to the linear entropy is
reduced due todynamical averaging. We note that this
mechanism is similar to that of the so-calledmotional nar-
rowing in spin relaxation phenomena@20,23#.

B. Properties of the correlation function and linear entropy
production rate—saturation of the

entanglement production

We test the prediction of the phenomenological argum
above with numerical experiments. First, we examine

-
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correlation functionD, Eq. ~25! ~see Fig. 7!. We confirm the
assumption, Eq.~28!, for D when the classical counterpart
chaotic (k>3.0). The correlation function decays ve
quickly, although it is difficult to determine the exponentg
directly from the numerical evaluation ofD ~see another es
timation ofg below!. On the other hand, the value ofD(t,t)
is almost independent ofk, and approximately equal toD0

5ssat
4 51/9.

Second, we examine the nonlinear parameterk depen-
dence of the entanglement production rateG, Eq. ~30!. For
each initial states, whose center of the spin-coherent stat
placed in the chaotic sea, we obtainG using the least squar
fitting for the time region fromt520 to 100, wheret linear-

FIG. 7. Plot ofDR(t,t2t)/D0 @[RD(t,t2t)/D0# as a func-
tion of t with different t ’s (t540,50,60,70) andk’s. ~a!, ~b!, ~c!,
and ~d! correspond tok51, 3, 5, and 7, respectively. The initia
state is Eq.~19! with u15u250.89 andf15f250.63.

FIG. 8. ~a! k dependence of the normalized linear entropy p
duction rate for various initial conditions located in the chaotic s
Note thatG saturates toG0 ask increases.~b! k dependence of the
normalized von Neumann entropy production rateGvN for various
initial conditions@same as those of~a!# located in the chaotic sea

Note that GvN is scaled by G̃0[2e1.8j 2D0 instead of G0

52e2 j 2D0 ~cf. Fig. 4!.
06620
is

ity holds ~Fig. 8!. As a result, we confirm that the increme
in the strength of chaos does not enhance the entangle
production rate in the perturbative regime, wheree is small
enough. It is also confirmed that the entropy production r
G saturates toG0 for large k, which is also consistent with
Eq. ~30!. At the same time, we numerically find that th
entanglement production rateGvn measured by von Neuman
entropy also exhibits a saturation in the largek limit. Al-
though we do not have any analytical theory forGvn , we
expect that the saturation ofGvn is explained by the similar
explanation as that of the linear entropyG ~see Sec. V A!.

In Fig. 9, we plotk dependences of two quantities. One
lsum[l11l2 , wherel i is the short-time~up to t5100) and
phase-space averaged Lyapunov exponent for the initial c
sical distribution ofi th subsystem. We note thatlsum52l1
sincek15k2 . The other is the decay rateg of the correlation
function D, Eq. ~25!. We estimateg from the phenomeno-
logical estimation ofG, Eq. ~30!, i.e.,

g5 lnS G/G011

G/G021D , ~31!

instead of the direct estimation from the assumption,
~28!. Figure 9 suggestsg.lsum. This shows an evidence
that the decay rates of the correlations of tops are determ
by the positive Lyapunov exponents of the classical coun
parts. Thus, our numerical experiments confirm the estim
tion, Eq.~30!, and it is concluded that the entanglement p
duction rate is not increased by the increment in the stren
of chaos in the strongly chaotic region, and saturates t
finite value in the strong chaos limit.

Finally, we point out that it is natural to generalize o
study on CKTs to any strongly chaotic system with bound
phase space. We note that we have already confirmed
@24# for coupled kicked rotors@7,9,25# with periodic bound-
ary conditions of both position and momentum coordinat

-
.

FIG. 9. k dependence of the correlation decay rateg, which is
determined from Eq.~31!, for various initial conditions located in
the chaotic sea~scattered symbols!. The sum of the Lyapunov ex
ponentlsum is also shown as a bold curve, which corresponds t
single initial condition. We note thatlsum depends on the initial
condition only very weakly.
1-8
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C. An extension to flow systems

In this section, we extend the above argument toflow
systemswith continuous time. Consider the case where fl
systems are weakly coupled. When the initial state is a p
product state~as are the cases above!, the linear entropy
produced in the composite system is

Slin
PT~ t !.S0E

0

t

dtE
0

t

dt8D~t,t8!, ~32!

whereD(t,t8) is a correlation function determined by th
form of the interaction Hamiltonian. When the subsyste
are strongly chaotic with bounded phase space, we ass
again

D~t,t8!.D0e2gut2t8u. ~33!

Substituting this into Eq.~32!, we have

G.
2S0D0

g
~12e2gt!→ 2S0D0

g
~ t@1/g!. ~34!

