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Dynamical aspects of quantum entanglement for weakly coupled kicked tops
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We investigate how the dynamical production of quantum entanglement for weakly coupled, composite
guantum systems is influenced by the chaotic dynamics of the corresponding classical system, using coupled
kicked tops. The linear entropy for the subsyst@nkicked top is employed as a measure of entanglement. A
perturbative formula for the entanglement production rate is derived. The formula contains a correlation
function that can be evaluated only from the information of uncoupled tops. Using this expression and the
assumption that the correlation function decays exponentially which is plausible for chaotic tops, it is shown
that the increment in the strength of chaos does not enhance the production rate of entangidreeribe
coupling is weak enough and the subsystdkisked tops are strongly chaotic. The result is confirmed by
numerical experiments. The perturbative approach is also applied to a weakly chaotic region, where tori and
chaotic sea coexist in the corresponding classical phase space, to reexamine a recent numerical study that
suggests an intimate relationship between the linear stability of the corresponding classical trajectory and the
entanglement production rate.
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[. INTRODUCTION tive (finite-time) Lyapunov exponents of the corresponding
classical systems. To the best of authors’ knowledge, how-
Quantum entanglemeriin short, entanglemenin com-  ever, there has been no theoretical explanation for their re-
posite systems has been discussed as a paradoxica[i3sue sult.
but it is experimentally confirmed and utilized in quantum In this paper, we examine the same systéDKTs) to
information processing2]. Although the definition of en- elucidate the mechanism of the entanglement production. In
tanglement itself is not of dynamical nature, entangled stategarticular, we clarify how dynamical aspects of quantum en-
are often generatedynamically[3]; that is, even if sub- tanglement for CKTs are affected by the chaotic dynamics of
systems are not entangled initially, the interaction betweetthe corresponding classical CKTs when the coupling is weak
them produces entanglement in the system as time elapsesatdthe chaos is strong enough. This limiting case should be
is easily expected that the dynamical production of quantunexamined first, and has not been fully investigated in previ-
entanglement heavily depends on the qualitative nature adus studies.
dynamics. An important qualitative distinction of quantum  This paper is organized as follows. In Sec. Il, we intro-
dynamics is provided by the corresponding classical dynamduce a quantum kicked top and its classical counterpart. Al-
ics, whether it is regular or chaotic, as is well known in thethough this system is well known in the literature, we again
literature of “quantum chaos{4]. Hence, there have been mention them for this paper to be self-contained. In Sec. I,
investigations to answer the following questi@-9]: Does  we introduce the coupled kicked toflSKTs). We also intro-
the production of entanglement depend on whether the coduce the von Neumann and linear entropies of the subsystem
responding classical system is chaotic or reguldif?fe au- as measures of entanglement. We numerically find that, for
thors of Refs[5-9] concluded that chaotic systems tend tobothvon Neumann and linear entropies, the time variation is
produce larger entanglement than the regular systems in genearly a linear function of time when the nonlinearity param-
eral (exceptions are shown in Ref$,10]). Accordingly, itis  eterkis large enough. We also find that, when the coupling is
natural to raise the next questidfor chaotic systems, does weak, the production rate of the linear entropy is nearly pro-
the strength of chaos increase the degree of entanglementrtional toe?, wheree is the interaction strength between
This issue was first investigated by Miller and Sarkdt].  two tops. This result implies that a perturbative treatment is
They employed coupled kicked tog€KTs) as their model possible. In Sec. IV, we derive a perturbative expression for
system, and numerically found that the von Neumann enthe linear entropy of CKTs. It consists of a correlation func-
tropy of the subsystem linearly depends on the sum of position for a single kicked top which decays rapidly when the
kicked top is chaotic. We also compare numerical results
with the perturbative expression, and show that the agree-

*Electronic address: fujisaki@ims.ac.jp ment is good up to the long time where the entanglement
"Electronic address: Tmdella@aol.com production rate can be defined. In Sec. V, using the formula
*Electronic address: tanaka@phys.metro-u.ac.jp in the preceding section, we show that the increment in the
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strength of chaos does not enhance the entanglement prodwehere x=J,/j, y=J,/j, and z=J,/j. Note that x?+y?
tion rate in the strongly chaotic region. We also numerically+z? is a conserved quantity, singés conserved. We hence
confirm that this phenomenon actually happens for CKTsemploy polar coordinate§=cos 'z and ¢=tan (y/x) to
[12]. The relationship between our result and previous resultsoncisely describe both classical and quantum dynamics.

for the weakly chaotic region is discussed in Sec. VI. Finally,

we summarize this paper in Sec. VII.

