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Universality of the thermodynamic Casimir effect
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Recently a nonuniversal character of the leading spatial behavior of the thermodynamic Casimir force has
been reportedX. S. Chen and V. Dohm, Phys. Rev. @, 016102(2002]. We reconsider the arguments
leading to this observation and show that there is no such leading nonuniversal term in the systems with
short-ranged interactions if one treats properly the effects generated by a sharp momentum cutoff in the Fourier
transform of the interaction potential. We also conclude that lattice and continuum models then produce results
in mutual agreement independent of the cutoff scheme, contrary to the aforementioned report. All results are
consistent with thainiversalcharacter of the Casimir force in the systems with short-ranged interactions. The
effects due to dispersion forces are discussed for the systems with periodic or realistic boundary conditions. In
contrast to the systems with short-ranged interactionsl.fge=1, one observes leading finite-size contribu-
tions governed by power laws indue to the subleading long-ranged character of the interaction, hiere
the finite system size anglis the correlation length.

DOI: 10.1103/PhysRevE.67.066120 PACS nunid)er64.60.Fr, 75.40-s

[. INTRODUCTION simir force agrees with the predicted one within 15% accu-
racy. It is interesting to note that at distances of the order of

According to our present understanding, the Casimir efl0 nm between the plates, the force produces a pressure of
fect is a phenomenon common to all systems characterizedte order of 1 atm. Therefore, the Casimir effect is consid-
by fluctuating quantities on which external boundary condi-€red to be very important for the design of nanoscale devices
tions are imposed. (see, e.g., Ref.12] and references thergin

The confinement of quantum-mechanica| vacuum fluctua- In statistical meChaniCS, the Casimir force is Usua”y char-
tions of the electromagnetic field causes long-ranged forceacterized by the excess free energy coming fromfithiee-
between two conducting uncharged plates, which is knowr$ize contributiongo the free energy of the system. The par-
as the(quantum-mechanicaCasimir effec{1—4]. The cor- allel plate or film geometry turns out to be of great practical
responding force between the plates is called the Casimifmportance for the experimental setups.
force. In this form, the phenomenon was predicted in 1948 A useful model for the investigation of generic finite-size
[1] by Casimir. effects is given by a©(n)-symmetric spin systern&1),

The confinement of critical fluctuations of an order pa-confined to a film geometryL(x =?) with periodic boundary
rameter also induces long-ranged forces between the systeg@nditionsr. Models of this sort serve as theoretical descrip-
boundarie$5—7]. This is known as the statistical-mechanical tions of magnets or fluids confined between two parallel
(thermodynamig Casimir effect. In this form, the effect was plates of infinite area. The Casimir force per unit area in
discussed by Fisher and de Genfkalready in 1978. these systems is defined as

The Casimir forces arise from the influence of one portion
of a system, via fluctuations, on another portion some dis-
tance away.

The best known example of a Casimir force is the van der
Waals interaction between neutral molecules. In this case, thaheref (T,L) is the excess free energy
correlations between the fluctuations are mediated by pho-
tons, i.e., massless excitations of the electromagnetic field. fed T,L)=F7(T,L) = Lfpu(T). 2
When the system is a thermodynamic one, important ex- . )
amples of such massless excitations include Goldstongere f’(T,L) is the full free energy per unit ar¢and per
bosons and order parameter fluctuations at critical points. KeT) of such a system anf}, is the bulk free energy den-

The quantum-mechanical Casimir effect has been experSity- . o .
mentally verified with impressive experimental precisjé According to the definition given by Eq1), the thermo-
(see also Refd9] and[10]). One uses atomic force micro- dynamic Casimir force is a generalized force conjugate to the
scope techniques and measures the force between a metdistancel between the boundaries of the system with the
lized sphere and a plate. Since it turns out to be very difficuoroperty F ¢ gimi( T,L) —0 for L—c. We are interested in
to keep two plates parallel with the required accuracy, theréhe behavior ofF ¢ When L>a, wherea is a typical
is only one recent experimefitl] in which the original the- microscopic length scale. In this limit, finite-size scaling
oretical parallel plate setup as studied by Casimir was usedheory is applicable. Theign of the Casimir force is of par-

In this experiment, it has been found that the measured Cdicular interest. It is supposed that if the boundary conditions

Ife(T,L)

