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Algorithm of the finite-lattice method for high-temperature expansion of the Ising model
in three dimensions
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We propose an algorithm of the finite-lattice method to generate the high-temperature series for the Ising
model in three dimensions. It enables us to extend the series for the free energy of the simple-cubic lattice from
the previous series of 26th order to 46th order in the inverse temperature. The obtained series give the estimate
of the critical exponent for the specific heat in high precision.
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I. INTRODUCTION
H=-J E Sksk/ . (1)
(k.k")

The finite-lattice metho@i1-3] is a powerful tool to gen-
erate the high- and low-temperature series for the spin modsere the summation is taken for all the bonds connecting the
els in the infinite volume limit. It avoids the tedious work of nearest neighbor sitels and k’. The partition function is
counting all the diagrams in the graphical method, and regiven by
duces the problem to the calculation of the partition function.

In two dimensions, the total amount of the calculations for

the finite-lattice method increases exponentially with the Z:{;k} exp(—H/kT), )

maximum ordem of the series. On the other hand, in three

dimensions, the total amount of the calculations increasewhere the summation is the average over all of the spin vari-

exponentially withN? [4] and, except for some casés-13), ables,

many of the expansion series have been calculated by the

graphical method. Here we present an algorithm of the finite- E _
{s}

N[ -
N[ =

()

lattice method for the high-temperature expansion in three
dimensions, in which the total amount of the calculation in-
creases exponentially witll In N, and this enables us to gen-  In the finite-lattice method, to generate the high-
erate the series to much higher orders than not only the statemperature series for the free energy density to oktlar
dard algorithm of the finite-lattice method but also thethe inverse temperature, we first calculate the partition func-
graphical method. In fact applying the algorithm, we will tion Z(l,X1,X1,) for the finite size lattices with 2{+I,
extend the high-temperature series for the free energy density|,)<N. Here we use the notation for the lattice size such
of the simple-cubic Ising model to 46th order in the inversethat the 1x1x 1 lattice means the unit cube composed of
temperature from 26th order obtained by the standard alg®x 2x 2 sites. The Boltzmann factor for each bond is ex-
rithm of the finite-lattice method. pressed as

In Sec. Il, we briefly review the standard finite-lattice
method to generate the high-temperature series of the Ising exp( BsSks) = cosh{ B)(1+1tsySy/), (4)
model in three dimensions. In Sec. Ill, we present our algo- ) ]
rithm of the finite-lattice method. In Sec. IV, we apply our With 8=J/kT andt=tanh(8). We define the bond configu-
algorithm to obtain the high-temperature series for the fredation as the set of bonds to which factsgs,. in Eq. (4) is
energy density of the simple-cubic Ising model. The seriegiSSigned, while factor 1 is assigned to the other bonds of the
are analyzed to estimate the critical exponent of the specifilinite size lattice. Nonvanishing contribution to the partition

heat. Section V is devoted to summary and discussion. ~ function comes only from the bond configuratiGrin which
the bonds form one or more closed loops:

N .

I+

1

I+

$1= Sy=

II. FINITE-LATTICE METHOD Z(1,X1yX1,) =142, &C). (5)
C

We consider the Ising model with spisg= =1 on the
sitesk of the simple-cubic lattice with the Hamiltonian Here&(C) is the contribution from the bond configurati@n
and we are neglecting the trivial factor coming from the fac-
tor coshf) in the expansion of the Boltzmann factor in Eq.
*Electronic address: arisue@las.osaka-pct.ac.jp (4). In order to obtain the series to ord&; the summation is
"Electronic address: fujiwara@clas.kitasato-u.ac.jp taken for all possible bond configurations that haWyge<N
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except for the trivial configuration with,=0, whereN, is  The expansion series @f(1, X1, X1,) starts from the term of
the number of the bonds in each bond configuration. order t" with n=2(I,+1,+1,), which comes from one
Then we make the Taylor expansion with respect @  closed loop of bonds which has two intersections with any
the logarithm of the partition function for each size of the plane perpendicular to the lattice bonds. Thus it is enough to
lattice. The logarithm of the partition function can be written restrict the lattice sizes for the summation in E8).to those
as that satisfy 2[,+1,+1,)<N in order to obtain the series for
f to ordert™.
1 In calculating the partition function of the finite size lat-
INZ(1,x1yx1,)= 2 &Cy)— > 2 2 E(CECy) tice, the transfer matrix formalism with the site-by-site con-
€1 €1 C struction[15,16) is used. The total amount of the calculation
1 and the necessary computer memory is proportional to the
+§§ ; ; E(C1)E(C)E(Ca)+ - - number of the bond configurations in the smallest two-
e dimensional cross section of the finite size lattice, which is