II. QUANTUM AND CLASSICAL KICKED TOP

A kicked top[13] is described by the following Hamil-
tonian:

H(t)=2£j.]§; 5(t—n)+gJy, (1)

where (,,J,
isfy [Jx,Jy]=iJ,, etc.,j is their magnitude, which is a con-

,J,) are angular momentum operators that sat-

In studying the correspondence between quantum and
classical dynamics, it is useful to employ a spin-coherent
state| 6, ) [16]

j—m

2j!
(J+m!G—mt

y
(1+]y]?)

where y=e'%tan(6/2). We accordingly employ the Husimi
representation of a state vectalr),

Q(6,0)=1[(0,4|V)|2. (7)

Figures 1 and 2 show the classical dynamics of the distribu-

(im0, ¢)= (6)

served quantity, ané is the nonlinear parameter. Since we tion function, and quantum dynamics of the Husimi function
takeﬁzll, 1/ plays a role of an effective Pllan(_:ks constant. for the kicked top in a semiclassical regime=(80), respec-
The nonlinear parametérchanges the qualitative nature of tyely. The initial state of the quantum system is a spin-

the classical dynamicksee Eqgs.5) below]. The classical

coherent stat¢f,, ¢o). As the corresponding initial state of

kicked top exhibits chaotic behavior, i.e., the phase space qf,o ¢jassical distribution function, we employ the Wigner

the classical top is dominated by chaotic seas, wker3.

On the other hand, the classical phase space is dominated

tori when k=2.5[13]. A Floquet operatofi.e., a one-step
time-evolution operatgrcorresponding to the Hamiltonian
Q) is

2

In the numerical computations, we employ then) repre-
sentation, where J?|jm)=j(j+1)[jm) and J,|jm)

=m|jm). The|jm) representation dfl [Eq. (2)] is (note that
j is a conserved quantity

U=exp —ikJZ/2j)exp —imd,/2).

Um,m:<jm/|e—i7rJy/2|jm>e—ikm2/(2j)

() —ikm?2/(2]
=d (m/2)e”kmID,

3

whered, 7 (B) is the Wigner rotational matrigl4,15 writ-
ten as

dpm(B) =2 (-1

y VG+mLG—m)(G+m)I(j—m")!
G+m=DG—1—=m) ! (I—m+m’)!

x cod2i—2+m=m)( gioygin(2—mEm) g2y (4)

epresentation dffy, ¢o) [17,18. As is mentioned above, at

e initial stage of the dynamics, the quantum-classical cor-
respondence holds well; that is, both quantum and classical
distribution functions behave very similarly. Such a precise
correspondence between the distribution functions is lost as
time elapses, due to quantum interference. However, even in
a much longer time period, the variancesz(f) = J,(t)/],

oA =(2()?)g—(2(1))3, 8

a2 =(2(1)%)qu—(2())2, 9)

have a good quantum-classical correspondence. See Fig. 3.
Here(---)q and(- - -)q, are the expectation values for the
classical and the quantum systems, respectively. An explana-
tion in terms of the classical phase-space dynamics is as
follows. In the classically regular regiok £ 0.5,1.0), trajec-
tories are trapped by tori, and the variances exhibit periodic
modulations. According to the sizéalong theJ, direction

of the trapping tori, the variances take various values. Fur-
thermore, the variances exhibit recurrence phenomena within
a rather short time perio¢hot shown here On the other
hand, in the classically chaotic regiok=3.0), botho?(t)

and aéu(t) increase rather quickly and saturate to the value
o2,=1/3 that is estimated by assuming a uniform distribu-
tion. In other words, the phase-space distribution functions
spread uniformly all over the whole phase space, which is

In the numerical evaluation of the Wigner matrix, we employbounded in the case of the top.

its Jacobi polynomial expressid@5].

The corresponding classical dynamics is described by the

following mapping:

x'=zcogkx)+y sin(kx), (5a)
y'=—zsin(kx)+y cogkx), (5b)
z'=—X, (50

IIl. NUMERICAL EXPERIMENT OF QUANTUM
KICKED TOPS

Here, we return to our objective: How does classical cha-
otic dynamics affect the entanglement production of the cor-
responding quantum system? To investigate this issue, we
employ CKTs, which is introduced by Miller and Sarkar
[11], as a target system of numerical experiments. The CKTs
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FIG. 1. Classical dynamics of the distribution function wikk3.0. (a), (b), ..., (p) correspond td=0,1, ..., 15,respectively. The
center of the classical distribution function that corresponds to the spin-coherent &fatg) (j=280) [18] is located at g, bo)

=(0.89,0.63).

are described by the following Hamiltonian:
H(t)=H (1) +Ha(t) +H(1),
where

kl v
Hi(t)= EJZ; S(t=n)+ 5y,

k2 o
Hy(t) = 2—}.3322 S(t=n)+ 5y, (12)
(10
€
H.(t)= ijzlJQ; s(t—n), (13
(11) with [Jy,Jy =13z im, etc. (,m=1,2). Herek, is the non-

linear parameter of thi&th top, ande is the strength of the
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w1 e 1 Te T Te

