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Exact finite-size corrections of the free energy for the square lattice dimer model
under different boundary conditions

N. Sh. Izmailiant? K. B. Oganesyan?? and Chin-Kun Hd*
Lnstitute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
2Yerevan Physics Institute, Alikhanian Brothers 2, 375036 Yerevan, Armenia
(Received 2 January 2003; published 26 June 2003

We express the partition functions of the dimer model on finite square lattices under five different boundary
conditions(free, cylindrical, toroidal, Mbius strip, and Klein bottleobtained by otheréKasteleyn, Temperley
and Fisher, McCoy and Wu, Brankov and Priezzhev, and Lu andilMierms of the partition functions with
twisted boundary conditions,, ; with («,8)=(1/2,0), (0,1/2) and (1/2,1/2). Based on such expressions, we
then extend the algorithm of Ivashkevich, Izmailian, and[BluPhys. A35, 5543(2002] to derive the exact
asymptotic expansion of the logarithm of the partition function for all boundary conditions mentioned above.
We find that the aspect-ratio dependence of finite-size corrections is sensitive to boundary conditions and the
parity of the number of lattice sites along the lattice axis. We have also established several groups of identities
relating dimer partition functions for the different boundary conditions.
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[. INTRODUCTION diamond, demonstrating a strong effect of the boundary on a
typical domino configuratiofl12].

The dimer model was originally introduced to represent Finite-size scaling and finite-size corrections in finite
physical adsorption of diatomic molecules on crystal surritical systems and their boundary effects have attracted
faces[1]. The surface may be considered as a regular latticnuch attention in recent decades3—28, especially in the
which attracts the diatomic moleculégimers in such away Ising[17-28 and percolation mode(d5,16. Many of such
that each dimer fills two neighboring lattice sites and withStudies have been based on Monte Carlo simulatj@S$
crucial constraint that no lattice site is covered by two@nd afew of them are based on analytic calculatjd9s21—
dimers. The exact calculation of partition functions of the28]- Very recently, lvashkevich, Izmailian, and KiuH) [23]
dimer model on theM x A’ square lattice under different proposed a systematic method to compute finite-size correc-

boundary conditiongFigs. 1 and 2 has attracted the atten- tions to the partition functions and their derivatives of free
. models on torus, including Ising model, dimer model, and
tion of researchers for more than 40 years. In 1961, Kaste-

leyn [2] obtained exact partition functions for the dimer Gaussian model. Their approach is based on relations be-
y Pe . .._tween the terms of the asymptotic expansion and the so-
model on the square lattice with both free and toroidal

> . ) called Kronecker’s double seri¢23] which are directly re-
boundary conditions. FishdB], Temperley and Fishe] |04 1o elliptic 0 functions. Expressing the final result in

also solved the case of free boundary case independent%rms of 6 functions avoids messy sunias in some earlier
Ferdinand 5] calculated finite-size corrections up to the first

order for the free energy of the dimer model dri XN
square lattices with both free and toroidal boundary condi-
tions for different parities of\ and\V. In 1973, McCoy and
Wu [6] calculated exact partition functions for cylindrical
boundary conditions. In 1985, Bhattacharjee and N&gle
studied the finite-size effect of an anisotropic dimer model of
domain walls on the brick lattice. In 1993, Brankov and
Priezzhe\{8] obtained the exact partition function for a'Mo
bius strip. In 1999 and 2002, Lu and Wu obtained exact
partition functions for a Mbius strip and a Klein bottle
[9,10] and calculated finite-size corrections up to the first
order for M X N/ lattices when both\ and A are even. Very
recently Wu[11] obtained exact partition function for the
dimer model on the B X (2N—1) square lattice with cylin-
drical boundary conditions. The interest in dimer model was
renewed with the discovery of high-temperature supercon-
ductivity and also with recent work on domino tilingshich

are equivalent to dimers on a square lajtioé an Aztec

FIG. 1. lllustration of the rectangular lattice with different
boundary conditions: free, cylinder, torus, Mos strip, and Klein
*Electronic address: huck@phys.sinica.edu.tw bottle.
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M tions in both directions, a Maius strip if there are twisted

boundary conditions in the horizontal direction and free
boundary conditions in the vertical direction, and a Klein
M_=4 B SRR bottle if, in addition to the twisted boundary conditions in the
horizontal directions, there are periodic boundary conditions

Mo~ 4 in the vertical directior(Fig. 1). We have the following cor-
R respondence between the number of the edgés/N) and

the number of the sitesM,Ng) under different boundary

N,=6 Np=7 Ng=6, Np=6 conditions(Fig. 2): M =M and A= N for torus and Klein

N bottle, M=M¢+1 and N'=Ng for cylinder and Mdius
strip, M=M¢+1 and N=Ng+1 for free boundary condi-
FIG. 2. Example of lattices with the free and cylindrical bound- tions.
ary conditions; relations between the number of the edges ( The partition function of the dimer model on aw X A/
=My, N=N;) and the number of the sited/,N,) of the lattice  |attice is given by
are given in the first paragraph of Sec. II.

