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Experimental evidence, numerics, and theory of vibrational resonance in bistable systems

J. P. Baltans! L. Lopez! I. I. Blechman? P. S. Land&, A. Zaikin,* J. Kurths? and M. A. F. Sanjuat
INonlinear Dynamics and Chaos Group, Departamento de Maieasy Fsica Aplicadas y Ciencias de la Naturaleza,
Universidad Rey Juan Carlos, Tulipas/n, 28933 Mstoles, Madrid, Spain
2Mechanobr-Tekhnika Corporation, 22 Liniya, 3, V.O., 1999106 St. Petersburg, Russia
3Department of Physics, Lomonosov Moscow State University, 119899 Moscow, Russia
“Nonlinear Dynamics, Institute of Physics, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany
(Received 21 November 2002; published 27 June 2003

We consider an overdamped bistable oscillator subject to the action of a biharmonic force with very different
frequencies, and study the response of the system when the parameters of the high-frequency force are varied.
A resonantlike behavior is obtained when the amplitude or the frequency of this force is modified in an
experiment performed by means of an analog circuit. This behavior, confirmed by numerical simulations, is
explained on the basis of a theoretical approach.
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[. INTRODUCTION communication, since usually a low-frequency signal modu-
lates a high-frequency carrier signal, and is also an object of
During the last three decades, investigation of signal prointerest in several other fields such as acou$f@s, neuro-
cessing in nonlinear systems in the presence of noise ha&sience 28], laser physic$29], or engineering. Engineering
revealed several intriguing phenomena. One of the mosgonstructions can be very sensitive to external perturbations
counterintuitive examples of these phenomena is the effect gind it is often assumed that this danger exists if the fre-
stochastic resonancéSR), which was initially found in guency coincides with one of the natural frequencies of the
bistable system§l], and it has been confirmed in a large constructions. Our study shows that this is not necessarily
variety of different dynamical2—4] and nondynamical sys- the case, as it is indeed possible that frequencies far from
tems[5,4], seeming to be recurrent in biological systemsthem can also cause resonance phenomena.
(e.g., see Refd6—12). Its basic effect consists in the fact ~ The goal of this paper is to compare analytical, numerical,
that an optimal quantity of noise, added to the driving signal@nd experimental results, related to VR, in a bistable poten-
improves its detection by a nonlinear system. The very gential driven by two forcing terms, one with a low frequency
eral phenomenon of SR appears in the processing of haﬂ.nd the other with a h|gh one. We start with the development
monic [13—15 and aperiodic signalgl6—19 by nonlinear of a theoretical approach which explains the phenomena de-
systems. Different kinds of noise have been used in order tgCribed here. Later, we carry out some numerical simulations
improve the signal processing such as white noise and cofnd compare the results with the ones given by the theory
ored noise[20—27. Furthermore, similar effects have been and the experimental measurements that, as far as we know,
found as well when a chaotic signal is used instead of noisBave been obtained using a nonlinear electronic circuit for
[23]. the first time in this work. Our experimental results confirm
Another related phenomenon has been described recentlje appearance of a resonant behavior in the response of the
[24], where a resonant behavior in a bistable potential wittsystem, both with respect to the amplitude and frequency of
respect to a low-frequency force appears. This phenomenoff}e high-frequency component of the biharmonic signal. Fi-
calledvibrational resonancéVR), closely resembles SR al- nally, we discuss some effects of additive noise on the be-
though here, a high-frequency harmonic signal plays the rolgavior of this system.
of noise. Besides the case of the bistable potential considered
in Ref.[24], the phenomenon of VR has also been found in ajl. DESCRIPTION OF THE MODEL AND THEORETICAL

spatially extended system where the collective behavior of APPROACH TO VR
individual units gives rise to an effective bistable potential, ) L _
due to the action of multiplicative noige@5). As the starting point in this paper, we consider the model

There is an essential difference between SR and VR. I§€scribed by the following equation:
the first case, noise changes both the effective stiffness and )
the damping factor of the system, whereas in the latter case x—ax+bx*=A cog wt)+B cog Qt+0), (1)
the high-frequency vibration changes only the effective stiff-
ness. This can be explained by the fact that in the first casayhich corresponds to an overdamped bistable Duffing oscil-
the third moment of the noise force of the resulting signal islator driven by two harmonic signals of different frequencies.
different from zero whereas in the second one, the amplitudélere, we assume thét> w, i.e., the ternB cos(2t+0) is a
to the cube of the high-frequency force is equal to Ze4]. high-frequency force with amplitud8 and A cost) is a

