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Tree networks with causal structure
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A geometry of networks endowed with a causal structure is discussed using the conventional framework of
the equilibrium statistical mechanics. The popular growing network models appear as particular causal models.
We focus on a class of tree graphs, an analytically solvable case. General formulas are derived, describing the
degree distribution, the ancestor-descendant correlation, and the probability that a randomly chosen node lives
at a given geodesic distance from the root. It is shown that the Hausdorff dimensiondH of the causal networks
is generically infinite, in contrast to the maximally random trees where it is generically finite.

DOI: 10.1103/PhysRevE.67.066106 PACS number~s!: 02.50.Cw, 05.40.2a, 05.50.1q, 87.18.Sn
a

tu
io

o-

-
e

e
th
a

ze
e
va
ity
d-

s,
:
c
lp

on
at
c

ch

re
rk
ch
on
v
a

ui-
o
be
el
e

of
ully
ee
ana-

tree
will
ng
g
ism
or
that
s-
is

s in

c-
erv-
riv-
The
the
s
tion

of

nd
re

ple
del
ll
les,
and
r-
to
ree
that
e-
ath
er
I. INTRODUCTION

A. Preamble

The network study is an old field of research, which h
recently become particularly active~see Ref.@1#!. This is
largely due to the opening of an access to rich data on na
systems: the worldwide web, the Internet, the various b
logical networks~gene transcription, cell metabolism, pr
tein interactions!, the sociological networks~citation index,
collaborations, phone calls!, etc. Interesting empirical regu
larities have been observed, such as the small-world prop
of networks or the frequently observed scale-free nature
degree distributions. On the theory side, the natural conc
tual framework for network research is the graph theory;
nodes and the links of a graph represent the active agents
the interactions, respectively. However, it was soon reali
that the classical graph theory@2# is inadequate and has to b
generalized, in order to cover the new reality. This obser
tion has triggered, in turn, an intense theoretical activ
which led to the construction of a number of insightful mo
els. It is clear, however, that much remains to be done.

As recalled in Ref.@3#, in studying the complex system
one can adopt one of the two complementary approaches
diachronic and the synchronic one. In the former approa
one focuses on the time evolution of the system, which he
discovering the dynamics at work. In the latter approach,
considers an ensemble of dynamically similar systems
fixed large time, which helps in identifying the generic stru
tural traits.

Most of the recently constructed models adopt the dia
ronic approach and deal with growing networks@4–20#. This
led, among others, to the remarkable discovery of the p
erential attachment rule and of its crucial role in netwo
evolution@4,5#. The mathematics of the diachronic approa
rests largely on master equations and related manipulati
The synchronic approach has also been advocated, and
ous static statistical ensembles have been constructed
studied@3,21–30#. Here, the mathematics is that of the eq
librium statistical mechanics and probability theory. One
the aims of this paper is to help establishing a bridge
tween the two sets of results. It will be seen that the wid
accepted distinction between growing and equilibrium n
1063-651X/2003/67~6!/066106~8!/$20.00 67 0661
s

ral
-

rty
of
p-
e
nd
d

-
,

the
h,
s
e
a

-

-

f-

s.
ari-
nd

f
-

y
t-

works is not really correct. The truly distinctive property
the growing networks, their causal structure, can be usef
incorporated in a static model. We limit ourselves to tr
graphs, because in this case the use of the methods of
lytic combinatorics enables one to get exact solutions.

We shall discuss at length the geometry of connected
graphs endowed with a causal structure. Our discussion
cover, in particular, some of the recently popular growi
network models@4,6#, but we shall proceed considerin
static statistical ensembles of trees, employing a formal
which proved to be useful in deriving generic results f
other random geometries. For example, we shall show
the causal trees have the ‘‘small world’’ property: their Hau
dorff dimension is infinite. The advantage of our approach
that it enables one to show at once that this property hold
a wide class of models.

