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Solving satisfiability problems by fluctuations: The dynamics of stochastic local search algorithms
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Stochastic local search algorithms are frequently used to numerically solve hard combinatorial optimization
or decision problems. We give numerical and approximate analytical descriptions of the dynamics of such
algorithms applied to random satisfiability problems. We find two different dynamical regimes, depending on
the number of constraints per variable: For low constraintness, the problems are solved efficiently, i.e., in linear
time. For higher constraintness, the solution times become exponential. We observe that the dynamical behav-
ior is characterized by a fast equilibration and fluctuations around this equilibrium. If the algorithm runs long
enough, an exponentially rare fluctuation towards a solution appears.
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[. INTRODUCTION ance, which again complicates the analysis.
In this paper, we are going to analyze a different class of

The last years have seen a fruitful exchange between th@dgorithms:stochastic local search algorithms particular,
oretical computer science and statistical mechaficg]. ~ variants of the so-calledalk-SAT algorithm[22] which is
Due to the formal analogy between various combinatoriaPne of the most popular and successful solvers for satisfiabil-
optimization problems and certain spin-glass models, subty problems. Whereas the full problem is to hard to attack
stantial progress in the understanding of hard combinatorigfuccessfully by means of analytical tools, we will give some
questions could be made by using tools that were originall@PProximation methods that allow us to draw a qualitative
developed in the statistical mechanics of disordered systemBicture on how these algorithms solve an optimization prob-

The most striking results so far were obtained in the delem.
scription of the solution-space structure of the random satis- The paper is organized as follows: In Sec. I, the consid-
fiability problem[3—7], of the number partitioning problem ered models are introduced. We first introduce the random
[8,9], of vertex cover§10—17 or colorings[13] of random  K-satisfiability (K-SAT) problem and give an overview of
graphs. In these cases, equilibrium methods from statisticdhe current state of knowledge. Then, we introduce a second
mechanics can be applied directly, including, e.g., the replicdhodel, the randonkK-xoRr-satisfiability (K-xOR-SAT) prob-
and cavity approaches. The main result is that these modelém. Being in many aspects similar to teSAT, it has
undergo phase transitions from an eas”y solvable, undercorﬁecenﬂy attracted some interest due to its better analytical
strained phase to a hard, highly constrained one. The latter f&actability. In the last part of Sec. Il, we give a short intro-
characterized by the existence of glasslike states, i.e., th@uction to some stochastic local search algorithms, in par-
solution space is subdivided into a large number of disconticular, to the famous walk-SAT algorithm which will be ana-
nected clusters, and there are exponentially many exciteifzed in the present paper. We then show some numerical
states hindering even the best local algorithms from findingbservations in Sec. Ill. These are analytically explained in
0ptima| solutions in Subexponentia| tin@where exponentia| Secs. IV and V. The first of these two sections deals with the
means, here and in the f0||owing, exponentia| in the Systenlinear-time behavior, whereas the second one describes the
size, as given, e.g., by the number of discrete degrees @xponen_tial-time behavior. Our results are summarized in the
freedom or, in a more computer-science oriented language, st section.
the number of bits needed to encode an instance of the prob-
lem under consideration

Up to now, much less is understood about the dynamical Il. THE MODELS
behavior of algorithms that are used to numerically solve the
combinatorial problems. Also these are known to undergo
algorithm-dependent phase transitions from phase space re- A randomK-satisfiability (K-SAT) formula F consists of
gions, where the problems are typically efficiently solvable,M logical clause¢C,},—1 .. Which are defined over a set
to regions where solutions are exponentially hard to conof N Boolean variable$x;=0,1};_; .. n which can take the
struct. Some understanding was obtained for heuristics, i.evalues G=FALSE and I=TRUE. Every clause contains ran-
approximate algorithms running in linear time, see, e.g.domly chosen Boolean variables that are connected by logi-
Refs.[14—-16, for complete solver§17—-19 that are guar- Cal OR operations (/) and appear negated with probability
anteed to find an optimal solution, and finally for randomizedl/2, e.g.,C,=(x;\/X;\/Xc) for K=3. Because of ther
versions of these complete algorithi®9,21]. The problem conjunction aK-SAT clause is satisfied if at least one of the
in analyzing algorithms is that they are intimately related toK variables has the correct assignment. In the fornfylall
nonequilibrium statistical mechanics, which frequently isclauses are connected by logiealD operations (\),
technically much harder to handle. In addition, algorithms M
are not forced to fulfill physical criteria such as detailed bal- F=A,-1Cu. Y

A. Random K satisfiability
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so all clauses have to be satisfied simultaneously in order tsimilar behavior of both models.

satisfy the formula. FOK=2, i.e., if each clause connects  Again, the system can be conveniently parametrized by
only two variables, the problem is easy, and polynomial-timex=M/N. The numbers given below are valid fir=3, but
algorithms are known24]. On the other hand, the problem the qualitative picture is valid for anyK>3. For «
becomes nondeterministic polynomi&lP) complete for all  <0.818, the formula is typically easy to solve, the solution
K>3 [24], so one expects that no efficient algorithm to 50|Vespace consisting of one large cluster. In the region 0.818

genericK-SAT formulas in polynomial time can be found. -0 .918, the formulas are still satisfiable with probability
The considerable attention attracted by the rante®AT tending to 1 forN—c, but the solution state decays into an

problem was initiated about one decade ago, when the modg ponential number of clusters. In addition, there are also

wr?s numerlqa}lly obﬁ.eLve_E%] to undgrgé) g chﬁrac:erlstlc exponentially many metastable states that prevent even the
phase transmoE which s parametrize y t € cause—tobest local algorithms from fast convergence to a solution. For
variable ratioa=M/N. For «<4.26 and sufficiently large . -

system sized\, almost all 3-SAT formulas were found to be >0.918, the system is .al_most surely unsat|s_f|able. .
satisfiable. Fora>4.26, this behavior changes drastically; These values were originally calculated using the replica

the formulas are found to be unsatisfiable with a probabilit)}“erhc’]fj Wh(;Ch_ areAbeIievgd to ?el exaclt, f;:_"t Sti”SIZ_I(EkS arig-
approaching 1 in the thermodynamic limM—cc. Even  ©rousfoun ation. A very beautiful result f&FX0OR- was

more interestingly, this transition was observed to coinciderecentl.y obtained In two |r_1dependent woﬂ@_,ZS]: The re-
with a strong exponential peak in the algorithmic solutionsun.S given above, including the ones obtained by one-step
time of complete algorithms. The hardest to solve formulasmpIIca symmetry br_oken calculations, were reproduced us-
are thus located close to the phase boundary, and are said'tt¢ mathematically rigorous methqu. . .
be critically constrained. The K-XOR-SAT problem is also interesting from a physi-

