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Tree networks with causal structure
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A geometry of networks endowed with a causal structure is discussed using the conventional framework of
the equilibrium statistical mechanics. The popular growing network models appear as particular causal models.
We focus on a class of tree graphs, an analytically solvable case. General formulas are derived, describing the
degree distribution, the ancestor-descendant correlation, and the probability that a randomly chosen node lives
at a given geodesic distance from the root. It is shown that the Hausdorff dimehsifithe causal networks
is generically infinite, in contrast to the maximally random trees where it is generically finite.
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[. INTRODUCTION works is not really correct. The truly distinctive property of
the growing networks, their causal structure, can be usefully
incorporated in a static model. We limit ourselves to tree
The network study is an old field of research, which hasyraphs, because in this case the use of the methods of ana-
recently become particularly activsee Ref.[1]). This is  |ytic combinatorics enables one to get exact solutions.
largely due to the opening of an access to rich data on natural \e shall discuss at length the geometry of connected tree
systems: the worldwide web, the Internet, the various biographs endowed with a causal structure. Our discussion will
|Ogical networks(gene transcription, cell metabolism, pro- cover, in particu'ar, some of the recenﬂy popu'ar growing
tein interactionﬁ the SOCiO|Ogica| network&:itation indeX, network mode|5[4,6], but we shall proceed Considering
collaborations, phone callsetc. Interesting empirical regu- static statistical ensembles of trees, employing a formalism
larities have been observed, such as the small-world properiyhich proved to be useful in deriving generic results for
of networks or the frequently observed scale-free nature ofther random geometries. For example, we shall show that
degree distributions. On the theory side, the natural concegpe causal trees have the “small world” property: their Haus-
tual framework for network research is the graph theory; thEgJﬁ dimension is infinite. The advantage of our approach is

A. Preamble

tnhod(;St andtt_he links of atgralphlflepresent_ihe active agenr_s aflfat it enables one to show at once that this property holds in
e interactions, respectively. However, it was soon realized | .4 1ass of models.

that the classical graph thedt] is inadequate and has to be

. ) ) . The plan of the paper is as follows. In the next two sec-
generalized, in order to cover the new reality. This observa,EionS we recall some basic concents and define the observ-
tion has triggered, in turn, an intense theoretical activity, ' b

which led to the construction of a number of insightful mod- fables to be calculated later on. In Sec. ll, we begin by deriv-
els. It is clear. however. that much remains to be done ing a number of general results that hold for causal trees. The

As recalled in Ref[3], in studying the complex systems central role is played by a recursion relation satisfied by the

one can adopt one of the two complementary approaches: tpRartition ]‘unction(Sec. IA). This recursion relation (_ana_bleg
diachronic and the synchronic one. In the former approactPn€ to find closed expressions for the degree distribution
one focuses on the time evolution of the system, which help&éSec. 1B, the ancestor-descendant correlati@ec. 110,
discovering the dynamics at work. In the latter approach, on@nd the two-point function measuring the distribution of
considers an ensemble of dynamically similar systems at &hortest path lengths between pairs of nodgsc. 11D). In
fixed large time, which helps in identifying the generic struc-Sec. IIE, we establish contact between our formalism and
tural traits. the growing network models. This is used in Sec. Il F, where
Most of the recently constructed models adopt the diachwe calculate explicitly a set of observables for some simple
ronic approach and deal with growing netwofMls-20]. This  growing networks. In Sec. lll, we compare the causal model
led, among others, to the remarkable discovery of the prefwith the maximally random one. In Sec. Il A, we collect all
erential attachment rule and of its crucial role in networkgeneral formulas. In Sec. Il B we calculate the observables,
evolution[4,5]. The mathematics of the diachronic approachassuming the same microstate weights as in Sec. II'F, and
rests largely on master equations and related manipulationnd dramatically different results. This illustrates the impor-
The synchronic approach has also been advocated, and vaténce of graph symmetries. In Sec. IlIC, we show how to
ous static statistical ensembles have been constructed andnstruct a maximally random model with the same degree
studied[3,21-3Q. Here, the mathematics is that of the equi- distribution as a given causal model. We stress, however, that
librium statistical mechanics and probability theory. One ofthe identity of degree distributions does not imply that ge-
the aims of this paper is to help establishing a bridge beemetries are similar. In particular, the average shortest path
tween the two sets of results. It will be seen that the wideljlengths are very different: generically they scale like a power
accepted distinction between growing and equilibrium net-of the number of nodel in maximally random and like IN
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in causal models, respectively. We conclude briefly in Secandz(u) develops a singularity at=u (see Sec. Il A for a
V. more rigorous argumentOne is primarily interested in the
regime controlled by the singular part 8{x). Indeed, as
B. Basic concepts Su=u— u tends to zero, one becomes increasingly sensitive
Let us recall some definitions. Wotedtree is a tree with  to the behavior of trees with an arbitrarily large

