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Self-organized critical neural networks
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A mechanism for self-organization of the degree of connectivity in model neural networks is studied.
Network connectivity is regulated locally on the basis of an order parameter of the global dynamics, which is
estimated from an observable at the single synapse level. This principle is studied in a two-dimensional neural
network with randomly wired asymmetric weights. In this class of networks, network connectivity is closely
related to a phase transition between ordered and disordered dynamics. A slow topology change is imposed on
the network through a local rewiring rule motivated by activity-dependent synaptic development: Neighbor
neurons whose activity is correlated, on average develop a new connection while uncorrelated neighbors tend
to disconnect. As a result, robust self-organization of the network towards the order disorder transition occurs.
Convergence is independent of initial conditions, robust against thermal noise, and does not require fine tuning
of parameters.
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Information processing in living organisms is often per- context of a simple toy model, an asymmetric neural network
formed by large networks of interacting cells with an overallcombined with simple topology-changing rules. In particular,
stunning degree of complexity. How can such networks beve ask how a local rewiring mechanism could control global
efficiently constructed and how can a robust functioning bedynamical properties of a large network and actively contrib-
ensured? The observed complexity of many nervous systemge to avoiding chaotic regimes. While an obvious possibility
exceeds by far what can be hard coded in the gendihe is a direct feedback of the global dynamical state to the syn-
Therefore, developmental principles play a key role in net-apses, e.g., controlling synaptic growth rates, we here con-
work construction. Furthermore, as learning is a major funcsider an even simpler mechanism that relies on local infor-
tion of such networks, self-organization and adaptation promation only and, in principle, could be at work in natural
cesses continue throughout the lifetime of a network. systems. We argue that if an order parameter characterizing a

But how can robustness of large dynamical networks beylobal phase transition is accessible at the single synapse
ensured in the face of continuous developmental and adagevel, it can provide the basis for a regulation of global net-
tive processes? In general, dynamical stability of large network connectivity solely on the basis of local mechanisms.
works of dynamical elements and robustness against pertur- Recent models of self-organization of network structures
bations are not obtained for free: Model networks withshow that it is possible to locally measure a global order
asymmetric connectivity patterns often exhibit regimes ofparameter connected to the percolation transition of the net-
chaotic dynamics with large parameter ranges where networkork, namely, the average activity of a single node over time
dynamics is not easily controllef2]. In networks whose [5]. Here we will see that, similarly, the average correlation
central function is information transfer, these regimes wouldoetween the activities of two neurons contains information
instantly render them useless. Consider, for example, modelbout the global order parameter as well. The network can
neural networks with asymmetric synaptic couplings, wherghen use this approximate order parameter to guide the de-
a percolation transition between regimes of ordered and distelopmental rule. An interesting question is whether self-
ordered dynamics is knowf3]. In the disordered phase, organization to a critical dynamical transition could occur in
which occurs for densely connected networks, already sma#i model neural network on the basis of such a correlation. A
perturbations percolate through the networks. such net- possible rule is that new synaptic connections preferentially
works, developmental processes that change connectivity ajrow between correlated neurons, as suggested by the early
ways face the risk of driving the network into the highly ideas of Hebl{6] and the observation of activity-dependent
connected regimévhere chaotic dynamics prevailss long  neural developmeri7]. In the remainder of this paper let us
as no explicit mechanism is given that controls the globaktudy this problem in the framework of a specific toy model.
degree of connectivity. We will first define a neural network model with a simple