In VR, a bistable system is under the action of a bihardow-frequency signal of amplituda.
monic perturbation with very different frequencies. It is An approximate solution of this equation, by using the
worth noticing that two-frequency signals are important formethod described in Ref30], is given in Refs.[31,32.
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According to this method, and for the case of general values . Xz x4

of the parametera andb of the restoring force, we look for V(X)=—a(B) 5 +b—. (12)

a solution in the form

An analysis ofV(X) shows that two different situations, de-
pending on the sign cd(B), may be found. I1(B)>0, the

whereX(t) is the variable describing the slow motion com- potential has two minimgsituated inX= = va(B)/b] and a
ponent of the response an(t,()t) is a 2-periodic func-  mMaximum(in X=0), i.e., we have a typical double-well po-
tion of the “fast” time 7=Qt, with zero mean with respect tential. However, ifa(B)<0, we have a single minimum
to this time situated in X=0, and consequently, the potential is
monostable. Coming back to the parameters of our original

X(t)=X(t)+W(t,01), 2)

27 :
Tt = if W (t,7)dr=0. 3 problem, we can write
27T 0 Za
Starting from Eqs(2) and (3), it is possible to obtain the i B= \/;Q we have one minimumin 0,  (13)
following evolution equations foK(t) and W (t,t):
_ _ . 2a o . \/Ai
X—aX+ bX3+ 3bXW2+bW¥3=A cog wt) (4) if B \/%Q we have two minima in* va(B)/b.

(14)

V—aWw+ 200 — ) + 2_p2) 4+ 3_q3 . o _
W=l 30X(Y =) + 3 X(WE W) + bW ) Then, the high-frequency component, which is equivalent to

=BcogOt+0). (5)  noise in SR, induces a bifurcation in the system, whose prin-
cipal effect consists in changing the number of equilibrium
Remembering thatV is a rapidly changing force, we can points in the effective potential from two to one Bsin-
expect to find that creases. We will show in the following sections that the ori-
gin of the resonant behavior discussed in this paper is closely
Vs P2 gl (6) related to this change in the shape of the effective potential.
In order to analyze in detail the referred bifurcation, let us
thus obtaining an approximate evolution equation for the fastonsider first the situation corresponding to Etg). In this

part of the motiorEq. (5)] case, we have two equilibrium points situated in
V¥ =BcogOt+0). 7 a 3(B\?
g ) @) Xio=% E ) 6) . (15

This equation can be trivially solved, leading to

We are interested in obtaining the equation for the deviation
of the respons& apart from each one of the minim4é, ,.
Following this idea, we writef = X— X, , and substitute this
quantity in Eq.(10), thus getting, after some algebraic ma-
Now we use this result to find the differential equation gov-hipulations,

erning the slow component of the motiof(t) within this

approximation. Taking into account thak3=0 and W2
=1/2(B%/Q?), Eq. (4) becomes

B
qf:ﬁSln(Qt-l-@). (8)

Y+2a(B)Y+bY3+3bX; ,Y2=Acodwt).  (16)

Assuming that our system evolves near one of the equilib-
3 g2 rium points and that the deviations from the equilibrium

X—aX+bX3+ —b— X=A cog ot). 9) pomts are small;(\<1 andt—o0), linearization of this equa-
2702 tion results in

For convenience, we write this expression in the following Y+k(B)Y=Acog wt), (17
form:
where we have writtek(B) =2a(B). Using standard meth-
X—a(B)X+bX3=Acoq wt), (100  ods, we define a paramet@ras the ratio of the amplitude of
the low-frequency output oscillations, governed by ELy)
where within our approximation, to the amplitude of the low-
frequency forcingA. In this caseQ becomes
a(B) 3 b B’ (11) 1 1
a(By=a—sbh—:.
2°0° Q= - .19
VK + w? 3bB?\
Equation(10) can be understood as the forced motion of a w’+4| a—
particle in the effective bistable potential 207
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FIG. 1. Circuit used in the analog simulations of the overdamped Duffing oscillator. The use of the parameter values given in the text
gives rise to a double-well potential with a separation between minima equat ®and a barrier heightl =9.3.

whereas the phase shiftis given by 2a
%Q, (22)