one marked node. plantedtree is a rooted one with an extra ~ Of course, Eq(4) can be inverted by the Laplace trans-
link attached to the root, so that the degree of the root igormation
increased by unity. The other end of this extra link is not

counted as a node, in a sense this end remains “free.” The B eN [i= SuN

different tree ensembles are simply related and choosing to ZN_ﬁ 7ixd5,uZ(5,u)e ©®)
work with one of them is a matter of convenience. In this

paper, we deal with planted tree gragB4]. with the integration contour passing on the right of the sin-

By an assumption, a label is attached to each node, angularity at5u=0. It will often be convenient to work in the
two graphs with identical topology but labeled differently are grand-canonical ensemble and to Laplace transform the re-
considered different. We say a tree is endowed witaasal  sult to the physically more interesting canonical ensemble at
structurewhen the labels always appear in growing numeri-the very end. In practice, we shall always assume Mhat
cal order as one moves along the tree from the root towards.« and keep the leading term only.
an arbitrary node. These are the tree graphs we are interestedNote, that there is an analogy between the labelings of
in. graphs and the positions of a system indiscrete phase

We introduce a statistical ensemble of these trees. Let Uspace. Hencey(T) andL(T) are the analogs of the weight
denote byT a given topology and by.(T) the number of of a microstate and of the corresponding phase-space vol-
distinct causal labelings dof. We attach the same weight,  ume, respectively.

Little is specific to causal trees in the content of this sec-
p(M)=w(ny,ny, ... .NN), (1) tion. One could repeaterbatimthe above definitions and
keep the same microstate weights in the context of a different
tree ensemble. However, in this new ensemble, the trees
would have different symmetries and, therefdr€T) would
be, in general, different. Consequently, the physics would be

It will be seen that the presence of a causal structure geﬁj—Ifferent too. We shall see _Iater, comparing causal and maxi-
erates nontrivial observable internode correlations. Hence, [pally random trees, that introducing a new symmetry can
is of interest to discuss the models where these specific COF_hange dramatically the geometry of generic graphs.
relations do not interfere with correlations of a different ori-
gin. With this motivation, we assume in this paper th&t) C. Observables
factorizes[32] as Let us define the observables we shall calculate in this
paper. The most popular observable is thegree distribu-
tion. When the weight of a microstate has the factorized
form, as in Eq.2), the degree distributionr,, is given by a
simple and obvious formula

to each acceptable labeling. Hei¢,is the total number of
nodes,n; denotes the degree of the nodeandw is some
appropriate positive-definite function. A model is defined by
choosing a particular form of.

N
p(M=11 an, )

On the other hand, we keap, as general as possible.

The partition functions of canonical and grand-canonical N1 dInzy )
ensembles are defined in the usual way by summing the = A o,
weights of all possible microstates. Thus, by definition

The factorN~! above is included to have the distribution

1 normalized to unity.
INTNT 2 L(T)p(T) 3 In the thermodynamic limitN— o,
and om
Th=0n—. 8
"= ®
Z(w)= e #N, 4
(w) % 2N @ The next observable is theorrelation between node de-

_ _ grees, say the probability that a node has de§reden its
The prefactor M! in Eq. (3) is compensated by the num- neighbor’s degree ik In a causal tree, one of these nodes is
ber of terms in the summand. Indeed, the number of labeledn ancestorand the other alescendant

causal trees witlN nodes is N—1)! [33]. It is not difficult A very interesting observable is thtausdorff dimension
to convince oneself that in all cases of physical interggt, d,, controlling the scaling withN of the linear size of a
grows exponentially witiN, up to a power prefactor: typical tree:

zy~eN  for N (5) (r)y~NYdu, (9)
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The partition functionzy,; can be constructed by sum-
ming the trees of size smaller or equalNo

o0

1
Zyiq = 5
N+1 (N"’l)l &4 . T Nl+---+Nk,N

XL(T]_EB'"@Tk)p(Tl@”'QBTk). (13)