We here study this question of dynamical robustness ofnechanism of synaptic development. Then, with numerical
networks in the presence of developmental processes in ttatudies we will discuss the interplay of dynamics on the net-

work with dynamics of the network topology. Finally, robust-
ness of self-organizing processes in this model and possible
*Email address: bornholdt@izbi.uni-leipzig.de implications for biological systems are discussed.
This is reminiscent of avalanchelike propagation of activity inthe ~ Let us consider a two-dimensional neural network with
brain, which is observed in some diseases of the central nervou@indom asymmetric weights on the lattice. The neighborhood
system[4]. of each neuron is chosen as its Moore neighborhood with
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eight neighboré.The weightsw;; are randomly drawn from 4.5 T T 7
a uniform distributionw;; e[ —1,+1] and are nonzero be- 4 Kimi=4 -——-
tween neighbors, only. Note that weightg are asymmetric, 35 mean ﬁ:} *

i.e., in general,w;; #w;; . Within the neighborhood of a
node, a fraction of its weightsy;; may be set to 0. The 3]
average number of nonzero weights per node is called thes o5 Ky
average connectivit of the network (for definiteness <

count, e.g., the incoming weights at each node, onthe 2
network consists o neurons with states;= + 1 which are 15§
updated in parallel with a stochastic Little dynamics on the 1
basis of inputs received from the neighbor neurons at the 05
previous time step: ~o 25000 50000 75000 100000

t
Protf o;(t+1) = +1]=g,(fi(1)), _ _
FIG. 1. Evolution of the average number of nonzero weights per
Projoi(t+1)=—1]=1— gﬁ(fi(t)) (1) neuron over evolut.io.n.ary time, fc.)r.a.l system of site- 64 (8% 8)
and two different initial connectivitiesK,=1.0 andK;,=4.0).
with Independent of the initial conditions, the networks evolve to a spe-
cific average connectivity. Parameters gre 25, e=0.1, a correla-
N tion cutoff «=0.8, and an averaging time window ef 200.
fi(t)= 2, wijoi(t)+ 6, 2 _ .
=1 (1) Start with a random network with an average connec-
tivity (number of nonzero weights per neuydg;, and a
random initial state vecta#(0)= (o1(0),...,0n(0)).
(2) For each neuron choose a random threshadél from
! Gaussian distribution of widthand mea
95(fi(V)= T g zeno @ a , O M.
(3) Starting from the initial state, calculate the new system
_ ) state applying Eq(l) using parallel update. Iterate this for
with the inverse temperatur@ and a thresholdd;. The  ime steps.
threshold is chosen here a=—0.1+y and includes a (4) Randomly choose one neurdrand one of its neigh-
small random noise term from a Gaussian of widtle. This  porsj and determine the average correlatiop(/2) over
noise term is motivated by the slow fluctuations observed ifpe 1ast7/2 time steps(Alternatively, the correlation can be

biological neural systemig]. With respect to varying either spiained from a synaptic variable providing a moving aver-
0 or K, the network exhibits a percolation transition betweenage at any given time

a phase of ordered dynamics, with short transients and short (5) If |C;: (7)| is larger than a given threshold i receives
limit cycle attractors, and a phase of chaotic dynamics wherg aow Iinkavi~ from sitej with a weight chosen randomly
the Iengt_h of dynamical patterns scales exponentially Wit the interjvalwij e[—1,1].%1f ICij(7)| <, the linkw;;
system siz¢3,9]. is set to O(if nonzero)

The second part of the model is a slow change of the () o 1o step 2 and iterate, using the current state of the
topology of the network by local rewiring of synaptic nanvork as new initial state.

weights: If the activity of two neighbor neurons is on aver-

age highly correlatedor anticorrelatey they will obtain a  The dynamics of this network is continuous in time, with

common link. If their activity on average is less correlated,neuron update on a fast time scale and topology update of the

they will lose their common link. To be more specific, let us weights on a well-separated slow “synaptic plasticity” time

define the average correlati@);(7) of a pair (,j) of neu-  scale. Note that the topology-changing rule does not involve

rons over a time intervat, any global knowledge, e.g., about attractors. A typical sce-
nario of this dynamical evolution is shown in Fig. 1 where

and

ot 7 the average number of nonzero weights per nelfgnis
Cij(1)= mt:zt ai(Doj(1). (4 shown as a time series and as cumulative mean.
0 One observes that the continuous network dynamics, in-
The full model dynamics is then defined as follows. cluding the slow local change of the topology, results in a

