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Vortex description of the first-order phase transition in the two-dimensional Abelian-Higgs model
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We use both analytical arguments and detailed numerical evidence to show that the first-order transition in
the type-I two-dimensional Abelian-Higgs model is commensurate with the statistical behavior of its vortex
fluctuations, which behave as an ensemble of attractive particles. The clustering instabilities of such ensembles
are shown to be connected to the process of phase nucleation. Calculations of the vortex equation of state show
that the temperature for the onset of clustering is in qualitative agreement with the critical temperature. The
vortex description provides a general gauge invariant mesoscopic mechanism for the first-order transition and
applies for arbitrary type-I couplings.
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The role of topological excitations in the dynamics a
thermodynamics of gauge field theories is a subject of w
interest and great promise, ranging in scope from the un
standing of vortex phases in superconductors, necessar
practical applications, to the clarification of the mechanis
of charge confinement in non-Abelian gauge theories, s
as quantum chromodynamics.

Topological excitations are important as finite-energy
hicles of disorder. Thus, phase transitions between a sta
long range~e.g., magnetic! order and disorder can sometim
be understood by the proliferation of topological excitatio
each bringing about disorder comparable to its size@1#. This
is true in the XY model in two spatial dimensions, whic
displays a Kosterlitz-Thouless~KT! transition to a disordered
state due to vortex pair unbinding@2#. Furthermore, there is
evidence that the second-order transition in the thr
dimensional~3D! XY universality class is associated wit
vortex string proliferation@1,3#.

In this paper we show how afirst-orderphase transition in
a simple gauge theory is intimately connected to the dyn
ics of its topological excitations and provide detailed nume
cal evidence in support of this view. Our results sugges
dual vortex gas picture of the transition, in analogy to the
case. In the type-I Abelian gauge theory, however, vorti
have attractive interactions, leading to characteristic meta
bility and collapse.

For its simplicity and close relationship to the XY mode
we study the Abelian-Higgs~or Landau-Ginzburg! model in
two dimensions. The phase structure of this model in th
dimensions was examined in@4,5#. The Lagrangian density
L is

L52
1

4
FmnFmn1

1

2
uDmfu22

l

8
~ ufu22v2!2, ~1!

wheref is a complex scalar field,Fmn5]mAn2]nAm is the
field strength for the gauge potentialAm , and Dm5]m
1 ieAm . Here, we focus on the first-order regime~type-I!
wheree2 is larger than the scalar couplingl.

While the Abelian-Higgs system describes the lon
wavelength behavior of an ideal superconductor@4,5#, the
2D nature of our model precludes direct application to
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description of real superconducting films. This is becau
even for thin films, the excursion of the vector potential in
three dimensions fundamentally alters the nature of the in
actions away from type-I behavior@6#. As a result, vortices
interact via long-range potentials and the material exhibit
continuous transition. Nonetheless, we believe that the c
nections we draw below, between metastability and the
tractive vortex interaction, are of general theoretical inter
and may generalize qualitatively to more realistic situatio

The standard argument@7# for a first-order transition in
gauge1scalar field theories relies on largee, for which the
gauge field is very massive and can be integrated out. Th
only justifiable ask[Al/e→0, as it requires a separation o
scales between ‘‘heavy’’ gauge degrees of freedom, which
not participate in the transition dynamics, and ‘‘light’’ scal
field fluctuations. The result is a ‘‘free energy’’F@f#, that is,
both nonconvex and, generally, gauge dependent. Neve
less,F@f# yields the correct qualitative picture for certa
aspects of the transition@4#.

A description of the critical system in terms of gaug
invariant degrees of freedom, for arbitraryk,1, is therefore
desirable and may shed light on the mechanism of the t
sition. While vortices exist only as fluctuations at high tem
perature they become the only stable magnetic excitation
Eq. ~1! at low temperatures. Moreover, arbitrarily low ener
excitations can be produced by the superposition of vorti
and antivortices. These arguments suggest that vortices
relevant degrees of freedom at criticality. In type-I, vortic
attract each other independent of the sign of their quanti
flux ~topological charge! @8#. Thus, Abrikosov vortex lattices
~such as those found in type-II superconductors! are not
formed in applied magnetic fields. Instead type-I syste
enter anintermediate state, forming a nonextensive multi-
winding vortex, with the normal phase restored at its co
We argue that the attractive vortex interactions in type-I s
tems allow for a vortex description of the first-order pha
transition.