FIG. 1. Construction of the compound trég® T,®T5. The Inserting Eq.(11) into Eq.(13) and rearranging the terms
three old roots are connected to the new root with degree fouiin the sum, we obtain after trivial algebra
Notice that all the graphs are planted trees. The trees are not planar
and therefore, the relative position of branches in the compound 1

k
S Ok+1
tree is irrelevant. N 1T N z ” E y 5Nl+.A.+Nk1NH1 zy,-
! i

k=1
One usually takes farthe distance between an arbitrary pair (14
of nodes. In rooted trees, it is more natural to consider the\dding z,=q, and summing both sides of E(L4), we get
distance separating a randomly chosen node from the root.
One first calculates a specific two-point functiéfr, »), the B & Ok
grand-canonical weight of all the trees with a node separated > Nzge Ne=e # > K Z(u) (15
from the root byr steps. UsingC(r,u), one finds N ko

or finally,
fo drre(r.p) Z'(p)=—e "F(2), (16)
Op=—— (10
J drc(r. ) where
0
_ Ak k-1
This quantity usually diverges whefu— 0. The behavior F(Z)_gl (k=21)! z (7
on the rhs(right-hand sidg of Eq. (9) is determined by ob-
serving thatsu scales likeN ! [see Eq.(6)]. Equation(16) can be integrated to give
zZ dx
ll. GEOMETRY OF TREES ENDOWED e‘l‘(z):G(Z)EJ . (18
WITH A CAUSAL STRUCTURE o F(x)
A. Recursion relation The function G(Z) is a positive monotonically growing

We start by deriving a recursion relation for the partition function ofZ, bounded from abovéene can ignore the trivial

functionzy . To this end, we construct a new planted tree bycaSe Where alfj, exceptq, andq, are zerg. Hence,u is
attaching thek “free link ends” of the planted trees Pounded from belowZ(x) has a singularity at somg

T1, ..., Txto anew root. We denote the resulting compound= . Denote byx the radius of convergence of the series
tree by T=T,@---®T, (this is illustrated in Fig. 1 fok  F(Z). The critical value ofu is given by
=3). _ _
The number of ordered labelings of the compound tree is n==InG(x). (19
N!

This formula holds also when the radius of convergexnée
infinite, since all terms in the seri€%7) are positive and the

(11 integral in Eq.(19) is convergent in all cases of interest:
G() <.

! 1
LT @Tk):m LT L(Tw.

Here,N; denotes the total number of nodes in the ffeand
N=2;N;. One has to giviN+1 labels to the nodes of the B. Degree distribution
compound tree. However, the smallest label must be attached
to the root. The remainindyl labels are arbitrarily distributed
among the trees. This is the origin of the multinomial factor. 1 ~ dx
Permuting the tree3; does not change the compound tree P — An JX xn—1 (20)
[34]. This explains the presence of the factdk! 14t will be G(x) (N=1)!Jo F(x)?
seen that theomposition rulg11) is a very basic property of .
the model. Again, this formula is also valid whex= .
Obviously, the weight of the new tree factorizes as Summing oven and using the definitions ¢f andG, one
easily checks thatr, is normalized to unity, as it should.
p(T1®- - 0T =0k 1p(T1) - - p(Ty). (12 One further finds

The degree distribution calculated using E8). is
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X o q O (2, X2l (e, X'
2 nm 2 e @D Za(ZD= g <k—1)!fodX2F<x2) o Py
(27

On a tree, the rhs should be equal to 2 . This is the case when - N o
F(x) diverges alk=x. Otherwise one encounters a pathol_Whlch is the conditional probability, up to normalization, that
ogy. which looks similar to that appearing in some maxi-2 descendant has the degke@hen the ancestor’s degree is

mally random tree model¢and in the so-called balls-in- I. The normalization is determined summing okeon the

boxes model, see Refi8,35]), where working in the largal rhs above, with the .result €t 1)Z,(,u_). Itis a slightly differ- _
limit, one misses singular not contributing ternts) of the ent measure of neighbor correlation than that proposed in
type’Nfla(n—cN) In this limit such nonuniformly behav- Ref. [6], but it carries similar information. Because of the
ing terms do not contribute to the normalization, but do con-ntegration, the dependence krand| does not factorize, in

. ) general.
tribute to the rhs of Eq(.2.1). Itwill be shown later t.hat. when Equation(27) holds in the grand-canonical ensemble. One
F(x)<«, the average distance between nodes is finite.

