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Experimental evidence, numerics, and theory of vibrational resonance in bistable systems
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We consider an overdamped bistable oscillator subject to the action of a biharmonic force with very different
frequencies, and study the response of the system when the parameters of the high-frequency force are varied.
A resonantlike behavior is obtained when the amplitude or the frequency of this force is modified in an
experiment performed by means of an analog circuit. This behavior, confirmed by numerical simulations, is
explained on the basis of a theoretical approach.
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I. INTRODUCTION

During the last three decades, investigation of signal p
cessing in nonlinear systems in the presence of noise
revealed several intriguing phenomena. One of the m
counterintuitive examples of these phenomena is the effec
stochastic resonance~SR!, which was initially found in
bistable systems@1#, and it has been confirmed in a larg
variety of different dynamical@2–4# and nondynamical sys
tems @5,4#, seeming to be recurrent in biological system
~e.g., see Refs.@6–12#!. Its basic effect consists in the fac
that an optimal quantity of noise, added to the driving sign
improves its detection by a nonlinear system. The very g
eral phenomenon of SR appears in the processing of
monic @13–15# and aperiodic signals@16–19# by nonlinear
systems. Different kinds of noise have been used in orde
improve the signal processing such as white noise and
ored noise@20–22#. Furthermore, similar effects have bee
found as well when a chaotic signal is used instead of no
@23#.

Another related phenomenon has been described rec
@24#, where a resonant behavior in a bistable potential w
respect to a low-frequency force appears. This phenome
calledvibrational resonance~VR!, closely resembles SR a
though here, a high-frequency harmonic signal plays the
of noise. Besides the case of the bistable potential consid
in Ref. @24#, the phenomenon of VR has also been found i
spatially extended system where the collective behavio
individual units gives rise to an effective bistable potenti
due to the action of multiplicative noise@25#.

There is an essential difference between SR and VR
the first case, noise changes both the effective stiffness
the damping factor of the system, whereas in the latter c
the high-frequency vibration changes only the effective st
ness. This can be explained by the fact that in the first c
the third moment of the noise force of the resulting signa
different from zero whereas in the second one, the amplit
to the cube of the high-frequency force is equal to zero@26#.

In VR, a bistable system is under the action of a bih
monic perturbation with very different frequencies. It
worth noticing that two-frequency signals are important
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communication, since usually a low-frequency signal mod
lates a high-frequency carrier signal, and is also an objec
interest in several other fields such as acoustics@27#, neuro-
science@28#, laser physics@29#, or engineering. Engineering
constructions can be very sensitive to external perturbat
and it is often assumed that this danger exists if the
quency coincides with one of the natural frequencies of
constructions. Our study shows that this is not necessa
the case, as it is indeed possible that frequencies far f
them can also cause resonance phenomena.

The goal of this paper is to compare analytical, numeric
and experimental results, related to VR, in a bistable pot
tial driven by two forcing terms, one with a low frequenc
and the other with a high one. We start with the developm
of a theoretical approach which explains the phenomena
scribed here. Later, we carry out some numerical simulati
and compare the results with the ones given by the the
and the experimental measurements that, as far as we k
have been obtained using a nonlinear electronic circuit
the first time in this work. Our experimental results confir
the appearance of a resonant behavior in the response o
system, both with respect to the amplitude and frequency
the high-frequency component of the biharmonic signal.
nally, we discuss some effects of additive noise on the
havior of this system.

II. DESCRIPTION OF THE MODEL AND THEORETICAL
APPROACH TO VR

As the starting point in this paper, we consider the mo
described by the following equation:

ẋ2ax1bx35A cos~vt !1B cos~Vt1Q!, ~1!

which corresponds to an overdamped bistable Duffing os
lator driven by two harmonic signals of different frequencie
Here, we assume thatV@v, i.e., the termB cos(Vt1Q) is a
high-frequency force with amplitudeB and A cos(vt) is a
low-frequency signal of amplitudeA.

