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Self-organized critical neural networks
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A mechanism for self-organization of the degree of connectivity in model neural networks is studied.
Network connectivity is regulated locally on the basis of an order parameter of the global dynamics, which is
estimated from an observable at the single synapse level. This principle is studied in a two-dimensional neural
network with randomly wired asymmetric weights. In this class of networks, network connectivity is closely
related to a phase transition between ordered and disordered dynamics. A slow topology change is imposed on
the network through a local rewiring rule motivated by activity-dependent synaptic development: Neighbor
neurons whose activity is correlated, on average develop a new connection while uncorrelated neighbors tend
to disconnect. As a result, robust self-organization of the network towards the order disorder transition occurs.
Convergence is independent of initial conditions, robust against thermal noise, and does not require fine tuning
of parameters.
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Information processing in living organisms is often pe
formed by large networks of interacting cells with an over
stunning degree of complexity. How can such networks
efficiently constructed and how can a robust functioning
ensured? The observed complexity of many nervous syst
exceeds by far what can be hard coded in the genome@1#.
Therefore, developmental principles play a key role in n
work construction. Furthermore, as learning is a major fu
tion of such networks, self-organization and adaptation p
cesses continue throughout the lifetime of a network.

But how can robustness of large dynamical networks
ensured in the face of continuous developmental and a
tive processes? In general, dynamical stability of large n
works of dynamical elements and robustness against pe
bations are not obtained for free: Model networks w
asymmetric connectivity patterns often exhibit regimes
chaotic dynamics with large parameter ranges where netw
dynamics is not easily controlled@2#. In networks whose
central function is information transfer, these regimes wo
instantly render them useless. Consider, for example, m
neural networks with asymmetric synaptic couplings, wh
a percolation transition between regimes of ordered and
ordered dynamics is known@3#. In the disordered phase
which occurs for densely connected networks, already sm
perturbations percolate through the networks.1 In such net-
works, developmental processes that change connectivit
ways face the risk of driving the network into the high
connected regime~where chaotic dynamics prevails!, as long
as no explicit mechanism is given that controls the glo
degree of connectivity.

We here study this question of dynamical robustness
networks in the presence of developmental processes in

*Email address: bornholdt@izbi.uni-leipzig.de
1This is reminiscent of avalanchelike propagation of activity in t

brain, which is observed in some diseases of the central ner
system@4#.
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context of a simple toy model, an asymmetric neural netw
combined with simple topology-changing rules. In particul
we ask how a local rewiring mechanism could control glob
dynamical properties of a large network and actively contr
ute to avoiding chaotic regimes. While an obvious possibi
is a direct feedback of the global dynamical state to the s
apses, e.g., controlling synaptic growth rates, we here c
sider an even simpler mechanism that relies on local in
mation only and, in principle, could be at work in natur
systems. We argue that if an order parameter characterizi
global phase transition is accessible at the single syna
level, it can provide the basis for a regulation of global n
work connectivity solely on the basis of local mechanism

Recent models of self-organization of network structu
show that it is possible to locally measure a global ord
parameter connected to the percolation transition of the
work, namely, the average activity of a single node over ti
@5#. Here we will see that, similarly, the average correlati
between the activities of two neurons contains informat
about the global order parameter as well. The network
then use this approximate order parameter to guide the
velopmental rule. An interesting question is whether se
organization to a critical dynamical transition could occur
a model neural network on the basis of such a correlation
possible rule is that new synaptic connections preferenti
grow between correlated neurons, as suggested by the
ideas of Hebb@6# and the observation of activity-depende
neural development@7#. In the remainder of this paper let u
study this problem in the framework of a specific toy mod
We will first define a neural network model with a simp
mechanism of synaptic development. Then, with numer
studies we will discuss the interplay of dynamics on the n
work with dynamics of the network topology. Finally, robus
ness of self-organizing processes in this model and poss
implications for biological systems are discussed.

Let us consider a two-dimensional neural network w
random asymmetric weights on the lattice. The neighborh
of each neuron is chosen as its Moore neighborhood w

us
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eight neighbors.2 The weightswi j are randomly drawn from
a uniform distributionwi j P@21,11# and are nonzero be
tween neighbors, only. Note that weightswi j are asymmetric,
i.e., in general,wi j Þwji . Within the neighborhood of a
node, a fraction of its weightswi j may be set to 0. The
average number of nonzero weights per node is called
average connectivityK of the network ~for definiteness
count, e.g., the incoming weights at each node, only!. The
network consists ofN neurons with statess i561 which are
updated in parallel with a stochastic Little dynamics on
basis of inputs received from the neighbor neurons at
previous time step:

Prob@s i~ t11!511#5gb„f i~ t !…,

Prob@s i~ t11!521#512gb„f i~ t !… ~1!

with

f i~ t !5(
j 51

N

wi j s j~ t !1u i ~2!

and

gb„f i~ t !…5
1

11e22b f i ~ t !, ~3!

with the inverse temperatureb and a thresholdu i . The
threshold is chosen here asu i520.11g and includes a
small random noise termg from a Gaussian of widthe. This
noise term is motivated by the slow fluctuations observed
biological neural systems@8#. With respect to varying eithe
u or K, the network exhibits a percolation transition betwe
a phase of ordered dynamics, with short transients and s
limit cycle attractors, and a phase of chaotic dynamics wh
the length of dynamical patterns scales exponentially w
system size@3,9#.