Fg-:alsimir(T!I-)= JL
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7 are the same at both surfacés, ., Will be attractive E.(tLh=0)=¢&t|7", t—0. (5
[13,14,18 (strictly speaking, for an Ising-like system this
should hold above the wetting transition temperatiitg
[13,14,17). In the case of a fluid confined between identica S g
walls, this implies an attractive force between the walls forA, @nd A via &,/6,=Q1, A1=Q(&,) ", and A,
large separations. When the boundary conditidifer be- = QaVD(&5) "~ with Q;, Q,, andQ; being univer-
tween the confining surfaces, the Casimir force is expected t&al, which leads to the hyperuniversality hypothesis in the
be repulsive[13,15,16. The current experimental situation form of two-scale factor universaliy23]. In the form given
will be discussed later in the paper. Here we only mentiorfbove, Eqs(4) and(5) are valid for Ising-like systems only.
that these experiments are in qualitative and, in some casgs0r O(n) models,n=2, one has in addition to take into
even in quantitative agreement. account that¢ (t=0)=o. The universal scaling function
In this paper, we discuss the behavior of the thermodyd+(X) decays exponentially fox=1. The physical origin
namic Casimir force in systems with short ranged and withfor the onset of scale invariance can be traced back to the
subleading long-rangeddispersion forces, which are divergence of the correlation length.. Consensus has
present, e.g., in real fluids. Both interactions lead to the samemerged that these statements hold in systems governed by
universality class, provided that the dimensionatitpf the ~ short-range interaction potentials, i.e., decaying exponen-
system and the symmetry of the ordered state are the saniélly or being of a finite range.
Despite this similarity we will see that, in comparison with  If the exchange interaction in an Ising model on a lattice
systems with short-ranged forces, new important finite-sizén d dimensions decays algebraically,
contributions exist in systems with dispersion forces. We
shall also discuss proper boundary conditions for the systems
with subleading long-ranged interactions, and we shall re- J(r)=—J r=[r|=a>0 (6)
consider several recent statemefit8] for the behavior of 1+(r/a)d*o’ '
the finite-size free energy and the Casimir force in the sys-
tems with short-ranged interactions and with dispersion
forces. wherea is the lattice constant, the value of the decay expo-
From the definition in Eqs(1) and(2), it is clear that one nento is crucial with respect to universality. For>2, the
needs to know the critical behavior of the free energy in deading thermodynamic critical behavior is characterized by
slab geometry in order to derive the behavior of the Casimithe critical exponents and scaling functions for short-ranged
force. Based on numerous investigations, it has turned oufteractiong24]. Mean-field theory holds fod>d =4 irre-
that the thermodynamic behavior of a system near a secongpective of the value of. For ¢<2, the upper critical di-
order phase transition exhibits scale invariance and univefmension is reduced td.(o) =20 [24,25, and the values of
sality[19,20. In order to set the stage for our considerations,the critical exponents depend on for o<d<d.(o)
we first recall certain bulk properties. [24,26,27. The crossover from short-ranged to long-ranged
critical behavior occurs foor=2— 7,,(d), where 5.,(d) is
the critical exponent for the short-ranged systéon a given
fixed spatial dimensioml) [28—32. This crossover has re-
Scale invariance and universality hold for the singularcently been reexamined numericallydrs=2 in Ref.[33].
part of a thermodynamic function. For later reference, we Fluids are governed by dispersion forces. In the sense of
quote the decomposition into a regular and a singular part ofq. (6), dispersion(van der Waalsforces ind=3 dimen-
the free energy in units of kgT, and per unit volume of, sions are characterized lay=3 in the nonretarded case and

| The nonuniversal constans and & can be related td, ,

A. Bulk systems

e.g., an Ising ferromagnet: by o=4 in the retarded case. Therefore, the leading thermo-
_ dynamic critical behavior of a fluid is characterized by criti-

F(t,h)=Treg(t,) + Tsing(t ) cal exponents and scaling functions for short-ranged interac-

= frog(t,h) +[t27 A F . (Aghlt] %), (3)  tions and the contributions due to the power-law decay of the

interaction potential lead to corrections to the asymptotic
scaling behavior. Thus for>2 we refer to interaction po-
tentials governed by Ed6) as subleading long-ranged inter-
actions.

As an illustration of this case, Fig. 1 displays schemati-

wheret=(T—T.)/T.=0 is the reduced temperatuteis the
external magnetic field) is the critical exponent associated
with the magnetic field is the critical exponent of the
specific heath; andA, are nonuniversaystem dependent cally the two-point correlation functio®(r,t). The univer-

i e acaling it the two-pont carrelaton funcion in S21 decaY Of5(r.) is governed by Eq(@) oy within the
zero field, which is of particular interest in the present con—Crmc.al regime. For d!stancessmgller than _the Iower limit
text. has ,the forni21.22) of this regime, ge_nerlcally nonunlyersal microscopic effects

' ' govern the behavior of the correlation function. For distances

larger than the upper limit of this regime, the interaction

G(r,t=0)=Dr~@"2*"g. (r/¢.) (4 potential itself governs the further decay of the correlation
function. Note that*/¢—« asT—T,, i.e., the critical re-
with £, as the correlation length given by gime expands as the critical point is approachaf-37.
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critical regime T interaction ing long-ranged interactior[87,46.

regime This view has recently been challenged by Chen and
Dohm [18], who purportedly report, for the systems with
short-ranged interactions, leading finite-size contributions
different from the ones expected from the above discussion.
This would invalidate the current understanding of finite-size
scaling. In particular, these results can lead to the expectation
of a nonuniversalCasimir force atT. for a fluid between

, oic dist ~ & for the spherical modgKk0], andr* ~ £ In & for sublead-
Gt (\ : mesoscopic distances

> parallel plates at a distande If correct this would be of
: ; major theoretical[6,48,49 and experimental interesf
J. L T LA r>r 50-52. Specifically, based on the exact results for the
& i " re-gimg r O(n)-symmetricg* field theory in the larget limit (mean