The observation of this phase transition finally led to theCal point of view, because it is equwal_ent toa d|_Iuté<$p|n .
application of analytical tools developed in the statistical me-mOdeI' Such modg_ls are frequently discussed in connection
chanics of disordered systems, since randOi8AT can be to the glass transition, see, e.g., R&0].
mapped to a spin-glass model on a random hypergraph. After

the pioneering work by Monasson and Zecchi@provid- C. Stochastic local search algorithms
ing the first analytical approximation to the phase transition As already mentioned in the introduction, here we are not
using the replica method, many efforts were done to improventerested in the solution space structure KfSAT and
the analytical understanding. In R¢B], on the basis of a K-xor-SAT, but in thenonequilibrium dynamicef so-called
variational approach, a second phase transition was su@tochastic local search algorithms.
gested to appear inside the satisfiable phase: For verglow  The idea behind these algorithms is that, if a formula is
the set of all solutions to K-SAT formula was found to be satisfiable, a solution can frequently be found more quickly
unstructured, with the exponentially large number of solu-if randomizedalgorithms are used. In general, these algo-
tions collected in one large connected cluster. For latger rithms areincompletei.e., they stop once they have found a
the solution space breaks into an exponential number of clussolution, but they are not guaranteed to really find one. Due
ters. Using the cavity approach, tigrobably exact location  to their random character, they are also not able to prove the
of this transition was established recently #6=3. It is  unsatisfiability of a formula. In the case where there is no
given by ay=3.92[6,7]. solution the algorithm just runs forever, or until some
running-time cutoff is reached.
Here, we mainly concentrate on tialk-SAT algorithm
introduced in Ref[22]. Its most recent implementations are
A model showing a very similar behavior, but being ana-available in thesatLis [30], and they are one of the best
lytically much more tractable, is given by the random stochastic local search algorithms for randé®SAT. The
K-XOR-SAT problem[in the physical literature initially de- algorithm starts with a random assignment toNaltariables.
noted asK-hSAT (hyper-SAT [26]]. The difference to Within this assignment, there is a numheyN of satisfied
K-SAT is that the variables appearing in the clauses are corclauses, whereas the othegfN=(a— a)N are unsatisfied.
nected by logicakor operations ¢) instead ofor. A clause In every step, the algorithm selects an unsatisfied cl@use
is thus satisfied if an odd number of variables is assignedandomly and then one of it§ variablesv™* (a) with prob-
correctly, i.e., toTRUE if the variable appears non-negated, ability g randomly(walk step, (b) with probability 1—q the
and toFALSE if it appears negated. variable in C occurring in the least number of satisfied
The @ operation is equivalent to an integer addition clauseqgreedystep.
modulo 2. Using this equivalence, we can map each clause to The current assignment of* is inverted. All clauses con-
a linear equatiorimodulo 2, and the formula, consequently, tainingv* that were unsatisfied before become now satisfied.
to a coupled set oM linear equations. The solution of this Clauses that were satisfied behave differently for the two
system can be easily found @(N®) steps. Hencesor-SAT ~ models under consideration: FEFSAT, a previously satis-
formulas can be solved efficiently bygéobal algorithm, i.e.,  fied clause becomes unsatisfied if and onlyif was the
by exploiting the global information about the instance andonly correctly assigned variable in this clause. KGKOR-
its structure in every step. If we use, howevecal algo-  SAT, every previously satisfied clause containing be-
rithms like the ones used also frSAT, we observe a very comes unsatisfied.

B. A simpler but similar model: Random K-xorR-SAT
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These steps are repeated until no unsatisfied clause is lef s T T

Then, the algorithm has found a solution of forméHaand I GoON=70
stops. As noted earlier the algorithm will run forever if no
solution exists. 6

There are variants for the greedy step: The algorithm
could also select the variable @ leading to the minimal |
number of unsatisfied clausésnaximal gain”), or the one & 4
minimizing the number of previously satisfied clauses thati [
become unsatisfied'minimal negative gain’). The second —
case is equivalent to our choice f§rxOR-SAT. For K-SAT, NI
they are different due to the fact that not all satisfied clauses
become unsatisfied.

A completely different heuristic is the GSAT heuristic
[31] which, in the greedy step, globally selects the variable Y R
leading to the minimal number of unsatisfied clauses. In nu- : &
merical studies, this selection is outperformed by walk-SAT
[32]. There also other heuristic variations of walk-SAT and  FIG. 1. 3-SAT: dependency of the running time of walk-SAT
GSAT are discussed. For reasons of clarity, we concentrat#ithout restarts on the ratia of clauses to variables.
completely on the algorithm given above. We expect, how-
ever, that the approximate approach developed in this paperg=2.7 a solution is found in a median time growing lin-
can also be extended to more involved cases, as long as tlearly with N, above this point running times grow exponen-
dynamics can be considered as a Markov process. tially, see Figs. 1 and 2. This observation does not depend on

A different iteration of variable flips was introduced by the fact whether we use the algorithm with or without re-
Schaing [33]. He suggested to stop the algorithm aftéd 3 starts. In the following, we measure all running times in the
steps, and to restart it by selecting a new random initial ashumber of Monte Carlo swee#1C sweep} i.e., a single
signment to allN Boolean variables. Fog=1, i.e., for a  step of the algorithm leading to the negation of one variable
pure random walk dynamic, he was able to prove that thds counted as\t=1/N. During a time interval of length one,
worst case solution time goes down fromY &erations to ~ every variable becomes thus negated on an average once.
only (4/3)N steps, i.e., the algorithm is exponentially accel-Note that in this representation linear solution times lead to a
erated. This simple algorithm shows, up to a refinement leadconstant number of MC sweeps, whereas exponential itera-
ing to 1.3308 steps[34], the currently best known worst tions of walk-SAT correspond to exponentially many MC
case behavior of all SAT algorithms. sweeps. In Fig. 3, we show a histogram of the resolution

In the following sections, we will analyze both models for times inside the exponential regime. Obviously, this distribu-
exponential waiting times and for an exponential number ofion can be well described by the mean of the logarithm of
random restarts. We will concentrate on formulas that aréhe running time. For such an exponentially dominated dis-
satisfiable, i.e., on variables-to-clauses ratios inside the satribution this is equivalent to characterizing it by the median,
isfiable phase of the model under consideration. In the unsawhereas the average running time would be dominated by
isfiable phase there are no solutions, thus the algorithm ca®xponentially rare events with exponentially longer resolu-

not terminate by construction. tion times.
IIl. NUMERICAL RESULTS ON THE BEHAVIOR OF P e AR 1
WALK-SAT 042 g ]
r o =30
Now we present some numerical observations on the be o i as2rs
. . e 4 =25
havior of walk-SAT applied to randomly generated satisfi- ¥ o v =20 1
ability formulas. We look toK-SAT as well as toK-XOR- a0
SAT, and we mainly concentrate on the solution times | A=-°o°
needed by walk-SAT, and the dynamical evolution of the @ 025 % e ]
number of unsatisfied clauses, while the algorithm is run- Lo Fefo 000 = Poc00g
ning. Explaining these observations will be the final aim in - :., n"“-m%_
the following sections. o1be A, e
da o%%
L N %00, ]
L) 0000
A. Random K-SAT F v % X 0000
. . . T Ll Y AAAAAMMAAMMMAMAAAAMAAIAARMAASNAAMIAAMSARAAN]
Let us start with randonkK-SAT. At first, we realize that 05— 2 3 4 s 6 7 8 910
the running time heavily depends on the ratiec M/N of g
clauses to variables. Let us concentrate on the Kas8 and FIG. 2. 3-SAT: average number, of unsatisfied clauses per

g=1 first, i.e., only walk steps are performed. For small variable with sample sizdl=50 000. Initially, this energy density
negating one variable in an unsatisfied clause rarely causegickly decreases. Fax<ay=2.7, it becomes zero after a finite
other clauses to become unsatisfied. Up to a critical thresholiime, for largera a nonzero plateau is reached.
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FIG. 3. 3-SAT: Histogram of the |ogarithm of the running times FIG. 4. After the initial decreaseu fluctuates around its p|ateau
of walk-SAT without restarts forr=3.5 andN=100. value. Two different system sizes are shown. For the smaller one