The plan of the paper is as follows. In the next two se
tions, we recall some basic concepts and define the obs
ables to be calculated later on. In Sec. II, we begin by de
ing a number of general results that hold for causal trees.
central role is played by a recursion relation satisfied by
partition function~Sec. II A!. This recursion relation enable
one to find closed expressions for the degree distribu
~Sec. II B!, the ancestor-descendant correlation~Sec. II C!,
and the two-point function measuring the distribution
shortest path lengths between pairs of nodes~Sec. II D!. In
Sec. II E, we establish contact between our formalism a
the growing network models. This is used in Sec. II F, whe
we calculate explicitly a set of observables for some sim
growing networks. In Sec. III, we compare the causal mo
with the maximally random one. In Sec. III A, we collect a
general formulas. In Sec. III B we calculate the observab
assuming the same microstate weights as in Sec. II F,
find dramatically different results. This illustrates the impo
tance of graph symmetries. In Sec. III C, we show how
construct a maximally random model with the same deg
distribution as a given causal model. We stress, however,
the identity of degree distributions does not imply that g
ometries are similar. In particular, the average shortest p
lengths are very different: generically they scale like a pow
of the number of nodesN in maximally random and like lnN
©2003 The American Physical Society06-1
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in causal models, respectively. We conclude briefly in S
IV.

B. Basic concepts

Let us recall some definitions. Arootedtree is a tree with
one marked node. Aplantedtree is a rooted one with an extr
link attached to the root, so that the degree of the roo
increased by unity. The other end of this extra link is n
counted as a node, in a sense this end remains ‘‘free.’’
different tree ensembles are simply related and choosin
work with one of them is a matter of convenience. In th
paper, we deal with planted tree graphs@31#.

By an assumption, a label is attached to each node,
two graphs with identical topology but labeled differently a
considered different. We say a tree is endowed with acausal
structurewhen the labels always appear in growing nume
cal order as one moves along the tree from the root towa
an arbitrary node. These are the tree graphs we are intere
in.

We introduce a statistical ensemble of these trees. Le
denote byT a given topology and byL(T) the number of
distinct causal labelings ofT. We attach the same weight,

r~T!5w~n1 ,n2 , . . . ,nN!, ~1!

to each acceptable labeling. Here,N is the total number of
nodes,ni denotes the degree of the nodei, and w is some
appropriate positive-definite function. A model is defined
choosing a particular form ofw.

It will be seen that the presence of a causal structure g
erates nontrivial observable internode correlations. Henc
is of interest to discuss the models where these specific
relations do not interfere with correlations of a different o
gin. With this motivation, we assume in this paper thatr(T)
factorizes@32# as

r~T!5)
i 51

N

qni
. ~2!

On the other hand, we keepqn as general as possible.
The partition functions of canonical and grand-canoni

ensembles are defined in the usual way by summing
weights of all possible microstates. Thus, by definition

zN5
1

N! (
T

L~T!r~T! ~3!

and

Z~m!5(
N

zNe2mN. ~4!

The prefactor 1/N! in Eq. ~3! is compensated by the num
ber of terms in the summand. Indeed, the number of labe
causal trees withN nodes is (N21)! @33#. It is not difficult
to convince oneself that in all cases of physical interest,zN
grows exponentially withN, up to a power prefactor:

zN;em̄N for N→` ~5!
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andZ(m) develops a singularity atm5m̄ ~see Sec. II A for a
more rigorous argument!. One is primarily interested in the
regime controlled by the singular part ofZ(m). Indeed, as
dm[m2m̄ tends to zero, one becomes increasingly sensi
to the behavior of trees with an arbitrarily largeN.

Of course, Eq.~4! can be inverted by the Laplace tran
formation

zN5
em̄N

2p i E2 i`

i`

ddmZ~dm!edmN ~6!

with the integration contour passing on the right of the s
gularity atdm50. It will often be convenient to work in the
grand-canonical ensemble and to Laplace transform the
sult to the physically more interesting canonical ensemble
the very end. In practice, we shall always assume thaN
→` and keep the leading term only.

Note, that there is an analogy between the labelings
graphs and the positions of a system in a~discrete! phase
space. Hence,r(T) andL(T) are the analogs of the weigh
of a microstate and of the corresponding phase-space
ume, respectively.