o ) ) i spherical mode) the authors of Ref.18] report the follow-
_FIG. 1. .SChem"?‘t'C view of the dgnsny-_densny cor'relatlon furlC'ing result for the singular pary(t,L,A) of the finite-size
tion G.(r’t.) i a fluid gov?med by dispersion forcesc#?" The contributionf(t,L,A) to the free energy density of a system
behavior is shown on various length scales, where the tilted doublg . - i,
> . . C with periodic boundary conditions and purported short-
slashes // indicate breaks in scale. For microscopic distances of the ] : - .
order of the particle diameter,, “packing” effects lead to oscil- ranged interactions in2d<4:
lations decaying exponentiallj34]. Beyond a crossover regime _] —2pd-2 —1p -1 —dyesr
(not shown, the correlation function decays according to the power (UL A)=LPATER (AT +LEXE(LE). (7)
law given in Eq.(4) as long as <¢. Beyond another crossovérot
shown the further decay is exponential far>¢ which finally
crosses over to the interaction dominated regimer fer*, where
the ultimate decay of the correlation function follows the decay of
the interaction potentiat-r ~® in the nonretarded regime andr =7 J
in the retarded regiméot shown. The behavior* ~¢In ¢ of the o =_ _
crossover distance* [35-37 illustrates thatr* diverges more Feasimilt,L,A) ﬂL{L[f(t’L’A) flte= Mk ®
strongly than the correlation lengthin the vicinity of T, i.e., the
critical regime, in which the universal properties hold, expandg as EqQ. (7) implies a leading nonuniversdtutoff dependent
approached . nonscaling term~L 2 in the behavior of the Casimir force
because the scaling functiok®'(x) ~exp(—x) when x>1
The widening of the critical regime leads to the divergencq7,41—-43,45% Therefore Eqs(7) and (8) would also imply
of the compressibilityx(t)~ [5dr r?G(r,t)~|t|~?, for t  nonuniversalCasimir amplitudes
—0.
For short-ranged interactions, one has to bear in mind that Acasimidd)=A%4"2d(0) 9
Eqg. (4) is also only valid within a critical regime<r,.
Exact results for the two-dimension@D) Ising model[38]  in d>2 dimensions. _
and mean-field resu|[§9] Suggest tha[:rN 52, whereas the In the f0||0W|ng, we shall show that the results reportEd |.n
spherical model yields the estimatd~ &3 [40]. For r Ref. [18] can be traced back to using a peculiar model in
>r* the correlation function decays again exponentially,Wh'Ch the interactions are neither short ranged nor of the
but it contains a nonuniversal prefacfdo], i.e., theleading- subleading long ranged type, so that the model does not re-

order behavior becomes nonuniversal. This demonstrate@‘te to any physical realization. We find that if the periodicity

that in the case of short-ranged interactions, the width of th@.nd analyticity of the Fourier transford(k) of the interac-

critical regime is much larger than for a corresponding sys1on J(r) at the boundary of the Brillouin zorién the case of

tem with subleadina lona-ranged interactions. a lattice model and the analyticity ofi(k) at the cutoffk
glong g = A (in the case of an off-lattice modedre preserved in the

theoretical analysis, then tHe 2 term in Eq.(7) vanishes
identically. We also show that the presence or absence of this
Finite-size scaling asserts that near the bulk critical temterm doeshot depend on the range of the interactions. If the
peratureT., the influence of a finite sample sizeon the  above requirements fai(k) at the boundary of the Brillouin
critical phenomena is governed by universal finite-size scalzone or atkk=A are violated, a corresponding nonuniversal,
ing functions that depend on the ratié¢, so that the round- nonscaling term of order 2 will be observed in the finite-
ing of the thermodynamic singularities sets in fo/é  size behavior ofany thermodynamic function. A discussion
=0(1) [7,41-45. on the influence of the cutoff on the finite-size behavior of
From the above discussion of the behavioGdf,t), one  the susceptibility has already been presented in [Réf; see
expects that the deviations from standard finite-size scalinglso the “note added in proof” of Ref54]. In Secs. Il and
behavior will be observed fok>r*, wherer* is a cross- 1ll, we present a general and unified approach that is de-
over length with the property*>¢. In particular, one has signed to avoid similar artificial effects; this should be useful
r* ~ &2 for the Ising model or within mean-field theony* also in the context of quantum phase transitions and field

The parameteA is an ultraviolet momentum cutoff and the
function® has the propertgp(0)>0. For the Casimir force
defined by

B. Finite-size scaling
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" ' " in the spirit of Ref.[18] endowed with a cutofi\ = 7/a at
. short - ranged |

o T exact the boundariest 7r/a of the first Brillouin zone in one di-

8f 2 eiﬁandte?f 1 mension. The restriction to one dimension only simplifies the
‘ \ with cutol . - . .

7L / | ) notation, and is not essential for the following arguments.

; Y ] From Fig. 2, it is obvious that the continuation of tké
/! N spectrum, which is correct only in the infrared lirkit- 0, to
51 3 % 1 the full Brillouin zone and its truncation at the zone bound-
aries introduces a cusplike nonanalyticity into the spectrum.
This nonanalyticity is artificial and is not a generic feature of
the short-ranged interactions. As we shall demonstrate below,
this artificial choice is the reason for the nonscaling and non-
universal finite-size effects-L 2 reported in Ref[18]. In
h — e - P S > f_act, the importance of the properties of the_(_zllspe_rs_lon _rela-

ka tion at the Brillouin zone boundary for the critical finite-size

behavior of the free energy ihi=2 dimensions has already
been mentioned by Cardgee Eq(3.12) of Ref.[55]] in the

1 - JKIJ(O)

Brillouin
zone
boundary

FIG. 2. Dispersion relation 4J(k)/J(0) as function ofk for
nearest-neighbor interactions in one dimendiwiid line) in com- - N .
parison with a&? spectrum with a sharp cutoff at the Brillouin zone course Of. deriving the Cas'.m'f amplltUdﬂcaSim”.(.z)
boundary, ford=1 dimension, as implemented in RE£8] (dashed =—mc/6 in d=2 the for periodic boundary conditions,
line). The zone boundary is marked by the vertical dash-dotted “né/vherec is the central Chafge of the _model unde.r consider-
anda is the lattice constant. Note that the application of a shargtion (€.9.,c=1/2 for the critical 2D Ising model with short-
cutoff to a purek? spectrum in the first Brillouin zone implies an 'anged interactions
artificial cusplike nonanalyticity of the dispersion relation at the It is instructive to investigate the consequences of a
zone boundaries. This is absent for the genuine short-ranged inteRonanalytic spectrum of the kind displayed in Fig. 2 in real

actions. space. According to Ref18], the corresponding correlation
function forr> ¢ in d dimensions reads
theory. In Sec. Ill, we also summarize the present state of ]
knowledge on the finite-size behavior of the systems with Cmede2 ~(a+ 1y SIMAT —7(d—1)/4]
. ) ; : G(r,t)=2A%"%2nrA)
subleading long-range interactions, focusing on the expected 1+ ¢ 2N 2
behavior of the singular part of the free energy. One should
distinguish between the casé d+o<6 and (i) d+o +O(exp(—r/§)). (10