An approximate solution of this equation, by using t
method described in Ref.@30#, is given in Refs.@31,32#.
©2003 The American Physical Society19-1
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According to this method, and for the case of general val
of the parametersa andb of the restoring force, we look fo
a solution in the form

x~ t !5X~ t !1C~ t,Vt !, ~2!

whereX(t) is the variable describing the slow motion com
ponent of the response andC(t,Vt) is a 2p-periodic func-
tion of the ‘‘fast’’ time t5Vt, with zero mean with respec
to this time

C~ t,t!5
1

2pE0

2p

C~ t,t!dt50. ~3!

Starting from Eqs.~2! and ~3!, it is possible to obtain the
following evolution equations forX(t) andC(t,Vt):

Ẋ2aX1bX313bXC̄21bC̄35A cos~vt ! ~4!

Ċ2aC13bX2~C2C̄!13bX~C22C̄2!1b~C32C̄3!

5B cos~Vt1Q!. ~5!

Remembering thatC is a rapidly changing force, we ca
expect to find that

Ċ@C,C2,C3, ~6!

thus obtaining an approximate evolution equation for the
part of the motion@Eq. ~5!#

Ċ5B cos~Vt1Q!. ~7!

This equation can be trivially solved, leading to

C5
B

V
sin~Vt1Q!. ~8!

Now we use this result to find the differential equation go
erning the slow component of the motionX(t) within this
approximation. Taking into account thatC̄350 and C̄2

51/2(B2/V2), Eq. ~4! becomes

Ẋ2aX1bX31
3

2
b

B2

V2
X5A cos~vt !. ~9!

For convenience, we write this expression in the followi
form:

Ẋ2â~B!X1bX35A cos~vt !, ~10!

where

â~B!5a2
3

2
b

B2

V2
. ~11!

Equation~10! can be understood as the forced motion o
particle in the effective bistable potential
06611
s
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V~X!52â~B!
X2

2
1b

X4

2
. ~12!

An analysis ofV(X) shows that two different situations, de
pending on the sign ofâ(B), may be found. Ifâ(B).0, the

potential has two minima@situated inX56Aâ(B)/b] and a
maximum~in X50), i.e., we have a typical double-well po
tential. However, ifâ(B)<0, we have a single minimum
situated in X50, and consequently, the potential
monostable. Coming back to the parameters of our orig
problem, we can write

if B>A2a

3b
V we have one minimum in 0, ~13!

if B,A2a

3b
V we have two minima in6Aâ~B!/b.

~14!

Then, the high-frequency component, which is equivalen
noise in SR, induces a bifurcation in the system, whose p
cipal effect consists in changing the number of equilibriu
points in the effective potential from two to one asB in-
creases. We will show in the following sections that the o
gin of the resonant behavior discussed in this paper is clo
related to this change in the shape of the effective poten

In order to analyze in detail the referred bifurcation, let
consider first the situation corresponding to Eq.~14!. In this
case, we have two equilibrium points situated in

X1,256Aa

b
2

3

2 S B

V D 2

. ~15!

We are interested in obtaining the equation for the deviat
of the responseX apart from each one of the minimaX1,2.
Following this idea, we writeY5X2X1,2 and substitute this
quantity in Eq.~10!, thus getting, after some algebraic m
nipulations,

Ẏ12â~B!Y1bY313bX1,2Y
25A cos~vt !. ~16!

Assuming that our system evolves near one of the equ
rium points and that the deviations from the equilibriu
points are small (A!1 andt→`), linearization of this equa-
tion results in

Ẏ1k~B!Y5A cos~vt !, ~17!

where we have writtenk(B)52â(B). Using standard meth
ods, we define a parameterQ as the ratio of the amplitude o
the low-frequency output oscillations, governed by Eq.~17!
within our approximation, to the amplitude of the low
frequency forcingA. In this caseQ becomes

Q5
1

Ak21v2
5

1

Av214S a2
3bB2

2V2 D 2
, ~18!
9-2



the text

EXPERIMENTAL EVIDENCE, NUMERICS, AND THEORY . . . PHYSICAL REVIEW E67, 066119 ~2003!
FIG. 1. Circuit used in the analog simulations of the overdamped Duffing oscillator. The use of the parameter values given in
gives rise to a double-well potential with a separation between minima equal toL52 and a barrier heightH59.3.
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whereas the phase shiftc is given by

c52arctanS 2
v

k D . ~19!