i ) ' would like to have an expression valid in the canonical en-
This means that singular nodg—with unbounded gemple where the graph has a well-defined number of nodes.

connectivity—are indeed expected to show up. In derivingrpis requires Laplace transforming the rhs of E2{7) (one

Eq. (20), the largeN limit has been implicitly used and itis ghqiq transform first and normalize nexOne can argue

an educated guess that one again misses the singulaishode 4+ in the thermodynamical limit and in the reginig— 0

C. Ancestor-descendant correlation this often amounts to just replade—x in Eq. (27). Indeed,

Now, we tumn to the calculation of the ancestor-let Z—x~du®. Then,
descendant degree correlation. It is obvious that an ancestor
plays the role of the root of the subgraph involving all its SuN = SuN—cow @
descendants. One can read from El) the degree distri- dope™Zi(pu)~Z(p) | doue® ™ " (28
bution of the root:

-1 Evaluating the integral by the saddle-point method, one gets
2(N) = 1 q S s 11 z an exponential of a quantity scaling li/(*~ 1) This gives
| N (=18, S, et N N 2 a factor of unity in the limitN—c°, provided 0<a<1, a
(22)  condition often met in applications.
Going over to the grand-canonical ensemble, one finds D. Fractal dimension
dz,(p) a Repeating over and over the iteration process leading to
——amr__—1  7l-1
d e =D 2" (w) (23 Eq. (27), one gets
hich, taking Eq.(16) int t and after integration, 7 z f[ AT il
which, takin . into account and after integration, = —
yields o ? gk (H(Z)) =2 (kj=2)! (ky—1)! fo “Fx)
ke _1—2
Z/(u(2))= fzd < 24 Xfxrdxr-lim
|(/-L( ))_ (I_l)l 0 XF(X)' ( ) 0 F(Xl’—l)
“ Xklfl
Using similar arguments, one writes the weight of graphs, Xf zdxll_. (29)
where the root has the degreand its daughter the degr&e 0 F(x1)
as
Summing over node degreks,k,, ... Kk, , one obtains the
ol weight of all graphs with a point separated byinks from
zy(N) = S =7 > ONy+ ... +N,_y.N-1 the root, i.e., the two-point correlation functi@®(r,x) in-
N(I—=2)! N
bt troduced in Sec. I C:
-2
><i1_[1 Zn,zd(Nj-1). (25) () fzd F’(xr)fxrd F'(X_1)
- r, = X, ———— X 4=
# o TFO) Jo TR )
Hence, 2 F'(Xp) [
xf dxz—f dx. (30
dz 0 F(x2) Jo
() e q 22 1) Zul 1) 26)
du (I—2)! HIEICR)

For finite x, replacing the upper limit of integration oveg
Integrating the above equation, one finally obtains by x and performing all the integrations, one gets
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—(InF(2))"* in the canonical ensemble, at fixed time, we can drop the
C(r, M(Z))\XW- (3)  normalization factor altogether without any loss of generality
' and sef39]

Hence, the tail ofC(r,u) falls at least as fast as a Poisso-

nian. Consequentlyr), grows at most like IF(Z). Assum- Qn:(thl Ac, n>1, (35
ing thatF(z) has at most a power singularity a& X, one
concludes that whereq, is some positive constarieventually set to 1 in
1 explicit calculations It is instructive to check by inspection
that the graph weights, produced by the recursion relation
ry,<constln— 32 e . -
( >” s o (32) (14), coincide with those generated by the growing network
model recipe.
and therefore,
F. Examples
(ryn=constIm, (33 )
1. Barabasi-Albert model
since 6u scales likeN~ . The argument is rather heuristic, ~ In this model[4], A =k. Therefore,qn (n 1)L F(x)
but suggestivésee also the examples in the following sec-=(1—x)"%, andx=1. Thus,G(x)=x— ix2 and the solu-

tion). It appears that generically the causal trees have thgon to the Eq.(18) is

small-world propertyd,, =, contrary to the maximum en- -

tropy trees whose generic fractal dimension is finite Z(p)=1-V1-2e #~1-ou. (36)
[3,36,37. This phenomenon is easy to understand intuitively:
the causal structure suppresses long branches. This can 'Bge degree distribution is found fro@0):

seen by noting that along a branch from the root to the leaf S 4

no label permutations are possible, hence a tree with a few anzf dx(1—x)*x" S+ (nL2)’ (37
long branches admits much less causal labelings than a 0

“short fat” one. which coincides with the solution given in Ref$,40].