with N=150 a fluctuation after about 145 MC steps was large

. . . _enough to reach a solution of the formula.
The algorithm starts with an extensive number of unsatis-

fied clauses, and stops when their number reaches zero. Eﬂghtly and has a maximum at=0.85. There formulas up
characterize the search process, we therefore look at the bgy, —% g can be solved in linear time.
havior of @,(t), which is given as the number of unsatisfied

clauses per variable. We can think of it as an energy density B. Random K-xoRr-SAT
of the system of thé\ variables. In a randomly drawn start- o o _
ing configuration of the Boolean variables, i=1, ... N, A qualitatively similar behavior can be observed for ran-

there are on an average 1/8 of all clauses unsatisfied, we th§9MK-XOR-SAT, for K=3 andq=1 (pure walk dynamics
have almost surelyr,(t=0)=(M/8)/N=a/8. Concentrat- The main difference is of a quantitative nature; the dynami-
u .

ing first on the linear-time behavior, i.e., to finite MC times, icall thrctasgolg nla(;kér;g \t/k\;e t(;ns;e]tc Orf egp?]n?rrmal S(t)ltL}f]t'of? t|r;1es
it is convenient to work with large systemil>1. These s located alrg="1.23. Ve theretore do not repeat the igures

: . I iven for random 3-SAT, but the corresponding numerical
show a good separation of linear and exponential time scal

S . : : ata can be found in the following sections in comparison to
but also minimize the influence of fluctuations. Numerically ;
T . : analytical results.
we find, in dependence am, the following behavior.

(a) Fora< ay, a solution is found after a finite number of IV. A RATE-EQUATION APPROACH TO THE

M(? sweeps, i..e.au(t) becpmes zero at finite MC times. LINEAR-TIME BEHAVIOR
This solution time grows withw, and diverges once we ap-
proach the dynamical threshotg . The main idea of the analytical approach presented in this

(b) For a>ay, the energy densityr,(t) initially de-  Sectionis to characterize each variable only by the number of

creases and quickly equilibrates to a nonzero platEay 2).

For larger timesy,(t) fluctuates around its plateau value, as ' ' ' ' '
can be seen for smaller system sizes, cf. Fig. 4. Eventually I eo0=35
and only if the formula is satisfiable, one of these fluctua- F~e. @80=30
tions is large enough to reaeh,(t)=0. i IR - )

This behavior explains the origin of the title of the paper: I T~
For a>ay, the system equilibrates to a nonzero number of I o
unsatisfied clauses, and only fluctuations around this equilibw* | -~
rium lead the dynamics to satisfying assignments, and the I
algorithm stops. Such macroscopic fluctuations appear, o
course, only with exponentially small probability, giving rise
to exponential solution times.

This observation leads to an obvious way of improving
the algorithmic performance: We may choose a better heu-
ristic having a lower equilibrium number of unsatisfied o 0z a0 e 1
clauses. Exactly this is achieved by introducing a fraction
>0 of greedy steps, see Fig. 5 where the plateau energy is F|G. 5. 3-SAT: Plateau energy for= 3.5 anda= 3.0 depending
determined as a function of for two different values olx  on the fractionq of greedy steps performed by the algorithm. The
>ay. We can see a minimum in the plateau energy for highplateau energy is minimal foq=0.95 (e=3.5 and q=0.85 (a
values ofq. The dynamical threshold itself also changes=3.0.
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satisfied and unsatisfied clauses it is contained in. We subdieighboring sitesi.e., we assume that the joint distribution
vide the set of allN Boolean variables into subsets of for three variables being in one unsatisfied clause factorizes.
N¢(s,u) variables belonging te satisfied andu unsatisfied This assumption, which we will exploit more frequently, is
clauses, for a randomly selected variable the numbarslu  the main approximation we apply in the analytical approach,
are thus taken with probabilityp,(s,u) =N(s,u)/N. The and it allows us to describe the full dynamics in terms of
numbersN;(s,u) and thus also the probabilitigg(s,u) are  py(s,u). It is strictly valid only for the initial configuration
changed by the action of walk-SAT, but for every single of the dynamics, but as we will see below, it can give a good
variables+ u remains constant as it counts the total numbem@pproximation also for larger times.
of clauses containing this variable. For a walk step, variable* is randomly selected in
From these quantities we can, in particular, calculate the&€*. There areuN(s,u) possibilities for selecting a*
total number of unsatisfied claushigy,(t). Taking into ac- which appears ins satisfied andu unsatisfied clauses.
count that by summing over variables every clause iBy normalization, we thus find the following selection
countedK fold, we find probability:
(u >t
ay(t)= 2 p(flip—wal gy — TP up(s,u) _ pO(s,u). 3
<U>t
where (-);=Zs ,(-)pi(s,u) denotes the average over the
distributionp; at MC timet. For a greedy step, the only random choice is the selection
The algorithm does not select variables according tof the unsatisfied claus€*. Then, the variable* is se-

pi(s,u), but selects first an unsatisfied claud® and then, lected which appears in the smallest numbesf satisfied
according to the chosen heuristgreedy or walk step one  clauses among aK variables inC*. If there is more than
of the variablesv* in C* is flipped. The probability that one variable with the same minims| then one of them is
variablev™* belongs to exactly satisfied andi unsatisfied chosen randomly. Applying the independent-site assumption,
clauses is denoted bp§”'p)(s,u), and can be calculated and using the Heaviside function under the convention
from p(s,u) under the assumption oindependence of ©(0)=1/2, we find forK=2

p{Pr2roreeds = > p{(sy,u)p(s, U 85 )5 @(S2751)  + 8s, 0,65, (S51-5)]

S1,U1,S2,U2

=2pM(s,u) > p(s’,u")O(s' —s)
s’ u’

)

s—1
2 ( pM(su’) +2 pE“)(S’,U’))l, (4)

=p"(s,u)| 2

s'=0

and similarly forK =3

p{"P e (s, u)=3p{(s,u) X p{(s"u)p{(S" U)[O(S' ~8)O(S" ) + 112555 B 5]

s/ U s// u”

-] s—1
=3p{( su){ E (1/2p‘“)(s,U’)+E p§“’(S’,U'))

2 2

. (5

s'=0

+1/4p{V (s, u){ Z p(s,u’)

Note that the contributio; ¢ J5 ¢/12 is a correction term At this point, GSAT-like heuristics could also be included,

for the case that=s' =s" which results from the convention e.g., by takingp{""®)(s,u)~u”p,(s,u) with y>1. This

0(0)=1/2. would guarantee a preferential selection of variables belong-
For the full algorithms, these two different steps appeating to a high number of unsatisfied clauses. Here, we do not

with probabilities g and 1—-q. The selection probability consider this additional possibility.

p{P)(s,u) is thus given by the linear combination of the

two cases, A. A Poissonian estimate for the pure walk dynamics
For a moment, we concentrate on the simplified case
p{MP)(s,u)y=qp{"P~"alk (s u) where the algorithms uses only walk steps, i.eq#ol [35].
o We further assume thatandu are, for arbitrary times, dis-
+(1—q)p{"PTKereed(s u), ) tributed independently according to Poissonian distributions:
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_Ka[KaS(t)][Kau(t)] (7) & UL L L B B

shu! ’ 07

pi(s,u)=e

Again, this assumption is valid fdr=0, whereas deviations 05
appear for larger times. On an average each variable is con
tained inK ay(t) =K(a— a,(t)) satisfied anK «,(t) unsat- 1
isfied clauses. If we plug this ansatz into E8), we get for  g%o4f 3
an algorithm without greedy steps

e [KaOTTKay (17
sl(u—1)! '

03 T000000000000 0000000000000 DVOVOOV00 0SS

pgf”p)(s,u)ze (8) 02 V56000080000 00000000000T00000000000660a]

0.1 =
BET00D00000506060060000000000000000000606066C

which again is a product of Poissonian distributions ahd | J . . . . . ]
u—1. Hence, on average, the negated variableis con- % 1 2 3 4 5 6 7
tained inK a4(t) satisfied and «,(t) + 1 unsatisfied clauses. !