works) and greatly simplifies the task of verifying the behav- Zun(z,.20)=2 27", (1)

ior of the different terms in the asymptotic expansion under

duality transformationM —N. Using this approach, Salas \yhere summation is taken over all dimer covering configu-
[24] computed the finite-size corrections to the free energyyations z, andz, are, respectively, dimer weight in the hori-
internal energy, and specific heat of the critical Ising model,gnta) and vertical directions, andn, are, respectively, the
on triangular and honeycomb lattices wrapped on a torus angmper of vertical and horizontal dimers. In what follows,
quite recently Izmailian, Oganesyan, and F7] obtained \ye will show that the exact asymptotic expansion of the
similar finite-size corrections of the Ising model on a squar@ogarithm of the partition function can be written as

lattice with Braskamp-Kunz boundary conditions. Using ex-

act partition functiong30] and finite-size corrections of the INZ (1 (2) = FounS+ N 16(21,2,) + MFos(21,2,) + Fo(2p)
critical Ising model on the square, plane triangular, and hon- ’ v St St
eycomb lattices with periodic-aperiodic boundary conditions,
Wu, Hu, and Izmailian[28] obtained universal finite-size + > fy(zp)S7P, (2
scaling functions for the free energy, internal energy, and Pt

ﬁgiglltc(:)?seat of the Ising model with exact nonuniversal met—With S= MM, 2=2,/z, , andp=MIN, which is the aspect

In the present paper, we relate the exact partition funcratio and will be denoted by, for the Mdbius strip and

tions of the dimer model on the square lattice under freecyl'ndr'caII boup@ary CO”O"“O'?S.' and by? for the fregl
cylindrical, toroidal, Mdius strip, and Klein bottle boundary boun_dary conditions. The explicit expression of the partition
conditions obtained by Kasteleyg], Temperley and Fisher function depends crucially on whethi, andN are even or
[3,4], McCoy and Wu[6], Brankov and Priezzhefg], and odq, and since the total number of sites must be even if the
Lu and Wu[9-11] to the partition functions with twisted Ia}tt|ce is to be completely covered by dimers, we will con-
boundary condition&,, ; with (a,8) =(1/2,0), (0,1/2), and Sj%el\:_t&re_ezﬁﬂaseNS“fs;\fMl’ Ns=2N, Ms=2M-1, Ns
(1/2,1/2) (Sec. ). Based on such expressions, we derive < "'sT W Vs T LTV = - .

several groups of identities relating dimer partition functions . Dimers on 2Mk2N lattices.The partition fu_nctlon of the

for the different boundary conditior($ec. Il)). We then ex- dimer model on M XZN torus has been obtained by Kaste-
tend IIH's algorithm[23] fo derive the exact asymptotic ex- €Y [2] and can be written as

pansions of the logarithm of the partition functions for all
boundary conditions and write down the expansion coeffi-
cients up to the second ordéBec. IV). We find that the
aspect-ratio dependence of finite-size corrections is sensitive

o0

2MN
Zyu'n(2)= UT[Z%/z,l/z(Za M,N) + 23,1/2(21 M,N)

2
to boundary conditions and the parity of the number of lat- +Z1,dZM,N)]. ©)
tice sites along the lattice axigig. 3. We also discuss our ) N ) ) )
results and problems for further studiec. \J. Here we have introduced the partition function with twisted

boundary condition€, 5(z,M,N),

Il. DIMER MODEL UNDER VARIOUS N-1M-1

m(N+a
BOUNDARY CONDITIONS ZZ y(zM,N)= HO HHO 4 e

N

22 sin2<

Consider a dimer model on avl ;X Ng square lattice of
MN; sites withM ¢ rows andNg columns. The lattice forms +sir12( m(m+B)
a cylinder if there are periodic boundary conditions in the M
horizontal directions and free boundary conditions in the ver-
tical direction, a torus if there are periodic boundary condi-With the help of the identity31]

} : 4
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FIG. 3. Aspect-ratio ) dependence of finite-size correction terfgsandf, for the free energy of the square lattice dimer model with
the toroidal(solid lineg, free (dot-dashed lines cylindrical (dot-dot—dashed lingsMobius strip(dashed lines and Klein bottle(dotted
lines) boundary conditiongBC): (a) and (b) for the 2M X 2N lattice, (c) and (d) for the (2M —1)X 2N lattice, and(e) and (f) for the
2M X (2N—1) lattice. Aspect ratip is defined in the second paragraph of Sec. li(dnthe lowest symmetry curve is for the Miuis strip
(dashed ling which collapses with the curve for the Klein bottle fordr1 and with the curve for the cylinder for ji<—1. In (b) the
lowest symmetry curve is for the Nbius strip and planéfree boundary conditionsin (c) and(d) near Inp=1 the upper curves are for the
torus and cylinder and lower curves are for the other three cases. Nofig trertishes ap~0.303 468 for the free boundary conditions, at
p~0.378 978 for the torus and cylinder, andoat 0.378 408 for the Mbius strip and Klein bottlef,; vanishes ap~0.567 436 for the torus
and cylinder and gt~ 1.132 912 for the Mbius strip, Klein bottle, and free boundary conditions(énand(f) near Inp=2 the upper curves
are for the Mius strip and Klein bottle and lower curves are for the other three cases. Nofg tratishes ap~3.263 732 for the free
boundary conditions, gi~2.641 441 for the torus, and pat=1.313 279 for the cylinderf, vanishes ap~1.761 351 for the torus and at
p~0.881 437 for the cylindrical and free boundary conditions.