Little is specific to causal trees in the content of this s
tion. One could repeatverbatim the above definitions and
keep the same microstate weights in the context of a diffe
tree ensemble. However, in this new ensemble, the tr
would have different symmetries and, therefore,L(T) would
be, in general, different. Consequently, the physics would
different too. We shall see later, comparing causal and m
mally random trees, that introducing a new symmetry c
change dramatically the geometry of generic graphs.

C. Observables

Let us define the observables we shall calculate in
paper. The most popular observable is thedegree distribu-
tion. When the weight of a microstate has the factoriz
form, as in Eq.~2!, the degree distributionpn is given by a
simple and obvious formula

pn5N21qn

] ln zN

]qn
. ~7!

The factorN21 above is included to have the distributio
normalized to unity.

In the thermodynamic limitN→`,

pn5qn

]m̄

]qn
. ~8!

The next observable is thecorrelation between node de
grees, say the probability that a node has degreek when its
neighbor’s degree isl. In a causal tree, one of these nodes
an ancestorand the other adescendant.

A very interesting observable is theHausdorff dimension
dH controlling the scaling withN of the linear size of a
typical tree:

^r &N;N1/dH. ~9!
6-2
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One usually takes forr the distance between an arbitrary pa
of nodes. In rooted trees, it is more natural to consider
distance separating a randomly chosen node from the r
One first calculates a specific two-point functionC(r ,m), the
grand-canonical weight of all the trees with a node separa
from the root byr steps. UsingC(r ,m), one finds

^r &m5

E
0

`

drrC~r ,m!

E
0

`

drC~r ,m!

. ~10!

This quantity usually diverges whendm→0. The behavior
on the rhs~right-hand side! of Eq. ~9! is determined by ob-
serving thatdm scales likeN21 @see Eq.~6!#.

II. GEOMETRY OF TREES ENDOWED
WITH A CAUSAL STRUCTURE

A. Recursion relation

We start by deriving a recursion relation for the partiti
functionzN . To this end, we construct a new planted tree
attaching the k ‘‘free link ends’’ of the planted trees
T1 , . . . ,Tk to a new root. We denote the resulting compou
tree by T5T1% •••% Tk ~this is illustrated in Fig. 1 fork
53).

The number of ordered labelings of the compound tre

L~T1% •••% Tk!5
N!

N1! •••Nk!

1

k!
L~T1!•••L~Tk!.

~11!

Here,Ni denotes the total number of nodes in the treeTi and
N5( iNi . One has to giveN11 labels to the nodes of th
compound tree. However, the smallest label must be attac
to the root. The remainingN labels are arbitrarily distributed
among the trees. This is the origin of the multinomial fact
Permuting the treesTi does not change the compound tr
@34#. This explains the presence of the factor 1/k!. It will be
seen that thecomposition rule~11! is a very basic property o
the model.

Obviously, the weight of the new tree factorizes as

r~T1% •••% Tk!5qk11r~T1!•••r~Tk!. ~12!

FIG. 1. Construction of the compound treeT1% T2% T3. The
three old roots are connected to the new root with degree f
Notice that all the graphs are planted trees. The trees are not p
and therefore, the relative position of branches in the compo
tree is irrelevant.
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The partition functionzN11 can be constructed by sum
ming the trees of size smaller or equal toN:

zN115
1

~N11!! (
k51

`

(
T1 , . . . ,Tk

dN11•••1Nk ,N

3L~T1% •••% Tk!r~T1% •••% Tk!. ~13!

Inserting Eq.~11! into Eq. ~13! and rearranging the term
in the sum, we obtain after trivial algebra

zN115
1

N11 (
k51

qk11

k! (
N1 , . . . ,Nk

dN11•••1Nk ,N)
i 51

k

zNi
.

~14!

Adding z15q1 and summing both sides of Eq.~14!, we get

(
N

NzNe2Nm5e2mS (
k50

`
qk11

k!
Z~m!kD ~15!

or finally,

Z8~m!52e2mF~Z!, ~16!

where

F~Z!5 (
k51

`
qk

~k21!!
Zk21. ~17!

Equation~16! can be integrated to give

e2m(Z)5G~Z![E
0

Z dx

F~x!
. ~18!