FIG. 6. 3XOR-SAT: typical number of unsatisfied clauses-
1. Random KxoR-SAT vided by N), as a function of the MC time, for walk-SAT with
We continue by first considering the analytically Simplerwa”‘ stepnly. Different ratios ofe are shown; from tqp tq bottom
case ofK-XOR-SAT. There, by flippingv*, all s satisfied we haveal= 1.5,. 1, 0.75., 0.5, 0.35, 0.2. Thg dashed line is qbtalned
clauses containing* become unsatisfied, whereas @llin- by numerically integrating Eq20); the full line gives the Poisso-

. g . g i imation. These results are compared to the evolution for
satisfied ones become satisfied. Eh@ected number of un- Man approximation : \ .

e . a(random) single 3xor-SAT instance wittN=50 000, as given by
satisfied clauses N changes during one step as the symbols

AN = —[Kay(t) + 1]+ Kag(t) =Ka— 2K ay(t) — 1. L
© ag=rg- (13)
Concentrating on thaverage dynamig¢swhich is followed _ _ _ .

with probability approaching 1 in the thermodynamic limit In the special casi =3, we thus findey=1/3 which coin-
N—oo, we haveNﬁ“)= Nay(t). Measuring the tim¢in MC  cides perfectly with our numerical findings. Note that tor
sweeps, every algorithmic step contributed=1/N, and <@, the algorithm thus constructs a satisfying assignment

the difference on the left-hand side of E6) can be replaced already after a linear number of algorithmic steps. Above
by a time derivativeif N>1), aq, the algorithm does not reach a solution in linear times

with a probability tending to 1 in the largg-limit.
(D) =Ka=2Ka, () =1, (10 2. Random K-SAT
If we solve this differential equation, we get for the the en-  For randomK-SAT, we can get a similar estimate. We
ergy density ofK-xOR-SAT have to take into account that now satisfied clauses do not
necessarily become unsatisfied if a contained variable is in-
verted. For eachK-SAT clauseC, there is one unsatisfying
and X—1 possible satisfying assignments. The only case
where the clause becomes unsatisfied by flipping a single
In the typical starting configuration half the clause are satisvariablev* is the assignment where this variable is the only
fied and half are not, i.eq,(0)=a/2. So, we finally get correct assigned variable i@. If we assume independent

clauses this happens with probability 14(21), so we get

au(t)Z%(Ka—H—Ce’ZKt). (11)

1 okt for the expected number of unsatisfied clauses
ay(t)==>(Ka—1+e ). (12
2K
[C)—

In Fig. 6, the results for differené are compared with nu- ANt [Kay(O+1]+ oK_1 Kay(t
merical simulations. For small times both curves coincide,
because correlations have not yet builtup. Later the algorithm Ka 2KK
reaches a lower density of unsatisfied clauses than the Pois- = m - mau(t)— 1. (14

sonian approximation would suggest.

We also see that there are two different regimes. For sma
a, the energy decreases quickly to zero—reaching zero 3
finite MC times with nonzero slope. For larger the num-
ber of unsatisfied clauses first decreases, but then reaches a K

L . . Ka 2°K

positive plateau value. Both regimes are separated by a dy- ay(t)= ———ay(t)—1, (15)
namical threshold that is located at 2K—1 2K-1

oing forN— < again to continuous-time quantities and dif-
rential equations, we find
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with solution [the initial condition is given by« (0) All these clauses become unsatisfied. This means that for
= a/2€] each other variable contained in these satisfied clauses, the
number of satisfied clauses goes down by one, the number of
1 . unsatisfied clauses is increased by one. Taking into account
ay()= o —(Ka+[2%~1][e 2@ ~I—1]), (16)  that, according to the assumption of independent neighbors,
2°K these belong tcs satisfied andu unsatisfied clauses with
probability sp(s,u)/{s);, we conclude thalN(s,u) is, on
cf. Fig. 8. For randonK-SAT, we thus find the Poissonian an average, decreased kg 1)(s){""P)sp(s,u)/(s);. One

estimate out of theses satisfied clauses is the one with the flipped
variablev*, so the decrease dfi;(s,u) is now added to
2K-1 Ni(s—1u+1).
A=k 17) (c) Neighbors ofv* in previously unsatisfied clauses

Analogously to the discussion in the last item one gets con-
for the onset of exponential solution times. In the speciafrIbUtlonS toNq(s,u) for variablesv that occur together with

* -
caseK=3, we getaq=7/3 which is smaller than the nu- v " unsatisfied clauses. . .
merical value 2.7. Combining these processes, we get an evolution equation

for the expected numbeis,(s,u) of variables appearing in

exactly s satisfied andi unsatisfied clauses at tinte
B. Rate equation for the walk-SAT algorithm

_ _ n(flip) (flip) _
We have seen that already a simple Poissonian approxiNt+at(S,:U)=Ni(s,u) =p i (s,u) +pr 7 (u,s) + (K—1)

mation is able to qualitatively reproduce the behavior of

: Ve i sp(s,u)
walk-SAT for linear solution times, at least for a pure walk x(s)ﬁ”"”( -
dynamics without greedy steps. There were, however, some (Sh
systematic quantitative deviations, in particular, for the case (s+1)p(s+1u—1) "
of randomK satisfiability. It is thus necessary to go beyond (s +(K— 1)(u>§ P)
the simple Poissonian ansatz foi(s,u), i.e., for the time- t
dependent fraction of Boolean variables belonging to exactly up(s,u)  (u+1)p(s—1u+1)
s satisfied andi unsatisfied clauses. Our aim is to work only ( - {uy, + {uy, )

with these quantities, i.e., we still have to keep the approxi-
mation that the joint distribution for variables within one (18
clause factorizes. This approximation of independent neigh- ) _ . .

boring variables was already used in the beginning of this, S€tting againAt=1/N and replacing differences by de-
section, wherp("'P)(s,u) was derived, cf. EqS3)—(6). rivatives in the thermodynamic limit,