=6, which contains the physically most important case of

dispersion forces id=3 with o=3. In case(ii), one ex- ) ) i

pects additional logarithmic finite-size contributions. The pa-1Nus the correlation function decays according to a power
per closes in Sec. IV with a summary and concluding reJaw with the decay exponent- 1)/2 rather than exponen-

marks, where we also discuss possible boundary conditiori@lly. Furthermore, the correlation function oscillates with a
for systems with subleading long-ranged interactions. period set by the inverse of the cutoff. For separations
>r* (see Fig. 1, Eq. (10) therefore implies that the interac-

tion potential for a system with a truncat&é spectrum, as
Il. FINITE-SIZE BEHAVIOR OF THE FREE ENERGY shown in Fig. 2, should not only bleading long ranged
DENSITY rather thanshort rangedor evensubleading long rangeéh

In this section, we present our critique of the finite-size2=d=4 but also containing both positive and negative con-

scaling analysis of the free energy and the Casimir forcdributions. Therefore, for all_spatia! dimensions of physical
presented in Ref18]. As pointed out already, the statements "€/€vance, the model investigated in Riff8] would appear
of Ref. [18] are based on the exact results for theto correspond to a model with competing leading long-

O(n)-symmetric4* field theory in the larges limit (mean r_au_wged_ interaqtions in real space. For such a m_odel, the
spherical modelwith periodic boundary conditions. finite-size scaling as developed for the syst_ems Wlth short-
ranged or subleading long-ranged interactions is not ex-

pected to be applicable.
A. Analytical properties

Before we turn to the finite-size analysis, we discuss
briefly the consequences of the assumptions for the Fourier
transform of the interactiod(k) used in Ref[18] for the We substantiate our view by turning to a detailed analysis
bulk properties of the model. For a system on a lattice,of the finite-size behavior of the free energy and other ther-
J(k)=Z%,J3(r)exp(k-r), where the sum runs over the lattice modynamic functions, i.e., we provide an account of the
sites. For an off-lattice system, the sum has to be replaced hyathematical mechanism that produces the nonuniversal and
the corresponding integral. non-scaling leading finite-size effects reported in R&8§].

In Fig. 2, we compard(k) for a short-rangednearest- As a case study, we quote the expression for the total free
neighboy lattice model[see, cf. Eq(22)] with the standard energy density of a fully finite mean spherical mofile n
k? spectrum in the infrared limit for short-ranged interactions— o limit of an O(n) model with nearest-neighbor interac-

B. Finite-size properties of theO(n— ) model

066120-4



UNIVERSALITY OF THE THERMODYNAMIC CASIMIR EFFECT PHYSICAL REVIEW E67, 066120 (2003

tions of strength) on a hypercubic lattice, which is given by  For periodic boundary conditiong,;A;/(27)=M; are

[7] integer numbers,=1, ... d, wherell;_; = 4M;=N fixes

L o2 L the number of degrees of freedom in the system. The values

of the components; of the vectork are given byk;
BT(K,h|L,A)= supr>o{ Kr % XL, =27mm;/L;, with —M;=m=M;—1, i=1,--,d.
§ In order to analyze the sum in E@L2), we use the Pois-

son summation formula

x; In| 7+ 21 2(1—coskj) | — J

1= o]

b
il K > f(m= 2 dmé“m“f(m)+ Sf@+f(b)].
+5 InZ—ZdK}, (11) 13

whereK = BJ andh is a properly normalized magnetic field. After some algebra, one obtains

The parameter is related to the correlation lengthvia 7 Uy (7,L,A)=Uq (1,A)+AUq4 (7,L,A), (19
= £ 2 [47] which relatesr also to the reduced temperature ' ' ’
The relevant physical information of E€L1) is contained in ~ where

the sum over the wave vectoks=(k,, ... kg) in the first

Brillouin zone of the simple cubic lattice. For general 1 Aq Ag

interaction potentials on general lattices, this sum involves Yd,o(7.A)= 22 )df 1 'fﬁ dmyIn[ 7+ w(m)]
the dispersion relation w(k), where, e.g., w(k) T (15)

=E}’212(1—coskj) for the nearest-neighbor interactions on

a simple cubic latticgsee Eq(11) and, cf. Eq(22)]. In order  takes into account the contributions of the bulk system, while
to provide a general description of finite-size scaling of the

free energy, we will therefore consider the quanfity [see AU, (r.L.A) 1 fAl d fAd 4
H P 7-' s = m . .
also Eq.(14) in Ref. [18]] d, 22md i ] s, 1 _y My
d
Ug,o(7,L,A) IL,X XL gg In[7+w(k)] (12) XeXp(ljZ:l nmL; | In[ 7+ w(m)]
. . (16)