(19 which corresponds to the critical value of the effective stiff-

ness parameteré(: 0) where the renormalized potential
Analogously, we can write the equation for the deviation ofSN2Nges its number of equilibrium points from two to one. It
- o . ; is not difficult to see that a similar behavior can be obtained

X from the equilibrium point in the case described in Eq.

i . . if we fix the amplitudeB and change the high frequeng.
_(13)’ where we have a single minimum situateddg=0. It ppjq point will be confirmed also by the numerical simula-
&ions and experiments presented in the following section.

w
b= —arctaré ok

same conditions given above, the equation obeyed teads
IIl. NUMERICAL AND EXPERIMENTAL RESULTS
Y—a(B)Y=Acogwt), (20) One main point in this paper is the experimental confir-
mation of the theory presented in the preceding section. In
which is exactly Eq.(17) where k(B) is changed by  particular, we will focus our attention in the experimental

2 ; : valuation of the response paramegeiTo this end, we have
a(B). Then, the response and phase shift are given by Eq%Sed the electronic circuit shown in Fig. 1.

(18) and (19), where we write—a(B) instead ofk(B). In It is composed of three LM741 operational amplifiers,
particular, two AD633 analog multipliers, one capacitor, and eight re-
sistors. In order to minimize the effect of parasitic noise, the
1 circuit has been designed with a minimum number of com-
Q= ] (22) ponents. Similar circuits have been already described in the

2 literature in order to analyze some phenomena related to sto-
chastic resonande3].
Functionally, the circuit consists of two main parts. The
first one (operational amplifier OA3 and resistoRs,, Rg,
Let us write the solutions for the deviation obtained ﬁnth%Z) is an adder, IWh_?ﬁe funcuodn IS tto.a(iﬁ thetlow—tanq
. L i igh-frequency signals. The second part is the integrator in
?ebrz;/:,o;Thle)oggrgriseetzggoofi?\i r?irglji-?rqe:tlgggyfoegilgésggnalthe double-well potential, which consists of arpther adder
(Ra, Ra1, Ra2, Ras, and the operational amplifier OAL

e, its amplitudeB and frequencyQ. Let us suppose also two multipliers(AD633 with coefficiente) and an integrator
that we fix the value of the forcing frequency. Then, for a(R,, C,, and the operational amplifier OA2This whole

given bistable potentialg( and b fixed), Q increases ifB  ¢jrcyit implements the dynamical equation of an overdamped
<y2a/30) when B increasedEq. (18)] and decreases if double-well Duffing oscillator of the form

B> /2a/3bQ) whenB increases$Eq. (21)]. As Q gives us an

idea about the amplitude of the slow component of the out- R.C.V. =V &—V3a2—+v
put of the system in relation to the amplitude of low- P P "XR, X% Ry " "SRyRer "RasRep’
frequency input, this means that a resonance occurs in the (23)
system when

Ra RaRe RaRe

where —V, is the voltage at the output of the operational
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amplifier OA2,V, is the low-frequency signal, and, is the T T T ]
high-frequency modulatiopcompare with Eq(1)]. I
We have chosen the following set of values for the resis- Un
tors and the capacitorR,=56 KQ, R,;;=150Q, R,
=15 KQ, R,;3=22 KQ, R.=2.2 KQ, Ry =6.7 KQ, R, 0.8
=2.2 KQ, Ry=10 K, andC,=10 uF. The resistors and &
the capacitor, both have a tolerance of 5%. These parameteS 0.6
values lead to a dynamical equation for the circuit similar to E
that of a conventional symmetric double-well potential sys- 0.4
tem with a separation between the minima equél+a2 and
a barrier heightH=9.3. The reason for using these param- 0.2
eters instead od andb is that in our experimental setup, it is

¥ VR o

easier to change the barrier heightand the separation be- oliE=e = e Sl S S PR
tween minimal of the bistable potential than constaatand 0 25 50 75 100
b themselves. Both pairs of constants are related to eacl B (volts/sec)
other through the expressions FIG. 2. Numerical and experimental values for respo@sgn
volts) vs amplitudeB of the high-frequency signal. The continuous
_ 16H _ 64H lines correspond to numerical values, whereas the dashed ones
a= FER (24) stand for the experiment. The different symbols mean different val-

