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Dielectric breakdown model for composite materials
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This paper addresses the problem of dielectric breakdown in composite materials. The dielectric breakdown
model was generalized to describe dielectric breakdown patterns in conductor-loaded composites. Conducting
particles are distributed at random in the insulating matrix, and the dielectric breakdown propagates according
to new rules to take into account electrical properties and particle size. Dielectric breakdown patterns are
characterized by their fractal dimensionD and the parameters of the Weibull distribution. Studies are carried
out as a function of the fraction of conducting inhomogeneities,p. The fractal dimensionD of electrical trees
approaches the fractal dimension of a percolation cluster when the fraction of conducting particles approxi-
mates the percolation limit.
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I. INTRODUCTION

Polymers are in general insulated materials, with low v
ues of electrical conductivity and a low value of dielect
constant. One of the ways to increase electrical conducti
is to introduce high electrical conductivity fillers such
metal powders or carbon black in the polymer matrix. Th
the value of the electrical conductivity of the compound c
be increased several orders of magnitude depending on
volume fraction and the dispersion of this second phas
the matrix.

When introduced in the polymer, filler particles can ado
different types of structures that are sometimes character
by a fractal geometry@1#, and a transition from insulating to
conductive behavior is observed when the filler volume fr
tions are about 25%, depending on the type of filler@2#. In
compounds with metal powder as a second phase, a per
tion threshold is experimentally confirmed by a sharp cha
in the electrical conductivity. In the case of carbon bla
compounds, this change is not so sharp and a transition
filler volume fractions in the range between 15% and 35%
expected. This behavior would be the consequence of
filler network formed during the different steps in the mixin
process@3–7#.

In the past decades, models of the electrical conducti
of filled composites were proposed in the frame of th
classes: the composite medium approach based on Max
equation@8#, the discrete medium approach based on Ki
patrick’s ideas@9#, and the percolation approach. This la
approach was analyzed by Pike and Seager@10#, who inves-
tigated the problem of percolation and conductivity w
computer simulation.

This paper addresses the problem of dielectric breakd
in composite materials. Breakdown phenomena
conductor-loaded dielectrics have received some attentio
recent years from the standpoint of percolation the
@11,12#. Theoretical efforts have concentrated on lattice m
els in an attempt to see whether the basic physical me
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nisms of breakdown in these materials can be identifi
Some efforts have focused on the breakdown of fuse
works, while others have concentrated on dielectric bre
down in networks.

Experimentally, high-density polyethylene~HDPE! com-
posites containing carbon black and titanium dioxide ha
recently been tested@13#. The results of the dielectric break
down test were analyzed by their Weibull distribution, and
has been concluded that the shape parameterb of the distri-
bution may be used to evaluate the dispersion of car
black agglomerations in HDPE compounding formulation

HDPE is one of the most widely used materials for t
production of insulators, spacers, and also for coating c
ducting cables used in electric power distribution networ
and, in this type of application, the dielectric strength is o
of the properties that must be taken into account in orde
check the ability to withstand high electric fields@14#. On the
other hand, the development of formulations containing
ditives to protect polymers against property decay~e.g., me-
chanical and thermomechanical! during the processing stage
and/or in service@15# is highly desirable technologically, an
in the case of applications in electrical insulation these ad
tives may impair electrical properties.

Dissado and co-workers@16# studied a narrow size distri
bution of irregular aluminum particles blended into pow
cable insulation-grade polyethylene. The failure statistics
the loaded polymers were then determined under ac ram
stress. They demonstrated the validity of the percolat
model expression for the characteristic breakdown stren
i.e., a reduction in the characteristic value of the applied fi
E with an increasing particle volume fractionp.

In this paper we generalize the dielectric breakdo
model ~DBM! to describe dielectric breakdown patterns
conductor-loaded composites. The DBM was introduced
Niemeyer, Pietronero, and Wiesmann@17# and assumes tha
the dielectric is homogeneous, i.e., the electrical tree pro
gates in a dielectric medium without inhomogeneities. In
DBM, material electrical properties are represented by
exponenth.