1. Random KxOR-SAT NH—At(snu) - Nt(S,U) = N[pt+At(S-u) - pt(S,U)]
As above, we denote by, (s,u) =Np(s,u) the expected _ Prrar(su)—pg(s,u)  d
number of variables that occur in exac8ysatisfied andu - At H&pt(s,u),
unsatisfied clauses at steOur algorithm starts &t=0 and (19
each step counts ast. We follow the procedure in Ref16]
to describe the typical evolution of the algorithm. we get a set of differential equations fpy(s,u),
Avariablev™ with s* satisfied andi* unsatisfied clauses
is flipped. This occurs with probabilitp{™"™(s*,u*). The  p,(s,u)=—p"P)(s,u)+p{"P(u,s)+ (K —1)(s){"P)
three different processes contributing N, ,:(s,u) are the
following: x( _SR(sw)  (stD)p(s+ 1,U—1)) F(K=1)
(a) Contribution byv*. Thes* satisfied clauses become (S)y (s)t
unsatisfied, whereas the& unsatisfied clauses become satis-
fied. The number of variables characterizedsbysatisfied, X<u>(f|ip)( _up(s,u) N (U+1)py(s—1u+1)
u* unsatisfied clauses is thus decreased by one, the number t (u)y (U
of variables inu* satisfied and* unsatisfied clauses is in- (20)
creased by one. This means that the expected number of
variables N,(s*,u*) is decreased by{"""(s*,u*), and In the typical initial configuration, the probability of a
N(u*,s*) is increased by the same amount. clause to be unsatisfied is 1/2 andzgs,u) is given by Eq.
(b) Neighbors ofv* in previously satisfied clause$he  (7) with ag(t) = a(t)=1/2.
flipped variablev* occurs, on an average, {8){""P) previ- By numerical integration of Eq(20), we can find the

ously satisfied clauses, whete){"™™ =3 (-)p{MP)(s,u).  typical trajectory for an algorithm with givep{""”). The
Since each clause contaills variables, and since random results for an algorithms without greedy steps.g.,
formulas are locally treelike, there are on an averae ( p!""P)(s,u)=p{*)(s,u)] for different values of the ratiax
—1)(s){"P) neighbors in previously satisfied clauses. =M/N are shown in Fig. 6. They are compared with numeri-
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W T T isfied clauses, a random numbderemains satisfieds* —k
_'.\‘ | become unsatisfied, i.eN;(u* +k,s* —k) is increased by
':‘ Y | one. There aresi) possibilities for selecting thedeclauses,
K \‘*\ 1 each one appearing with probabilit?” ~¥(1— ). The to-
o __“:‘\‘\ \°-—-¢__-°"';";'--;--s---o---;--;---o-__ ta_\l contribution byv* is obtained by summing over all pos-
R\ ] sible values ok. _ _ _
3 [ N | (b) The contributions from neighbors of the flipped vari-
NS | able are similar toor-SAT. The only difference is that the
o1l ‘3\\\.: LT ] average number of neighboring variables on satisfied clauses
AN g T mn n_%__8._8__e__s_a_ua__2]  becoming unsatisfied is nop(K—1)(s){""P)
2.0 o0 6 6 o o o] Combining all contributions, we derive a set of differen-
x ""A"‘K"2‘“;“;“;'“;“2‘“;' tial equations for the probability distribution of the variables:
0 i p p = 3

pi(s,u)=—p{"™P(s,u)+

2K1—1)uk§=:0 (u;k)(l

FIG. 7. 3x0R-SAT: influence of greedy steps on the behavior of
the energy density at=0.75. As above the dashed line is obtained

k
by numerically integrating Eq20) after plugging in Eq.(6) and B ) p(ﬂip)(u+k s—k)+ K—-1 (s)(f“p)
usingN=1/At=50000. The dotted line shows the evolution of a oK_q1/ ™ ' oK_ 1\t
(random single run of the algorithm witiN=50 000. From top to
bottom, we haveg=0 (i.e., no greedy stepsq=0.5, q=0.7, q sp(s,u)  (s+1)p(s+1u—1)
=0.9. The energy plateau decreases wjthut due to correlations - (s, + (s, +(K-1)

the integrated equation does not fit the numerical data.
up(s,u) (u+1)p(s—1u+1)

(flip)[ _

cal data obtained from single runs of the algorithm on a large (U ( (u)y (u)

single, randomly selected sample formula. As we can see the

assumption of independent variables is suitable to describe

the behavior of the algorithm in this model. We also see that ) )

the dynamical threshold, which marks the onset of expo- Also these equauon; have fco be solved r!umerlcally. TKhe re-

nential solution times, is again given by 1/3. sults for the most interesting case=3 [i.e., q,=1/(2
When analyzing the algorithm including a fraction of —1)=1/7] for different values of« are shown in Fig. 8.

greedy steps, we see that the assumption of independent vafven if they are quantitatively much more accurate than the

ables is indeed very crucial. In Fig. 7, we show the result of?0iSsonian approximation, there are some systematic devia-
the numerical integraton now usingp("iP)(s,u)  tions compared to the direct numerical simulations. The

:qp(flipfwalk)(s,u)+(1_q)pgflipfsfgreed))(slu) as given curves match the simulation results for small times. Then

by Eq. (6). In this case, the flipping probability of a variable Corelations between neighboring variables buildup, violat-
depends on its neighbors, too, and correlations betwee§9 OUr basic assumption. However, for larger times both
neighbors appear naturally. This explains why the ansatzy"ves match again, because the same distribyi(s)u) is

does not give a good quantitative approximation wherf®@ched. This can be seen in the histogram in Fig. ot At
greedy steps are included. =1.4, the distributionsp,(s,u) as derived from the rate

equations or evaluated numerically are different, while after
t=6 they again have almost converged to the same distribu-
tion.

Let us now consider the slightly more involved case of This observation allows for a precise determination of the
randomK-SAT. As already discussed in the context of thedynamical thresholdxy which marks the transition from
Poissonian approximation, we have to take into account that/pically linear to exponential algorithmic solution times
flipping a variable does not necessarily unsatisfy all previneeded by walk-SAT; the transition is defined by the point
ously satisfied clauses the variable is contained in. We asyhere the expected energy density(t) asymptotically does
sume again that the probability of such a clause to becomgot decrease to zero any more. In Fig. 10, one can see that,
unsatisfied is clause and time independently given by its nafor K =3, this happens aty=2.71.
ive averageu=1/(2—1). Similar to XOR-SAT, we get As already observed fofor-SAT, the influence of greedy
three contributions toN;, 5¢(s,u), one coming from the steps cannot be reproduced very well. In Fig. 11, we show
flipped variable itself, two from neighbors in previously sat- results for three different| at «=3.5. The energy density
isfied (unsatisfied clauses. obtained by assuming independent variables gives a too low-

(a) If the flipped variablev™ appears in exactlg* satis-  energy density. Forr=0.9, it even decreases to zero at finite
fied and u* unsatisfied clauses than, as ¥DOR-SAT, times, contrary to our numerical resulisf. Sec. Il A). We
Ni(s*,u*) is decreased by one. This happens with probabiltherefore conclude that the independent-neighbor approxima-
ity pgf"p)(s* ,u*). By flipping v*, all u* previously unsat- tion is only suitable for the case without greedy steps, where
isfied clauses become satisfied. Out of sfiepreviously sat-  less correlations can be builtup.