FIG. 2. Quantum dynamics of the Husimi function wjtk 80 andk=3.0. (a), (b)
The center of the initial spin-coherent state is locatedfai¢) =(0.89,0.63.

coupling between these two tops. Corresponding to theuantum entanglemeft9]. More precisely, we employ von
Hamiltonian, Eq(10), we employ a Floquet operatta one- Neumann and linear entropies of the first top as follows:
step time-evolution operatpr

St =—=Tri{pM(t)In pM(t)}, (15)
UEUEU]_Uz, (14)

_ o _ o (0 =1-Tr{p®(1)?}, 16
Whereulze—|k1J§1/21e—mJyl/2, UzzeﬂkZJZ/zje—mJyz/z, and Siin(t) e (1)} (16)

UE=e_i5JZHZz”.

Since we will consider only the case where the densitywherep)(t)=Tr,{p(t)} is the reduced density operator for
operator of the total system at tinhep(t), describes a pure the first top. Note that the von Neumann entrojy the
state, we employ entropies of subsystems as measures lafear entropy of the second top takes the same value as that
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FIG. 3. Time evolution of the variances f@) the classical and ol P o8

(b) quantum kicked tops. The dotted, dashed, and solid lines corre-
spond tok=0.5, 1.0, and 3.0, respectively. The initial stategaf

and (b) are the same as in Figs. 1 and 2, respectively. Since the *°[ 7 osf
regular evolutionsK=0.5,1.0) are trapped by tori whose sizes are & 7
large in thel, direction, the variances take larger value than that for “

07 |

06 |

S@)

04 |

03|

the chaotic casekE 3.0). o8 r

02 e ] I
of the first top, when the whole system is in a pure state. To  ®'f ____,f-'“'/ T N
calculateS,(t) andS;,(t) numerically, we use the eigenval- "% % w w 1o T
ues\,(t) of p(M(t) as t t

FIG. 4. Time evolutions of the lineafdashed ling and von

_ Neumann(solid line) entropies. Parameters aes=102 (in the
Sw(t)= _zi MO, 17 weak coupling regionand j =80 (in a semiclassical regionThe
initial state is given by Eq(19) with 6,=60,=0.89 and¢,= ¢,
=0.63. The center of the initial state is located in the chaotic seas
Sin(t) = 1_2 IN(D)2 (18) for the cases ofb), (c), and(d).
1

] _ _ nearly linearly as a function of time, when the chaos is
We numerically examine the productions of quantum eN-strong enough and the coupling is weak enough.
tanglement, using separable states as initial states. In particu- Figure 5 shows dependence of the linear and von Neu-
lar, we focus on the system parameter dependenceki.e.., mann entropies af=128. When the coupling is wedke.,
kz, and e dependence, of the entanglement productiong<10-3), the linear entropy obeys a perturbative behavior
_(measured by the entropies of the subsysjefrsr smpl!c- Sin(T) €2 [see Fig. 5a)]. At the same time, the time step
ity, we only show the cases wheke=k;=k,. As an initial  T=128 pelongs to the region where the linear entropy in-
state, we employ the following pure and separable state  creases linearly in time. In contrast to this, wheis much
larger than 103, the entropy does not belong to the pertur-
p(0)=[¥(0))(¥(0)], (19 pative region, and saturates to a finite value, which is deter-
mined by the finite size of the Hilbert space of CTKs. These
where |W(0))=6,,¢1)®|6,,¢,) is a direct product of observations suggest us to analyze the behavior of the linear
spin-coherent states. In studying the chaotic region, the cerntropy using a perturbative treatment for the interaction
ter of the initial spin coherent state is located in the chaotitrengthe. This is the subject of the following section. On
sea. Even such numerical experiments with a restricted class
of initial states provide an insight about thgical behavior

of chaotic CKTs, when the fraction of tori is small in phase | (@) s w0t (b) e

space for the corresponding classical systemthe case of I AN F /’

CKTs, k>3.0). o "l Aeed] o
Figure 4 shows the time evolutions of the entropies with~ 41 ‘,f.‘" = ,.:i'

various values ok. The entropies stick to nearly zero until “ - A 4Ty S

the “rising time,” and then they increase nearly linearly as a L 1 o A

function of time for chaotic casegsee Figs. @)—4(d)]. o A | * :,,"f'

Though not shown here, they saturate to finite values after  ° [&*. . .. .. ] et .