(=" roughly 2x'y for ly<Iy=<I,. To generate the expansion series
=> . 2 X X ECECy) to ordersN, the maximum size of the lattice to be taken into
" “ C2 Cn account isl,~I,~1,~N/6, so the central processing unit

- E(Cp). (6)  (CPU) time and the memory increase exponentially with

in this standard algorithm of the finite-lattice method.

We define the superposed bond configurat®s C;+C,

+-.-+C, for each term in the right hand side of E®). lll. ALGORITHM

We call two loops of the bonds connected if the two 100ps | the standard algorithm of the finite-lattice method, the

share at least one bond with each other, otherwise disconyartition function for the finite size lattice is calculated with

nected, and a set of loops are called connected if the sefjj the bond configurations taken into account. The point of

cannot be divided into two subsets such that any loop in ongyr algorithm is that, in order to obtain the series to a given

subset is disconnected with any loop in the other subset. grder, however, it is enough to consider only a restricted
It is well known[14] that only the superposed configura- number of bond configurations.

tions C composed of the connected loops contribute to Let us consider the anisotropic model of the simple-cubic

InZ(1,<1,X1,), i.e., all the terms in the right hand side of Eq. Ising model withg; andt;=tanh(3) (i=x,y,z) in the frame-

(6), which have the same superposed configuration comwork of the finite-lattice method described in Sec. II. The

posed of disconnected loops, cancel with each other witlpartition functionZ (I, x1,x1,) can be written in exactly the

vanishing net contribution to [A. We call this Theorem 1. same way as Eg5). In order to obtain the series to order
Next we define recursivelf2] t!:'xt';ytzNZ in the standard algorithm, the summation is taken
for all possible bond configuratiod€} that haveN,,<N,,
AL X1y X1)=In[Z(1,X1,X1,)] Npy=<N,, Ny, <N, except for the trivial configuration with
Npx=Npy=Np,=0, whereN,,,N,,, andN,, are the num-
— E (=l +1)(1y— |)’,+ 1) ber of the bonds i, y, andz direction, respectively, for each
=l ly=ly =l bond configuration. Let us defing,; as the number of the
I+ 2Lt 4 bonds in thez direction for theith layer perpendicular to the
zaxis (i=1,2,...),) for each bond configuration.
X (1= 1+ 1) (1 X15X15). ) We find that the lowest order it of the terms in¢(l