In the present work, conducting particles are distributed
random in the insulating matrix, and the dielectric brea
down propagates according to new rules to take into acco
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electrical properties and particle sizes. In this way we ext
the DBM to take into account material inhomogeneities fro
the point of view of electrical properties.

The extension of the DBM model presented in this pa
also allows us to describe dielectric breakdown patterns
means of their fractal dimension and by their Weibull dist
bution parameters.

In Sec. II we present a description of the DBM, and
Sec. III the new model is introduced. Results are presente
Sec. IV, and our discussion and conclusions are summar
in Secs. V and VI.

II. DIELECTRIC BREAKDOWN MODEL „DBM …

In the DBM @17# the dielectric is represented by a recta
gular lattice where each site corresponds to a point in
dielectric. Microscopic examination of electrical tree grow
shows that branch extension occurs in increments typic
of 5 –10mm, while the interelectrode gap is 1–2 mm,@18#.
This implies that a gap of 100 lattice units will represent t
experimental situation adequately and, accordingly, 1
3100 lattices were employed in this work~therefore, the
separation between nodes represents a distanceL
510 mm). The DBM assumes that the tree grows stepw
starting in an electrode with electric potentialf50, and
ending in the counterelectrode wheref51. The discharge
structure has zero internal resistance, i.e., at each point o
structure the electric potential isf50. The tree channe
growth is governed stochastically by the electric field. T
probability P of a tree channel growth at each site of t
electrical tree neighborhood is chosen to be proportional
power h of the electric fieldE at such site (P}Eh). The
electric fieldE can be written fromf, and therefore

P~ i ,k→ i 8,k8!5
~f i 8,k8!

h

( ~f i 8,k8!
h

. ~1!

The sum in the denominator refers to all of the possi
growth sites (i 8,k8) adjacent to the electrical tree.

The electric field distribution is obtained by solving th
Laplace equation considering that the tree structure has
electric potential of the electrode (f50).

Breakdown patterns generated by this model have a f
tal structure that has broadly been dealt with in the literat
@17–21#. The fractal structure of the trees is highly depe
dent on the value of the exponenth.

Experimental and simulated electrical trees can be c
acterized by their fractal dimensionD and failure probability.

The fractal dimension is defined from the correlati
function C(r ), which is the quotient of theaveragenumber
of lattice sites that belong to the tree, divided by the to
number of lattice points that can be found within a circle
radiusr. The average is performed over the set of circles
radius r centered on every point of the electrical tree. T
scaling behavior ofC(r ) with r is given by the following
equation:

C~r !5C0r D22, ~2!

whereD is the fractal dimension.
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The probability of dielectric failure is usually determine
as a function of the propagation timet, measured as the
number of channels incorporated into the tree; the incor
ration of a new channel represents a unit of time.

The cumulative probability of failure,P(t), of a family of
trees generated by computer simulations satisfies a t
parameter Weibull distribution@22#, such as those observe
in experimental studies, given by

P~ t !512exp@2~ t/a!b#, ~3!

where a is the characteristic propagation time andb is a
shape parameter.

III. COMBINED MODEL „CM …

Previous models of dielectric breakdown@17–19# were
developed for homogeneous materials. We now want to
cuss the basic aspects that should be taken into accou
study composite materials. These kinds of material could
represented by a matrix with randomly distributed inhom
geneities. In a real material the matrix could be represen
by a polymer, and the inhomogeneities by carbon black, a
minum, or titanium dioxide, i.e., a highly insulating matr
surrounding conductor inhomogeneities.

In order to build up a model for composite materials, w
should first define some characteristics of inhomogeneit
such as electrical properties, shape, size, etc.

As a first approximation we assume conducting inhom
geneities of circular shape~with a diameter not much les
than the lengthL0 of a breakdown channel! randomly dis-
tributed in a two-dimensional geometry. Note that inhom
geneities are centered at the matrix nodes, and therefore
homogeneities do not form equipotential clusters. T
assumption simplifies the calculation of the electric poten
during tree growth.