the long-time evolution, due to the finiteness of the dimen- 10° . 10° 1 107 . 107 10°

sion of the Hilbert space. In the following, we focus on the
“‘intermediate” region where the entropies increase mono- FIG. 5. e dependence ofa) the linear and(b) von Neumann
tonically as a function of time. Our extensive numerical ex-entropies aff =128 with k=3.0. The dashed lines denote®%d
periments conclude that, in the intermediate region, the linand 168 for (a) and(b), respectively. The initial state is the same
ear entropy as well as the von Neumann entropy increases in Fig. 3.
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1.8

the other hand, we confirmed th&{(T)>e*, whene is

small enoughFig. 5b)]. It seems that an usual perturbative
treatment is difficult to explain the exponent 1.8, so we will

concentrate on the linear entropy below.
IV. PERTURBATIVE EXPRESSION
FOR THE LINEAR ENTROPY
A. Perturbative treatment

We evaluateS;,(t), Eq. (16), the linear entropy of the

PHYSICAL REVIEW E 67, 066201 (2003

))2+[3,2(m)p™(0),3,1(1)]
) o(M))2h+O( ), (23

where(A),=Tr,{p®(0)A} is an average for subsystem 2.
Finally, we obtain a second-order perturbation formula of

Sin(t) = Sin (1) +O(€3):

X(J (M) (1

X<322(|

(29)

=so|§2= (I,my,

first top, by using the time-dependent perturbation theory

with a small parametes. First, we introduce the interaction whereSy= 2€7]

pictures of the density matrix(t) = Uo(t)p(t)Uo(t), and of
the operator A(t)=U/(t)AUq(t), where Uqy(t)=(U,
®U,)"; that is,A(t) corresponds to the “free” evolution of
the operatorA. Accordingly, the time evolution op(t) is
described by the unitary mappingp(t)=U_(t)p(t
- 1)UZ(t), where the expansion dffe(t) in terms ofe takes
the following form:

2

. i€ € .
U (t)=1——V(t)— —_2V2(t)+0(63) (20
J 2j

with V(t) =J,,(t)J,5(t). Hence, the unitary mapping p{t)
becomes

PO=p(t—1)+ 'j—f[z(t—lx\”/(t)]

2

—%[{Ba—1>,\7<t>],\7<t>]+0<e3> (21)
By induction, we have
. t
P =p(0)+ 'J—E 3 [6(0).9()]
E ! _
5 2 E: p(0),V(1].V(m)]
2 ~ ~
—2;[[p<0>,vu>],vu>]+0<e3> (22)

By tracing out the second system, we have

. t
POt =p®(0)+ 'J— 3 [590),3a)1320));
2 t
o 2, {32(0pM(0),3a(D]

+[3a(D), P(l)(0)3z1(| )]}<~] 22

o
% > E:l {[3(1),p9(0)I5(m)]

2 andD(I,m) is a correlation function of the
uncoupled system. Since the interaction Hamiltorthu(t),

Eq. (13), is in a bilinear formD(l,m) is decomposed into a
product of correlation functions of uncoupled subsystems as
D(l,m)=C

1(|,m)C2(|,m), (25)

where

))i{zi(m)); (26)
andz;(1)=1J,(1)/j (i=1,2). In the perturbation formula, Eq.
(24), S, is a rather trivial factor implyingS(t)<e? as is
observed in Fig. &). The nature of the dynamics for the tops
is reflected inD(I,m).

Let us remark following important points of our perturba-
tion formula.

(i) In common with the exact cas8},,(t) has a symmet-
ric form about the exchange of the first and the second tops;
that is, our perturbative treatment preserves this symmetry,
although we start from a perturbative treatment of the linear
entropy of the first top.

(ii) Our formula has a similarity with those in phenom-
enological descriptions of linear irreversible proced<4s,
in the sense that these theories use time correlation functions
to describe relaxation phenomena. This is useful both for
making phenomenological arguments and for establishing a
link between a phenomenological theory and a microscopic
theory (cf. the linear response theory of nonequilibrium sta-
tistical mechanic$20]).

(iii ) The validity of our perturbative approach is obviously
determined by the magnitude of the expansion coefficent
At the same time, we note that the time-dependent perturba-
tion theory, which is a short-time expansion, generally works
only in a limited time scale. Hence, we examine whether our
perturbative formula really describes the entanglement pro-
duction(e.qg., Fig. 4 in the following sectior{21].