Analogously, we can write the equation for the deviation
X from the equilibrium point in the case described in E
~13!, where we have a single minimum situated inX050. It
is straightforward to see that after linearization under
same conditions given above, the equation obeyed byY reads

Ẏ2â~B!Y5A cos~vt !, ~20!

which is exactly Eq.~17! where k(B) is changed by
2â(B). Then, the response and phase shift are given by E
~18! and ~19!, where we write2â(B) instead ofk(B). In
particular,

Q5
1

Av21S a2
3bB2

2V2 D 2
. ~21!

Let us write the solutions for the deviationsY obtained
above, in both cases~two and one equilibrium points! in
terms of the parameters of the high-frequency forcing sig
i.e., its amplitudeB and frequencyV. Let us suppose also
that we fix the value of the forcing frequency. Then, for
given bistable potential (a and b fixed!, Q increases ifB
,A2a/3bV when B increases@Eq. ~18!# and decreases i
B.A2a/3bV whenB increases@Eq. ~21!#. As Q gives us an
idea about the amplitude of the slow component of the o
put of the system in relation to the amplitude of low
frequency input, this means that a resonance occurs in
system when
06611
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B5A2a

3b
V, ~22!

which corresponds to the critical value of the effective sti
ness parameter (â50) where the renormalized potentia
changes its number of equilibrium points from two to one
is not difficult to see that a similar behavior can be obtain
if we fix the amplitudeB and change the high frequencyV.
This point will be confirmed also by the numerical simul
tions and experiments presented in the following section

III. NUMERICAL AND EXPERIMENTAL RESULTS

One main point in this paper is the experimental con
mation of the theory presented in the preceding section
particular, we will focus our attention in the experiment
evaluation of the response parameterQ. To this end, we have
used the electronic circuit shown in Fig. 1.

It is composed of three LM741 operational amplifier
two AD633 analog multipliers, one capacitor, and eight
sistors. In order to minimize the effect of parasitic noise,
circuit has been designed with a minimum number of co
ponents. Similar circuits have been already described in
literature in order to analyze some phenomena related to
chastic resonance@33#.

Functionally, the circuit consists of two main parts. T
first one ~operational amplifier OA3 and resistorsRe , Re1,
andRe2) is an adder, whose function is to add the low- a
high-frequency signals. The second part is the integrato
the double-well potential, which consists of another ad
(Ra , Ra1 , Ra2 , Ra3, and the operational amplifier OA1!,
two multipliers~AD633 with coefficienta) and an integrator
(Rb , Cb , and the operational amplifier OA2!. This whole
circuit implements the dynamical equation of an overdamp
double-well Duffing oscillator of the form

RbCbV̇x5Vx

Ra

Ra2
2Vx

3a2
Ra

Ra1
1Vs

RaRe

Ra3Re1
1Vn

RaRe

Ra3Re2
,

~23!

where 2Vx is the voltage at the output of the operation
9-3
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amplifier OA2,Vs is the low-frequency signal, andVn is the
high-frequency modulation@compare with Eq.~1!#.

We have chosen the following set of values for the res
tors and the capacitor:Ra556 KV, Ra15150 V, Ra2
515 KV, Ra3522 KV, Re52.2 KV, Re156.7 KV, Re2
52.2 KV, Rb510 KV, andCb510 mF. The resistors and
the capacitor, both have a tolerance of 5%. These param
values lead to a dynamical equation for the circuit similar
that of a conventional symmetric double-well potential s
tem with a separation between the minima equal toL52 and
a barrier heightH59.3. The reason for using these para
eters instead ofa andb is that in our experimental setup, it i
easier to change the barrier heightH and the separation be
tween minimaL of the bistable potential than constantsa and
b themselves. Both pairs of constants are related to e
other through the expressions

a5
16H

L2
, b5

64H

L4
. ~24!

The low-frequency signalVs and the high-frequency modu
lation Vn have been generated with two 33120A Agile
wave form generators, and the responseVx of the system has
been captured with a Tektronix digital oscilloscope.

Besides the analog experiments, we have carried out
merical simulations of the same system by using a sec
order Runge-Kutta integration scheme, with a time step
Dt52.531024, in order to compare with both the theor
and the results obtained from the circuit. The same val
H59.3 andL52 used in the experiment have also been u
in the numerical simulations.