In the DBM and according to Eq.~1!, the probabilityP of
breakdown channel growth between two nodes is chose
be proportional to a powerh of the electric field, and
therefore

P~ i ,k→ i 8,k8!5

S f i 8,k8
Li

D h

( S f i 8,k8
Li

D h , ~4!

where we have explicitly introducedLi as a breakdown
channel length~Note that in the DBM all channels have th
same length.!

The extension of the DBM presented in this work intr
duces inhomogeneity characteristics, assigning differ
probabilitiesP to the breakdown channel formation, accor
ing to the conducting characteristics at each site. The si
tion can be rationalized introducing different values ofLi in
Eq. ~4!. We note that this modification affects only the pro
ability P assigned to each site adjacent to the electrical t
As indicated in Fig. 1,Li is written as

Li5L02
L0

ai
, ~5!
1-2
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where ai ( i 51,2,3) is a parameter taking three differe
values:

~1! ai5a1→`, for a channel connecting the electric
tree with a lattice point nonoccupied with a conducting p
ticle. This process is equivalent to the DBM~see Sec. II!.

~2! ai5a252 if the channel is connecting a conductin
particle that belongs to the electrical tree with a lattice po
or an electrical tree node~that is not a conducting particle!
with a conducting particle that does not belong to the el
trical tree~see sitesC and D in Fig. 1!. We emphasize tha
we are considering conducting particles with a diameter
much less thanL0.

~3! ai5a3*1 if the channel is connecting two conductin
particles, where one of them belongs to the electrical t
Note that this channel is very short.

Therefore, in our model, tree growth is still govern
stochastically by the electric field, as in the DBM, with
probability P given by Eq. ~4!, but with Li given by the
following:

~i! If ( i ,k) and (i 8,k8) are sites of the polymeric matrix
Li5L0.

~ii ! If ( i ,k) is an electrical tree node and if in (i 8,k8),
there is a conducting particle,Li5L0 /a25L0/2.

~iii ! If in ( i ,k) there is a conducting particle and (i 8,k8) is
a site of the polymeric matrix,Li5L0 /a25L0/2. ~iv! If in
( i ,k) and in (i 8,k8) there are conducting particles,Li
5(a321 /a3)L0. Thus in this combined model,P depends
not only on the electric field, but also on the conducti
characteristic of the site.

We now perform an extension to the previous model,
troducing some simplifying assumptions.Li is equal toL0/2
either in cases~ii ! or ~iii !. However, from the physical view
point there is no justification to assume different probabilit
whether the channel begins in a conducting particle or n
We are in favor to assume, as an extension of the prev
model, that probabilities in cases~i! and~iii ! ~namedP1 and
P3, respectively! are equal, i.e.,P35P1. Also, in fact, these

FIG. 1. This figure represents the dielectric breakdown mode
a composite material. Large circles represent conducting parti
The black circles are already incorporated in the electrical t
whereas the white circles are not.
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probabilities will now be much smaller than those in cas
~ii ! and~iv! (P2 andP4). To simplify the numerical simula-
tions we assume that both of them are roughly equal, an
a first approximationP25P451.

Therefore we come to the following simplified combine
model ~SCM!:

If ( i 8,k8) is a site of the polymeric matrix,

P~ i ,k→ i 8,k8!}~f i 8,k8!
h, ~6.1!

as in the DBM@see Eq.~1!#, but if (i 8,k8) is occupied by a
conducting particle, then:

P~ i ,k→ i 8,k8!51. ~6.2!

According to Eq.~6!, sites (i 8,k8), which are occupied by
a conducting particle, are incorporated with probability
into the electrical tree. We also assume that the incorpora
of such particles is instantaneous, i.e., they are not counte
the propagation timet, measured as the number of chann
incorporated into the tree. Thus, if in a step of tree grow
sites (i 8,k8) are adjacent to the structure and occupied
conducting particles, they are incorporated simultaneous
instantaneously into the electrical tree.

In the following section we will compare results obtaine
from both CM and SCM according to Eq.~6!, for different
fractionsp of conducting particles.