xX1yX1,) given by Eq.(7), which involve¢(C) for the bond
The terms¢>(l>’<><l)’,><lg) are subtracted in this equation cor- configurationC with {n,;}, is E:Z:lmax(nzi,Z). We call this
responding to eack X I] X1, sublattice of the,x1,x1,lat-  Theorem III.
tice and, by the translational invariance of the model, the The proof for this is the following. Ifn,;=2 for all i
same size of the sublattice has the same valug,ofiving  =1... |, [see Figs. (8—-1(c)], E:ilmax(nzi,Z)ZE:ilnzi is
the factor (=1, +1)(Iy=1;+1)(I,~1,+1). Itis straight-  equal to the order o&(C) in t,. Then it is obvious that
forward[2] to prove using Theorem | that the Taylor expan-Theorem Il is true. Ifn,; is zero for at least one of
sion OngS(lXleXlZ) with respect ta includes the contribu- — 1,... !IZ [See F|gs m) and Ie)]' the Configuratiorc is
tion from every connected superposed bond configuratiogither disconnected or can be embedded into some rectangu-
that can be embedded into the<|, X1, lattice but cannot be |5y sublatticel, X1/ %1} with I,<l,. Then, by Theorem II,
embedded into any of its rectangular sublattices. We call thig,q termé(C) can contribute ta(1,x1,X1,) only when it is
Theorem II. _ o multiplied by one or more othef(C’)’s in Eq. (6) so that
The expansion series of the free energy density in th?heir supernosed coni ti®=C+C'(+--.) should b
infinite volume limit is given by perp guratl ( ) should be .
composed of connected loops that cannot be embedded into
any rectangular sublattice of thgx1, X1, lattice. In order to
f= 2 Bl X1, X1,). (8) prevent embedding othhe superposed ci)nflguratlon into any
2(xFly+Ip=<N rectangular sublatticen,; should satisfyn,;=2 for all i
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FIG. 1. Examples of the bond configuration &¢I, <1,X1,)
with 1,=3, 1,=3, 1,=4.

=1,2,...]),, wheren,; is the number of the bonds in tize

direction for the superposed bond configurat@nTherefore
the lowest order of the term ig(l,X1,X1;) to which the
configurationC can contribute is agaiE:ilmax(nzi,Z).

Thus to obtain the series fab(l,x1,X1,) to orderN,,
Ny, andN,=2I,+AN, in t,, t,, andt,, respectively, we
introduce in our algorithmp (I, <1, x1,,AN,) defined recur-
sively by

d(1,X1yX1,,AN,)
=In[Z(1, X1, X1,,AN,)]

- > (Ix=1;+1)

’ ’ ’
= = =
Ix\lx’ly\IY'IZ\IZ’

! ! r
A I

X (=1, +1)(1,= 1+ DBl x 1) x15,AN,).  (9)

Here the partition functioZ(l,<1,Xx1,,AN,) is calculated
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only with the bond configurations taken into account which
haveNp<N,, Npy=<N, andn; with

I

;1 max(n,;,2)<2l,+ AN, . (10)

By Theorem lll, any configuration that h%!zzlmax(nzi,Z)
>2l,+ AN, contributes tog(l,x1,X1,,AN,) in the order
greater than B+AN,. As an example, if we takAN,=2
for the 3xX3X4 lattice, we should take account of Figs.
1(a)—1(c), each of which ha§:ilmax(nzi,2)< 10, and we
should neglect Figs. (M) and Xe), each of which has
E:ilmax(nzi,2)> 10, among the configurations given in Fig.
1 according to the condition of E¢10). In spite of the fact
that the configuration Figs.(4d-1(e) all have the same
E:Z:lnziz 10, the first three contribute t$(3xX3X4) to or-
dert2° while the other two do not.

One important point in our algorithm of the finite-lattice
method is that in the recursive definition ab(l, X1,
X17,AN,) with Ii<I, I <I,I;<I,, the common value of
AN, should be taken for all these lattices. It guarantees that
the cancellation between the term i, xI,Xxl,)], which
comes from the superposed bond configuration that can be
embedded into thg X1, X1, sublattice, and the correspond-
ing term in ¢(1;x1;x17) in the right hand side of Eq7)
will be kept in the right hand side of E¢9) by keeping or
neglecting simultaneously the bond configuration for the par-
tition function Z(l,<1,X1,), which can be embedded just
into thel X1/ X1, sublattice, and the same bond configura-
tion for the partition functiorZ (I <1, x17).