4|sinM w+i7B)|?>=4[sintPM w + sirém3] N-1
zwgzmm®=[kz

M-1

. m(Nta)|
sm){M wZ(N) +|77,8}

m+
= Ho 4 sinhzw+sin2(7T(N|B)H, (6)
m=
(5) where w,(k) =arcsinhgsink). Note that the general theory
about the asymptotic expansion &f, ;(1,M,N) has been
given in Ref.[23], which can be easily extended to the case
Z, 5(z,M,N) can be transformed into a simpler form: with arbitrary z (see the Appendjx
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Let us consider the symmetry properties of the partition Z1po(zZ,M,2N) =23, (z,M,N), (10)
function Z,, 45(z,M,N). From Eq.(4), one can easily verify ’ ’
that
21214 ZM,2N) =23, 1142, M,N), (13)

Zos(ZMN)=Z, 4(zZ,M,N)=Z_, 5(z,M,N),

Zo g(ZMN) =21 o 4(ZMN)=Z, 1, 4(Z,M,N). Z1/ao(2,2M,N) = Z1)4,o(Z,M,N) Z1)414Z,M,N),  (12)

These imply that we need only considerand 8 in [0,1]. Z150(2,2M,N)=Z1)o o ZZM,N)Z1/5 1,{Z,M,N).  (13)
Other useful identities are ’ ' '

Zup(ZM2N)=Z 45 5(Z,M,N)Z (1 _ 42 s(Z,M,N), (7) Finally, Eq. (9) implies that we need only considerin the
interval[ 0,1].

Z,p5(2,2M,N)=2Z, 52(Z,M,N)Z, (1-)2(Z,M,N), (8) Thus the partition function for the dimer model orM2'
X 2N torus is expressed in terms of the only object

a,B(Z M N) with (a ﬂ) (012) (210) (212
In what follows, we will show that the partition function
of the dimer model under four different boundary conditions
In particular, from the identities of Eq$7) and(8) one can (free, cylindrical, Klein bottle, and Muius strip can be ex-
obtain that pressed in terms o, 1,4z, K,L) only, namely,

1 1
Za,B(E!MIN):Z'\A_Nzﬁ,a(ZlNlM)‘ (9)

1/2
(1+2)Y2Z15 142,2M+1,2N+1)
Ziion(2)=2,"" Tl (14)
222Nt cosh (2M + 1)arcsinhz]cosr{(2N+ 1)arcsinh
Zl/2,1/iZYZM + 1,N)
Z(Z;M nNZ)= ZZMN 0 (15
22N cos?‘( NarcsinhZ)
Zoion(2) =22""Zy5 142, M 2N), (16)
oo o Zvzadz2M+1L2N) M
ZZI\/(IJ,ZN(Z):ZU ’ 1 (17)
272N cos)’( 2Narcsinh£>
|
The partition function of 21X 2N Klein bottle is given N M n m
free _ 5,2MN
by [9] Zywon(2) =12 n]:[ 1_:[ z C0§2N+1+C0§2M+1 .
N-1M-1 (20
a(n+1/4
Z5en(2) ZMNH 11 4|z S|n2( ( )>
=0 m=0 Let us change variables and m in the following way: f
(m+1/2) —N-—n andm—M —m). Then the partition function given
+sir? v ” (18) by EQ.(20) can be transformed to the following form:
_ N-1M-1 1/2
It is easy to see from Eq$4) and(18) that ;rl\'llae2N(Z) ZZMNH H 4l 2 sipn m(n+1/2)
~0 m=0 2N+1
Zwan(2)=2""25, 1A ZMN). (19 a(m+1/2)
+Slnzm (21)
Now using identity given by Eq(11), we finally obtain Eq.
(16).
In the case of the free boundary conditions, the exactNow we first express double produdig™ 112™ ' f(n,m) in
partition function[2] is terms of [1N_gTIM-2f(n,m), where
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m(n+1/2)
2N+1

7(m+1/2)

+ sir? V1

f(n,m)=4| 2 sir? . (22

It it easy to show that f(2ZN—n,m)=f(n,2M—m)
=f(n,m) and thus

2N 2M
IT II f(nm
n=0 m=0
2N 2M
H f(nM)H f(NNM)  N—1 m-1
- F(N,M) (H I o m))
(23

with f(N,M)=4(1+2z?). With the help of the identity, Eq.
(5) the productsI2™  f(N,m) and I12¥,f(n,M) can be
written as

2N
H f(n,M)=4z2@*1cosi

(2N+1)arcsmh—

(24)
oM

HO f(N,m)=4 cosR[(2M + 1)arcsinhz].  (25)

Now using Eqs(21)—(25), the partition function of dimers

with the free boundary conditions finally can be written as

Eq. (14).

The partition functions of the dimer model for the cylin-
drical boundary conditiof6] and the Mdius strip[9,8] are
given by

PHYSICAL REVIEW E 67, 066114 (2003

m(m+1/2)

+sm2—2M 1

N M
g/ll\ﬁsz(Z) Z nl;[ 1_:[
mm
2M+1

N-1M-1

2MNH H 4

#(m+1/2)
2M+1

’7T(n 1/4)

+cog

2 TNt d (n+1/4)

+sir?

Following the same way as in the case of the free boundary
condition, we can obtain Eq15) for the cylindrical bound-
ary condition and

Mob ZiMN
Zymon(2) = 1
V22N cosh? 2Narcsinh£)

XZ1j4142,2M +1,2N) (26)

for the Mabius strip. Using the identity given by E€L1), we
finally arrived at Eq(17).