(iv) Furthermore, we note that the validity of the time-
dependent perturbation theory employed here is similar to
that of the Rayleigh-Schdinger type perturbation expansion
for stationary states. The resonances due to spectral degen-
eracies of the unperturbed system can quickly induce the
breakdown of the perturbation formula. We mention that the
influence of such a resonance on quantum entanglement in a
(classically regularkicked rotor coupled with a spin-1/2 is
examined in Ref[6]. On the contrary, in our numerical ex-
periments shown here, since the magnitude of nonlinearity is
moderately large K=1), the spectral degeneracies of the

Ci(l,m)=(z;(1)z;(m));—(z(l
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% 102 x10° We examineC;(l,m), Eq.(26), which describes the fluc-

T bl . tuation ofz;=J, /j. Since the tops are strongly chaotic, we
5 | (D) €=107, k=3 impose several phenomenological assumption&<dh,m).
Since the phase space of the kicked top is bounded, the dis-
tribution function in the phase space becomes quickly uni-
form in the strongly chaotic region. Hence we assume
Ci(l,l):ogat, where we ignore a short transient before the
distribution function becomes unifor(see Fig. 3. The mag-
nitude of the fluctuationr2,=1/3 is determined by the as-

. . sumption that the distribution function is uniform on sphere

AR ooE oo e (6,¢). The boundedness of the phase space allows us to
.1 employ another assumption that the relaxationGCpfl,m)
(I#+m) is exponential with an exponeny; [22]. Further-
more, it is natural to assume that the expongnbecomes
larger as the positive Lyapunov exponent of the correspond-
ing classical system becomes larger. The simplest function

5_(a)6=10'4,k=1

§3 §3 that satisfies the above assumptions is
o ol Ci(l,m)=aZe ™', 27
1 r HenceD(l,m), Eg. (25), becomes
% 2 w0 e w0 100 120 % w % & s 10 1o D(I,m)=Dge”"'~m| (28

¢ t
whereD = a;‘at and y= y,+ y,. Accordingly, Eq.(24) pro-

FIG. 6. Estimations of linear entropies by the perturbative for-". . . .
b y P vides the following evaluation of the linear entropy

mula, Eq.(24). It is compared with the exact numerical res(iit
dashed lings The parameters afe) e=10"* (perturbative region
with k=1 (regula) (b) e=10"* (perturbative regionwith k=3 ?r;r(t):SODO
(chaotig, (c) e=10"2 (intermediate regionwith k=1 (regulaJ,
and(d) e=10"3 (intermediate regionwith k=3 (chaotig.

1-e "

coth( y/2)t— (29

sinhy—1]

When the relaxation time dd(I,m) is much shorter than the
time scale of the stationary entanglement production region,
we have arentanglement production rate

P 9Sin(®

B. Comparison with numerical results dt

unperturbed system are almost destrol@ld This allows us
to ignore the effect of resonances.

=["ycoth(y/2), (30

t>1ly

We numerically examine our formula, E@4). In Fig. 6, . . .
y ¢4 g wherel'y=SyD,. From this relation, it is shown thdt de-

we plot bothS;,(t) andS(t) for the intermediate coupling b | o e oh f
and weak coupling cases with regular and chaotic conditions, £aS€S as becomes 1arger, 1.€., the chaos of the corre-

The initial state is the direct product of the spin-coherentSpondmg.Class'caI system becomes stronger. Thafésin-
states as before. As shown in Fig.&=10"% is the pertur- crement in the strength of chaos does not enhance the

. . PT oy : production rate of entanglemenfurthermore, in the limit
bative region, SO the agreement betwégr(t) andS;, (t) is y—o0, T quickly saturatesto a finite valuel',.
very good for differenk’s up tot=100[Figs. §a} and b)]. At first glance, our prediction seems to be counterintui-
?lote tthat our dpertutrr:)at;_ve expression \tNO][kt?] for StUCh Ia Iongive. Hence we provide an explanation of the prediction to
;%Zugtircmenpsminut?ie eSU'ZEa; I:grrfergsgn;enc: gggargg;m:; ummarize this section. The entanglement productions are

s | f h in Fige)@nd Gd). H induced by the fluctuation of the interaction Hamiltonian
gets farger, of course, as shown in ig n - How- H_(t), in the interaction picture. Since the time dependence
ever, as far as concerning the chaotic ckse3.0, our ex-

ression describes the entanglement production, at lea f H(t) looks like very “random” in classically chaotic
Sualitatively 9 P ’ S(s?ystems, the contribution froid .(t) to the linear entropy is

reduced due todynamical averagingWe note that this

mechanism is similar to that of the so-calletbtional nar-

V. DYNAMICAL ASPECTS OF ENTANGLEMENT rowing in spin relaxation phenomeriao,23.

A. Harder chaos does not mean larger entanglement production

B. Properties of the correlation function and linear entropy
production rate—saturation of the

entanglement production

In this section, the perturbative formula, EG4), is em-
ployed to answer the following question. How does the
strength of chaos influence the entanglement production rate
in the strongly chaotic regions where the influences from tori We test the prediction of the phenomenological argument
are negligible? above with numerical experiments. First, we examine the
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4 8 12 16 20

FIG. 9. k dependence of the correlation decay ratewhich is
determined from Eq(31), for various initial conditions located in
the chaotic sedscattered symbolsThe sum of the Lyapunov ex-
ponent\ g, is also shown as a bold curve, which corresponds to a
) - 1 single initial condition. We note that,, depends on the initial
T T condition only very weakly.