IV. RESULTS

We will now present a study of electrical trees simulat
with the model developed in the preceding section. The
pendence of their fractal dimension and propagation times
the conducting particle fraction will be studied. We will be
gin with results obtained with the SCM, Eq.~6!, and then

FIG. 2. Electrical trees grown in composite materials with
increasing fractionp of conducting particles.~a! p50 is an electri-
cal tree such as those simulated in Refs.@20,22#. Electrical trees in
~b!–~d! were simulated with SCM@Eq. ~6!#, with a fraction of con-
ducting particles,p50.15, 0.45, and 0.60, respectively.

n
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e,
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continue with the results derived from the CM. Finally,
comparison of results obtained from the CM and the SC
will be performed.

Figure 2 shows four electrical trees simulated on latti
with growing concentrationp of conducting particles andh
51. The propagation time of these electrical trees also
lows a Weibull distribution like those grown on lattices wi
p50, see Ref.@21# and references therein. Figure 3 sho
the dependence of the cumulative probability of failu
P(t), on the propagation timet of a set of 100 electrical tree
grown with the set of parametersp50.45 andh51. The
Weibull distribution parametersa andb, see Eq.~3!, depend
on the concentration of conducting particlesp and on the
parameterh ~see Fig. 4!. It is interesting to point out tha
shape parameterb decreases monotonically by increasingp,
therefore asp→pc , the Weibull distribution is narrowed
arounda.

Electrical trees are characterized by their fractal dim
sionD obtained by a log-log plot of their average correlati
function C(r ) versusr @see Eq.~2!#. Figure 5 shows the
dependence of fractal dimensionD on the set of parametersp
andh.

The corresponding results obtained from CM are sho
in Figs. 6 and 7. In Fig. 6 we show the Weibull parametersa
and b as a function ofp and h. In Fig. 7 we show the
dependence of the fractal dimensionD ~of a set of 100 elec-
trical trees! on the fraction of conducting particles p for di
ferent values of the parameterh.

FIG. 3. Normalized cumulative probability of propagation tim
calculated from a set of 100 electrical trees by employing SCM,
~6!. Time is measured as the number of bonds incorporated in
tree. Parameter values employed wereh51 andp50.45.
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A comparison of the fractal dimension of electrical tre
simulated with either SCM or CM~Figs. 5 and 7, respec
tively! shows that there is a remarkable agreement
the fractal dimension of electrical trees in the interv
0,p,0.3.

V. DISCUSSION

To understand the dependence of the fractal dimensioD
of electrical trees on the fractionp of conducting particles
~see Figs. 5 and 7!, we will resort to some elements from th
percolation theory.

As particles are randomly added to the lattice, near
neighbor particles will form clusters as in the percolati
model. The size of clusters grows by increasing the fract
p of conducting particles. Therefore, for a sufficiently lar
value ofp, the cluster size will be of the order of the inte
electrode gap. This cluster size limit is known as theperco-
lation cluster. From percolation theory it is well known tha
the greatest cluster sizeN scales with the fractionp of con-
ducting particles as follows:

N}H ln~p! for p,pc

pDp for p5pc

p` for p.pc ,

~7!

where pc is a critical concentration. Ifp,pc , there exist
only clusters of finite size, whereas ifp>pc there exists a

.
e

FIG. 5. Dependence of the fractal dimensionD on the fraction
of conducting particles,p, calculated from a set of 100 electrica
trees by employing SCM, Eq.~6!.
-

FIG. 4. Dependence of the
Weibull distribution parametersa
~characteristic time! andb ~shape
factor! on the fraction of conduct-
ing particles,p, calculated from a
set of 100 electrical trees by em
ploying SCM, Eq.~6!.
1-4
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FIG. 6. Dependence of the
Weibull distribution parametersa
~characteristic time! andb ~shape
factor! on the fraction of conduct-
ing particles,p, calculated from a
set of 100 electrical trees by em
ploying CM.
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cluster that bridges the interelectrode gap. The percola
limit observed in our simulations with a matrix size 10
3100 waspc5(0.5960.01), in remarkable agreement wi
the values found in the literature@23#, whereas the percola
tion dimension of the clusters wasDp5(1.8960.03). Figure
8 shows the dependence of percolation probabilityP(p)
~i.e., the fraction of percolating clusters! on the fractionp of
conducting particles. The critical fractionpc was estimated
by adjustingP(p) to the functionG(p) defined as follows:

G~p!5
pa

~pc!
a1pa

. ~8!