convergence of the average connectivity of the network to a
characteristic value which is independent of initial condi-
2The choice of the type of neighborhood is not critical, however,t'ons_' . . . . .
here the Moore neighborhood is more convenient than the von Ney- Finite size scaling of the resulting average connectivity
mann type since, in the latter case, the critical link den@igction indicates the convergence towards a characteristic value for
of nonzero weightsat the percolation threshold accidentally coin- large network sizé\ and exhibits the scaling relationship
cides with the attractor of the trivial developmental rule of produc-
ing a link with p=0.5. In general, also random sparse neighbor-
hoods would work as demonstrated in Réi]. 3Also binary weights could be used as in R
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FIG. 2. Finite size scaling of the evolved average connectivity.

Averages are taken overdl®® time steps.

FIG. 4. The average correlatid€;;(7)| between random neu-
rons of random networks at different connectivit€sSamples are
taken over 1000 random networks with 100 random initial condi-

KeN)=aN °+b, (5) tions each, for network sizh=64.

tween limit cycle attractorgl0] and thus improves sampling
over all attractors of a network, resulting in an overall in-
creased speed and robustness of the convergence. An asyn-
chronous change of the threshdld, updating one random

eHi after completing one sweeftime step of the network,

with a=1.2+0.4, §=0.860.07, ando=2.24+0.03. Thus,
in the large system size limiN—c the networks evolve
towardsKg,=2.24+0.03 (see Fig. 2 The self-organization
towards a specific average connectivity is largely insensitivi
to thermal noise of the network dynamics, up+d0% of o5 to similar results as the parallel rule defined above.

thermal switching errorgor 5>10) of the neurons. This 14 pagic mechanism of the observed self-organization in
indicates that the structure of a given dynamical attractor igiq system is the weak coupling of topological change to an
robust against a large de.grlee of noise. F_:|gure 3 Sh.OWS Grder parameter of the global dynamical state of the network,
evolved average connectivity as a function of the INVETrS&nd thus is different from the mechanism of extremal dynam-
tempre]'rlatur:qe. ility of ical . ics, underlying many prominent models of self-organized
While the stability of dynamical attractors on an interme- o isicajity [11]. To illustrate this, let us for a moment consider

diate '_[ime scale is an impqrtant requirement_for the IocaI[he absolute average correlati@; ()| of two neurons,
sampling of neural correlation, on the long time scale of J

) L .which is the parameter used as a criterion for the rewiring
global topological changes, switching between attractors i

- . rocess. For random networks, this quantity is shown in Fig.
necessary to ensure ergodicity at the attractor sampling leve}. ¢, yitferent conductivities

The second source of noise, the slow random change in neu- e that the correlation is large for networks with small

ral thresholds as defined m_steﬁﬁ) of the algorithm, is . connectivity, and small for networks that are densely con-
closely related to such transitions between attractors. Wh'lenected The rewiring rule balances between these two re-

inbgenerafli, ”:je rr]nodﬁl I((:gnve(;ges also whenzcr;oosinﬁ SOM§imes: For high correlation, it is more likely that a link is
arbitrary fixed threshold) and omitting step(2) from the  ;reat0q. at low correlation, links are vanishing. The balance

algorithm, a small threshold noise facilitates transitions be

35

is reached most likely in the region of the curve where the
slope reaches its maximum, as here the observed correlation

T T T T Kw([;) e reacts most sensitively to connectivity c_hanges._ As the steep
3F - portion of the correlation curve occurs in a region of small
25 I I I I I I I I h connectivities where also the critical connectivi€y~2 of
' I I the network is located, this makes the correlation measure
D 2 I . sensitive to the global dynamical state of the network and
< 15k _ potentially useful as an approximation of the order param-
T I eter. Synaptic development dependent on averaged correla-
1 7] tion between neurons can thus obtain approximate informa-
05 - tion about the global dynamical state of the network as is
0l i realized in the above toy model with a simple implementa-
tion on the basis of a threshold The exact choice of the
05 ; 1'0 1'5 2'0 2'5 3 thresholda is not critical, which can be seen from the histo-
8 gram of the absolute correlati¢@ij(7)| shown in Fig. 5 for

a typical run of the model.