w(n 1/2) Dimers on (2M-1)x2N lattices.In what follows, we will
Z5 n(2) = ZZMNH H 4|z T show that the partition function of the dimer model under
n= five different boundary conditions of Fig. 1 can be expressed
m in terms ofZ,, o(z,K,L) only, namely,
+cos°-2M 1
N-1 M-1 torus _ ,N(2M-1) _
m(n+ 1/2 Zoy-1n(2)=2 Z1poZ,2M —1N), (27
ZMNH H 4| 22 sif ————— ( ) ’
|
(1+22)Y22,,, (2,2M 2N +1) v
zhee  n(2)=2)M" b ' | (28)
222N sinh(2M arcsinhz)cosr((2N+1)arcsinh£)
2y Z04(2,2M,N) b Zy PO Zypd2,2M 2N) ]2
Z50- 1n(2)= Y 1 (29) Zom-1.n(2) = N 1
cosl‘( N arcsinty) cosl{ 2N arcsinbg)
(32)
Klei _ N(2M—-1)-1/2 .. .
Z5w" a(2) =22 M VZ3E (z2M - 1,2N),  (30) The partition function for toru§2] has a form
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Using Eqg.(33) in Eq. (32), we obtain Eq(27). It is interest-

1 N 2M-1 N ing to note that in this case the partition function with the
ZIZO,J,“_SM\‘(Z)— ~ZNeM-1) (H 11 42 sinZW toroidal boundary conditiofiEq. (27)] is very simple and
n=1 m=1 expressed only in terms &y, (z,2M — 1,2N).
_ 12 The partition function for the Klein bottle boundary con-
o m(2m—1) . .
+ sir? dition [10] has the following form:
2M -1
[ 1
N 2M-1 T n— > N 1
+ 4 sir? . Aen-un v } z
nﬂl m=1 L Z5e" o= H 1__[ 4 z sm2
112 T
+sir? 2mm (2m—1)
Sl m(Zm—
2M -1 iP—
_ + sir? SM—1 (34)
:
N 2M-1 Tl N— =
2 nZ 2 . . .
+ nl:[l 1L 4| z°si Using the same transformations as in the cade,(Ns)
) =(even, evehand the relation
1/2
o m(2m—1) _ -
eirf 2M-1 (32 Ml_[l a+sin2—w(2m_l) =MH1 a+sir? m2m
m=1 2M -1 m=1 2M -1
The first term on the right-hand side of E§2) is zero; the Vo1
second and third terms are equal to each other according to Tm
the following relations: l_:[ a+3'”22|v| 1
2M -1 2M -1
_ 7-r(2m—1)) 2m ) (35
atsif—————|= a+ sir?
ngl 2M -1 ngl 2M -1
2mM-1 m we can obtain Eq(30).
= 11 a+S|n22M 1) The partition functions of the dimer model for the free
m=1 boundary conditio{2], the cylindrical boundary condition
(33  [6], and the Mbius strip[8,9] are given by
|
N 2M-1 mn m- 1/2
free N(ZM 1) 2 R
ZonS 1n(2) = (Hl m]_:[1 4z CO§2N+1+CO§2M ) , (36)
1 T\ 172
N 2M-1 | n— E m
Z50 2= DU TT T 4| 2sir? +cod - — : (37
' n=1 m=1 2M |
( 1
N2M-1) N M T\ n=~
z, 4 mm
Z5e0 o= H IT 4| 22siP——"+co - (39
n=1 m=1 N 2M

Following the same procedure as in the calsk, (Ns) =(even, evejy we can obtain Eq928), (29), and(31).
Dimers on 2Mx(2N—1) lattices.Here we will show that the partition functions can be expressed in terrdg 9f(z,K,L)

orZy»14z,K,L) as
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Ziin-1(2)= 2N DZ0 1z, M, 2N - 1), (39

(14224224 115(2,2M + 1,2N) 12

;rl\i N 1(2)=2) N 1 : (40
272N sin?-( 2N arcsinhZ) cosh (2M + 1)arcsinhz]
Zo1s(Z,2M+1,2N—1) v
0,1/2\ & ) -
Z8 n-1(2) =27 N | (41)
2z2N-1 sink( (2N— 1)arcsinh£)

erlv?,ianﬂ(Z) =22MEN"DZ, o d2,2M 2N - 1), (42)

ZipidzM+1N-1) "

— 1/2,1/. ’ ’ -

Zion-1(2) =22 N (43

1
272N~ cosl’{ (2N— l)arcsinhz)

The partition functions of the dimer model for the toroidal boundary condf@dnthe free boundary conditidr3], and the
cylindrical boundary conditiofil1] are given by

1
(2N-1) M 2 | (2N-1) M m——=
m(2n—1 ( 2)
Zis - 1(2) =5 zZp N ( H H 4 S|n2—+z nzﬁ}) + H H 4| sihk——~
112 1 112
(2N-1) M m— =
2N ( 2 o m(2n—=1)
+7 sm2 — + H H 4| sit———+2 smzm , (44)
M 2N-1 m 1/2
free M(2N—-1) o
Zheen_(2)=2) (Hl n]l z CO§2N+CO§2M+1 , (45)
M 2N-1 m 1/2
eyl M(2N-1)
Z$h - 1(2) =2 (Hl n]l z sm2 1+CO§2M+1 (46)

Following along the same lines as in previous cases, we can obtai@gs(41).
The partition functions of the dimer model for the Mas strip and Klein bottle boundary conditions are given bg]