The function G(Z) is a positive monotonically growing
function ofZ, bounded from above~one can ignore the trivia
case where allqn exceptq1 and q2 are zero!. Hence,m is
bounded from below.Z(m) has a singularity at somem
5m̄. Denote byx̄ the radius of convergence of the seri
F(Z). The critical value ofm is given by

m̄52 ln G~ x̄!. ~19!

This formula holds also when the radius of convergencex̄ is
infinite, since all terms in the series~17! are positive and the
integral in Eq. ~19! is convergent in all cases of interes
G(`),`.

B. Degree distribution

The degree distribution calculated using Eq.~8! is

pn5
1

G~ x̄!

qn

~n21!! E0

x̄ dx

F~x!2
xn21. ~20!

Again, this formula is also valid whenx̄5`.
Summing overn and using the definitions ofF andG, one

easily checks thatpn is normalized to unity, as it should
One further finds

r.
nar
d

6-3
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(
n

npn522
x̄

F~ x̄!G~ x̄!
. ~21!

On a tree, the rhs should be equal to 2 . This is the case w
F(x) diverges atx5 x̄. Otherwise one encounters a patho
ogy, which looks similar to that appearing in some ma
mally random tree models~and in the so-called balls-in
boxes model, see Refs.@3,35#!, where working in the largeN
limit, one misses singular node~s! contributing term~s! of the
type N21d(n2cN). In this limit such nonuniformly behav
ing terms do not contribute to the normalization, but do co
tribute to the rhs of Eq.~21!. It will be shown later that when
F( x̄),`, the average distance between nodes is finite.

This means that singular node~s!—with unbounded
connectivity—are indeed expected to show up. In deriv
Eq. ~20!, the largeN limit has been implicitly used and it is
an educated guess that one again misses the singular no~s!.

C. Ancestor-descendant correlation

Now, we turn to the calculation of the ancesto
descendant degree correlation. It is obvious that an ance
plays the role of the root of the subgraph involving all
descendants. One can read from Eq.~14! the degree distri-
bution of the root:

zl~N!5
1

N

ql

~ l 21!! (
N1 , . . . ,Nl 21

dN11•••1Nl 21 ,N21)
1

l 21

ZNi
.

~22!

Going over to the grand-canonical ensemble, one finds

dZl~m!

dm
52e2m

ql

~ l 21!!
Zl 21~m! ~23!

which, taking Eq.~16! into account and after integration
yields

Zl„m~Z!…5
ql

~ l 21!! E0

Z

dx
xl 21

F~x!
. ~24!

Using similar arguments, one writes the weight of grap
where the root has the degreel and its daughter the degreek
as

zkl~N!5
ql

N~ l 22!! (
N1 , . . . ,Nl 21

dN11 . . . 1Nl 21 ,N21

3)
i 51

l 22

ZNi
zk~Nl 21!. ~25!

Hence,

dZkl~m!

dm
52e2m

ql

~ l 22!!
Zl 22~m!Zk~m!. ~26!

Integrating the above equation, one finally obtains
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Zkl„m~Z!…5
ql

~ l 22!!

qk

~k21!! E0

Z

dx2

x2
l 22

F~x2!
E

0

x2
dx1

x1
k21

F~x1!
,

~27!

which is the conditional probability, up to normalization, th
a descendant has the degreek when the ancestor’s degree
l. The normalization is determined summing overk on the
rhs above, with the result (l 21)Zl(m). It is a slightly differ-
ent measure of neighbor correlation than that proposed
Ref. @6#, but it carries similar information. Because of th
integration, the dependence onk and l does not factorize, in
general.

Equation~27! holds in the grand-canonical ensemble. O
would like to have an expression valid in the canonical e
semble, where the graph has a well-defined number of no
This requires Laplace transforming the rhs of Eq.~27! ~one
should transform first and normalize next!. One can argue
that in the thermodynamical limit and in the regimedm→0
this often amounts to just replaceZ→ x̄ in Eq. ~27!. Indeed,
let Z2 x̄;dma. Then,

E ddmedmNZkl~m!'Zkl~m̄ !E ddmedmN2cdm a
. ~28!