Correlations appear to cluster near high and near low val-
ues such that the cutoff can be placed anywhere inbetween
the two regimes. Even a threshold value close to 1, as com-

FIG. 3. Evolved average connectivi,, as a function of the
inverse temperatur@. Each point is averaged over®lime steps in
a network of sizeN=64 anda=0.5.
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|Cis(T)| FIG. 7. Finite size scaling of the evolved average attractor
period(b). Also shown for comparison is the corresponding scaling
of the attractor lengths of an overcritical random netwdak
with  K=3.8 and an undercritical one(c) with K=1.5.

Symbols denote measured values and lines correspond to the
pared with the correlation cutoff=0.8 used in the simula- fits f,(x)=15.1x"5(e%0%—1), f,(x)=0.6x>% and f.(x)

tions here, only leads to a minor shift K, and does not =0.2&°75In(0.09%).

change the overall behavior. " . . . ,
Up to now we focused on changes of the network struciransition? An approximate measure of this aspect is the fi-

ture as a result of the dynamics on the network. A furthernite size scaling of the evolved average period as shown in
. ; Fig. 7.
aspect is how the structural changes affect the dynamics on For static networks we find that the attractor lengths typi-

9 . . J CONVEIgeNntsi’less than linearly in the ordered regime. For the evolved
of the network structure? An interesting quantity in this re

. o “connectivity K., in our model, we observe scaling close to
spect is the average length of periodic attractors as shown iyjjicajity. Large evolved networks exhibit relatively short
Fig. 6.

. ) attractors, which otherwise for random networks in the over-
Indeed, this dynamical observable of the network dynamzyitical regime could only be achieved by fine tuning. The

ics converges to a specific value independent of the initiakelf.organizing model studied here evolves nonchaotic net-
network, similarly to the convergence of the structural pa-works without the need for parameter tuning.
rameterK considered earlier. From th¢ dependency of the To summarize, neural network development has been
neural pair correlation we have seen above that the rewiringtudied in an asymmetric model neural network. The devel-
criterion tends to favor connectivities near the critical con-opmental rule is based on local rewiring motivated by Heb-
nectivity of the network. Does also the evolved average atbian, activity-dependent synaptic development. In a continu-
tractor length relate to critical properties of the percolationously running network, robust self-organization of the
network towards the percolation transition between ordered
and disordered dynamics is observed, independent of initial
conditions and robust against thermal noise. The basic model
is robust against changes in the details of the algorithm. We
conclude that a weak coupling of the rewiring process to an
approximate measurement of an order parameter of the glo-
bal dynamics is sufficient for a robust self-organization to-
wards criticality. In particular, the order parameter has been
estimated solely from information available on the single
synapse level via time averaging of correlated neural activi-
ties.
While here we considered self-organization in model neu-
0 1 1 1 1 ral networks, the observed mechanism may occur in other
0 10000 20000 30000 40000 more complex systems. For example, global dynamical order
¢ from self-organization at the synapse level could, in prin-
FIG. 6. Evolution of the cumulative average of attractor lengthCiple, be at work in biological nervous systems as well. Pre-
for the same system as shown in Fig. 1. The mean attractor lengtf¢quisites are an averaging procedure of correlated activities
converges to a value independent of the two initial conditions of thedn slow time scalegsimilar to synaptic processes underlying
network shown here. The attractor length is measured at zero tenearning through long term potentiatiprand a coupling to
perature in order to have an exactly defined measure. synaptic development.

FIG. 5. Histogram of C;;(7)| for a network evolving in time,
with N=64 andB=10, taken over a run of 4 10° time steps.

Aev(t)
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