M  2N-1
3 ) ) (4n-L)7w mar
Mob _  M(2N-1) _ _ 1 \M+m+1
Zon-1(2) =2, Re{(l |)nl'=[1 n];[l 2(.( 1) 2SI 5 N1y TS am T (47)
M 2N-1
. . (4n—=1)7  (2m-1)=w
Klein M(2N—-1) _ M+m+1
Z5en _(2)=2) Re{(l |)m]_:[1 nll 2( i(—1) ZSIn2(2N_1)+SIn oM (48)
|
For M =4M using the same method as in the cask (N) 7 ZAM+1N) 1Y?
= (even, evehfrom Egs.(47) and(48), we obtain the par- ZA,\AObN(Z) z?MN 12142, N) (50)
tition functions for the Klein bottldEq. (42)] and Mdius 27N cosH Narcsinh=
strip [Eq. (43)] boundary conditions. We cannot find such z

simplification for the casés=4M —2. It is interesting to

note that partition functions of the Klein bottle and bos

strip for the Can\AS=4M can be written in the common . SYMMETRY AND IDENTITIES
form for both (even, eveh case[Egs. (16) and (17)] and OF THE DIMER MODEL

(even, odd case[Egs.(42) and(43)],
In the case of the periodic and the free boundary condi-

ZeN(2)=22"NZ1)142,2M N), (49 tions in both horizontal and vertical directions, we expect
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symmetry under the interchangeg—z, (or z—1/z) and zZMob ()= [Z7SVT (7). (65)
M« N. To verify this, we use the identity given by E() Z2u 2 an(2)
and the expressions for the partition functigese Eqs(3),

(14), (27), (28), (39), and(40)], from which the results The relation of Eq(65) was first established in the lardé

and N limit by Brankov and Priezzhey8] and then was

2y (12)=Z W (2), (51)  rigorously established by Lu and W@].
Using Eqs.(27)—(31), one can write the following identi-
Zie(1z)=2ZL5%(2) (52)  ties between partition functions of the dimer model on

_ ) ) (2M —1)X 2N lattice with different boundary conditions:
are evident. It is also evident that we cannot expect such

symmetry for the Klein bottle, Muoius strip, and cylindrical

i
boundary conditions. Instead the partition functions for such ZR (D) =3[ 25 M (D)1, (66)
boundary conditions under the interchangg—z, (or
z+1/z) transform in the following way:
) g way 2501 D)= 228 (D) T, (67)
Z5(L2) =Z2"NZ 5 114 2,2N,M), (53)
i - sinh(2Marcsinhz
Z3w " an(U2) =22 M "IN Zg 1 (2,2N,2M — 1), - ZN a2 =22M “(sz)m rzie , A2T2
_ (68)
Zivion-1(U2)=2" 07,5 1 (7 2N—-1,2M),  (55)
The relation given by Eq(67) was first established by Lu
gﬂobz (1/2)_ 2MN 21/2,1/1212N12N.|+1) 12 (56) and Wu[g] 9 y q( 7) y
M2 2costi2Narcsinhz) | Using Egs.(39) and (41), one can write the following

Zo1A2,2N,2M)
Mob - N(2M71>\/ e s
ZZM—1,2N(1/Z) Z, cosi2Narcsinte)’ ®7)

Z1p142,2N—1,4M +1) |2

2cosh(2N—1)arcsinhz]

Zm,sz- 1(Uz)= ZgM(ZN_ g

(58)

Zz0, L n(1/2)= 3Mszlfél;ﬁZ,<l:r,§2/iln—:z];), (59

251l )= 52O ZEEEEL (60
i - A

(61)

Equation (53) implies that the partition function of the
dimer model on the Ml X 2N lattice with the Klein bottle

identity between partition functions of the dimer model on
2M X (2N—1) lattice with the toroidal and cylindrical
boundary conditions:

Ziorus (2)=22N" lsm){(ZN—l)arcsinh1
AM+2,2N—1 z

X[ZZM no1(2D]% (69)

And finally, using identity given by Eq13) and the ex-
pressions for the partition functio@$s m(2), Z3 -~ 1 a(2),
and Zg",\ﬁtilyz\,(z) [see Eqs(16), (29), and(31)], we can ob-
tain the following identities:

Z - 1n(2)= Z5 - 121\1(2)251'\/?,i2nN(Z)7 (70)

Z0° 1 (2 =250 NV ZEG I 2). (71)

boundary conditions obeys the unexpected symmetry under

the interchangeg,<z, andM « N, namely,

Zen (1iz2)=ZKEm (2). (62)

It is easy to see from Eq$14)—(17) that the partition

functions of the dimer model on\ X 2N lattice with differ-
ent boundary conditions obey the following identities:

N Cas WA oy ]
MmN zM\/cosh (2M + 1)arcsintz] “om an2(2),
(63
Klein 2N i 1 cyl
Zaym+2.n(2) =22 cos 2Narcsmh2 Z3\nan(2), (64)

IV. ASYMPTOTIC EXPANSION OF THE FREE ENERGY

In Sec. Il, we have shown that the partition functions of
the dimer model with various boundary conditions can be
expressed in terms of the partition function with twisted
boundary conditions Zy,, o(z,K,L), Zg1(z,K,L), and
Zyp4z,K,L) [see Egs.(3), (14-(17), (27)—(31), (39—
(43)]. Based on such results, one can easily write down all
the terms of the exact asymptotic expansion of the logarithm
of the partition functions for the dimer model using E41).

We have found that the exact asymptotic expansion of
InZ,, A(2) can be written as Ed2).

The bulk free energy . is the same for all boundary

conditions and given by
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1
fbu|k:§ |n ZU+

1 fw d
27, w,(X)dx

1

=§Inzu+

Ejo arcsintjz sinx)dx

1
— 729"
P -z ,2,2)

=§|I"IZU+T,

(72

where®(z,s,a) is Lerch’s transcendent function defined as

d(z,5,a)= 2, (a+n) 52" (73
n=0

In particular, one hasb(—1,2,1/2=4G, whereG is the

Catalan constant given byG=3,_,(—1)"(2n+1)?