Following Ref. @24#, we have calculated experimental
and numerically the response of the system, defined by

Q5ABc
21Bs

2, ~25!

whereBc andBs are the cosine and sine components of
output signal, that is,

Bs5
2

nTE0

nT

x~ t !sin~vt !dt, Bc5
2

nTE0

nT

x~ t !cos~vt !dt,

~26!

whereT52p/v and n is an integer. Notice that the defin
tion of the response given above differs from that of E
~18! and ~21!. In particular, it must be taken into accou
that, in order to compare theory and simulations, we nee
normalize the results obtained by means of Eq.~25! ~by di-
viding by A), and to multiply the theoretical ones@given by
Eqs.~18! and~21!# by a factor of 2 appearing in Eq.~26!.

In Fig. 2, we show the numerical and the experimen
values for the response@Eq. ~25!# of the systems given by
Eq. ~1! and Eq.~23!, respectively, to the varying amplitud
of the high-frequency signal~natural frequency equal to 1
Hz!, clearly showing a resonant behavior as expected fr
our theoretical predictions. The different symbols mean d
ferent values for the amplitude of the low-frequency sig
~natural frequency equal to 0.2!. We observe that the exper
mentally obtained values are somehow displaced to the r
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and the corresponding responses are a bit smaller than
numerical ones, although the behavior is very similar in b
cases. The differences observed among numerical and
perimental results could be explained by considering the
that some components of the experimental circuit~in particu-
lar, resistances! could introduce a certain variability in th
experimental values of the parameters of the bistable po
tial ~mainly in the barrier height!.

In Fig. 3, the numerical values of the normalized respo
corresponding to the cases of Fig. 2 are depicted and c
pared with the theoretical approximation given by the the
~see also Refs.@31,32#!. Notice that in the evaluation of the
theoretical approximation of the response, we must use

FIG. 2. Numerical and experimental values for responseQ ~in
volts! vs amplitudeB of the high-frequency signal. The continuou
lines correspond to numerical values, whereas the dashed
stand for the experiment. The different symbols mean different v
ues for the amplitude of the low-frequency signal: circles,A
56.656; squares,A53.328; stars,A51.248; and triangles,A
50.416.

FIG. 3. Numerically calculated values of the system respo
vs. theory~thick line!. Symbols mean the same as in Fig 2. No
that we have normalized the numerical values by dividing byA, and
the theoretical ones have been multiplied by a factor of 2 in orde
compare numerics and theory. As it is clearly seen, the nume
values tend to the theoretical resonant curve whenA is diminished.
9-4
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different expressions ofQ, one for the left side of the reso
nant point, i.e., Eq.~18!, and Eq.~21! for the right side. In
this figure, it is clear that when the amplitude of the lo
frequency signalA is decreased, the value ofB for which the
maximum is obtained tends to the theoretical one. Inde
the results suggest that the theory describes properly the
served behavior only for small values of the amplitude of
low-frequency signalA, as expected from the approximatio
under which the theory has been obtained. Moreover, it
be seen that even for small values of the amplitudeA, some
differences persist among theory and numerics. The origi
these differences lies in the fact that the linearization is p
formed on a result that is itself an approximation, i.e., t
given by Eqs.~2! and ~3! corresponding to the time sca
separation.

In Fig. 4 the resonance emerging whenV/2p ~instead of
the amplitude! is varied in the high-frequency signal,
shown by means of the experiment and the numerical si
lations. The notation is the same as in the previous fig
Here, the experimental curve is shifted towards the left a
the values forQ are a bit smaller than those obtained fro
the numerical simulations, but again the resonant behavio
very similar in both cases. The frequency of the slow sig
is again 0.2, but we have chosen an amplitude equa
0.832. The amplitude for the fast signal is now 52.6815. T
value corresponds to the location of the maximum respo
of the system provided by the theory.

Finally, in Fig. 5, theoretical and numerical results a
compared in the same way as before, for the case of the
resonant curve that results whenV is varied for a fixed value
of B. As observed from the figure, the simulations predic
value for the maximum location, which is rather well es
mated by the theory. Nevertheless, the numerical values
Q are smaller than the theoretical ones, as occurred pr
ously.