as a function of the system site whereL=(L,, ... ,Ly)
denotes the set of lengths that determine the geometry of thacorporates all contributions due to the finite size of the
system, A=(Aq, ...,Ay) is the set of cutoffs in reciprocal system. For further analysis of the Casimir effect, the film
(i.e.,k) space, and is a quantity proportional to the reduced geometryL X=9"1 is the most relevant one. It is obtained
temperaturet, e.g., 7=¢& 2 for the mean spherical model from Eq. (16) in the limit L,—c, ... Lq—, settingL,
with short-range interactions. For lattice systekidelongs =L. In order to simplify the notation, we finally set
to the first Brillouin zone3 and if the system is on a hyper- =A,=---=A4=A so that
cubic lattice, one had ;= 7T/a| , Whereg; is the lattice spac-
ing along the d|rect|om i= . d. For off-lattice systems 1 D A A
the summation is carried out over those values,, that AUd’U(T’L’A)_Z(ZW)d nFo dm, dmy
fulfill the requirements—A;<k;<A;, i=1,--,d. How-
ever, for off-lattice systems, there is no obvious choice for Xexpingm;L)In[ 7+ w(m)], a7

the cutoff. One usually take§=a"*, wherea is some fixed

characteristic microscopic length of the system. For a faid
can be taken to be the diameteg of a fluid particle(see

which after two integrations by parts with respecintg can
' be rewritten as

also Fig. 2. In Eq. (12), the subscripio characterizes the 1

range of the interaction. The fluctuation spectrurfk) of AUq (7L, A) =AU (7,L,A)— —d

the order parameter is given as a linear function of the Fou- 2(2m)

rier transformJ(k) of the interactior{see, cf. Eqs(22) and

@3] x5 <[ ame "
The formal expression given by E@L2), on which our ng'o na v M

specific considerations in this section are based, has wide- _

spread applications. The expression in EIR) always ap- xexp(ingmL)dm,

pears as the one-loop contribution to the free energy in field-
theoretic Ginzburg-Landau model§48]. The line of
arguments presented here is therefore of general importance,
and is not limited to the specific model under consideration
here. with

&mlw(m)

(18

x T+w(A,m,, ... ,md)}’
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1 J‘A A
6 (2m)d) a0 )M

amlw(m)lmlz/\_ amlw(m)|m1=7A

T+ o(A,my, ... my)

AU (7L, A)=L"2

(19

PHYSICAL REVIEW E67, 066120 (2003

general idea that only long wavelengtsmall k) contribu-
tions are important for the critical properties of the system.
This leads taw(m)=m?, which is the spectrum used in Ref.
[18]. One immediately obtains

A 27 1 fA g fA g
e e —— P m
12 3 (2md)oatme )0

AU (7, L,A)

The above expression is obtained by the identity transforma- 1

tions of the initial sum, and is valid both for lattice and
off-lattice systems. In the analysis below we show that it is

the termAU{)(7,L,A) which produces the contributions,
on which the statements of R¢fL8] are based.

First, we evaluate this term for lattice systems. If the in-
teractionsJ(r)=0 are such that they depend only on the
distances between the particles, and these are the only inter- % 1

actions we are concerned with here, thétk)=J(—k).

T+ AZ+mi+ - +mj

AdT21 1 fl
= N — dm,- - -
L2 6@2mi2) 1 °

. (24
1+ 7/ A%+mi+ - - +mj

Since there is no physical reason for singularities anywhere

except atk=0, the derivatives ofl(k) with respect tok
should exist at least for alk+0 and therefored,J(k)
—d J(—K). This holds for lattice and off-lattice systems.
For lattice systems](k) is a periodic function with the prop-
erty

J(k+2A6)=J3(k), (20

We recall that in the spherical limit of th@(n) model, one
hasr= &2, Equation(24) exactlyreproduces the nonuniver-
sal leading but nonscaling finite-size contribution to the free
energy as reported in Eq16) of Ref. [18] for the corre-
sponding field-theoretic model. Similar contributions exist
also for subleading long-ranged interactions to which we
turn in Sec. lll. According to the above considerations, such
nonuniversalcutoff dependentcontributions of the order of

. . . . ) . ) 72 - .
wheree is a unit vector in reciprocal space. This implies that- will always appear if

dJ(k)=0 at the borders of the Brillouin zone and therefore

AU{)(7,L,A)=0. (22)

93(k)
oKy

4J(K)

=A% g (25

ky=—A

Note that the above result does not depend on the range Rfste that only the properties of the Fourier transfartk) of
the interaction—it is true for short-ranged, subleading 10Ng+a interaction at the boundary of the s@tof allowed k

ranged, as well as for leading long-ranged interactions. As a

{Jalues are important here. For a field-theoretic model, these

lllustration of the ab?ve geperr]al arguments, V\ﬁ)rec_all that the o efinitely a matter of definition. For lattice models, these
exact Fourier transform of the nearest-neighbor interaction, e ties follow automatically. Approximating the spectrum

on ad-dimensional hypercubic lattice reads

d

J(k)=2321 cosk;=J[2d— w(K)], (22)
=

where

d

w(k)z_El 2(1—cosk;). (23)
=

(k) by its infrared asymptotic behavior leads to an artificial
cusplike singularity at the border of the Brillouin zone as is
illustrated in Fig. 2. A corresponding approximation for Eg.
(3.12) in Ref. [55] would lead to an incorrect prediction of
the critical finite-size contribution to the free enefgge Eq.
(3.12 in Ref. [55]] leading to a vanishing Casimir ampli-
tude.