ues for the amplitude of the low-frequency signal: circlés,

The low-frequency signaV and the high-frequency modu- =6.656; squaresA=3.328; stars,A=1.248; and trianglesA
lation V,, have been generated with two 33120A Agilent =0-416.
wave form generators, and the respo¥sef the system has
been captured with a Tektronix digital oscilloscope. and the corresponding responses are a bit smaller than the
Besides the analog experiments, we have carried out nirumerical ones, although the behavior is very similar in both
merical simulations of the same system by using a secondases. The differences observed among numerical and ex-
order Runge-Kutta integration scheme, with a time step operimental results could be explained by considering the fact
At=2.5x104, in order to compare with both the theory that some components of the experimental cirGniparticu-
and the results obtained from the circuit. The same valuekr, resistancgscould introduce a certain variability in the
H=9.3 andL =2 used in the experiment have also been use@&xperimental values of the parameters of the histable poten-
in the numerical simulations. tial (mainly in the barrier height
Following Ref.[24], we have calculated experimentally  In Fig. 3, the numerical values of the normalized response
and numerically the response of the system, defined by  corresponding to the cases of Fig. 2 are depicted and com-
pared with the theoretical approximation given by the theory
Q= B:+BZ, (250 (see also Refd31,37). Notice that in the evaluation of the
theoretical approximation of the response, we must use two
whereB,; andB; are the cosine and sine components of the
output signal, that is,

0.8 : :

n

2 T 2 (nT
Bi=— | x(t)sin(wt)dt, Bc:ﬁf x(t)coq wt)dt,
0

nTJo

(26) 0.6
whereT=2m/w andn is an integer. Notice that the defini-
tion of the response given above differs from that of Eqs.C 0.4
(18) and (21). In particular, it must be taken into account
that, in order to compare theory and simulations, we need tc I | 1
normalize the results obtained by means of &%) (by di- 0.2l
viding by A), and to multiply the theoretical ong¢given by
Egs.(18) and21)] by a factor of 2 appearing in E¢26).

In Fig. 2, we show the numerical and the experimental 0 - * : . . N '
values for the respondéq. (25)] of the systems given by 0 20 40 60 80
Eqg. (1) and Eqg.(23), respectively, to the varying amplitude
of the high-frequency signahatural frequency equal to 10 g, 3. Numerically calculated values of the system response
Hz), clearly showing a resonant behavior as expected fronys. theory(thick line). Symbols mean the same as in Fig 2. Note
our theoretical predictions. The different symbols mean difthat we have normalized the numerical values by dividing\bgnd
ferent values for the amplitude of the low-frequency signalthe theoretical ones have been multiplied by a factor of 2 in order to
(natural frequency equal to 0.2Ve observe that the experi- compare numerics and theory. As it is clearly seen, the numerical
mentally obtained values are somehow displaced to the rightalues tend to the theoretical resonant curve whés diminished.
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FIG. 5. Theoretical and numerical values for the case of the

FIG. 4. Resonant behavior of the system with frequefity resonance with the frequency. The values of the parameters are the
when w/2m=0.2, A=0.832, andB=52.6815. Circles correspond same as used in Fig. 4.

to numerical simulations and squares to the experiments.

different expressions d®, one for the left side of the reso- standard bistgble. potential considered in this vvprk consti-
nant point, i.e., Eq(18), and Eq.(21) for the right side. In tutes a paradigm in the study C.)f the effects of noise on hon-
this figure, it is clear that when the amplitude of the low- linear systems, fpr exgmple, n th? context Of.SR' So, it
frequency signah is decreased, the value Bffor which the seems natural to investigate the action o'f a certaln amount of
maximum is obtained tends to the theoretical one. Indeecdditive noise on the resonant behavior described above

the results suggest that the theory describes properly the obYR): It should be noted that we do not pretend to explore in

served behavior only for small values of the amplitude of thed€tail the effects of noise on VR in this section, but only

low-frequency signah, as expected from the approximation S°M€ of the main consequences of including a stocha}stic
under which the theory has been obtained. Moreover, it caﬁer_m In our system. In parUcuIar, we add white Gaussian
be seen that even for small values of the amplitddeome ~ N°iSe to the model described by Ed), and get the follow-
differences persist among theory and numerics. The origin of'd €duation:

these differences lies in the fact that the linearization is per- .

formed on a result that is itself an approximation, i.e., that x—ax+bx3=Acogwt)+Bcog Qt+0)+&(t), (27)
given by Egs.(2) and (3) corresponding to the time scale

separation. where the moments for the noisy term are
In Fig. 4 the resonance emerging wh@i2# (instead of
the amplitude is varied in the high-frequency signal, is (E(1))=0, (&(t)&(s))=Da(t—s) (28)

shown by means of the experiment and the numerical simu-
lations. The notation is the same as in the previous figur . . . .
being the intensity of the noise.