Vortices are radial static classical solutions, obeying

d2s

dr2 1
1

r

ds

dr
2Fe2n2

a2

r 2 1
l

2
~s22v2!Gs50, ~2!
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d2a

dr2 2
1

r

da

dr
2e2s2a50, ~3!

in temporal gaugeA050, wheref5s(r )einu. u is the polar
angle,n is an integer,AW (r )5AueW u ; Au5n/er2a(r )/r , with
boundary conditions s(r 50)5a(r→`)50, s(r→`)
5v, a(r 50)5n/e. For r larger than the core size, the vo
tex behaves like a point source for massive scalar and m
netic fields. Then the vortex profiles can be written as@9#

s~r !5v2 f ~r !, f ~r !5aSvqK0~mSr !, ~4!

Au~r !2
n

er
52aGvmK1~mGr !, ~5!

where mS5Alv, mG5ev, aS ,aG are dimensionless con
stants, andKi are the modified Bessel functions of orderi.
The profiles ~4! and ~5! correspond to Yukawa~massive!
chargesq, m in two dimensions, in contrast to the familia
Coulomb logarithmic vortex solutions of the 2D XY mode

In the XY model the importance of topological charges
the phase transition is demonstrated by rewriting the pa
tion function in terms of vortex degrees of freedom@10#.
Unfortunately because the Abelian-Higgs system is n
Gaussian, it is impossible to perform an exact dual trans
mation to a partition function written exclusively in terms
a one- and two-body vortex terms. It is nevertheless poss
to perform this rewriting approximately.

We begin with a superposition ansatz for anarbitrary
numberN of vortices, by constructing scalar and gauge v
tex fields centered atN different loci xi , i P$1,N%,

f~X,x1 , . . . ,xN!5
f~X2x1!•••f~X2xN!

vN21
, ~6!

AW ~X,x1 , . . . ,xN!5AW 1~X2x1!1•••1AW N~X2xN!. ~7!

This ansatz is exact when the vortices are all coincident o
widely separated. Substituting Eqs.~6! and~7! into the static
part of the Hamiltonian gives

H5(
i

e i1(
^ i , j &

@mi~x!VG~ ux2yu!mj~y!

1qi~x!VS~ ux2yu!qj~y!#1•••, ~8!

where the terms not shown correspond to three- and f
body effects, which are negligible in a low-density vort
ensemble. The chargesmi(x)56nd(x) are integers of eithe
sign, corresponding to quanta of magnetic flux, whereasqi
5umi u is always positive@9,11#. For well-separated vortice
at distancer the potentials areVG(r )5aGveq

2 K0(mGr ) and
VS(r )52aSveq

2 K0(mSr ) @9#. veq is a measure ofs(T) and
aS ,aG are weakly varying with the couplings and have be
computed numerically by Speight@11#: for k,1, aS.aG .
Then the two-body potential for a pair of like-charge vortic
is

V~r !.2qiqjveq
2 @aS

2K0~mSr !2aG
2 K0~mGr !#, ~9!
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demonstrating that in type-I, whenk,1, the scalar~attrac-
tive! part of the potential dominates the interaction.

The statistical mechanics of particles with a finite-rang
soft-core attractive potential was studied in several sim
settings@12#, aimed at elucidating thermodynamic gravit
tional instabilities. Unfortunately the 2D Yukawa gas of E
~9! was not among these.