Evaluating the integral by the saddle-point method, one g
an exponential of a quantity scaling likeNa/(a21). This gives
a factor of unity in the limitN→`, provided 0,a,1, a
condition often met in applications.

D. Fractal dimension

Repeating over and over the iteration process leading
Eq. ~27!, one gets

Zk1 ,k2 , . . . ,kr
„m~Z!…5)

j 52

r qkj

~kj22!!

qk1

~k121!! E0

Z

dxr

xr
kr22

F~xr !

3E
0

xr
dxr 21

xr 21
kr 2122

F~xr 21!
•••

3E
0

x2
dx1

x1
k121

F~x1!
. ~29!

Summing over node degreesk1 ,k2 , . . . ,kr , one obtains the
weight of all graphs with a point separated byr links from
the root, i.e., the two-point correlation functionC(r ,m) in-
troduced in Sec. I C:

C„r ,m~Z!…5E
0

Z

dxr

F8~xr !

F~xr !
E

0

xr
dxr 21

F8~xr 21!

F~xr 21!
•••

3E
0

x3
dx2

F8~x2!

F~x2!
E

0

x2
dx1 . ~30!

For finite x̄, replacing the upper limit of integration overx1

by x̄ and performing all the integrations, one gets
6-4
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C„r ,m~Z!…< x̄
„lnF~Z!…r 21

~r 21!!
. ~31!

Hence, the tail ofC(r ,m) falls at least as fast as a Poiss
nian. Consequently,̂r &m grows at most like lnF(Z). Assum-
ing that F(z) has at most a power singularity atz5 x̄, one
concludes that

^r &m<const ln
1

dm
~32!

and therefore,

^r &N<const lnN, ~33!

sincedm scales likeN21. The argument is rather heuristi
but suggestive~see also the examples in the following se
tion!. It appears that generically the causal trees have
small-world propertydH5`, contrary to the maximum en
tropy trees whose generic fractal dimension is fin
@3,36,37#. This phenomenon is easy to understand intuitive
the causal structure suppresses long branches. This ca
seen by noting that along a branch from the root to the
no label permutations are possible, hence a tree with a
long branches admits much less causal labelings tha
‘‘short fat’’ one.

E. Synchronic view of growing networks

So far, our discussion was very general. Let us now
tablish a bridge to the popular growing network models.
course, here we consider only those models where one
structs tree graphs. Successive nodes are attached, on
time, the attachment probability being a function of the d
gree of the target node:

Prob~kut !5
Ak

A~ t !
with A~ t !5(

k
Nk~ t !Ak , ~34!

whereNk(t) is the number of vertices with degreek in the
tree at timet. It is obvious that the tree constructed that w
has a causal structure; nodes are labeled by the attach
time.

Note, that from the perspective of a model builder, t
concepts of causal and growing networks are complemen
rather than equivalent. A causal network is defined by sp
fying the microstate weights. Every growing network
causal, of course, but the weights corresponding to a g
growth process can have a very complicated, nonlocal st
ture. And conversely, given a set of weights it is, in gene
not evident what is the corresponding growth process. O
for a class of models there exists a stationary attachm
kernelAk .

For linear or shifted linear attachment kernelsAk , the
normalization factor 1/A(t) depends only on the size of th
previous configuration and is therefore the same for all tr
of the same size@38#. Hence, the preferential attachme
recipe is compatible with the factorization ofr(T); working
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in the canonical ensemble, at fixed time, we can drop
normalization factor altogether without any loss of genera
and set@39#

qn5q1)
k51

n21

Ak , n.1, ~35!

where q1 is some positive constant~eventually set to 1 in
explicit calculations!. It is instructive to check by inspection
that the graph weights, produced by the recursion rela
~14!, coincide with those generated by the growing netwo
model recipe.

F. Examples

1. Barabasi-Albert model

In this model@4#, Ak5k. Therefore,qn5(n21)!, F(x)
5(12x)21, and x̄51. Thus,G(x)5x2 1

2 x2 and the solu-
tion to the Eq.~18! is

Z~m!512A122e2m'12Adm. ~36!