21

2. Random K-SAT
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FIG. 8. 3-SAT: Running time of the walk-SAT algorithm with FIG.

walk stepsonly. Different ratios ofa are shown; from top to bot-

10. 3-SAT: the left curve shows thinearn solution time
after which the expected energy densify(t) (from rate equations

tom, we haver=4.0,3.5,3.0,2.85,2.7. The dashed line is obtainedreaches zero, as a function @f This time diverges logarithmically
by integrating Eq(21) with N=1/At=50000. The symbols show at «4. For largere, a nonzero energy plateau is found, which is

the evolution of a(randon) single run of the algorithm withN

=50000. The solid line shows the analytical solutid®) of the

Markov equation assuming a Poissonian distribupg(s,u) for all

timest; for clarity only «=4.0 and 2.85 are depicted.

V. LARGE DEVIATIONS AND THE EXPONENTIAL-TIME

BEHAVIOR

In the last section, we have characterized thpical
linear-time behaviorof walk-SAT on satisfiable, randomly
generated-SAT andK-xoRr-SAT formulas. We have, within

shown in the right curve.

time. Aboveay, the typical trajectory, however, shows a fast

equilibration towards a nonzero plateau valag(t—o).

The walk-SAT algorithm is no longer able to construct a
solution in linear time, i.e., we expect the solution times to
become exponentially large. The approach of Sec. IV thus

fails to describe the final descent of the energy to zero.
In Sec. lll, we have seen that, for smaller system sizes,
the number of unsatisfied clauses fluctuates around its ex-

some approximation assuming independent neighbors, calcpected value. Eventually, these fluctuations become large
lated the trajectory that is followed by the system in terms ofenough that the system by chance hits a solution—
the probabilitiesp,(s,u) that a randomly selected variable fluctuations are the way walk-SAT finally succeeds con-

belongs to exactlys satisfiable andu unsatisfiable clauses. structing a solution. However, we expect these fluctuations to
“Typical” behavior means in this context that the trajectory be exponentially rare, i.e., we have to wait almost surely an
is followed with probability tending to one in the thermody- exponentially long time to really touch a solution.

This section is dedicated to characterizing these fluctua-

namic limit N—oe,

We have seen that there exists som@del-dependeint

tions, or, more precisely, to calculating the probability

dynamical thresholdy, below which the algorithm reaches P(«,(0)— a(t;)=0) that the system reaches,(t;)=0 af-
zero energy, i.e., a solution of the SAT formula, after linearter some finite time;, under the condition that the system
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FIG. 9. 3-SAT: distribution,(s,u) for t=1.4 (left) andt=6. The results are shown as a functiorspthe different curves correspond
tou=0, 1, 2, 3(from top to bottom. One can see that numerical and analytical results diffet $dt.4, whereas they are very close for

larger times corresponding to the energy plateau.
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0.2

A Our aim is thus to calculate the large-deviation functional
E determiningP(a,(0)— a,(t;) =0). As we will see, this can
H | be done only within the Poissonian approximation, i.e.,
E throughout this section, we assume
L ;ﬁ 4
8 ' [KasO) P [Kay(®)1"
o o
5‘0‘1—?“‘ 2%, . pi(s,u)=e K > - , (24
|‘|‘\\ ﬂaeog t slu!
" gﬂ§g338§§°oooo«>0oooooooooooooc
“\ o 89999600055555333333&
N N with «(t) + a4(t) = @ being time independent.
\‘\\\\\ .
1 N e e e e e e o e e o o
I‘\ . A. Random K-XoR-SAT
N R VN T P T T N TP PO PV T TV PP PP TP
0 b2 3 e s e T8 s B Here, we discuss only an algorithm without greedy steps,

where the above approximation works reasonably well.

3=>F . _ : : Therefore,p{'P)(s,u) is given by Eq. 8. The number of
the da_tshe_d line is obtained by numerically integrating@Q) after |, satisfied clauses in a formula at timie given byNay(t).
plugging in Eq.(6). From top to bOtt.Om’ we havg=0.5, 4=0.7. " This number changes hye=s—u in the next step if a vari-
q=0.9. The symbols .Show S.'mu_lat'on data for the evolution of %able withu unsatisfied and satisfied clauses is flipped. The
single run of the algorithm wittN =500 000. . . . . .
probability P(Ae) of a given energy shifAe in a single step
started initially with somex,(0). This probability gives all is consequently given by
important information about the dominan& exponential con-
tribution to the typical running timek,,=¢e"" beyonday . _ fli
(a) For walk-SAT without restartswe start from a typical P‘(Ae)_séo P (5, e s
initial condition a,(0)=1/2 (for K-SAT) resp. 1/2 (for
K-XOR-SAT), and we wait until the system reacheg(t) Zup(s,u)
=0. This does not happen for finite times, i.e., the solution :s,u:O WQe,s—u
time is given by the exponent

FIG. 11. 3-SAT: Influence of greedy stepsaat 3.50. As above

©

o

o [Kag K a0 u
%lnwauw)wu(tf):m. (22) “2,e siul Kay(t) tes

r=—lim lim

tfﬂooN*}OC

The solution time is thus, in general, exponentially large in
N. Note that the order of limits in the above expression is
relevant, there¢; measures only a finite MC time scale. With (25)
interchanged limits, the right-hand side would vanish, since

the algorithm finds a solution after exponential tinbgsvith

probability 1. The probabilityP 1 ((AE) of a change of the number of
(b) For walk-SAT with restarts the situation changes unsatisfied clauses bXE after AT steps is given by the

slightly. Let us assume that the algorithm stops evgly  convolution of the single-step probabilities. FAT =Nt

walk-SAT iterations and reinitializes the variables randomly.with small st<1, the energy density,(t) and thusP,(Ae)

In this case, we have to take into account two distinct rareare almost time independent, so we get in Fourier space
events: First, the starting point may be close to a solution,

i.e., «y(0) is atypically small. This happens with probability
p(ay(0))~eN%eu®) wheres(a,(0)) is the microcanonical Py (1)=(Py(1)2T
entropy for the energy density,(0). p(«,(0)) tends to one

for the typical starting point discussed in the previous item,
and becomes exponentially rare for smaller initial energies.

_ E e,Ka[Kas(t)]S[Ka’u(t)]u P

Ae,s—u’'—1-

S,U/:O SIU’I

)

_ E e_Ka[Kas(t)]S[Kau(t)]u

- stul

This may be .balanced by the fact that finding a solutio'n 'a}fter e AT

some given timé; becomes more probable for smaller initial .

energies. From the probability of finding a solution after a xexp{ il (s—u—1);

single restart,p(au(o))max)gtgtfﬂj(au(O)aau(t)=0), we ' o
can readoff the number of restattg,=eN" needed to find a =[exp{—Ka+Kagt)e " +Kay(t)e' +il}]4T.
solution with high probability: (26)

1
— Tg))(hlllﬂoﬁIn[p(a“(o))ongf]j(a“(o)_)a“(t) =01 Switching again to intensive quantities, we hawE
’ 23 =Nay(t)st and thus
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dl . . equation for the typical trajectory given by Eq. 10. Indeed,
Par(AE)= | =—eAE(Py(1)~T _ C\— o trai i
AT t 2 t we havel(x=1,q,,a,)=0, so this trajectory has probabil-
ity 1 in the thermodynamic limit.
_ f ﬂexp{N&t[il ay(H)—Ka This solution is, hpwever, not stable since we haye)
27 <0 for x(0)<1 and«(t)>0 for x(0)>1, i.e., the trajec-

