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Vortex description of the first-order phase transition in the two-dimensional Abelian-Higgs model
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We use both analytical arguments and detailed numerical evidence to show that the first-order transition in
the type-l two-dimensional Abelian-Higgs model is commensurate with the statistical behavior of its vortex
fluctuations, which behave as an ensemble of attractive particles. The clustering instabilities of such ensembles
are shown to be connected to the process of phase nucleation. Calculations of the vortex equation of state show
that the temperature for the onset of clustering is in qualitative agreement with the critical temperature. The
vortex description provides a general gauge invariant mesoscopic mechanism for the first-order transition and
applies for arbitrary type-I couplings.
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The role of topological excitations in the dynamics anddescription of real superconducting films. This is because
thermodynamics of gauge field theories is a subject of wideven for thin films, the excursion of the vector potential into
interest and great promise, ranging in scope from the undethree dimensions fundamentally alters the nature of the inter-
standing of vortex phases in superconductors, necessary factions away from type-l behavi¢6]. As a result, vortices
practical applications, to the clarification of the mechanismsnteract via long-range potentials and the material exhibits a
of charge confinement in non-Abelian gauge theories, suchontinuous transition. Nonetheless, we believe that the con-
as quantum chromodynamics. nections we draw below, between metastability and the at-

Topological excitations are important as finite-energy ve-ractive vortex interaction, are of general theoretical interest
hicles of disorder. Thus, phase transitions between a state ahd may generalize qualitatively to more realistic situations.
long range(e.g., magneticorder and disorder can sometimes ~ The standard argumef¥] for a first-order transition in
be understood by the proliferation of topological excitations,gaugetscalar field theories relies on large for which the
each bringing about disorder comparable to its §ideThis  gauge field is very massive and can be integrated out. This is
is true in the XY model in two spatial dimensions, which only justifiable asx=\\/e—0, as it requires a separation of
displays a Kosterlitz-Thouleg&T) transition to a disordered scales between “heavy” gauge degrees of freedom, which do
state due to vortex pair unbindiig@]. Furthermore, there is not participate in the transition dynamics, and “light” scalar
evidence that the second-order transition in the threefield fluctuations. The result is a “free energf[ ¢ ], that is,
dimensional(3D) XY universality class is associated with both nonconvex and, generally, gauge dependent. Neverthe-
vortex string proliferatior{1,3]. less,F[ ¢] yields the correct qualitative picture for certain

In this paper we show howfast-orderphase transition in  aspects of the transitig].

a simple gauge theory is intimately connected to the dynam- A description of the critical system in terms of gauge
ics of its topological excitations and provide detailed numeri-invariant degrees of freedom, for arbitraty< 1, is therefore

cal evidence in support of this view. Our results suggest @esirable and may shed light on the mechanism of the tran-
dual vortex gas picture of the transition, in analogy to the KTsition. While vortices exist only as fluctuations at high tem-
case. In the type-1 Abelian gauge theory, however, vorticeperature they become the only stable magnetic excitations of
have attractive interactions, leading to characteristic metastdq. (1) at low temperatures. Moreover, arbitrarily low energy
bility and collapse. excitations can be produced by the superposition of vortices

For its simplicity and close relationship to the XY model, and antivortices. These arguments suggest that vortices are
we study the Abelian-Higgéor Landau-Ginzburgmodel in  relevant degrees of freedom at criticality. In type-l, vortices
two dimensions. The phase structure of this model in thre@ttract each other independent of the sign of their quantized
dimensions was examined [A,5]. The Lagrangian density flux (topological charge[8]. Thus, Abrikosov vortex lattices
Lis (such as those found in type-ll supercondudtamse not
formed in applied magnetic fields. Instead type-l systems
enter anintermediate stateforming a nonextensive multi-
winding vortex, with the normal phase restored at its core.
We argue that the attractive vortex interactions in type-I sys-
where ¢ is a complex scalar field; ,,=d,A,—d,A, isthe  tems allow for a vortex description of the first-order phase
field strength for the gauge potentidl,, and D,=4, transition.
+ieA, . Here, we focus on the first-order reginfgpe-I) Vortices are radial static classical solutions, obeying
wheree? is larger than the scalar coupling

While the Abelian-Higgs system describes the long- ) )
wavelength behavior of an ideal supercondud#b], the do  1ldo 2,28
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d?a 1da » demonstrating that in type-l, whea<1, the scalafattrac-
aZ T m—e o“a=0, (3)  tive) part of the potential dominates the interaction.