The degree distribution is found from~20!:

pn52E
0

1

dx~12x!2xn215
4

n~n11!~n12!
, ~37!

which coincides with the solution given in Refs.@6,40#.
The near-neighbor correlation is readily found from E

~27!:

Zkl5~ l 21!E
0

1

dx2~12x2!x2
l 22E

0

x2
dx1~12x1!x1

k21

5
l 21

k~k11!~k1 l 21!~k1 l !
. ~38!

This is very similar to the result of Ref.@6#, where a slightly
different quantity has been calculated. The physical con
is the same: the causal structure has induced correlat
between the node degrees.

Since in this example

E
0

x3
dx2

F8~x2!

F~x2!
E

0

x2
dx15E

0

x3
dx2FF8~x2!

F~x2!
21G ~39!

one has

C„r ,m~Z!…5
@ ln F~Z!# r 21

~r 21!!
2C„r 21,m~Z!…. ~40!

Hence

^r &m; ln F~Z!; ln
1

Adm
, ~41!

which implies the following scaling law:

^r &N;
1

2
ln N. ~42!
6-5
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2. Krapivsky-Redner model

Now @6# Ak5k1w, qn5G(n1w), and

F~x!5G~w11!~12x!2w21. ~43!

Of course,x̄51 and

G~1!5
1

~21w!G~w11!
. ~44!

Using the above and evaluating the Euler integral that
pears in the present case on the rhs of Eq.~20!, one obtains

pn5
~21w!G~312w!

G~11w!

G~n1w!

G~31n12w!
. ~45!

Again this reproduces exactly the result of Ref.@6#. The
reader can easily calculate the correlationZkl . We skip this
calculation here, because the result is not particularly inst
tive. The remarkable fact is the very existence of the co
lation, not its particular form, which in this particular case
rather cumbersome.

The calculation ofC(r ,m) is identical to that carried ou
for the Barabasi-Albert model, except that

Z512dm
1

w12, dm→0 ~46!

which implies

^r &N;
w11

w12
ln N. ~47!

3. Constant attachment kernel

For Ak51,

F~x!5 (
k51

`
1

G~k!
xk215ex. ~48!

The interest of this example is in the infinite radius of co
vergence of the above series:x̄5`. The degree distribution
is

pn5
1

G~n!
E

0

`

dxe22xxn21522n, ~49!

a result found by several people, including the authors
Ref. @6#. We again skip the calculation ofZkl .

SincedlnF(x)5dx, one finds

C„r ,m~Z!…5
Zr

r !
; ~50!

and using
06610
-
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f

Z5 ln
1

dm
, dm→0, ~51!

one derives

^r &N; ln N. ~52!

III. CAUSAL VERSUS MAXIMALLY RANDOM TREES

A. An important tiny difference

It is instructive to consider also the well-known case
maximum entropy trees~cf. Refs. @3,36,37,41#!. This will
help putting the results of the preceding section in pro
perspective. As in the preceding section, we start with
composition rule for trees, which in the present case, w
the causality constraint is lifted, reads as

L~T1% •••% Tk!5
~N11!!

N1! •••Nk!

1

k!
L~T1!•••L~Tk!.

~53!

Compared to Eq.~11! the difference may seem tiny; one ju
has (N11)! instead ofN! in the numerator on the rhs. It is
so because there is no causality constraint and therefore
N11 labels can be arbitrarily distributed among the tre
However, this tiny difference has rather dramatic con
quences. Indeed, repeating the steps, which led from Eq.~11!
to Eq. ~16!, one obtains

Z~m!5e2mF~Z!. ~54!

No derivative appears on the left-hand side. Instead of
~18!, one has

e2m5H~Z![
Z

F~Z!
, ~55!

where the functionH(Z) plays the role analogous to that o
G(Z) in the preceding section. Equation~55! implies that the
vertex degree distribution is

pn5
1

F~x* !

qnx
*
n21

~n21!!
. ~56!

Here,x* 5min(xmax,x̄) andxmax is the position of the maxi-
mum of the functionH(x):H8(xmax)50, H9(xmax),0.