The contribution of the bond configuration wifm,;} to
the partition function of the finite size lattice can be calcu-
lated by the transfer matrix formalism as

2. M
127z z

Z({nzi}):VO,jlt2Z1Vj Zlez,o- (11

HereV; ; . is the transfer matrix element with incoming

n,; spins and outgoing,;. , spins and the summations over
the spin locationg,,j,, ... of then,,n,, ... spins, re-
spectively, are assumed in the right-hand side of &d).
This transfer matrix element itself is the partition function in
two dimensions wit,;+n,;, 1 spins attached, which can be
calculated to any order ity andt, efficiently by the site-by-
site constructiorf15,16. The amount of the calculation for
each transfer matrix element is proportional to the combina-
torial factor C((Ix+1)(ly+1),n,i+ N4 1), 2'%, and Iy,
which are the number of the cases for attaching the
+ni41 spins to the I+1)(I,+1) sites, the number of
states in site-by-site construction for the partition function of
the Ising model in two dimensions, and the number of rel-
evant bonds, respectively.

To obtain the series to ordét in the isotropic model, we
calculate the expansion series for each ofdie, X1, x1,)’s
defined by Eq(7) in the anisotropic model to ordé Xtyytzlz
with Ny+Ny+N,=N, using our algorithm described above,
and sett,=t,=t,=t finally. When we use our algorithm for
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10% r r T T - TABLE I. High-temperature expansion coefficients for the free
x ] energy density of the simple-cubic Ising model.
10° b old algorithm  «  x 3
new algorithm o= x ] n a,
7 107} -
8 x ] 2 0
= % ]
10° | . ] : 3
x ] 6 22
12k L _geu®f] 8 375/2
xXgao®® ] 10 1980
1 57 . L] 12 240 44
0 20 40 60 80 100 14 319170
N 16 180590 31/4
18 201010408/3
FIG. 2. Total amount'of the calculation to geperate the se_ri_es to 20 516 228 363 3/5
ord.erN by the old algorithm and the new algorithm of the finite- 22 163 970 407 50
lattice method. 24 266 958 797 382
26 443759 665 054 8
each lattice sizel, Xl XxI, and each of the orders 28 525549 581 866 326/7
N,,Ny,N,, we can make the simultaneous exchange of the 30 644 828 436 349 120 2/5
lattice axes and the corresponding orders dgX[(, 32 179577198 475709 847/8
Xlz;Nx-Nyer)—>(|xX|zX|y;NXszaNy) or (lxX|y 34 395251 648062 268 272
X1 5Ny, Ny ,Np) — (I, X1, X1, ;N ,N,,N,), which have the 36 210936 621 888 205 205 21/3
chance to reduce the amount of the calculation for the trans- 38 126225408 651 399 082182
fer matrix elements. 40 456 921 753319676 199 778 5/2
We estimate the total amount of the calculation time 42 291912871109 686 238 579 40/7
T.adN) to generate the free energy series to orbeby 44 8410722 262 379 235 048 686 604/11
listing up all the transfer matrices needed and summing up 46 141203 142 047 137 197 668 882 10

the estimated time to calculate each of the matrices, which i5
plotted in Fig. 2, together with the estimated total calculation

time for the old algorithm of the finite-lattice method. The orderN=26. We have added ten new terms to these previous
numerical estimation for the new algorithm agrees well withseries. To obtain the series of ordér 26 in our algorithm,

the actually used calculation time fbr<46. We see that the we needed only the computer memory of 1 Mbytes and the
calculation time for the old algorithm grows exponentially CPU time of 5 min in a standard PC, and to ortler 46 we
with N2, while that for the new algorithm can be fitted by used the total memory of 2 Gbytes and the CPU time of 25 h
A expBNInN+CN+DInN) with B~0.15, C~—0.24, and in CP-PACS at Tsukuba University.