Here, the experimental curve is shifted towards the left an We consider first the implications of adding a stochastic

the values forQ are a bit smaller than those obtained from erm when onlv the amolitude of the high-frequency foRce
the numerical simulations, but again the resonant behavior i . y P ligh-irequency
S varied. We have carried out numerical simulations by us-

very similar in both cases. The frequency of the slow signa| . : .
is again 0.2, but we have chosen an amplitude equal ihg a stochastic version of the Heun algoritoh [34]). The

0.832. The amplitude for the fast signal is now 52.6815. This{ﬁ:ugsazr:]udrﬁpé;t?ge'nrerlghgh;r:iSrr\‘j‘; Sé?ﬁ'i?]?sﬁggeg;;i that

value corresponds to the location of the maximum reSpOnsce:}reases and, at the same time, its location is shifted towards

of th_e system prowded by the theory. , lower values of the high-frequency amplituBe This is due
Finally, in Fig. 5, theoretical and numerical results are TR . ;
tq the fact that, in this situation, noise works as a fraction of

compared in the same way as before, for the case of the duﬁ]e high-frequency signal component, thus advancing the

resonant curve that results whénis varied for a fixed value . . ; . )
_ . . .~ _resonance. Another interesting result is that the vibrational
of B. As observed from the figure, the simulations predict a

value for the maximum location, which is rather well esti- resonance effect completely disappears for large values of

mated by the theorv. Nevertheless. the numerical values fo'lr'he origin of this effect comes from the fact that white noise
y - ' rovides an input to the system with contributions coming

onglrye smaller than the theoretical ones, as occurred prev rom all frequencies. This masks the contribution of the high-

frequency signal, and its relative importance in the response
of the system is decreased. Of course these two effects will
become more and more relevant@sncreases. Likewise, it

As is well known, noise can play an important role in the is worth noting that the classical stochastic resonance behav-
behavior of certain dynamical systems. In particular, theor is recovered precisely whehis 0, as is observed in this

IV. EFFECTS OF NOISE ON VIBRATIONAL RESONANCE
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FIG. 6. Response of the forced bistable system in the presence
of noise of different intensitiesA=0.416, w/27=0.2, andQ/27
=10. The meanings of the symbols are: cirdles 0.0001, crosses
D=0.01, stard=0.1, square® =1, diamondd =5, plus signs
D =10, and triangles dowb = 30. Note that the noise broadens the
response curve of the system and advances the vaBehatt gives

the maximum response at the same time as these maximal valug$ the response of the system is also observed with respect to

diminishes. The conventional SR effect is clearly seenBfer0. the high frequency, demonstrating two different but related

i ) resonances. We have compared analytical, experimental, and

figure. This means that respon€ of the system passes nymerical results, and found a good matching. To our knowl-

through a maximum ab is increased. ‘edge, this is the first experimental evidence of the phenom-
The frequency resonant behavior that we have reported iBnon of vibrational resonance described in the literature. Fi-

the preceding section is also modified in the presence i)y we have studied the influence of white noise on VR in

noise. To show this, we have fixed the amplitudes of both thgysiaple systems, showing that noise can advance VR and, at

high- and the low-frequency signals and have computed thg,s same time, decrease the resonant effect.

responseQ of the system wher) is varied for different We hope that our theoretical, experimental, and numerical

values of the noise intensiy. The results are drawn in Fig. findings will stimulate further work on VR in different kinds

7. This phenomenon is similar to the one found Wiefs 4 systems. The potential applications of these phenomena

varied. In both cases, the maximum of the response CUrVgcjyde neuronal dynamics, communications technologies,
decreases ad increases. Additionally, for high enough val- 5nq mechanical engineering.

ues ofD, there is no more resonance effect with respect to
the frequencysee Fig. 7.

FIG. 7. Response of the forced bistable system in the presence
of noise when the high frequency is variedh=0.832, B
=52.6825, andw/27=0.2. The meanings of the symbols are:
circles D=0.001, square®=0.1, trianglesD=1, plus signsD

=5, and star® =10.
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