Nevertheless, systems in this class share important qu
tative properties: they always display a first-order transit
between an~almost! ideal gas state at highT and a clustered
phase at lowT @12#. The latter isnot an extensive thermody
namic phase. It consists of a single bound cluster contain
most of the particles. Qualitatively this clustering transiti
occurs atTcl , such that the kinetic energy equals the int
action energy per particle. This gives a rough estimate of
vortex gas clustering temperature@12#, Tcl;e/250.019,
wheree measures the strength of the interaction. We estim
e from Ref. @13#, by averaging the strength of vortex-vorte
and vortex-antivortex pair interactions,e5(evv1evv̄)/2,
where evv.0.62veq

2 and evv̄53.80veq
2 . Vortex interactions

are softened by a small order parameter,veq5s(Tc
1)

.0.13.
The equation of state for the almost ideal~low-density!

gas of vortices at highT can be computed by standard clust
expansion methods in the particle density, which we take
the~canonical! vortex densityr. For simplicity we model the
attractive potential as a square well with a strengthe and an
interaction lengthl. Then

P.rT~12rB2!, B25
p l 2

2 S exp
e

T
21D , ~10!

where we neglected terms proportional torn,n>3. The cor-
rection to the ideal gas behavior is negative as expected
an attractive potential. For highT, B2 vanishes. Interactions
are most important at lowT and the pressureP vanishes at
Tcl :

Tcl.
e

ln~112/rp l 2!
. ~11!

Attributing the change ins to vortices, in analogy to the KT
transition, we estimaterp l 2.0.375s(Tc

2)2s(Tc
1), and

take e as above to obtainTcl.0.020. Both estimates ofTcl
are compatible with the measuredTc , see Figs. 1 and 2.

In spite of the qualitative agreement withTc measured
numerically we must note that these estimates ofTcl are very
qualitative. For our choice of parameters the exact tw
vortex potential is not known. Moreover, the virial expansi
is notoriously unreliable near a clustering transition. To
tablishTcl quantitatively will require a direct numerical mo
lecular dynamics study of the vortex ensemble using the
act intervortex potential or the Yukawa gas interaction of E
~9!.

The strength of the vortex ensemble picture lies in
several qualitative predictions, namely, that~1! the vortex
densityr will behave as a disorder parameter, vanishingdis-
continuouslyin the superconducting phase@14#, ~2! the vor-
5-2



he

i
el
p
ra

t
-
hed
-

s

la -

.

.
harp
ion
ous
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tex ensemble will show signs of a clustering instability in t
metastable phase, and~3! multicharged vortices will be
formed locally under sudden nonequilibrium cooling.

To test these predictions we consider the field evolution
contact with a heat bath, given by a system of Langevin fi
equations. Gauge invariance demands that the evolution
serves Gauss’ law. This constraint still allows for seve
classes of dynamical equations@15#, characterized by differ-
ent gauge invariant stochastic generators. We choose
simple set$ufu2,EW %, leading to

] tpa5F¹22e2uAu22
l

2
~ ufu221!Gfa22eeabA

i] ifb

22f i@hs] tufu21Gs#, ~12!

] tf i5p i ,

FIG. 1. ~a! A characteristic time evolution of the average sca
moduluss at T50.01844, close to phase coexistence.s jumps
abruptly between the normal and superconducting phases.~b! The
total vortex densityr for the same trajectory as in~a!. r is a disor-
der parameter vanishing in the superconducting phase.
06610
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] tEi5~¹W 3BW ! i1Ji , Ji[2e2ufu2Ai2eeabfa] ifb ,

] tAi5Ei1hg] tEi1Gg ,

with Ei5] tAi , BW 5¹W 3AW . The details of this choice are ir
relevant to the state of canonical thermal equilibrium reac
at long times. The indicesa,b refer to the two real compo
nents off, whereasi is a spatial vector index.e i j is the
totally antisymmetric rank-2 tensor. The stochastic sourceG
obey fluctuation-dissipation relations

^Gs,g~x,t !Gs,g~x8,t8!&52hs,gTd~x2x8!d~ t2t8!,
~13!

r FIG. 2. ~a! The probability distribution of the scalar field modu
lus s ~a gauge invariant! at T50.018 44, in the critical region,
showing coexistence of the normal and superconducting phases~b!
A hysteresis loop for the vortex densityr obtained by cooling~tri-
angles! and heating~circles! the system through the critical region
Vortices disappear abruptly in the low-temperature phase. The s
transitions inr, and the trajectory dependence as the transit
point is crossed at a finite rate are typical signs of the discontinu
nature of the transition.
5-3
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with ^Gs,g&50. We choosee51.5, l50.1, and solve a lat-
tice ~noncompact! version of Eq.~12!, with hs5hg50.05,
dt50.02, anddx50.5.