Hence, if the subsystem is strongly chaotic~i.e., g→`), the
entanglement production rate becomes zero; that is,strong
chaos completely suppresses the entanglement produc.
Although we have not numerically confirmed this suppr
sion yet, the similar suppressions of quantum relaxation
strongly chaotic systems have been observed by Prosen
Žnidarič @26–28#. We will discuss this point further in Sec
VII.

VI. DISCUSSION ON A WEAKLY CHAOTIC REGION

In the preceding section, we investigated the strongly c
otic region of the CKTs and concluded that the incremen
the strength of chaos does not enhance entanglement pro
tions, which are measured by the linear entropy of the s
system, with the help of the perturbative formula, Eq.~24!.
With this in mind, we discuss the recent study by Miller a
Sarkar @11#, who investigated the weakly chaotic regio
~where chaotic seas and tori coexist! of the CKTs, and
claimed thatthe increment in the strength of chaos enhan
entanglement. More precisely, they numerically found tha
the entanglement production rate, which is measured by
von Neumann entropy, linearly depends on the sum of p
tive ~finite-time! Lyapunov exponents of the correspondi
classical CKTs, without any theoretical justification. As
well known, it is much harder to develop a theory of weak
chaotic systems~in other words, mixed phase-space system!
than strongly chaotic systems. This is actually the case w
the numerical result of Miller and Sarkar. To accommod
these two qualitatively different results, we employ our p
turbative formula, Eq.~24!, in the analysis for the weakly
chaotic region@k53.0, Fig. 10~a!#.

In order to justify the application of our formula, Eq.~24!,
we confirm that the entanglement productions measured
the linear entropy, instead of the von Neumann entropy,
produce Miller and Sarkar’s fitting. See Fig. 10~b!. Further-
more, we numerically examined that the perturbative eva
ation of the entanglement production rateG, Eq. ~24!, is
06620
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applicable to the weakly chaotic regions, in particular, t
case above. Hence, in the following, we reexamine the inp
of the formula, Eq.~24!, i.e., the correlation functions of th
uncoupled systems.

We focus on our assumption, Eq.~28!, for the correlation
functionsD( l ,m), Eq. ~25!, which is derived from Eq.~27!
for strongly chaotic regions:~i! Due to the absence of tori in
the corresponding classical system, the fluctuation ofzi takes
a saturated value that agrees with that of the uniform dis
bution in the classical phase space@i.e., Ci( l ,l ).ssat

2 ]; ~ii !
Due to the strongly chaotic dynamics, the correlation fun
tions decays exponentially~i.e., Ci( l ,m)}e2g i u l 2mu).

First, we examine our assumption thats2 , the fluctuation
of z25Jz2

/ j , is independent ofu2 . In the weakly chaotic
region, this assumption breaks down due to the confinem
of phase-space dynamics by tori. Actually,s2 becomes
smaller as the ‘‘overlapping’’ between the initial state a
tori becomes larger@see Fig. 11~a!#. By taking account of
this fact into the assumption~28! on D( l ,m), the decrement
of s2 in tori provides a crudest explanation of theu2 depen-
dence ofG @denoted byh in Fig. 11~b!#. That is, the decre-

FIG. 10. ~a! A magnification of the Poincare section of th
kicked top withk53.0. ~b! The correlation betweenlsum andG in
a weakly chaotic region. In particular, solid circles correspond
those in ~a!. A linear fitting is depicted by a dashed line (G/G0

5alsum1b with a52.2 andb520.84). Parameters aree51024

~perturbative region! and j 580. The center of the initial state of th
first top is located at (f1 ,u1)5(0.63,0.89), and those of the secon
top are depicted by solid circles in~a!.

FIG. 11. ~a! u2 dependences of (s2 /ssum)2 (h), lsum(s), and
v (n). ~b! The u2 dependence ofG/G0 (h). The perturbative
estimations with the assumptions~28! and ~35! are indicated bys
andn, respectively. Parameters and initial conditions are the sa
as in Fig. 9~b!. At the same time, we assume (s1 /ssat)

251 for the
perturbative estimations.
1-9
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FUJISAKI, MIYADERA, AND TANAKA PHYSICAL REVIEW E 67, 066201 ~2003!
ment in the fluctuation ofz2 @denoted byh in Fig. 11~a!#
due to the influence from tori inhibits the entanglement p
duction. See the line withh in Fig. 11~b!. However, the
improved estimation denoted bys in Fig. 11~b! still exhibits
a qualitative discrepancy.

Second, to overcome this discrepancy, we improve
assumption forD( l ,m) as

D~ l ,m!5s1
2s2

2e2gu l 2mueiv( l 2m), ~35!

where we introduce a real-valued parameterv. This charac-
terizes oscillations due to the regular motion of the sec
top. The resultant oscillation ofD( l ,m) tends to reduce the
value ofG in Eq. ~24! @cf. Eq. ~30!#:

G5
~s1 /ssat!