The near-neighbor correlation is readily found from Eq.
E. Synchronic view of growing networks (27):

So far, our discussion was very general. Let us now es- 1 X
tablish a bridge to the popular growing network models. Of ~ Zi=(l —1)f dXz(l—Xz)Xlz_zf dx;(1=xp)x5 "
course, here we consider only those models where one con- 0 0
structs tree graphs. Successive nodes are attached, one at a -1
time, the attachment probability being a function of the de- = Kkt D) (Kt -kt D)
gree of the target node:

(39

Ay This is very similar to the result of Reff6], where a slightly
Prohk|t) = AlD with A(t 2 Nk(t)Ac, (34 different quantity has been calculated. The physical content
is the same: the causal structure has induced correlations
between the node degrees.

whereN(t) is the number of vertices with degréein the Since in this example

tree at timet. It is obvious that the tree constructed that way

has a causal structure; nodes are labeled by the attachment "(X2) X3 |F'(Xp)

i Xo = d = | A% Ery Tl (39
time. F( 2) F(x2)

Note, that from the perspective of a model builder, the
concepts of causal and growing networks are complementaryne has
rather than equivalent. A causal network is defined by speci-
fying the microstate weights. Every growing network is [InF(2)]"*

causal, of course, but the weights corresponding to a given Clr.u(2))= (r—1)! —Cr=1.u(2). (40
growth process can have a very complicated, nonlocal struc-
ture. And conversely, given a set of weights it is, in generalHence
not evident what is the corresponding growth process. Only L
for a class of models there exists a stationary attachment
(N,~InF(Z)~In—, (41

kernel A . @
For linear or shifted linear attachment kerndlg, the

normalization factor (t) depends only on the size of the which implies the following scaling law:

previous configuration and is therefore the same for all trees

of the same siz¢38]. Hence, the preferential attachment () ~£InN (42)

recipe is compatible with the factorization pfT); working N2 '
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2. Krapivsky-Redner model 1
Now [6] A,=k+w, q,=I'(n+w), and Z=InE, on—0, (51)
FOO=T(w+1)(1-x) """ (43 one derives
Of coursex=1 and (Ny~InN. (52)
I1l. CAUSAL VERSUS MAXIMALLY RANDOM TREES
G(1)= (2+w)I'(w+1)" (44)

A. An important tiny difference

Using the above and evaluating the Euler integral that ap- It is instructive to consider also the well-known case of

pears in the present case on the rhs of 6), one obtains Maximum entropy treegcf. Refs.[3,36,37,41). This will
help putting the results of the preceding section in proper

perspective. As in the preceding section, we start with the

_(2+w)I'(3+2w) I'(n+w) (45  composition rule for trees, which in the present case, when

Th=

F(1+w) F3+n+2w)’ the causality constraint is lifted, reads as
Again this reproduces exactly the result of RE]. The (N+1)! 1
reader can easily calculate the correlatifyp. We skip this L(Ti@ - 0T)= o —L(Ty) - - L(T).
calculation here, because the result is not particularly instruc- Ny!---Ni! k!
tive. The remarkable fact is the very existence of the corre- (53)

lation, not its particular form, which in this particular case is Compared to Eq(11) the difference may seem tiny; one just

rathtra]r cunl"nb?rs_ome.fc < identical to th e has (N+1)! instead of\! in the numerator on the rhs. It is

f The ;a cubatlpnAlg (r.p) dlsi dentica PEO that carried out - pecause there is no causality constraint and therefore, all

or the Barabasi-Albert model, except that N+1 labels can be arbitrarily distributed among the trees.
However, this tiny difference has rather dramatic conse-

1 . .
4 e guences. Indeed, repeating the steps, which led fronfJgy.
Z=1-6pwiz,  op—0 48 Eq. (16), one obtains
which implies
Z(pn)=e *F(2). (54
w+1 No derivative appears on the left-hand side. Instead of Eq.
(N~ wW+2 InN. (47 (18), one has
3. Constant attachment kernel Z
—u_ _
ForA,=1, e #“=H(2) F2) (55)

where the functioH(Z) plays the role analogous to that of

©

1 G(2) in the precedin tion. Equati@®b) implies that th
- k—1_ X p g section. Equati implies that the
F() ,;1 I'(k) X € (48) vertex degree distribution is
The interest of this example is in the infinite radius of con- 1 an:—l
vergence of the above series=«. The degree distribution 7Tn=m -1 (56)
. * !