FIG. 7. Plot of DR(t,t—7)/Dy [=RD(t,t— 7)/Dy] as a func- ) ) i
tion of  with differentt’s (t=40,50,60,70) and's. (a), (b), (c), ity holds (Fig. 8). As a result, we confirm that the increment
and (d) correspond tck=1, 3, 5, and 7, respectively. The initial N the strength of chaos does not enhance the entanglement
state is Eq(19) with 6,= 0,=0.89 and¢,= ¢,=0.63. production rate in the perturbative regime, wheris small
enough. It is also confirmed that the entropy production rate
correlation functiorD, Eq. (25) (see Fig. 7. We confirm the I saturates td’, for largek, which is also consistent with
assumption, Eq28), for D when the classical counterpart is Eq. (30). At the same time, we numerically find that the
chaotic k=3.0). The correlation function decays very entanglement production rakg,, measured by von Neumann
quickly, although it is difficult to determine the exponent entropy also exhibits a saturation in the ladgdimit. Al-
directly from the numerical evaluation &f (see another es- though we do not have any analytical theory foy,, we
timation of y below). On the other hand, the value bf(t,t) expect that the saturation ©f,, is explained by the similar
is almost independent df and approximately equal O,  explanation as that of the linear entropy(see Sec. V A
:Ugat: 1/9. In Fig. 9, we plotk dependences of two quantities. One is
Second, we examine the nonlinear paramétatepen- Asuni=MN1+ X2, Where\,; is the short-timgup tot=100) and
dence of the entanglement production rBteEq. (30). For ~ phase-space averaged Lyapunov exponent for the initial clas-
each initial states, whose center of the spin-coherent states $¢al distribution ofith subsystem. We note that, =2\,
placed in the chaotic sea, we obtdirusing the least square Sincek;=k,. The other is the decay rateof the correlation
fitting for the time region front=20 to 100, where linear- ~ function D, Eq. (25). We estimatey from the phenomeno-
logical estimation ofl", Eq. (30), i.e.,

4 T T T T 4

' (@) (b)

[/To+1
y=In , (31

F/FO_ 1

instead of the direct estimation from the assumption, Eg.
(28). Figure 9 suggesty=N\g,,. This shows an evidence
that the decay rates of the correlations of tops are determined
by the positive Lyapunov exponents of the classical counter-
, , , , parts. Thus, our numerical experiments confirm the estima-
8 k‘2 o 8 k‘2 v tion, Eqg.(30), and it is concluded that the entanglement pro-
duction rate is not increased by the increment in the strength
FIG. 8. (a) k dependence of the normalized linear entropy pro-Of chaos in the strongly chaotic region, and saturates to a
duction rate for various initial conditions located in the chaotic seafinite value in the strong chaos limit.
Note thatl” saturates td’, ask increases(b) k dependence of the Finally, we point out that it is natural to generalize our
normalized von Neumann entropy production rhtg for various  study on CKTs to any strongly chaotic system with bounded
initial conditions[same as those @B)] located in the chaotic sea. phase space. We note that we have already confirmed this
Note that 'y is scaled by T'y=2¢%2D, instead of I';  [24] for coupled kicked rotor§7,9,25 with periodic bound-
=2€%j2D,, (cf. Fig. 4. ary conditions of both position and momentum coordinates.
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C. An extension to flow systems

In this section, we extend the above argumentfltov
systemawith continuous time. Consider the case where flow
systems are weakly coupled. When the initial state is a pureg ,
product state(as are the cases abgyehe linear entropy ‘
produced in the composite system is

06| o
os | o
04| -

03

o2} o

01 .

FijnT(t)zsofothfOth'D(7',7"), (32

Y 0 Bt ! ! ) ! )
0 02 04 06 08 1 12 14 035 04 045 05 055 06 065 07

¢ Asun

whereD(r,7') is a correlation function determined by the FIG. 10. (a) A magnification of the Poincare section of the
form of the interaction Hamiltonian. When the subsystem icked top withk—3.0. (b) The correlation between,.. andT" in

are strongly chaotic with bounded phase space, we assu aeweakly chaotic region. In particular, solid circles correspond to

agan those in(a). A linear fitting is depicted by a dashed lin&/",
D(7,7")=Dge” Ar=7'], (33 =akgmtb with a=2.2 andb=—0.84). Parameters ake=10"*

(perturbative regionandj =80. The center of the initial state of the

Substituting this into Eq(32), we have first top is located at¢, , 6,) = (0.63,0.89), and those of the second

top are depicted by solid circles (@).