The statistical mechanics of particles with a finite-range,
in temporal gaugé,=0, where¢= o (r)e"’. ¢ is the polar ~ soft-core attractive potential was studied in several simple
settings[12], aimed at elucidating thermodynamic gravita-
tional instabilities. Unfortunately the 2D Yukawa gas of Eq.
(9) was not among these.

Nevertheless, systems in this class share important quali-
ve properties: they always display a first-order transition
between arfalmos) ideal gas state at highand a clustered
a(n)=v—1f(r), f(r)=agpqKy(mgr), (4) phase at lowT [12]. The latter isnot an extensive thermody-
namic phase. It consists of a single bound cluster containing
n most of the particles. Qualitatively this clustering transition
Ap(r)— 5, = ~aeumKy(mer), (5)  occurs atTy, such that the kinetic energy equals the inter-
action energy per particle. This gives a rough estimate of the
where mg=A\v, mg=ev, ag,ag are dimensionless con- Vortex gas clustering temperatuf@2], T~ e/2=0.019,
stants, ancK; are the modified Bessel functions of order Wheree measures the strength of the interaction. We estimate
The profiles(4) and (5) correspond to Yukawd@massive e from Ref.[13], by averaging the strength of vortex-vortex
chargesg, min two dimensions, in contrast to the familiar and vortex-antivortex pair interactiong=(e,,+ €,;,)/2,
Coulomb logarithmic vortex solutions of the 2D XY model. where 6,,,,20.62)§q and ev,j=3.80)§q. Vortex interactions
In the XY model the importance of topological charges toare softened by a small order parameteg,= a(TY)
the phase transition is demonstrated by rewriting the parti=0.13.
tion function in terms of vortex degrees of freedddD]. The equation of state for the almost id€klw-density
Unfortunately because the Abelian-Higgs system is nongas of vortices at hight can be computed by standard cluster
Gaussian, it is impossible to perform an exact dual transforexpansion methods in the particle density, which we take as
mation to a partition function written exclusively in terms of the (canonical vortex densityp. For simplicity we model the
a one- and two-body vortex terms. It is nevertheless possiblettractive potential as a square well with a strengtnd an

angle,nis an integerA(r) =A,e,; A,=nler—a(r)/r, with
boundary conditions o(r=0)=a(r—=)=0, o(r—=)
=v, a(r=0)=n/e. Forr larger than the core size, the vor-
tex behaves like a point source for massive scalar and ma%;- .
netic fields. Then the vortex profiles can be writter{ @ atl

to perform this rewriting approximately. interaction lengtH. Then
We begin with a superposition ansatz for arbitrary
numberN of vortices, by constructing scalar and gauge vor- l? €
tex fields centered aX different locix; , i € {1,N}, P=pT(1-pBy), By=—-|expz—1], (10
S(Xox o) = H(X=Xq) - -+ (X—Xy) (6)  Where we neglected terms proportionapfin=3. The cor-
R o1 ' rection to the ideal gas behavior is negative as expected for
an attractive potential. For high, B, vanishes. Interactions
AX, X1, oo X =ALX=Xq) + - - +Ay(X—xy). (7)  are mostimportant at loW and the pressur® vanishes at
cl-
This ansatz is exact when the vortices are all coincident or all
widely separated. Substituting Eq§) and(7) into the static €
art of the Hamiltonian gives Tog=—"""5". (11
P d T In(1+2/pml?)
H:Z e+ 2, [Mi(x)Ve(|x—yhmj(y) Attributing the change imr to vortices, in analogy to the KT
@y transition, we estimateyw2=0.37=0(T_)—o(T.), and
+ai()Vs(Ix—yha;(y)1+ - - -, (8) takee as above to obtaiif=0.020. Both estimates dff