IS

Here,x, = Min(XnaxX) andX,ax is the position of the maxi-

I S mum of the funptiom(x):H’(xmaQ:O, H” (Xmax <O.
Wn—mfo dxe” X" =277, (49 Since no derivatives appear as one goes over to the grand-
canonical ensemble, one does not integrate either. Therefore,
i:terating the recursion relation, one finds thag(«) and

a result found by several people, including the authors o .
y Peop g C(r,u) factorize. The latter equals

Ref.[6]. We again skip the calculation &;.
SincedInF(x)=dx, one finds
C(r,u)x[e”*F ()] (57)

as first derived by Ambjm et al. [36] using diagrammatic
arguments.

Let us now consider three examples, withchosen as in
and using Secs. Il F.1-11F 3, respectively.

r

Z
o p(2)=" (50)

066106-6



TREE NETWORKS WITH CAUSAL STRUCTURE PHYSICAL REVIEW B7, 066106 (2003

B. Examples Set in the maximally random model
1. First example: g=(n—1)!
. . . . qn:(n_l)!ﬂ'n- (65)
With this choice, that of Sec. IIF 1, the functidf(x)
reads asH(x)zx—_x2 and has its maximum ax=1/2.  gpyiously,
Hence,x, =1/2. SinceF(x,)=2, the degree distribution
calculated from Eq(56) is now
) [H' (D)= (n=2)m,=0 (66)
m=2"", (58 n
as in Sec. Il F3. and[H1]"(1)>0. Thus,H(x) has a maximum ak=1.
It is easy to check that for smadlw, one has One easily convinces oneself that this is the only maximum
of this function. Furthermore, by assumptitsee Eq.(64)],
e “F'(Z(n))=1—éu (59 the radius of convergence F(x) is =1. Hencex, =1 and
d therefore,
and therefore randon_ - 67)
—Jour
Clr.p)=e ' (60) by virtue of Eq.(56). However, the coincidence of the degree
which implies distributions does not imply that geometries are similar. On
the contrary, as already emphasized, the graph linear sizes
(r)n~NY2 (61) have generically a very different scaling behavior in the two
N ' models(see also some computer simulation results in Ref.
Hence,d,=2, the generic valug36]. [42)).

2. Second example: g=I'(n+w)
With the choice of Sec. IIF 2, the functiod (x)=1"(w
+1)x(1-x)"*1 has its maximum atxmpa=1/(2+w),

which is smaller than the radius of convergemeel of the
seriesF(x) as long asv>—1. Thus,x, =1/(2+w) and

IV. SUMMARY AND CONCLUSION

The results of this paper are another illustration of the
claim that the opposition between diachrony and synchrony
is to a large extent an illusion, except if one is interested in
very specific phenomena, such as aging, intrinsically reflect-
ing the running of time. We have discussed the geometry of
n networks endowed with a causal structure using the conven-

(62 tional framework of equilibrium statistical mechanics.
Hence, models that are usually described by specific master
The fall of the degree distribution is again exponential. Oneéfquations and static, maximum entropy models have been

B 2+w
T T(1+w)

1+w
2+w

W (n+w)
T'(n)

1
2+w

Tn

easily checks that agait,=2. treated alike. We focused on tree graphs, because only for
trees we are able to proceed analytically. We have derived
3. Third example: g=1 general formulas describing the degree distribution, the

ancestor-descendant correlation, and the probability that a
node lives at a given geodesic distance from the root. Using
these last results, we have shown that our causal networks
have generically the small-world property, i.e., their Haus-
dorff dimension is infinite.

(63) We have also compared the causal model with the maxi-
mally random one, assuming the same microstate weights.
Because of different symmetry properties of the graphs—in

One can easily check that this result holds for a more generahe causal model only a subclass of labelings is allowed—the

family of weightsg,= a"~* independent of the values af  geometries are dramatically different. In the causal model the

and B, as long as they are positive. Agaip=2. degree distribution is qualitatively different, internode corre-
lations are induced, and the Hausdorff dimension becomes

C. How to get identical degree distribution in the two models  infinite instead of being finite.

With the choice of Sec. Il F3, the functidd(x)=xe *
has its maximum ax,,,,=1. Thus,x, =1 and correspond-
ingly,

e—l

LT TR

It is easy to adjust the input parameters of the two models
to obtain identical degree distributions. Suppose that in the ACKNOWLEDGMENTS
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