25D
- 2500

25Dg
—eMy o, —— ~ >
(1=e™") v (t>1/y). (34) applicable to the weakly chaotic regions, in particular, the

case above. Hence, in the following, we reexamine the inputs
Hence, if the subsystem is strongly chadtie., y—=), the  of the formula, Eq(24), i.e., the correlation functions of the
entanglement production rate becomes zero; thastisng  uncoupled systems.
chaos completely suppresses the entanglement production \We focus on our assumption, E@8), for the correlation
Although we have not numerically confirmed this suppresfunctionsD(l,m), Eq.(25), which is derived from Eq(27)
sion yet, the similar suppressions of quantum relaxations ifior strongly chaotic regiongi) Due to the absence of tori in
strongly chaotic systems have been observed by Prosen agik corresponding classical system, the fluctuatioz) tdkes
Znidaric [26—28. We will discuss this point further in Sec. a saturated value that agrees with that of the uniform distri-
VL. bution in the classical phase spdie., C(I,1)=a2%]; (i)
Due to the strongly chaotic dynamics, the correlation func-
VI. DISCUSSION ON A WEAKLY CHAOTIC REGION tions decays exponentially.e., C;(I,m)=e” 7l =™,
In the preceding section, we investigated the strongly cha- First, we examine our assumption that, the fluctuation

otic region of the CKTs and concluded that the increment inOf ZZ:JZ2/J’ 's independent ofj,. In the weakly chaotic

the strength of chaos does not enhance entanglement prodJ€9ion. this assumption breaks down due to the confinement
tions, which are measured by the linear entropy of the sub®f phase-space“ dynamics Py tori. Actually, becomes
system, with the help of the perturbative formula, E2@). smaller as the overlapplng between the_ initial state and
With this in mind, we discuss the recent study by Miller andtori becomes largefsee Fig. 1la)]. By taking account of
Sarkar [11], who investigated the weakly chaotic region this fact into the assumptiof28) on D(I,m), the decrement
(where chaotic seas and tori coexisif the CKTs, and of o5, in tori prowdesacrgde;t explanation qf the depen-
claimed thathe increment in the strength of chaos enhanceglence ofl" [denoted byl in Fig. 11(b)]. That is, the decre-
entanglementMore precisely, they numerically found that
the entanglement production rate, which is measured by th :: _(a)' o** _______ ] 38 (b)' gﬂ
von Neumann entropy, linearly depends on the sum of posi g 1'4_' """" ] P A
tive (finite-time) Lyapunov exponents of the corresponding §1‘2 | ] 25|
classical CKTs, without any theoretical justification. As is < '1 I
well known, it is much harder to develop a theory of weakly = ool
chaotic systemén other words, mixed phase-space systems 2 0:6 :
than strongly chaotic systems. This is actually the case witl®, |
the numerical result of Miller and Sarkar. To accommodate
these two qualitatively different results, we employ our per- L N R e o
turbative formula, Eq(24), in the analysis for the weakly 1o 15 2 205 21 215 22 o152 205 21 215 22
chaotic regior{ k=3.0, Fig. 10a)]. 0. 6,

In order to justify the application of our formula, E@4), FIG. 11. (a) 6, dependences 0B /o qr)? (1), Ay (O), and
we confirm that the entanglement productions measured by (A). (b) The 6, dependence of /T, (CJ). The perturbative
the linear entropy, instead of the von Neumann entropy, reestimations with the assumptiof8) and (35) are indicated byD
produce Miller and Sarkar’s fitting. See Fig.(bR Further-  andA, respectively. Parameters and initial conditions are the same
more, we numerically examined that the perturbative evaluas in Fig. gb). At the same time, we assuma(/o,)?=1 for the
ation of the entanglement production rdfe Eq. (24), is  perturbative estimations.

.5 Fomeea T

02

""""""""
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ment in the fluctuation of, [denoted byl in Fig. 11(a)] rate linearly depends on the sum of the positive linear stabil-
due to the influence from tori inhibits the entanglement pro-ity exponentg11]. Our perturbative approach provides a the-
duction. See the line witfid in Fig. 11(b). However, the oretical way to explain their result. The entanglement pro-
improved estimation denoted kY in Fig. 11(b) still exhibits  duction rate is controlled by the combination of the decay

a qualitative discrepancy. rate, the magnitude, and the oscillation frequency of the
Second, to overcome this discrepancy, we improve thdime-correlation function of the interaction Hamiltonian. It is
assumption foD(I,m) as hard to believe that these factors are generally determined

only by the Lyapunov exponents. Rather, it is natural to ex-
D(I,m)=c2g2e "I ~meiel-m) (35  pect that the behavior of the correlation function is strongly
influenced by the existence of tori.
where we introduce a real-valued parameterThis charac- We point out that the investigation of dynamical produc-

terizes oscillations due to the regular motion of the secondion of quantum entanglement has relevance with that of
top. The resultant oscillation dd(I,m) tends to reduce the quantum fidelity(measured by an overlapping integral of

value ofI' in Eq. (24) [cf. Eq. (30)]: two states that are evolved by slightly different Hamilto-
niang [26,27,29. The decay of fidelity and the production of
(0] 0sa) (03] 06a) entanglement correspond to the quantum relaxations against