Before we consider how to modify the definition of the
continuous field-theoretic model as to avoid a nonzero
AU&%},(T,L,A), we make some general remarks. First, the
considerations presented above can easily be extended to any
geometry of the type? 9" x»?", 0<d’<d. Second, in the
above discussion we didot specify the type of the

The general properties d{k) that we have discussed above interactions—short ranged, leading long ranged, or sublead-

can be easily verified from Eq§22) and(23).
We now reconsider the quantityU EH,(T,L,A) if the ex-

ing long ranged. This implies that the 2 corrections in
question exist foanytype of interaction for periodic bound-

act spectrum is replaced by its asymptotic form, valid in theary conditions, provided Eq25) is valid. Furthermore, fur-

infrared limit k— 0, for all ke B. This is a very common

ther integrations by parts yield additional contributions of the

procedure in the theory of critical phenomena, based on therderL 4, L8, etc. In 2<d<4 dimensions, only the term
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L~? is important, but ind>4 spurious finite-size terms of AUgq (7,L,A)—AUy U(T,L,A)—Augl(),(r,L,A)
the ordersL ~2 andL ~* will be generated. Finally, we note ' ' ’

that the precise form of the integrand in E4.7) was not 1 A A
used in the above analysis. This implies that spuribug = d > f dmy-- f dmy

. . L 2(2m)" ng#0 J-A -A
corrections also occur in other quantities such as the suscep-
tibility [53,54 (see also the discussion in Appendix G of Xexplingm;L)In[ 7+ w(m)]
Ref.[46]), the specific heat 56, etc. The influence of different
cutoff types(sharp or smoothand of the truncation of the _2 w1 A A
expansion of the Fourier transform of the interaction on the - 6 —(ZW)dJ—A % f_Admd

finite-size behavior of the susceptibility has been considered
in detail in Ref.[46]. The only difference with respect to the Iy @ (M) = A = I @(M) |y =~ p
free energy is that the susceptibility divergesLa§” at T,

leaving anyL ~2 contribution as @mall correction, whereas T+ o(A,m, ... Mg

the singular part of the free energy behavesLa$, and (27
therefore the cutoff dependent term of the order’ be- ) )
comesdominantin the critical region ford>2. and the corresponding replacements generated by the deriva-

Since there is no physical reason for the introduction of dives of Eq.(27) with respect to the parameterin the defi-
sharpcutoff in thek-space representation of a field-theoretic hition of each model systemegardlessof the implementa-
model, one option to avoid artificial ~2 contributions is to  tion of a sharp cutoff. Within such a scheme, the well-
implement of asmoothcutoff. Various forms of smooth cut- established methods for field-theoretic calculations in the
offs are possibl§46,54. For example, in Refl54] a modi-  Presence of sharp cutoff are preserved. For lattice system,
fied continuum Ginzburg-Landau Hamiltonian has been conthis is an identity transformation becauseJ{)(r,L,A)
sidered(see also Ref[57]): =0 as expounded above. Note that the replacements given

by Eg. (27) and its derivatives with respect todo not in-
H= J ddx !
\%

terfere with the treatment of bulk systems, since
, 1 ) 22 ) 2 AU&%()T(T,LZOO,A):O. They only become important for
Slo® +§(V‘P) +Uo(¢%) +W(V ¢)°|- studies of the finite-size scaling behavior of systems en-
(26) dowed with a sharp cutoff. These replacements remove the
artificial cutoff dependent finite-size contributions to the
thermodynamic quantities in the spherical linmt-o of
The last term in Eq(26) introduces the smooth cutoff which O(n) models and to one-loop order f@(n) models with
is parametrized by a wave numh&r The finite-size effects finite n.
of the thermodynamic quantities differ substantially for the
above Hamiltonian and the standard one with a sharp cutoff. |||, SYSTEMS WITH SUBLEADING LONG-RANGED
In the framework corresponding to E(6), the thermody- INTERACTIONS
namic quantities approach their bulk valeigponentiallyas a ] ) o ]
function of L for T#T, fixed, whereas for the standard _Flrst, we brlefly recall the fmne-sge behavior of systems
Ginzburg-Landau Hamiltonian with a sharp cutoff the bulk With subleading long-ranged interactions. o
limit is reached according to the power lawL ~2 for any In Refs.[37,46,59, it was shown that the susceptibility of
temperature. In particular, this has been observed for the su§;f('jrl'te system with dispersion interactions, which decay as
ceptibility [58], the specific heaf56], and the free energy © = for large distances, can be written for2i<4, 2
[18]. The effect of a smooth cutoff prodecure on the finite- <0 <4, andd+o<6 in the form
size behavior of the susceptibility was also discussed in de- Y o )
tail in Ref. [46], where the aforementioned exponential X(LL)=LY"X(LI€bL2 " 7= [XF(LIE)
finite-size behavior was recovered. As alrea(_dy noticed in +pL2o nxlr(ng)]’ (28)
Refs.[40,18,54, the presence of a sharp cutoff is mandatory X
for the occurrence of the aforementioned nonuniveksal  \yhere
contributions to finite-size scaling. For genedat 2, it was
also realized that a close relationship exists between a non- xif(xﬁ+w)zxif’+x—7/v+ O(exp(—constx)). (29)
exponential large-distance behavior of the bulk correlation
function (generated by the sharp cutofind the power-law For the long-ranged part one has
finite-size behavior of both the susceptibility abolg[40]
and the singular part of the free enelfy8]. Here we have XY (x— F00) =X x =2+ XN x=2vv=d - (30)
demonstrated that all such finite-size effects arise from a
single origin and are unphysical mathematical artifacts dudhe amplitudeb is a nonuniversal parameter that can be
to the imposed singularity of(k) at the boundary of the determined from the Fourier transform of the interaction.
allowedk values. This, in turn, generates long-ranged correThe first term of the asymptotic behavior)éi(x) yields the
lations in real space. In order to eliminate spurious finite-sizéoulk corrections to scaling as predicted by Kayser and
contributions, we propose the replacemgsge Eq.(17)] Raveche[35], while the second term yields the leading
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finite-size correction to the susceptibility far/é>1. This ior of X'"(x) for x>1, which does not appear in the suscep-
second term leads tou(t,L)— y(t,o0)~t~97=2vL~(d+o) ibility and which leads to & ~“4InL finite-size contribution
L/é>1, i.e., the finite-size corrections to the bulk behaviorto the free energy fod=o=3.
are governed by gower law rather than an exponential ~ Equation(32) has been derived in Reff18] for the case
function of the system sizk. Finally, we note that for the #=0, where the main focus is set on the discussion of finite-
physically most important caseé+ o=6 (e.g.,d=0=3 for  Size contributions. Furthermore, the results reported in Ref.
nonretarded van der Waals forcesdr:3), one finds addi- [18] apparently apply only fod+ o <6 because no logarith-
tional logarithmic corrections in Eq28) [37,46], which can  mic corrections were found. Thus a complete verification of
be incorporated by the replacem@n‘;(x) N X'Xr'l(x)ln L Eq. (32) is still missing. We now turn to the inyestigation_of
+X';'2(x) [37]. some of the consequences of the assumptions used in the
The behavior of the susceptibility outlined above is con-model in Ref.[18]. . _ _
sistent with the behavior of the bulk pair correlation function e suppose that the interaction potentdf) is of the
in systems with dispersion forc§87], dispersion type as .defl_ned by E). The Fourier transform
of such an interaction is
G(r,t)y=r"@=25 g (r/&)+r 2 Mgl (1/¢)].