Figure 1~b! shows that a substantial vortex populationr
Þ0 exists in the symmetric~normal! phase, but that all vor-
tices suddenly disappear, when the system transits to the
perconducting state, as shown by the spatial average os
5ufu, Fig. 1~a!. Vortices are identified by their quantize
fluxes, a quantity that is manifestly gauge invariant. T
probability distribution ofs close toTc is shown in Fig.
2~a!. The double peak demonstrates phase coexistence
acteristic of first-order transitions. Figure 2~b! shows a hys-
teresis loop inr, obtained by slowly heating and then coo
ing through the critical region.

The metastability of the vortex ensemble is a conseque
of the small probability for forming a large vortex cluste
While the energy is lowered through attractive vortex int
actions in the volume, the spatial cluster boundary, wh
vortices are rarefied, is thermodynamically costly. Th
small vortex clusters are subcritical and can exist in
metastable phase without leading to its collapse. Evide
for incipient clustering is shown in Fig. 3, where we plot t
radial density of like-charge vortices around another vort
Clustering is maximal in the metastable region and ne
gible at higherT@Tc .

While we argue that vortices are relevant degrees of fr
dom at criticality, their profiles cannot be easily observed
the normal phase because they appear there only as tran
fluctuations in a noisy background. BelowTc , where they
could exist as well-defined objects, their ensemble collap
and vortices disappear in the absence of quantized net
@16#. Fast quenches evading equilibrium in the metasta
region do display well-defined vortices and show striki

FIG. 3. The density of like-sign vorticesr(r ) in a disk of radius
r around a vortex, normalized by the average vortex density. L
correspond to the metastable region~solid!, the near-ideal gas fo
T@Tc ~short dashed!, and a random distribution~long dashed!, with
the same density as the metastable region. The latter exhibits
relations typical of the subcritical percolation problem. Vortex clu
tering is maximal in the metastable phase, a premonitory sign o
dynamical clustering instability, and disappears forT@Tc .
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evidence of their clustering, see Fig. 4. This suggests
interesting scenario for defect formation experiments
type-I superconductors where the density of defects m
vary descontinuouslywith cooling ~or quench! rate. This
would be qualitatively distinct from other phase transitio
and from the current theoretical arguments of topologi
defect formation.

In conclusion, we argued for a vortex description of t
mesoscopic mechanism underlying the first-order transi
in the 2D type-I Abelian Higgs model and provided detail
numerical evidence in its support. BelowTcl the vortex en-
semble becomes metastable and eventually collapses
nonextensive thermodynamic phase and the system beco
ordered. The vortex interpretation of the transition is gau
invariant and does not requiree2@l, unlike the field-
theoretical arguments for a first-order transition. Instead,
attractive nature of the vortex potential is manifest even
the weakest type-I regime, and metastability and collapse
inescapable. Moreover, this description of criticality in type
2D Abelian-Higgs model creates interesting links with t
statistical mechanics of other attractive particle ensemble

A full quantitative validation of the vortex description wi
require direct molecular dynamics studies of particle e
sembles. Still, its qualitative success, demonstrated h
bodes well for applications to three dimensions@17#, where
vortices become lines that may participate in interesting c
cal phenomena, e.g., in crystal melting and cosmology.

We thank H. Kleinert, N. Rivier, A. Schakel, and Z. Te
sanovic for useful comments on the manuscript. This w
was supported in part by the DOE under research agreem
No. DF-FC02-94ER40818. Numerical work was done at
T/CNLS Avalon cluster at LANL.
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FIG. 4. Contours of magnetic flux after a fast temperatu
quench, showing the clustering of singly quantized vortices~small-
est circular features! into large integer charge bound states. Wh
~black!, localized, regions denote~anti!vortices. The total collapse
of the vortex ensemble was avoided due to fast cooling, wh
evaded the metastable region.
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