I'ocoth(¥/2). (36) static and dynamic disturbances, respectively. When the dis-

turbance is small enough, the perturbative approach will de-

We determine the value ab in Eq. (35) from the Fourier _scribe the leading“linear” ) response. We showed that this
transformation ofD(I,m) [see Fig. 1(a)]. We depict the 'S the case for the dynamical production of quantum en-
estimation, Eq(36) (denoted byA), also in Fig. 11b). We tanglement. On the other hand, concerning the evaluations of
conclude that the assumption, E&S), provides a satisfac- quantum fidelity, Prosest al. reported the success of a per-
tory improvement in the evaluation f for the weakly cha- tUrbative approact{26,27. Both works predict that the
otic region that Miller and Sarkar investigated. strong chaos suppresses the quantum relaxations in flow sys-

From our argument, it is seen that the contribution fromtems. Furthermore, Prosenal. showed that their theoretical
tori also plays a role for the determination of the entanglePrediction on the static disturbances agrees with their nu-
ment production rate vier, andw. Thus, it is suggested that me”_cal exper|ment§26,_27_|. Th_e recent .StUd'eS O.f quantum
the linear dependence df with the sum of the positive fidelity for nonperturbative regimd80] will be applicable to

Lyapunov exponents of the corresponding classical system g‘e studies on dynamical productlons.of guantum e'f“ang'e'
not intrinsic for the weakly coupling region. ment. We believe that such an effort will be fruitful to inves-

tigate “quantum chaos” in many degrees of freedom systems
(see, e.g., Ref§25,26,28).
VIl. SUMMARY AND OUTLOOK Finally, we point out a possible application of our work to

We have studied how the strength of chaos affects th&he s.tudies of reali_stic systems. In the investi_gations of
production rate of quantum entanglement of the couple@hemical systems with large degrees of freed8d includ-
kicked tops(CKTs). When the coupling constastis small N9 biological system$32], it is |mportant_to estlm_ate the
enough, the entanglement productions obey the perturbati@tanglementdecoherengerate. Most studies on this prob-
formula, Eq.(24). When the classical counterpart exhibits [€M rely on the approaches using the master equations or the
chaotic behavior, there appears a “stationary” entanglemenffluénce functional technique. However, these approaches
production regime where the entanglement production rate i82Ve a serious difficulty in practical applications to chemical
well defined. In the strongly chaotic limit, where the corre-€action dynamics, since the time-scale separation of the two
lation functions of the uncoupled tops decay exponentiallyconstituents(‘the system” and “the environmentf'in the
fast, the perturbative formula, E(4), predicts that the en- whole system often breaks down. In contrast to th|_s, our
tanglement production rate saturates to a certain value. O@PProach only assumes the weakness of the coupling be-
numerical experiment confirmed this prediction. This is anftWeen the subsystems, which dynamically causes entangle-
unexpected result since the previous works show that thB'€nt in the whole system. Hence, it has an ability to cope
chaotic dynamics promotes a larger amount of quantum ervith the breakdown c_>f the tl_me-scale separation. We expect
tanglement compared with the regular dynanis9]. that our appro_ach will pr_owde a useful tool to investigate

Our perturbative argument of the strongly chaotic regionchemical reaction dynamics.
depends only on the two point§) the time-correlation func-
tion of the interaction Hamiltonian decays exponentialiiy;
the phase-space distributions of the corresponding classical
subsystems become quickly uniform before the stationary One of the authorgH.F) thanks Dr. H. Kamisaka for
entanglement production starts. Hence, we expect that oyroviding him the subroutine of the Jacobi polynomials, and
result also holds for a wide variety of classically chaoticDr. T. Takami, Dr. C. Zhu, Professor H. Nakamura, Professor
systems. S. Okazaki, Professor T. Konishi, Professor K. Nozaki, Dr.

At the same time, we reexamined the weakly chaotic reG.V. Mil'nikov, and Dr. S. Hayashi for useful discussions
gion, which was recently investigated by Miller and Sarkar,and comments. A.T. thanks Professor A. Shudo for useful
who showed numerically that the entanglement productiorronversations.

" 1+ {sin(w/2)/sinh y/2)}
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