are compatible with the measuréd, see Figs. 1 and 2.
where the terms not shown correspond to three- and four- | spite of the qualitative agreement witf, measured
body effects, which are negligible in a low-density vortex nymerically we must note that these estimates pre very
ensemble. The charges(x) = +nd(x) are integers of either  qualitative. For our choice of parameters the exact two-
sign, corresponding to quanta of magnetic flux, whei®as yortex potential is not known. Moreover, the virial expansion
=|mj| is always positive9,11]. For well-separated vortices s notoriously unreliable near a clustering transition. To es-
at distancer the potentials ar&/g(r) =agvaKo(Msr) and  tablish T, quantitatively will require a direct numerical mo-
Vg(r)= —asvquo(msr) [9]. veqis @ measure of(T) and  lecular dynamics study of the vortex ensemble using the ex-
as,ag are weakly varying with the couplings and have beenact intervortex potential or the Yukawa gas interaction of Eq.

computed numerically by Speightl]: for k<1, ag>ag. (9).
Then the two-body potential for a pair of like-charge vortices The strength of the vortex ensemble picture lies in its
is several qualitative predictions, namely, tHa) the vortex

S ) densityp will behave as a disorder parameter, vanistdisy
V(r)=—qgiqjued asko(msr) —agKo(mgr)1,  (9)  continuouslyin the superconducting phag4], (2) the vor-
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FIG. 2. (a) The probability distribution of the scalar field modu-
lus o (a gauge invariantat T=0.018 44, in the critical region,
showing coexistence of the normal and superconducting ph@ses.
A hysteresis loop for the vortex densipyobtained by coolingtri-
angles and heatingcircles the system through the critical region.
Vortices disappear abruptly in the low-temperature phase. The sharp
tex ensemble will show signs of a clustering instability in thetransitions inp, and the trajectory dependence as the transition
metastable phase, an@® multicharged vortices will be point is crossed at a finite rate are typical signs of the discontinuous

’ L . nature of the transition.

formed locally under sudden nonequilibrium cooling. . "

To test these predictions we consider the field evolution in

FIG. 1. (a) A characteristic time evolution of the average scalar
modulus o at T=0.01844, close to phase coexistenoejumps
abruptly between the normal and superconducting phésg3he
total vortex densityp for the same trajectory as {@). p is a disor-
der parameter vanishing in the superconducting phase.

contact with a heat bath, given by a system of Langevin field  dE=(VXB)+J;, J;=—€?¢|?A —eeapdad; by,
equations. Gauge invariance demands that the evolution pre-
serves Gauss’ law. This constraint still allows for several A =E + 7gdE;+ Ty,

classes of dynamical equatiofis|, characterized by differ-

ent gauge invariant stochastic generators. We choose the .. . ) ) )
with E;=d;A;, B=V XA. The details of this choice are ir-

. 2 = .
simple set|[¢|",E}, leading to relevant to the state of canonical thermal equilibrium reached

at long times. The indicea,b refer to the two real compo-

_|v2_a2ipa2_ N 2 B i nents of ¢, whereasi is a spatial vector indexe;; is the
dma=| Vi - €Al 2(|¢| D] ¢a—2€€aphdidn totally antisymmetric rank-2 tensor. The stochastic soufces
’ obey fluctuation-dissipation relations
_2¢i[773(9t|¢| +T], (12