FK(a—ay(t))e T+ Kayt)el +il T, (2 tory deviates from the typical one oneedeviates from 1.
(@=ay(®) (V) I @7 We can, however, solve the equations #@R-SAT in this
as the probability of the algorithm for getting from energy Poissonian approximation and get
density«,=E/N at timet to energy densityE—AE)/N at

time t+AT. To calculate the transition probability between 1+ Ae2Kt

a,(0) and arbitrarya,(t;) after linear timet{N, we writet; = —

as a composition of many small intervak. We then get 1-A€

that the transition probability by integrating over all possible

pathsa,(t) going from «,(0) to a,(t;). By this step also 1— A2e4Kt ¢

the conjugate variablebecomes a time-dependent function ay(t)=a,(0)e 2Kt +f dr( -1

[(t), 1-A? 0
ay(ty) 1-Ae?t k) 1-A2et

P(au(O)Hau(tf))=J © Dau(t)f D|(t) +Kam e m_ (33)

@y

t
><exp{ —Nf &ﬁ(l(t),au(t),&u(t))], (28 In principle, also the integrals in the second expression can
0 be carried out analytically, but we failed to find a compact
representation of the result. The solution still contains the
unknown constanA which has to be adjusted to meet the
' — ' _ final condition «,(t;)=0. We have observed tha is
L0, (1), ()= —il (Deay(t) +Ka—Kla slightly smaller thane™2K', but it is easier to determine
—ay(1)e "O—Kay(1)e"O—il(t).  t¢(A) than its inverseA(t;).
(29 The trajectories show an interesting behavior, cf. Fig. 12;
after about 1 MC sweep the energy reaches a plateau inde-

We can replace the integral by its saddle point in the thermopeﬂde_nt of the Starting_ energy densiiM(t). T_he plateau
dynamic limit. Sincel(t) is not a dynamic variablgi(t)  value is the same as given by the typical trajectory and al-
does not appear in the Lagrangjawe find most independent of the tintg where the solution is found.
The energy drops to 0 suddenly about 1 MC sweep before
L . ] S ) L t;. This is similar to the qualitative picture, we observed
= o7 “lau(O—iK(a—ay(t)e T+ iKay (et +i. numerically in Sec. Ill: The system first equilibrates and
(30  then, by means of an exponentially improbable fluctuation,
reaches zero energy, cf. Fig. 4. The fluctuations that are
The saddle point iny,(t) is given by the Euler-Lagrange present in the numerical data cannot be seen in the analytical

where the Lagrangiad is given by

0

equation curve due to the fact that the latter one gives an average over
all possible trajectories under the condition that=0 is
_d L oL S e ail () reached for the first time at, so only the very last fluctua-
= =il(t)+Ke —Ke"W, (31 . . . . .
dt yo, Jday tion leading to the solution is common to all possible nu-

merical trajectories.
We are, in particular, interested in trajectories leading to a To calculate the probability that the algorithm, starting at
solution of the formula, i.e., trajectories starting at somesomea,(0), finds a solution after time;, we have to cal-
«,(0) and going tay,(t;) =0 after some given final timg . culate the action
This results in a set of two coupled first-order nonlinear dif-
ferential equations fow,(t) and I(t) with two boundary ) t )
conditions given fora,(t), and none foi (t). By substitut- S(ﬁ(K(t),au(t),a’u(t))):f dtL(k(t),ay(t), ay(t))
ing x(t)=¢e"® the equations read 0

— t .

(0=~ 1K (0() +K 8 = [ ~ntxcora -1
. a—ay(t)
k(1) =Kk?(t)—K. (32 +Ka_KW

A trivial solution of the second equatior,(t)=1 leads to
ay(t)=—1—Kay(t) + K(a—ay(t)), which is exactly the —Ka’u(t)K(t)), (34
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FIG. 12. 3x0OR-SAT ata=2/3: energy densitiea(t) for vari- . ) .
ous initial conditionse,(0) and solution times; . The system first F:Gt_' 13't_3on'SAfT at_ a.t._ |2/3' ag"['l[pns as %ftin(;:tg;n %f(;ge
equilibrates to a plateau being independent of the initial condition/o30Mtion time &y, for initial conaitons @,(0)=0.02, 0.0,

. . . 0.1, ...,0.34, from bottom to top. The inset shows the logarithm of
and finally solves the SAT formula by a macroscopic fluctuation. the predicted solution time for the same valueg0), but now
using solution(33). The evaluation is simplified by plugging from top to bottom.
in the saddle-point equations in order to eliminaigt), . . L

In Fig. 14, the resulting solution time is compared to nu-

. merical data obtained using the algorithm with random re-
SLG() (1), (1)) starts after 8l iterations. Due to the exponential behavior
tf a—ay(t) only small systems up thl=70 could be investigated in the
= Kfo dt| —In[«(1)]] —au()x()+ W} full satisfiable region. The resulting running times seem to be
much smaller than the analytical predictions. There are, how-
a—ay(t) ever, huge finite size effects. In the inset, we show numerical

ta- W—au(t)K(t))- (35  data fora=0.4 and 0.42, where the exponent is still small

enough that systems up b= 1000 can be easily solved. It is
The results are shown in Fig. 13 for different values of theobvious that even from such large systems the asymptotic
initial condition a,,(0) and different solution times. For the running time cannot be reasonably estimated. On the other
typical initial condition a,(0)=a/2, we find a monotoni- hand, the qualitative behavior is well represented by the ana-
cally decreasing function that has practically reached itdytical curve, in particular the sublinear slope close to the
asymptotic value fot;>1. From Eq. 28, the probability that threshold. The analytical curve suggestgip-ya—aq. An-

the algorithm finds a solution is given by other interesting observation is that, at the SAT-UNSAT
threshold «.=0.918, the analytical prediction for the
P(ay(0)— ay(ty) =0)=exp{ —NS}, (36) solution-time exponent is 0.249, which is smaller but quite

close to Schoing’s rigorous upper worst-case bound
and the typical solution time of the algorithmithout restarts  |n(4/3)=0.288.

is given by Eq.(22),

teo= lim NS, (37 B. Random K-SAT

e The same type of analysis can be done for the case of
We also observe that, for smaller than typiea)(0), the randomK-SAT. The main difference is, as mentioned already
action shows a pronounced minimum for small solutionin Sec. IV, that a satisfied clause does not necessarily become
times. This minimum corresponds to trajectories that startinsatisfied when one of its variables is flipped. This happens
close to a solutiofismall «,(0)] and gomore or less directly Only if the clause is satisfied only by the variable to be
to this solution(smallt;). As discussed in the beginning of flipped, which is one of the2-1 satisfying assignments to
this section, it may be possible that the algorithm can profithis clause. We again use the assumption that the variables in
from this by using random restarts. Taking the entropy a®n€ clause are uncorrelated and assume that a clause be-
calculated in Ref[26], we, however, find that the minimum Comes unsatisfied with probabiliy=1/(2~1). In anal-
in Sis overcompensated by the small entropy of low-energy?dy to the discussion above, we conclude that the probability
starting configurations, cf. the inset of Fig. 13, wherethat a variable flip leads to a given energy charge is
(ay(0),t)= — 1IN In[p(a,(0))P] is presented. The mini- given by
mum of 7 is still found for the typical starting configuration o s /g
and it is related to the typical running time b, _ (flip) k(1 _ sk
=mineV1O4 Here, it coincides with the solution time Pi(4e) s,uZo P (s,u)go (k)'u (1=1)" Psek-us
without restarts. (38
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FIG. 14. 3x0R-SAT: solution timet,,, for Schaing’s algorithm
(only walk steps, random restarts aftel=3N steps measured as
the number of restarts, as a function@f The analytical result is
given by the full line. Numerical data foN=30, 50, 70(dots,
squares, diamonds, lines are guides to the eyes sebm to indi-
cate much smaller solution times. The inset shows, however, that
there are huge finite size effects far=0.4,0.42(crosses, sta)s
The analytical estimates for the corresponding solution times are

FIG. 15. 3-SAT ata=3.5: energy densitieg,(t) for various
initial conditions «,(0) and solution timest;. The system
first equilibrates to a plateau being independent on the initial con-
dition and finally solves the SAT formula by a macroscopic fluc-

tuation.