In the SCM, described by Eq.~6!, when a growing elec-
trical tree incorporates a conducting particle, it will also i
corporate all their conducting particle nearest neighbors,
particlesA andB in Fig. 1. From Figs. 5 and 7 we learn th
the fractal dimension of our simulated electrical trees ob
the expected percolation behavior when the fraction of c
ducting particles approaches the critical fractionpc .

To investigate the dependence of the fractal dimensioD
of electrical trees on the fraction of conducting particles
the limit p→0 ~see Figs. 5 and 7!, we study how strong the
perturbation produced by the conducting particles on
electrical tree structure is. The following procedure w
applied.

FIG. 7. Dependence of the fractal dimensionD on the fraction
of conducting particles,p, calculated from a set of 100 electrica
trees by employing CM with parameter valuesa251/2 and a3

5100/99.
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~1! An electrical tree is simulated using the dielectr
breakdown model~Sec. II! with a givenh value.

~2! A fraction p of conducting particles is then ‘‘randoml
added’’ to the lattice employed to perform the simulation.

~3! Those clusters of conducting particles that are nea
neighbors to the electrical tree are added to it~see particlesA
andC in Fig. 1!.

~4! Once step~3! is fulfilled, the correlation function of
this ‘‘new’’ electrical tree is determined. For everyp value
investigated, 100 simulations were performed. From the c
relation functionC(r ) a fractal dimensionD is evaluated.

The procedure described in steps~1!–~4! is repeated for
everyh value investigated, the results obtained are shown
Fig. 9.

We learn from Fig. 9 that for rather lowp values (p
,0.3) there is a remarkable agreement with the res
shown in Figs. 5~CM! and 7 ~SCM!. Agreement between
these figures is also observed when the fraction of cond
ing particles approaches the critical valuepc .

VI. CONCLUSIONS

In this paper, we generalized the DBM to describe diel
tric breakdown patterns in conductor-loaded composi
Conducting particles are distributed at random in the insu
ing matrix, and the dielectric breakdown propagates acco
ing to new rules to take into account electrical properties a
particle size.

FIG. 8. Probability of percolation on a 1003100 lattice. Circles
represent the simulation results. The continuous curve is an ad
ment of the simulation performed with the functionG(p), Eq. ~8!.
1-5
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Dielectric breakdown patterns are characterized by th
fractal dimension and the parameters of Weibull distributi
Studies are carried out as a function of the fraction of c
ducting inhomogeneities.

A reduction in the characteristic propagation timea is
observed when the fractionp of conducting particles is in-
creased~Figs. 4 and 6!. This reduction is particularly notice
able whenh51. Consequently, as the fraction of conducti
particles andh are increased,b ~Weibull shape parameter!
and its dispersion are smaller~Figs. 4 and 6!. Therefore, ash
is increased, the breakdown time distribution becom
sharper around its mean value.

FIG. 9. Dependence of the fractal dimensionD on the fraction
of conducting particles,p, when electrical trees are simulated by t
procedure indicated in the Discussion section@see steps~1!–~4!#.
This figure should be compared with Figs. 5 and 7.
er

n

c

tr

l
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The fractal dimensionD of electrical trees approaches th
fractal dimension of a percolation cluster when the fract
of conducting particles approaches the percolation limip
→pc ~Figs. 5 and 7!, independent of theh value employed
to perform the simulation.

In addition, if p,0.3, conducting particles do not signifi
cantly affect electrical tree growth, from the standpoint
their fractal dimension, see Figs. 5, 7, and 9.

Finally, the two approaches named SCM and CM show
remarkable agreement, see Figs. 5 and 7. Additional stu
continuously changinga3 in the CM, as well as incorporat
ing a distribution of values ofa3 to simulate particles of
different sizes, are in progress. Also, although stocha
models are useful for a qualitative description of breakdo
processes, they leave unanswered questions concernin
origin and growth of the dielectric breakdown. In this sen
work is being done in order to develop more determinis
models at the Universities of Leicester, Buenos Aires, and
Plata.
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