=0.91596558 ... . Thesurface free energiek ((z,,2,)

andf,s(z,,z,) defined by Eq(2) are

ftlgrus(zh 1Zy) = fﬁslein(zh 1Z,)=0,

f2(zp)=1In

PHYSICAL REVIEW E 67, 066114 (2003

1(z,,2,) = 1% 2,,2,) = F1%(24,2,)

7.2
—3In(z,+Vzf+2),

Fo (2 ,2,) = 3""(2n2,) = T8(20,2,) = 13720 2,) =0,
f5ee(z,,2,) = 1%z, ,2,) = — % In(zy+ VZ2+ Z7).

(74)

Note thatfq4(z,,z,) andf,s(z,,z,) depend on the type of
boundary conditions but independent on the parit&a®n or
odd of Mg andNg. This is not the case for the other coef-
ficientsf,(zp) (p=0,1,2...) in theexpansion of Eq(2).
In what follows, we will list expansion coefficients,(zp)
for p=0, 1, and 2 and show that they depend crucially on
whetherM¢ andNg are even or odd.

Dimers on 2Mx2N lattices.For the periodic boundary
conditions (torug, the coefficients in the expansion coeffi-
cients are

03+ 65+ 07

27]2 ,

7
03°+ 030+ 020 + 630263( 6507 — 0565— 0367)

T P2y 8
= T o+ 93 6 ’
- 50t %%@%%ﬁws%m+<0%6%m%z
272~ 55 03+ 62+ 62
7 2 7 2 7 2
oyt Bl 508 0208) o gor- et vt Gttt o
" 7450 02+ 02+ 62 T B

%wz0g+@w20@+[%wzeg+@wgam+

X

(wﬁeﬁeﬂ

62+ 63+ 62

_ 31m°%° 05%(62— 00) + 0305+ 6)

0,203+ 03)

3024 05+ 65+ 0%

m°p® 630303 05(3—

62)+ 05003+ 63)— 65( 65+ 65)]

J
( 4+36p22(9( )|n02)

189

03+ 05+ 63

J
24+ 36p73 InG)
Zy Y 2(?( 0) 2

(75
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where 22=_—z_(1+22)/3, z,=2(1+7%)(1+927%)/5, and 6 Mob_ gMob(zp) + £M°P(7,. z,),
= 6;(zp) with i=2,3,4.
For the Mdbius strip boundary condition, the expansion cY'=fY(z,,2,)+ fou,  €'=1(z,.2,)

coefficients are
'= 18 (zp) + 15z, 2,),

2
°(zp;)==In 2% free_ ¢f free_ ¢f
0 VU6 0,0, C1 % =F15%2Zn,2) T fous €2 o="Tag (Zn,2y) + fouik,
m3p32, (7 5 e=10(zp) + 115%(2n.2,) + 15L(21.2,) + Fouik,
0(zpy =~ T T g8 . e
6,42 which imply that our results foff,g, fos, fo for the free,
fMob 5,y 27 P1% S7p1Z; otot B—2 g8t @08 cylindrical, and Mdius strip boundary conditions are con-

2 \PU= 51504 Y34 Vs 2 574 sistent with those obtained by FisH&l, Ferdinand 5], and

Lu and Wu[9]. For the Klein bottle, we have obtained dif-

m°p3 (6" 94)(3_1 8 0404) ferent result forf, compared with Ref[9]. Our results for
12096 4 294 f?lem, flillob fcyl, fgree, fKIeln’ fMob, fcyl, andf;ree have

p not been reported in papers cited in this paper.
X | 24+ 362,p7 In02) Dimers on (2_M—1)><2N Iattlcgs. For th_e_Mdjlus strip
d(zpy) boundary conditions, the expansion coefficients are

76 1 1 262
(76 MOb(Zpl)— In 2+—Inﬁ
where 6= 6,(zp,) with i=2,3,4. 273

For the free, cylindrical, and Klein bottle boundary con- w3022, (7
ditions, the expansion coefficients can be obtained from the fMob(zp, )= — —— (—08— 040§),
following functional relations: 240 \8
6 4 2
8 Mob _XTP1%3 4 4 8 g, 26 g
fe€(zpy) = f'°°(zp,) + %‘O In4(z2+2}), f2°%(2p1) = 7504 ¢ 94( 0,=2 0+ £ 03
ny|(Z )_2p+lfMOb(22 ) pl 4 4 31 4 A4
p (2P1)= p p1), + To06 0o+ 05)| T 94+0 63
f51e0(zp) = 2P 1 MP(2p/2). (77)

X z4+3622p1%ln02>

It is of interest to compare these findings with other re- (zp1)
sults. In the case of the periodic boundary conditions, our
results for fyu(zp) and f5>™"S(zp) reproduced those ob-
tained by Fishef3] and Ferdinand5]. In the casez,=z,  where§,= 6;(zp,) with i=2,3,4.
=1 (z=1), the expressions fdi°™'%(zp) and f5™%(zp) at For the toroidal, free, cylindrical and Klein bottle bound-
z=1 reproduced results in Refl23]. Our results for ary conditions, the expansion coefficients can be obtained
f1°7(zp) and f*""S(zp) for arbitrary z have not been re- from the following functional relations:
ported in papers cited in this paper.