The second part of the model is a slow change of
topology of the network by local rewiring of synapt
weights: If the activity of two neighbor neurons is on ave
age highly correlated~or anticorrelated!, they will obtain a
common link. If their activity on average is less correlate
they will lose their common link. To be more specific, let
define the average correlationCi j (t) of a pair (i , j ) of neu-
rons over a time intervalt,

Ci j ~t!5
1

t11 (
t5t0

t01t

s i~ t !s j~ t !. ~4!

The full model dynamics is then defined as follows.

2The choice of the type of neighborhood is not critical, howev
here the Moore neighborhood is more convenient than the von N
mann type since, in the latter case, the critical link density~fraction
of nonzero weights! at the percolation threshold accidentally coi
cides with the attractor of the trivial developmental rule of produ
ing a link with p50.5. In general, also random sparse neighb
hoods would work as demonstrated in Ref.@5#.
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~1! Start with a random network with an average conn
tivity ~number of nonzero weights per neuron! K ini and a
random initial state vectorsW (0)5„s1(0),...,sN(0)….

~2! For each neuroni, choose a random thresholdu i from
a Gaussian distribution of widthe and meanm.

~3! Starting from the initial state, calculate the new syste
state applying Eq.~1! using parallel update. Iterate this fort
time steps.

~4! Randomly choose one neuroni and one of its neigh-
bors j and determine the average correlationCi j (t/2) over
the lastt/2 time steps.~Alternatively, the correlation can be
obtained from a synaptic variable providing a moving av
age at any given time!.

~5! If uCi j (t)u is larger than a given thresholda, i receives
a new link wi j from site j with a weight chosen randomly
from the intervalwi j P@21,1#.3 If uCi j (t)u<a, the link wi j
is set to 0~if nonzero.!

~6! Go to step 2 and iterate, using the current state of
network as new initial state.

The dynamics of this network is continuous in time, wi
neuron update on a fast time scale and topology update o
weights on a well-separated slow ‘‘synaptic plasticity’’ tim
scale. Note that the topology-changing rule does not invo
any global knowledge, e.g., about attractors. A typical s
nario of this dynamical evolution is shown in Fig. 1 whe
the average number of nonzero weights per neuronKev is
shown as a time series and as cumulative mean.

One observes that the continuous network dynamics,
cluding the slow local change of the topology, results in
convergence of the average connectivity of the network t
characteristic value which is independent of initial con
tions.

Finite size scaling of the resulting average connectiv
indicates the convergence towards a characteristic value
large network sizeN and exhibits the scaling relationship

,
u-

-
-

3Also binary weights could be used as in Ref.@5#.

FIG. 1. Evolution of the average number of nonzero weights
neuron over evolutionary time, for a system of sizeN564 (838)
and two different initial connectivities (K ini51.0 andK ini54.0).
Independent of the initial conditions, the networks evolve to a s
cific average connectivity. Parameters areb525, e50.1, a correla-
tion cutoff a50.8, and an averaging time window oft5200.
8-2
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Kev~N!5aN2d1b, ~5!

with a51.260.4, d50.8660.07, andb52.2460.03. Thus,
in the large system size limitN→` the networks evolve
towardsKev

` 52.2460.03 ~see Fig. 2!. The self-organization
towards a specific average connectivity is largely insensi
to thermal noise of the network dynamics, up to'10% of
thermal switching errors~or b.10) of the neurons. This
indicates that the structure of a given dynamical attracto
robust against a large degree of noise. Figure 3 shows
evolved average connectivity as a function of the inve
temperatureb.

While the stability of dynamical attractors on an interm
diate time scale is an important requirement for the lo
sampling of neural correlation, on the long time scale
global topological changes, switching between attractor
necessary to ensure ergodicity at the attractor sampling le
The second source of noise, the slow random change in
ral thresholds as defined in step~2! of the algorithm, is
closely related to such transitions between attractors. Wh
in general, the model converges also when choosing s
arbitrary fixed thresholdu and omitting step~2! from the
algorithm, a small threshold noise facilitates transitions

FIG. 2. Finite size scaling of the evolved average connectiv
Averages are taken over 43105 time steps.

FIG. 3. Evolved average connectivityKev as a function of the
inverse temperatureb. Each point is averaged over 105 time steps in
a network of sizeN564 anda50.5.
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tween limit cycle attractors@10# and thus improves samplin
over all attractors of a network, resulting in an overall i
creased speed and robustness of the convergence. An
chronous change of the thresholdu i , updating one random
u i after completing one sweep~time step! of the network,
leads to similar results as the parallel rule defined above

The basic mechanism of the observed self-organizatio
this system is the weak coupling of topological change to
order parameter of the global dynamical state of the netwo
and thus is different from the mechanism of extremal dyna
ics, underlying many prominent models of self-organiz
criticality @11#. To illustrate this, let us for a moment consid
the absolute average correlationuCi j (t)u of two neurons,
which is the parameter used as a criterion for the rewir
process. For random networks, this quantity is shown in F
4 for different conductivitiesK.