D~3.6. We can simply understand this eRp(nN+---) Following is the result of the preliminary analysis of the
behavior as follows. The maximum size of the lattice to beseries for the specific he@(t)=ZX,cnt". We plot in Fig. 3,
taken into account i$,=I,=1,=N/6, for which AN,=0 the critical exponentr versus the critical valugg; for the

and we have only to consider the bond configurations wittfirst-order inhomogeneous differential approximafitg] of
n,=2 foralli=1,2,...],. The largest amount of the cal- the series oN=40-46. From the linear dependencenobn
culation is to be paid for the partition function of the lattice 8. we find «=0.1045(1) ora=0.1077(2) at the valu@,

that has smaller size of,~I,~1,~N/12, for which the =0.22165459(10)[18] or B.=0.2216595(15)[19] ob-
maximum ofn,;+n,;, 1 is aboutN/6 and the product of the

above factors i<((N/12)?,N/6)2NV*2(N/12)?, and it grows 0.11 ; .
as expBNIn N+CN+D In N) with B=1/6 for largeN.

IV. RESULT 0.105
Using our algorithm of the finite-lattice method, we have 3
calculated the high-temperature series for the free energy 0.1

density of the simple-cubic Ising model to ordé46. The
coefficients of the obtained series

f=3 coslip)+ > a,t"; t=tanh(p) 12 0.221645 0.22165 0.221655 0.22166
n

Be

are listed in Table I. They agree with those given by Bhanot FIG. 3. Critical exponent versus the critical valug, for the
et al.[5] to orderN=24 and by Guttmann and Entif§] to  inhomogeneous differential approximants of the first order.
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0.13 . T - gives@=0.1088(39)[20] anda=0.1096(5)[21], and thee
0125 | ] expansion givesr=0.1085(75)[22]. More direct estimation

) x of «=0.110(2) was also given by the high-temperature se-

012 | x . ries for the magnetic susceptibility of the antiferromagnetic

£ 0115 | o | critical point [21]. We note that our estimated value af

) ++++X using B.,=0.221 65459 is not consistent with these values

0.11 | e 6-18 » | (except for the value by the expansiop, but the value using
04105 | n":14 . 23 o+ | B:.=0.221 6595 is rather closer to them.

V. SUMMARY

0.1

0 005 04 0145 0.2

1/n Our algorithm of the finite-lattice method has been given

to generate long series of the high-temperature expansions
FIG. 4. Sequence, plotted versus 1. for the Ising model in three dimensions. It drastically im-

proves the computational efficiency of the finite-lattice

method in three dimensions. The CPU time necessary to ob-

tained in the recent Monte Carlo simulations. The secondtain the series to ordep™ increases exponentially with
order inhomogeneous differential approximants give almosN In N, while it increases exponentially with” in the origi-

the same value. We also made the ratio ana]ysis_ The S@al version of the finite-lattice method. Our algorithm has
quence a,=(t2c,n/Con_p—1)N+1, which is expected to been applied to the high-temperature expansion for the free
behave asa+b/n®+c/n+.-- with the correction-to- €nergy of the simple-cubic Ising model, generating the series
scaling exponent ~0.5[17], is plotted versus i/in Fig. 4  t0 order®, and it is much longer than those by the original
for B.=0.221 654 59. The sequence for 14—23 given by  Version of the finite-lattice method and by the diagrammatic
the new 10 coefficients has a bit different slope frommethod. _ _

the sequence fon<13 given by the previously obtained _ '€ basic idea presented here in our algorithm of the
series. The three-parameter fitting of the newly obtainedinite-lattice method can be applied to the high-temperature
sequence for B,=0.22165459 gives =0.1036(10), expansion of other quantities such as thg magnetic suscepti-
b=—0.007(10), andc=0.17(2) for A=0.5. As for the b!llty aqd the corrglatlon length for thg Ising model in threg
case of B,=0.2216595, it gives«=0.1082(14), b d|m¢n5|ons, apd it can also be applied to the models with
=—0.033(10), anct=0.21(2). These estimated values of cpntmu_ous spin variables such as tk& model in three

a by the inhomogeneous differential approximation and bydimensions. Furthermore, the idea can be used in the low-
the ratio method are not inconsistent with each other. We sedMperature expansion for the spin models in three dimen-

on the other hand, that the estimated valuesradepends slons. We can expect that it will enable us to generate the
crucially on the value of3,, and in order to determine expansion series in much higher orders compared with the

precisely in these biased method we need more precise val@&esently available series.
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