For the case of the free, cylindrical, Miois strip, and flOrUS( ) = 2P+ 1gMOb( D7) @Inz
Klein bottle boundary conditions, the asymptotic expansion P P 2
of the logarithm of the partition function B,y vy (2) in the
largeM andN limit has the following form[3,9,5: f{)ree(

(80)

S
200) =1y (2py) + 3 INZ + 27),
In Z(ZM,ZN):4M N fbu|k+ 2NC1+ 2MC2+ C3+ O(l/N)( )
78 )
fg)’l(zpl): 2P+lfll;llob(22pl)_ %'Oln 2,
There are following relations between coefficients in Egs.
and(78):

fo " (zp) =15'(zp). (81)
chlen=f*"(z,,2,), c5'"=151"(z,,z,), In the case of the periodic and free boundary conditions,
Klein_ <Klein our results forf{°™s and f{r¢® reproduced those obtained by
cs =fo (zp), Ferdinand[5]. Our results forf§'®n —gMob —gevl - gtorus

fTIein, flillob fcl:yI, fflree, ftorus1 fKIein, fgllob fcyl1 and

b__ {Mob b__ ¢ Mob
' P =112zn,2) + fouis €3 OP=15(2n,2,), f1'®® have not been reported in papers cited in this paper.

066114-10



EXACT FINITE-SIZE CORRECTIONS OF THE FRE. .. PHYSICAL REVIEW E 67, 066114 (2003

Dimers on 2Mx(2N—1) lattices. For the cylindrical and Ferdinand[5]. Our results forfK'®in =~ §Mob gyl - gtorus,
Mobius strip boundary conditions, the expansion coefficientgklein = gMob eyl = gfree fto"US, fglem’ fMob - $Y! and

are ffzree have not been reported by papers cited in this paper.
Figures of expansion coefficieni&e plot the aspect-ratio
2 0% (p) dependence of, and f; at z=1 for 2M X 2N, (2M

1
¥ (zp1) = g n —1)x 2N, and 2M X (2N—1) lattices under various bound-

6403 ary conditions in Fig. 3. We use the logarithmic scales for the
horizontal axis. We have several interesting observations
Vob 265 from Fig. 3.
fo (zp) =g In ==, For 2M X 2N lattices[Figs. 3a) and 3b)], the plot off,
27 andf, as a function ofp in logarithmic scale is symmetric
for the torus, plane, and Mbus strip because of the sym-
eyl B mp32, (7 8 4 metric property under the transformation undes 1/z and
f17(zpy)=— 240 5‘92_ 0304, p<—1lp. fy andf, take the minimum gbp=1. This is not the

case for other geometries. For large enoygli>1), the

- finite-size scaling(FS9S properties of the Klein bottle and
TP (T o 44 those of the Mbius strip become the same because the

240 (§93 026 ) boundaries along the shorter direction determine the FSS
properties of the system; for both the "Mas strip and the
Klein bottle, the boundary conditions along the horizontal
direction are the twisted one. The FSS properties of the torus
and the cylinder are the same for large enopggin contrast,
the systems witlp<1, the Klein bottle, and the torus show
mp3 TP iy )( 108+ 6to ) similar FSS behavior. For small enougl{<1), the Mdius

3 4 3Y4 . .

12096 162 strip, the cylinder, and the plane show the same FSS proper-

f'iAOb(Zpl): -

80472
T P12

5
fgw(zpl)z 1344 0304(802+ 0§+ 02)

9 ties because the boundaries along the shorter directions for
X | 24+ 362,p;——In 92) , these three are the same, that is, the free boundary condition.
9(zp1) For large enouglp (>1), the FSS properties of the plane
and those of the Klein bottle and the bias strip become
26 the same. To summarize, we have found that in the limit of
0401( 05—2 05+ —62) large enoughp (>1) the finite-size correction coefficients
5 (fo,f1) can be classified into two groups: one group is torus
p3 , and cylinder, and the other is Mius strip, Klein bottle, and
12 096( 04)( 05— 04) plane. For small enough (<1), the finite-size correction
coefficients §y,f,) are classified into another two groups;

60472
T P12

%200 = 102

d one group is torus and Klein bottle, and the other isbis
X | zg+ 3622p1m|n92) strip, cylinder, and plane. Note that fortp=<, the coef-
ficientsf, for free the and Mbius strip boundary conditions
show similar behavior. Our results for the FSS behavior of
the dimer model on B X 2N lattice are consistent with the
results obtained by Kaneda and Okdk&] for the FSS be-
havior of the Binder parameter for square lattice Ising model.
For (2M —1)X 2N lattices[Figs. 3c) and 3d)] and 2V
X (2N—1) lattice[Figs. 3e) and 3f)], the FSS properties of
ftporus(ZP):szfSyI(ZP/Z)’ the system are totally different. For [2—1)x 2N lattice,
the finite-size correction coefficientd,f,) are classified
S0 into two groups for large enough (p>1): one group is
fLree(sz)zfgy'(sz)nLT’ In4(z>+ 2, torus and cylinder, and the other is "blas strip, Klein
bottle, and plane. In contrast, for small enoygtp<1), the
finite-size correction coefficientsf{,f;) show similar be-
fR1e0(zp) = 2P 1 MP(2p/2), (83)  havior for all five boundary conditions.