(31 J(K)=J(0)[1—v,k2+v KT — v k*+O(K®)]

The modified Fisher-Privma60] finite-size scaling hypoth- =J(0)=Kao(k)/B, (33
esis for the free energy density in such systems can be cagherek=|k|, 4>0>2; andJ(0), v,, v, , andv, are non-
into the form universal positive constants. The constaff) izs the groukrld
4 PR state energy of the system and(k)=k“—bk’+c
fs(tL)=L""X(L/&,bL™"777) +0O(K®), where K=pBuv,J(0), b=v,/v,>0, and c
~L-9XS(L/E)+bLZ o X (LIg)], (32 =v4/v,>0 are nonuniversal constants. Singg)=0 and
thusJ(0)>J(k) for k# 0, the values ob andc are such that
where X3'(x— +0)=X5""x9+O(exp(—constx)) is the there are no real roots of the equation ik’ ~2+ck?=0
short-ranged contribution. For the long-ranged contributionwith respect tok.
one expecté(”(x)zx'lrxd”* ”‘2+X'2rx”‘2. The first term The free energy of at©®(n) model with an interaction
in the asymptotic behavior of'" yields anew bulk correc- described by Eq(6), in the limit n—o, is given by the
tion to scalingthat is due to the subleading part of the inter- expression
action (analogous to the corresponding terms predicted by

Kayser and Ravechfer the susceptibilityf35] and observed BH(K,h|L,A)= Esup, _ h_2+ 1

in spherical model calculatiorjg6]). Its temperature depen- R 27770 Kz Lyx--- XLy

dence forT>T, is given byt (o*7=2v For/&>1, the

second term leads to a finite-size contribution of the form X D In[ 7+ w(K)]— K7 + E Ini— 5 )
L~ (d*9)_ As for the finite-size scaling behavior of the sus- X 2| 27 v,
ceptibility, additional logarithmic corrections have to be (34)

added toX'" for d+o=6. Finally, we note that there may
also be a thirdconstantcontribution to the asymptotic behav- In the presence a sharp cutoff krspace, this leads to

1
1- EbaAU—Z(1+ 6%)727 14 2¢2A%(1+ 6?)

AU(l)( L.A —A_dl; ! '
do(mLA)= dmy---| d (35

L2 6 (24)d972 -1 de+A2(1+ 62) —bA7(1+ 62)72+ 2c2A4(1+ 62)2°

where02=m§+ e +m§. This term is missing in Eq9) in the “missing neighbors” of the ordering degrees of freedom
Ref. [18], but it is manifestly present in the case of a sharpat a surface of such a system by the nature of long-ranged
cutoff. We therefore conclude that E®) of Ref.[18]is only interactions generate a long-ranged surface field. We there-
correct within the smooth cutoff procedure, but not within fore conclude that the consideration of systems with sublead-
the sharp cutoff one. As already explained above,(Brof  ing long-range interactions combined with Dirichlet bound-
Ref. [18] coincides with our Eq(32) for systems withy  ary conditions as proposed in R¢fl8] is of no physical

=0 andd+ o<6 for periodic boundary conditions. In Ref. relevance. In the following section, we summarize our find-
[18], it is supposed to be valid also for systems wiitinich- ings and also comment on the proper boundary conditions
let boundary conditions. However, Dirichlet boundary condi-and the expected finite-size behavior of systems with disper-
tions are inconsistent with the long-ranged nature of the dission forces and real boundaries. We will present arguments
persion forcegsubleading long-ranged interactjobecause as to why we expect this to differ significantly from Eg2).
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IV. SUMMARY AND CONCLUDING REMARKS wherehg is a nonuniversal metric factor characterizing the

It has been shown in Secs. Il and Il that nonanalyticitieslong'rangesjqI befha\tnor c;ftrt]he sufrfacebfleldz, V.VH]I? IS the
in the dispersion relatiom(k) at the momentum cutoff lead corresponding factor at the surface boundaries. Heras

to a bulk model which has leading and competing Iong_the critical surface gap exponent of the corresponding sur-