(Tsg(X, ) g(X" 1)) =275 ;TH(X—X") 8(t—1"),
=, (13
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FIG. 3. The density of like-sign vorticgs(r) in a disk of radius
r around a vortex, normalized by the average vortex density. Lines ' Z
correspond to the metastable regi@olid), the near-ideal gas for FIG. 4. Contours of magnetic flux after a fast temperature
T>T. (short dashex and a random distributioflong dashey with guench, showing the clustering of singly quantized vorticesall-
the same density as the metastable region. The latter exhibits coest circular featuresinto large integer charge bound states. White
relations typical of the subcritical percolation problem. Vortex clus- (black), localized, regions denot@ntivortices. The total collapse
tering is maximal in the metastable phase, a premonitory sign of thef the vortex ensemble was avoided due to fast cooling, which
dynamical clustering instability, and disappearsTesT... evaded the metastable region.

with (I's ;) =0. We choosee=1.5,A=0.1, and solve a lat-
tice (noncompadt version of Eq.(12), with 7s= 74=0.05,
dt=0.02, anddx=0.5.

Figure 1b) shows that a substantial vortex population

evidence of their clustering, see Fig. 4. This suggests an
interesting scenario for defect formation experiments in
type-l superconductors where the density of defects may
vary descontinuouslywith cooling (or quench rate. This

7.&0 ems(;z mfhz_symmetn(ngrmarb] phase, but tha_t all vohr— would be qualitatively distinct from other phase transitions
tices suddenly disappear, when the system transits to the SUzy from the current theoretical arguments of topological
perconducting state, as shown by the spatial average of y.tact formation

=|¢|. Fig. 1(a). Vortices are identified by their quantized |, :onclusion, we argued for a vortex description of the
fluxes, a quantity that is manifestly gauge invariant. Themesoscopic mechanism underlying the first-order transition
probability distribution ofo close toT. is shown in Fig.

) in the 2D type-I Abelian Higgs model and provided detailed
2(a). The double peak demonstrates phase coexistence Ch"f‘fumerical evidence in its support. Beldly the vortex en-
acteristic of first-order transitions. Figuréb? shows a hys-

. . i 3 semble becomes metastable and eventually collapses to a
teresis loop irp, obtained by slowly heating and then cool- ),nextensive thermodynamic phase and the system becomes
ing through the critical region. _ ordered. The vortex interpretation of the transition is gauge
The metastability of the vortex ensemble is a consequencg ariant and does not require?>\, unlike the field-

of the small probability for forming a large vortex cluster. y,qoqretical arguments for a first-order transition. Instead, the
While the energy is lowered through attractive vortex inter-aactive nature of the vortex potential is manifest even in
actions in the volume, the spatial cluster boundary, wherg,e \eakest type-I regime, and metastability and collapse are
vortices are rarefied, is therm(_)t_jynammally cost_ly. _Thus’inescapable. Moreover, this description of criticality in type-|
small vortex clusters are subcritical and can exist in the,p Abelian-Higgs model creates interesting links with the

metastable phase without leading to its collapse. Evidencgatistical mechanics of other attractive particle ensembles.
for incipient clustering is shown in Fig. 3, where we plot the A )| quantitative validation of the vortex description will

radial density of like-charge vortices around another vorteXqqjire direct molecular dynamics studies of particle en-
Clustering is maximal in the metastable region and negligempies, siill, its qualitative success, demonstrated here,

gible at higherT>T,. bodes well for applications to three dimensidig], where

While we argue that vortices are relevant degrees of freey tices become lines that may participate in interesting criti-
dom at criticality, their profiles cannot be easily observed in., phenomena, e.g., in crystal melting and cosmology.
the normal phase because they appear there only as transient ' '

fluctuations in a noisy background. Beloly, where they We thank H. Kleinert, N. Rivier, A. Schakel, and Z. Te-
could exist as well-defined objects, their ensemble collapsesanovic for useful comments on the manuscript. This work
and vortices disappear in the absence of quantized net fluxas supported in part by the DOE under research agreement
[16]. Fast quenches evading equilibrium in the metastabl®&o. DF-FC02-94ER40818. Numerical work was done at the
region do display well-defined vortices and show strikingT/CNLS Avalon cluster at LANL.
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