Since no derivatives appear as one goes over to the gr
canonical ensemble, one does not integrate either. There
iterating the recursion relation, one finds thatZkl(m) and
C(r ,m) factorize. The latter equals

C~r ,m!}@e2mF8~Z!# r ~57!

as first derived by Ambjo”rn et al. @36# using diagrammatic
arguments.

Let us now consider three examples, withqn chosen as in
Secs. II F.1–II F 3, respectively.
6-6
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TREE NETWORKS WITH CAUSAL STRUCTURE PHYSICAL REVIEW E67, 066106 ~2003!
B. Examples

1. First example: qnÄ„nÀ1…!

With this choice, that of Sec. II F 1, the functionH(x)
reads asH(x)5x2x2 and has its maximum atx51/2.
Hence,x* 51/2. SinceF(x* )52, the degree distribution
calculated from Eq.~56! is now

pn522n , ~58!

as in Sec. II F 3.
It is easy to check that for smalldm, one has

e2mF8„Z~m!…512Adm ~59!

and therefore,

C~r ,m!}e2Admr , ~60!

which implies

^r &N;N1/2. ~61!

Hence,dH52, the generic value@36#.

2. Second example: qnÄG„n¿w…

With the choice of Sec. II F 2, the functionH(x)5G(w
11)x(12x)w11 has its maximum atxmax51/(21w),
which is smaller than the radius of convergencex̄51 of the
seriesF(x) as long asw.21. Thus,x* 51/(21w) and

pn5
21w

G~11w! S 11w

21wD 11w G~n1w!

G~n! S 1

21wD n

. ~62!

The fall of the degree distribution is again exponential. O
easily checks that againdH52.

3. Third example: qnÄ1

With the choice of Sec. II F 3, the functionH(x)5xe2x

has its maximum atxmax51. Thus,x* 51 and correspond
ingly,

pn5
e21

~n21!!
. ~63!

One can easily check that this result holds for a more gen
family of weightsqn5abn21 independent of the values ofa
andb, as long as they are positive. AgaindH52.

C. How to get identical degree distribution in the two models

It is easy to adjust the input parameters of the two mod
to obtain identical degree distributions. Suppose that in
causal model, the degree distribution ispn . For a connected
tree, one necessarily has

(
n

npn52. ~64!
06610
e

al

ls
e

Set in the maximally random model

qn5~n21!!pn . ~65!

Obviously,

@H21#8~1![(
n

~n22!pn50 ~66!

and @H21#9(1).0. Thus,H(x) has a maximum atx51.
One easily convinces oneself that this is the only maxim
of this function. Furthermore, by assumption@see Eq.~64!#,
the radius of convergence inF(x) is >1. Hence,x* 51 and

pn
random5pn ~67!

by virtue of Eq.~56!. However, the coincidence of the degre
distributions does not imply that geometries are similar.
the contrary, as already emphasized, the graph linear s
have generically a very different scaling behavior in the t
models~see also some computer simulation results in R
@42#!.

IV. SUMMARY AND CONCLUSION

The results of this paper are another illustration of t
claim that the opposition between diachrony and synchr
is to a large extent an illusion, except if one is interested
very specific phenomena, such as aging, intrinsically refle
ing the running of time. We have discussed the geometry
networks endowed with a causal structure using the conv
tional framework of equilibrium statistical mechanic
Hence, models that are usually described by specific ma
equations and static, maximum entropy models have b
treated alike. We focused on tree graphs, because only
trees we are able to proceed analytically. We have deri
general formulas describing the degree distribution,
ancestor-descendant correlation, and the probability th
node lives at a given geodesic distance from the root. Us
these last results, we have shown that our causal netw
have generically the small-world property, i.e., their Hau
dorff dimension is infinite.

We have also compared the causal model with the m
mally random one, assuming the same microstate weig
Because of different symmetry properties of the graphs—
the causal model only a subclass of labelings is allowed—
geometries are dramatically different. In the causal model
degree distribution is qualitatively different, internode corr
lations are induced, and the Hausdorff dimension becom
infinite instead of being finite.
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