; ; : . .~ _face universality class. Note that, sinde-2, the term pro-
ranged interactions in real space. Thus even in the bulk it ha§ e i o '
g b ortional tohg can give contributions that aftarger than that

eculiar properties such as the two-point correlation functior ; ) - .
given byqup(lo) For such a modelp finite-size scaling de- proportional tob, i.e., the contributions of the surface fields

veloped for the systems with short-ranged or subleadin re important and can_not be igno_red. In p_articular, _this is
long-ranged interactions does not apply from the outset. Wi portant for the quantitave analysis of wetting experiments

are not aware of anv physical svstem aoverned by such g/ith critical binary liquid mixtqres[_50]. The interpretation
type of intvt\elraction y phys| Y gov y su of these experimental daf&0] is still unresolved. We also

In order to investigate the critical behavior of a modelpOint out that neither Eq(32) nor Eq.(36) applies to con-

; P4 34 i i
system by means of an effective Ginzburg-Landau Hamifined superfluid*He or “He-"He mixtures[48], which have

tonian ink space, one usually expand$¢k) in the (infrared been un'de4r Investigation in rece"?t 'exp<.anme[|51$,'.52. .For
limit k— 0, keeping only the leading tefs). Divergent mo- superfluid “He, the long-ranged finite-size contributions to
mentum integrals can be regularized by the introduction of glhe free energy originate fro_m two distinct sou_rcés. a
cutoff which is motivated by the presence of a Brillouin zoneregUIar cc_)ntrlbut!on from the dispersion forces Wh'Ch. couple
(lattice modelsor finite particle sizegcontinuum models If to the fluid q.ensny_and are unr(_alat(_ad to the superfluid or.der
a sharp cutoff in the momentum space is applied atiat parameter;(ii) a singular contribution from the superfluid

feature of an otherwise approximatexpandey dispersion order parameter which is generically shprt ranged in nature
relation, the ensuing nonanalyticity @$(k) at the cutoff and does not relate to the presence of dispersion f¢#8s

- . . . . 3 _4
generates long-ranged correlations and finite-size effects c;l—fhe situation is more compllqated n .the case“bfe-"He
mixtures, where the superfluid transition temperature de-

the orderL ~2. These effects do not occur in actual systems d théH wrati hich wall h
with short-ranged or subleading long-ranged interactions anf®nas on € concentration, which eventually causes the

therefore they are artificial. In particular, the nonuniversalSuD(gncIUid transitior) to become first order.beyond the tricriti-
long-ranged Casimir forces reported in REES] have no cal He concentration. ThéHe concentration does respond
physical relevance for systems with short-ranged forces. to the dispersion for;:es and, by virtue of Iong-ranged surface
It is instructive to consider the finite-size behavior of the fi€ldS, long-ranged-He g:oncer_mtraﬂon perturbations may
free energy in the systems with subleading long-ranged in€Merge in a confinedHe-*He mixture. Through the depen-

teractions. As is well known, the free energy decomposed€nce of the superfluid transition temperatlifeon the *He
into a sum of a regular and a singular part. In Sec. Ill weconcentration, a long-ranged variation of the local value of

have discussed the finite-size behavior of the singular parfr Will €nsue, which in turn imposes a corresponding varia-

for the case of periodic boundary conditions in a film geom_t|on of the superfluid density in thermal equilibrium. From

etry. However, the regular part is also important and it hadhe experiment in Ref52], there is robust evidence that the

experimental consequences for the Casimir force. For periifichlet boundary conflitio_ns do not apply for the superfluid
rder parameter ofHe-*He in the tricritical regime, because

odic boundary conditions, one expects the regular part to b8 o \ :
of the orderL 4 in the vicinity of T.. Much more interesting contrary to the case of pureHe [51] a thickening of the

is the case of a system with real boundaries. This raises thgétting layer has been observed caused bgpilsivetric-
question of proper boundary conditions for such systemsr.'t'cal Casimir force. This observation rules out the pure Di-
The boundary conditions cannot be of the Dirichlet or Ney-fichlet boundary conditions in this case because these can
mann type, because the latter are incompatible with the long2Nly account forattractive Casimir forces as observed in
ranged nature of the interactions. Instead, one finds that thure "He[48,51). Furthermore, subdominant long-ranged in-
long-ranged interactions generate long-rangedace fields ~teractions may 4p|ay a significant role in a finite-size scaling
that decay according to a power law away from the surfac@nalysis of*He-"He mixtures in the vicinity of the bulk su-
into the bulk of the system. The dire@damakey interaction perfluid transition. However, the model Hamiltonian of the
of the surfaces then generates & contribution to the regu-  SYStem then has to accomodate a second “noncritical” field

lar part of the free energy if the free energy is measured peithe 3He. concentrationapart from the superfluid order pa-
unit volume (or a L~“** contribution if the free energy is 'ameterin order to include dispersion forces and long-ranged
measured per unit argaThis is well known from studies of surface fields in the physically correct way. The construction
wetting phenomenf7]. The contribution to the regular part of a proper model Hamiltonian, whlc_h is a genergllzatlon of
of the free energy due to the action of the surface fields orﬁhe standard szburg—Lapdau Hamiltonian considered here,
the ordering degrees of freedom is also of the order of. 1S beyond the scope of this work. _

The available renormalization group arguments suggest that " conclusion, we remark that we still lack a complete

the contribution to the singular part should be of the ordefN€oretical description of the Casimir effect in the systems
L-(d-2+n2-0 [61 6. This leads to the followindiypoth- with subleading long-ranged interactions. Such a description

must contain both the influence of surface fields and the
long-ranged nature of the interaction potential. Both are ex-
fo(t,L)=L"9IX(L/&h LA/ bL2 o= 7 g L(@+2= =0y pected to generate important contributions to the critical be-
(36) havior pertaining to the universality class of systems with

esis for the singular part of the free energy
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