2~s2 /ssat!
2

11$sin~v/2!/sinh~g/2!%2
G0coth~g/2!. ~36!

We determine the value ofv in Eq. ~35! from the Fourier
transformation ofD( l ,m) @see Fig. 11~a!#. We depict the
estimation, Eq.~36! ~denoted byn), also in Fig. 11~b!. We
conclude that the assumption, Eq.~35!, provides a satisfac
tory improvement in the evaluation ofG for the weakly cha-
otic region that Miller and Sarkar investigated.

From our argument, it is seen that the contribution fro
tori also plays a role for the determination of the entang
ment production rate vias2 andv. Thus, it is suggested tha
the linear dependence ofG with the sum of the positive
Lyapunov exponents of the corresponding classical syste
not intrinsic for the weakly coupling region.

VII. SUMMARY AND OUTLOOK

We have studied how the strength of chaos affects
production rate of quantum entanglement of the coup
kicked tops~CKTs!. When the coupling constante is small
enough, the entanglement productions obey the perturba
formula, Eq. ~24!. When the classical counterpart exhib
chaotic behavior, there appears a ‘‘stationary’’ entanglem
production regime where the entanglement production ra
well defined. In the strongly chaotic limit, where the corr
lation functions of the uncoupled tops decay exponentia
fast, the perturbative formula, Eq.~24!, predicts that the en
tanglement production rate saturates to a certain value.
numerical experiment confirmed this prediction. This is
unexpected result since the previous works show that
chaotic dynamics promotes a larger amount of quantum
tanglement compared with the regular dynamics@5–9#.

Our perturbative argument of the strongly chaotic reg
depends only on the two points:~i! the time-correlation func-
tion of the interaction Hamiltonian decays exponentially;~ii !
the phase-space distributions of the corresponding clas
subsystems become quickly uniform before the station
entanglement production starts. Hence, we expect that
result also holds for a wide variety of classically chao
systems.

At the same time, we reexamined the weakly chaotic
gion, which was recently investigated by Miller and Sark
who showed numerically that the entanglement produc
06620
-

e

d

-

is

e
d

ve

nt
is

y

ur
n
e

n-

n

al
ry
ur

-
,
n

rate linearly depends on the sum of the positive linear sta
ity exponents@11#. Our perturbative approach provides a th
oretical way to explain their result. The entanglement p
duction rate is controlled by the combination of the dec
rate, the magnitude, and the oscillation frequency of
time-correlation function of the interaction Hamiltonian. It
hard to believe that these factors are generally determ
only by the Lyapunov exponents. Rather, it is natural to
pect that the behavior of the correlation function is stron
influenced by the existence of tori.

We point out that the investigation of dynamical produ
tion of quantum entanglement has relevance with that
quantum fidelity ~measured by an overlapping integral
two states that are evolved by slightly different Hamilt
nians! @26,27,29#. The decay of fidelity and the production o
entanglement correspond to the quantum relaxations ag
static and dynamic disturbances, respectively. When the
turbance is small enough, the perturbative approach will
scribe the leading~‘‘linear’’ ! response. We showed that th
is the case for the dynamical production of quantum
tanglement. On the other hand, concerning the evaluation
quantum fidelity, Prosenet al. reported the success of a pe
turbative approach@26,27#. Both works predict that the
strong chaos suppresses the quantum relaxations in flow
tems. Furthermore, Prosenet al.showed that their theoretica
prediction on the static disturbances agrees with their
merical experiments@26,27#. The recent studies of quantum
fidelity for nonperturbative regimes@30# will be applicable to
the studies on dynamical productions of quantum entan
ment. We believe that such an effort will be fruitful to inve
tigate ‘‘quantum chaos’’ in many degrees of freedom syste
~see, e.g., Refs.@25,26,28#!.

Finally, we point out a possible application of our work
the studies of realistic systems. In the investigations
chemical systems with large degrees of freedom@31# includ-
ing biological systems@32#, it is important to estimate the
entanglement~decoherence! rate. Most studies on this prob
lem rely on the approaches using the master equations o
influence functional technique. However, these approac
have a serious difficulty in practical applications to chemi
reaction dynamics, since the time-scale separation of the
constituents~‘‘the system’’ and ‘‘the environment’’! in the
whole system often breaks down. In contrast to this,
approach only assumes the weakness of the coupling
tween the subsystems, which dynamically causes entan
ment in the whole system. Hence, it has an ability to co
with the breakdown of the time-scale separation. We exp
that our approach will provide a useful tool to investiga
chemical reaction dynamics.
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