Note that the correlation is large for networks with sm
connectivity, and small for networks that are densely co
nected. The rewiring rule balances between these two
gimes: For high correlation, it is more likely that a link
created, at low correlation, links are vanishing. The bala
is reached most likely in the region of the curve where
slope reaches its maximum, as here the observed correla
reacts most sensitively to connectivity changes. As the st
portion of the correlation curve occurs in a region of sm
connectivities where also the critical connectivityKc'2 of
the network is located, this makes the correlation meas
sensitive to the global dynamical state of the network a
potentially useful as an approximation of the order para
eter. Synaptic development dependent on averaged cor
tion between neurons can thus obtain approximate infor
tion about the global dynamical state of the network as
realized in the above toy model with a simple implemen
tion on the basis of a thresholda. The exact choice of the
thresholda is not critical, which can be seen from the hist
gram of the absolute correlationuCi j (t)u shown in Fig. 5 for
a typical run of the model.

Correlations appear to cluster near high and near low
ues such that the cutoff can be placed anywhere inbetw
the two regimes. Even a threshold value close to 1, as c

. FIG. 4. The average correlationuCi j (t)u between random neu
rons of random networks at different connectivitiesK. Samples are
taken over 1000 random networks with 100 random initial con
tions each, for network sizeN564.
8-3
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pared with the correlation cutoffa50.8 used in the simula
tions here, only leads to a minor shift inKev and does not
change the overall behavior.

Up to now we focused on changes of the network str
ture as a result of the dynamics on the network. A furth
aspect is how the structural changes affect the dynamic
the network itself. Do also dynamical observables of the n
works self-organize as a result of the observed converge
of the network structure? An interesting quantity in this
spect is the average length of periodic attractors as show
Fig. 6.

Indeed, this dynamical observable of the network dyna
ics converges to a specific value independent of the in
network, similarly to the convergence of the structural p
rameterK considered earlier. From theK dependency of the
neural pair correlation we have seen above that the rewi
criterion tends to favor connectivities near the critical co
nectivity of the network. Does also the evolved average
tractor length relate to critical properties of the percolat

FIG. 5. Histogram ofuCi j (t)u for a network evolving in time,
with N564 andb510, taken over a run of 43105 time steps.

FIG. 6. Evolution of the cumulative average of attractor leng
for the same system as shown in Fig. 1. The mean attractor le
converges to a value independent of the two initial conditions of
network shown here. The attractor length is measured at zero
perature in order to have an exactly defined measure.
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transition? An approximate measure of this aspect is the
nite size scaling of the evolved average period as show
Fig. 7.

For static networks we find that the attractor lengths ty
cally scale exponentially withN in the overcritical regime,
but less than linearly in the ordered regime. For the evolv
connectivityKev in our model, we observe scaling close
criticality. Large evolved networks exhibit relatively sho
attractors, which otherwise for random networks in the ov
critical regime could only be achieved by fine tuning. T
self-organizing model studied here evolves nonchaotic n
works without the need for parameter tuning.

To summarize, neural network development has b
studied in an asymmetric model neural network. The dev
opmental rule is based on local rewiring motivated by He
bian, activity-dependent synaptic development. In a conti
ously running network, robust self-organization of th
network towards the percolation transition between orde
and disordered dynamics is observed, independent of in
conditions and robust against thermal noise. The basic m
is robust against changes in the details of the algorithm.
conclude that a weak coupling of the rewiring process to
approximate measurement of an order parameter of the
bal dynamics is sufficient for a robust self-organization
wards criticality. In particular, the order parameter has be
estimated solely from information available on the sing
synapse level via time averaging of correlated neural act
ties.

While here we considered self-organization in model n
ral networks, the observed mechanism may occur in ot
more complex systems. For example, global dynamical or
from self-organization at the synapse level could, in pr
ciple, be at work in biological nervous systems as well. P
requisites are an averaging procedure of correlated activ
on slow time scales~similar to synaptic processes underlyin
learning through long term potentiation!, and a coupling to
synaptic development.

th
e
m-

FIG. 7. Finite size scaling of the evolved average attrac
period~b!. Also shown for comparison is the corresponding scal
of the attractor lengths of an overcritical random network~a!
with K53.8 and an undercritical one~c! with K51.5.
Symbols denote measured values and lines correspond to
fits f a(x)515.1x0.57(e0.005x21), f b(x)50.6x1.5, and f c(x)
50.28x0.75ln(0.097x).
8-4



e

tu

R

.

nd

r-

SELF-ORGANIZED CRITICAL NEURAL NETWORKS PHYSICAL REVIEW E67, 066118 ~2003!
@1# B. Ewing and P. Green, Nat. Genet.25, 232 ~2000!.
@2# L. Molgedey, J. Schuchard, and H. G. Schuster, Phys. R

Lett. 69, 3717~1992!.
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