For 2M X (2N—1) lattices [Figs. 3e) and 3f)], the
one can obtain the expansion coefficientg(zp) (p finite-size correction coefficients,f,) for large enoughp
=0,1,2...) for other boundary conditions: toroidal, free, (p>1) can again be classified into two groups: one group is
and Klein bottle. torus, cylinder, and plane, and the other iSBils strip and

In the case of the periodic and free boundary conditionsKlein bottle. For small enougp (<1), the finite-size cor-
our results forf°™S and f{*® reproduced those obtained by rection coefficients f(,,f;) are classified into another two

(82

where 6,= 6,(zp,) with i=2,3,4.
Using the following functional relations:
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groups; one group is torus and Klein bottle, and the other iSAPPENDIX: ASYMPTOTIC EXPANSION OF Z, z(Z,M,N)

Mobius strip, cylinder, and plane. Z,5(z,M,N) can be expanded in the similar way as in

Ref.[23] and has a form
V. SUMMARY AND DISCUSSION

In this paper, we have used the method of R@B] to  InZ, z(z,M,N)= Ef w,(X)dx+In M
derive exact finite-size corrections for the logarithm of the Tlo n(izp)
partition function InZ, \ of the dimer model on the M P B
X 2N, (2M—1)x2N, and M X (2N—1) square lattices —27Tp2 ( ) Azp Rngp”(IZp),
with different boundary conditionéFig. 1). We have found (2p)! 2p+2
that the exact asymptotic expansion oz ,y(z) can be (A1)
written in the form given by Eq2). We have shown that the
coefficientsf(zp) for p=0,1,2,... inthis expansion are whereS=MN, p=M/N, 7(7) is the Dedekind+ function,
sensitive to the boundary conditions and the parity of the
number of lattice sitedyl; andNg, along the axes. We have o
established several groups of identities relating dimer parti- p(r)=em 2] [1—e?mm, (A2)
tion functions for different boundary conditiorisee Egs. n=1

z+2 Z2p — = _K2p

. (2p)! A4

(63—(71)]. We have also established that the partition func- 8 ) ’ i .
tions of the dimer model on theMx 2N lattice with the K2p+2(7) is Kronecker’s double serief23] and functions
Klein bottle boundary conditions obey the unexpected sym¥f«s(7) are defined as
metry under the interchangeg«—z, and M—N [see Eq.
(62)]. , 1 2
Previous studief5,9] only obtained exact finite-size cor- Oa.p T):nzz EXF{ w7 N+ 5_0‘)
rections up to the first order for certain boundary conditions °
or parities ofMg and Ng. The present paper is the one to ) 1 1
calculate finite-size corrections up to the second order for the +2mi| n+ 27 a) (5 - B”
square lattice dimer model under five different boundary
conditions shown in Fig. 1. Our results are a useful reference . 5 1 (1
for following further studies on the dimer model: =n(r)exg @it a"—a+ g+ 27| 5«
(a) At present, the exact result is usually available only
for closed-packed dimers on lattices, in which each lattice 1 - Dmir(nt @)+ 271 B
site is occupied by one dim§82]. One can consider a more X 5_'8) nHO [1—e Mm@ memi]
general dimer model consisting of mixtures of dimers and
vacanciegmonomey. There is no exact solution for such a X[1—e2mr(n+l-a)=2mif], (A3)
general dimer model. To use numerical methods to study the
general dimer modelwhich includes the closed-packed Relations to standard notations aréi7)=6:(7),
dimer model as a special casene would like to know the g 1)(i 7) = 02(7), 01141 7) = 03(7), O12.0(i7) = 04(7),
convergent behavior of the calculated quantities as the sysnd 7(i 7) =[ 6,(7) 03(7) 04(7)/2]*. The differential opera-
tem size increases. Our exact finite-size correction terms aters A ,, that have appeared in EGAL) can be expressed via
useful for this purpose. coefficientsz,, of Taylor expansion of the lattice dispersion
(b) Izmailian and Hu have found universal amplitude ra-relation w,(k),
tios for the Ising model on squateq), plane triangulafpt),
and honeycomb latticeghc) [21]. It is of interest to extend
the study of the present paper for the sq lattice dimer model w,(K)=k
to pt and hc lattices and try to find some universal amplitude
ratios for such systems.
The results of this paper show that the method of RefWith z,=—2(1+2°)/3, z,=2(1+2%)(1+92°)/5, zs=
[23] is quite useful for calculating exact finite-size correc- —2(1+2%)(1+90z%+2252%)/7, etc.,
tions for critical systems. It is of interest to use this method
to calculate higher-order terms.
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Ky p| ak
Kyl k! gk

kq Zpr

pi!

w3 B[
(A5)

and different positive numbekg,, . ..
+. .- +pki=p andk=k;+
We are
Z,p5(z,M,N) with a= 0.3
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.p:} such thatp;k;
<tk —1.

in the asymptotic expansion of
and B8=0,5. The function

interested

Ko A(7) can be expressed in terms of the ellipi¢dunctions

Here summation is over all positive numbdis,, ... k;}

[23] e.g.,

Kgm)=— 31—0[0‘2‘03— 0205+ 03641%,
K&29(7)= %[ E;a 3—10§912+ Zagai— 205205 — 9%6}, (A6)
K3V 7)= %[ 1;;0 ! 9;291+ ;9292— 205605°— a}f}, (A7)
K> 7)= %{ ii;e - 2626‘2‘62‘— «9203}, (A8)
g)bo( 7)= 132[ ‘92+ 93][ ‘94+ 93][ 94+ 94][ 02 03 02 04"‘ 03 04] (A9)
K29 7)=— 636[%0 %0“0 + 2—;080}14 ‘112 63265+ 62° (A10)
K2 7)= %EEG 23;0§694+ 2; 03265+ iz 656037+ 62° (A11)
KI2Y3 7y = 132[ 05— 04]{2% i; 030505+ 9294} (A12)
(A13)

Equations forks;”

(7) with p=2, 3 and other useful relations for elliptit functions can be found in Reff23].
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