2Kt
In(t.,)/N=0.0061,0.0099. ()= 1+puhe
AeZKt !
wherek sums over all possible numbers of clauses that be- s ke 1—-AeltmKt g 4 AelttmKt
come unsatisfied in the considered algorithmic step. Concerftu(t) = au(0)e 1—A 1+ uA

trating again on the pure walk algorithm without greedy

steps, i.e., og=1, we can go through the same procedure t 1—AellrmKt ) L K
as forK-xoRr-SAT. The transition probability from some ini- +f0d7 —1+MKC¥m e (brmKt=7)
tial to some final density of unsatisfied clauses is, in the HAE
Poissonian approximatiof24) given by the path integral 1— ALK 14 ) A+ pKt

(42)

ay(ty)
P(au(o)_)au(tf)):f o Dau(t)f Dk(t)

t .
X eXp[ - Nf &ﬁ(K(t),au(t),au(t))} ,
0
(39
with the modified Lagrangian

L(k(t),ay(t), ay(1)=—[1+ ay(t)]IN[ k(1) ]+ Ka— K[ a

- au(t)]( 1-pt —= (t)
—Kay(t)(t). (40

The saddle-point equations are given by

. a—ay(t)
ay(t)=—1-Kay(t)x(t)+ KMW,
k(1) =Kr2(t)—K(1— p)k(t) —Kpu. (41)

Their solution dominates, fol—«, the path integra(39)
and is given by the generalization of E@33):

X .
1_Ae(1+,u)KT 1+,LLAe(1+M)KT

The results for the typical trajectories leading to a solution
after some given final timg are presented in Figl5). They
show the same qualitative behavior likexorR-SAT with a
slightly slower convergence towards the equilibrium due to
the reduced exponential facter (**#)X! Also the action
calculated for the trajectories shows a similar behavior like
for K-xOR-SAT, cf. Fig. 16. The exponentially dominant con-
tribution to the typical solution time is again given by,
~limy e,

In Fig. 17, we finally compare the predicted typical solu-
tion time with numerical simulations. Close to the dynamical
threshold, the numerical running times are much smaller,
which can be explained already by the fact that the Poisso-
nian approximation underestimateg. For largera, the nu-
merical data cross the analytical approximation, but both stay
well below Schaing’s bound. This is to be expected, since
there is an exponential number of possible solutions, while
Schaing assumes only the existence of a single one. Note
that the solution times are exponentially smaller for 3-SAT
than for random 3«OR-SAT.

VI. CONCLUSION AND OUTLOOK

In this paper, we have presented an approximate analyti-
cal approach to describe the dynamical behavior of a class of

066104-13



BARTHEL, HARTMANN, AND WEIGT PHYSICAL REVIEW E 67, 066104 (2003

0.3

0.2

0.1

R TR ST
00 0.4 0.8 1.2

)

FIG. 17. 3-SAT: solution timetg,, for Schaing's algorithm
FIG. 16. 3-SAT ata=3.5: actionSas a function of the resolu- (Only walk steps, random restarts aftgl=3N stepg measured as
tion timet;, for initial conditionsa,(0)/a=0.1, 0.3, 0.5...,1.3,  the number of restarts, as a function@f The analytical result is
from bottom to top. given by the full line. Numerical data fdd= 30, 50, 70(squares,
dots, diamondsthis time cross the analytical prediction. Note that
the solution times are smaller than fox8r-SAT.

stochastic local search algorithms applied to random

K-satisfiability andK-xoRr-satisfiability problems. We have _ ) )
seen that there are two distinct dynamical phases. cussed in the second section. The analytical approach can

(a) For clause-to-variable ratia< g (with ay being al-  S€rve as a bqsi_s for evaluating the relative performa_ncg of
gorithm and problem dependgnthe algorithm is able to different heuristics and, as a consequence of the insight
solve almost all instances in linear time. In this regime, thedained, also as a step towards a systematic improvement of
dynamics was studied using a simple rate-equation approadfiochastic local search.
which was able to capture the most important features of the A third point that remains open is the question that how
average trajectory taken by the system under the action of thiar the solution space structure influences the performance of
algorithm. walk-SAT. As discussed in the beginning of the paper, ran-

(b) For @> a4, typical solution times were found to scale dom K-SAT and randomK-XoR-SAT undergo a clustering
exponentially with the system size given by the number oftransition deep inside the satisfiable phase. Below this tran-
variablesN. This behavior could be understood analytically sition, all solutions are collected in one huge cluster, above,
using a functional-integral approach to evaluate the probabilan exponential number of such clusters exists. The clustering
ity of large deviations from the typical trajectory. We found transition is also connected to a proliferation of metastable
the following behavior: The system equilibrates very fast to astates which are expected to cause problems for any local
nonzero plateau in the number of unsatisfied clauses. Theg\gorithm. However, in our approach to the walk-SAT dy-
the system only fluctuates around this plateau. This goes ORamics, we do not see any sign of a direct impact of this
until an exponentially improbable macroscopic fluctuationyansition on the performance of the algorithms under con-
towards one of the solutions appear, and the algorithm stopsjgeration. The onset of exponential solution times is found
The small probability of these fluctuations explains the X+ pe inside the unclustered phase. It thus remains an open
ponentially large waiting times until a satisfying assignment,oplem whether the clustering transition can be approached
is reached. o _ . by using improved heuristic criteria.

For the exponential-time regime, only a Poissonian ap- " Note added Recently, we noticed that a complementary
proximation was used. In principle, it would be possible tostudy of the walk-SAT algorithm was carried out indepen-

go beyond this ansatz using the full distributipy(s,u) of dently by Semerjian and Monassf28].
vertices withs satisfied andi unsatisfied clauses. Following

the same scheme as in the Poissonian approach, we reach a
system of the first-order differential equations for@ls,u)
and their conjugate paramete¢gs,u). Being nonlinear, it is
far from obvious how to construct an analytical solution. But We are grateful to R. Zecchina for helpful discussions.
also the numerical integration of these equations is a hariVe also thank R. Monasson and G. Semerjian for communi-
problem: For thepi(s,u) there are initial and final condi- cating their results[23] prior to publication. W.B. and
tions, whereas the(s,u) have no boundary condition at all. A.K.H. obtained financial support from the DF®eut-
The question if it is possible to follow this improved ap- sche Forschungsgemeinschaftunder Grant No. Zi
proach is still under investigation. 209/6-1. A.K.H. was also partly funded by the Volkswagen-
Another possible extension of this work concerns the apsStiftung within the program “Nachwuchsgruppen an Univer-
plication of different heuristics such as GSAT that was dis-sitaen.”
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