IV. EFFECTS OF NOISE ON VIBRATIONAL RESONANCE

As is well known, noise can play an important role in t
behavior of certain dynamical systems. In particular,

FIG. 4. Resonant behavior of the system with frequencyV
when v/2p50.2, A50.832, andB552.6815. Circles correspon
to numerical simulations and squares to the experiments.
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standard bistable potential considered in this work con
tutes a paradigm in the study of the effects of noise on n
linear systems, for example, in the context of SR. So
seems natural to investigate the action of a certain amoun
additive noise on the resonant behavior described ab
~VR!. It should be noted that we do not pretend to explore
detail the effects of noise on VR in this section, but on
some of the main consequences of including a stocha
term in our system. In particular, we add white Gauss
noise to the model described by Eq.~1!, and get the follow-
ing equation:

ẋ2ax1bx35A cos~vt !1B cos~Vt1Q!1j~ t !, ~27!

where the moments for the noisy term are

^j~ t !&50, ^j~ t !j~s!&5Dd~ t2s!, ~28!

D being the intensity of the noise.
We consider first the implications of adding a stochas

term when only the amplitude of the high-frequency forceB
is varied. We have carried out numerical simulations by
ing a stochastic version of the Heun algorithm~cf. @34#!. The
results are depicted in Fig. 6. The first striking effect is th
the maximum of the resonance curve diminishes asD in-
creases and, at the same time, its location is shifted tow
lower values of the high-frequency amplitudeB. This is due
to the fact that, in this situation, noise works as a fraction
the high-frequency signal component, thus advancing
resonance. Another interesting result is that the vibratio
resonance effect completely disappears for large values oD.
The origin of this effect comes from the fact that white noi
provides an input to the system with contributions comi
from all frequencies. This masks the contribution of the hig
frequency signal, and its relative importance in the respo
of the system is decreased. Of course these two effects
become more and more relevant asD increases. Likewise, it
is worth noting that the classical stochastic resonance be
ior is recovered precisely whenB is 0, as is observed in this

FIG. 5. Theoretical and numerical values for the case of
resonance with the frequency. The values of the parameters ar
same as used in Fig. 4.
9-5
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figure. This means that responseQ of the system passe
through a maximum asD is increased.

The frequency resonant behavior that we have reporte
the preceding section is also modified in the presence
noise. To show this, we have fixed the amplitudes of both
high- and the low-frequency signals and have computed
responseQ of the system whenV is varied for different
values of the noise intensityD. The results are drawn in Fig
7. This phenomenon is similar to the one found whenB is
varied. In both cases, the maximum of the response cu
decreases asD increases. Additionally, for high enough va
ues ofD, there is no more resonance effect with respec
the frequency~see Fig. 7!.

V. CONCLUSIONS

We have discussed the phenomenon of vibrational re
nance in a bistable system under the action of a tw
frequency signal with one frequency much larger than
other one. Changing the amplitude of the high-frequen
component improves signal processing of the low freque
in a resonant way. First the response of the system is
creased and then decreased. Additionally, resonant beh

FIG. 6. Response of the forced bistable system in the pres
of noise of different intensities.A50.416, v/2p50.2, andV/2p
510. The meanings of the symbols are: circlesD50.0001, crosses
D50.01, starsD50.1, squaresD51, diamondsD55, plus signs
D510, and triangles downD530. Note that the noise broadens th
response curve of the system and advances the value ofB that gives
the maximum response at the same time as these maximal v
diminishes. The conventional SR effect is clearly seen forB50.
v.

y-
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in the response of the system is also observed with respe
the high frequency, demonstrating two different but rela
resonances. We have compared analytical, experimental,
numerical results, and found a good matching. To our kno
edge, this is the first experimental evidence of the pheno
enon of vibrational resonance described in the literature.
nally, we have studied the influence of white noise on VR
bistable systems, showing that noise can advance VR an
the same time, decrease the resonant effect.

We hope that our theoretical, experimental, and numer
findings will stimulate further work on VR in different kind
of systems. The potential applications of these phenom
include neuronal dynamics, communications technolog
and mechanical engineering.
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