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Relaxation and metastability in a local search procedure for the random satisfiability problem
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1CNRS-Laboratoire de Physique The´orique de l’ENS, 24 rue Lhomond, 75005 Paris, France
2CNRS-Laboratoire de Physique The´orique, 3 rue de l’Universite´, 67000 Strasbourg, France

~Received 15 January 2003; published 12 June 2003!

An analysis of the average properties of a local search procedure~RandomWalkSAT! for the satisfaction of
random Boolean constraints is presented. Depending on the ratioa of constraints per variable, reaching a
solution takes a timeTres growing linearly @Tres;t res(a)N, a,ad# or exponentially„Tres;exp@Nz(a)#,
a.ad… with the sizeN of the instance. The relaxation timet res(a) in the linear phase is calculated through a
systematic expansion scheme based on a quantum formulation of the evolution operator. Fora.ad , the
system is trapped in some metastable state, and resolution occurs from escape from this state through crossing
of a large barrier. An annealed calculation of the heightz(a) of this barrier is proposed. The polynomial to
exponential cross-overad.2.7 is not related to the onset of clustering among solutions occurring ata
.3.86.
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I. INTRODUCTION

The study of combinatorial problems@1# with statistical
physics techniques started almost twenty years ago@2#. Most
of the efforts have been devoted to the calculation of
optimal solution of various problems~traveling salesman
matching, graph or number partitioning, satisfiability
Boolean constraints, vertex cover of graphs, etc.! as a func-
tion of the definition parameters of their inputs distribution
Central to these studies is the characterization of the pro
ties of the extrema of correlated random variables, a ques
of considerable importance in probability theory@3#. From a
computer science point of view, however, the main poin
the characterization of solving times. Concepts and tools
sued from the analysis of algorithms have allowed so fa
understand the behavior and the efficiency of many al
rithms of practical use@4,5#, sorting for instance, bu
progress has been much slower in the analysis of search
cedures for combinatorial problems. These are sophistic
algorithms hardly amenable to rigorous analysis with av
able techniques@6#. Statistical physics ideas and approxim
tion techniques may then be of great relevance to help
velop quantitative understanding and intuition about
operation of these algorithms. To some extent, the stud
algorithms may be seen as a part of out-of-equilibrium s
tistical physics.

There exists a wide variety of algorithms for combina
rial problems@1#. Roughly speaking, two main classes m
be identified. The first one includes complete algorithm
guaranteed to provide the optimal solution. They essenti
proceed through an exhaustive albeit clever~making use of
branch-and-bound procedures! search through the configura
tion space, and may require very large computational tim
i.e., scaling exponentially with the size of the inputs to
treated. Recently, notions borrowed from statistical phys
such as real-space renormalization and out-of-equilibr
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growth processes made it possible to reach some unders
ing of the operation of complete algorithms for the satis
ability @7,8# and for the vertex cover@9,10# problems over
random classes of inputs. Incomplete algorithms consti
another large class of solving procedures; they may be
to find the optimal solution very quickly, but may also ru
forever without ever finding it. An example is provided b
local procedures, i.e., Monte Carlo dynamics, which attem
to find a solution from an arbitrary initial configuratio
through a sequence of stochastic local moves in the confi
ration space. When specialized to decision problems~for
which the desired output is the answer YES or NO to
question related to the inputs, as: is there a way to colo
given graph with seven colors only?!, local search algorithms
can sometimes be made one-sided error probabilistic a
rithms @11#. When they stop, the answer is YES with ce
tainty. If they run for a timet without halting, the probability
~over the nondeterministic choices of local moves in the c
figuration space! that the correct answer is NO is bounde
from below by a functionf (t,N) tends to 1 whent→`.
Obviously this function depends on the sizeN of the input:
the larger the input, the larger the timetc(N) it takes to
reach, say, a 99% confidence that the answer is NO,
f „tc(N),N…50.99. Determining the scaling~polynomial or
exponential! of tc(N) with N is of capital importance to as
sess the efficiency of the algorithm.

In this paper, we study this question for a local sea
procedure, the RandomWalkSAT algorithm@12#, and a deci-
sion problem defined over an easy-to-parametrize clas
inputs, the random satisfiability problem@13#. Both proce-
dure and problem are defined in Sec. II. We also recall
main results proven by mathematicians on these issues,
present an overview of the phenomenology of RandomWa
SAT. A major theoretical interest for studying the Rando
WalkSAT algorithm is that it is, apparently, of purely dy
namical nature. Detailed balance is indeed verified in
trivial way; the equilibrium measure is nonzero over so
tions only, and the transition rates from a solution to a
other configuration are null. The equilibrium measure
therefore of no use to understand long-time dynamics, a s
ation reminiscent of some models studied in out-
equilibrium physics, e.g., the contact process for finite-s
©2003 The American Physical Society03-1
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G. SEMERJIAN AND R. MONASSON PHYSICAL REVIEW E67, 066103 ~2003!
systems@14#. We are thus left with a study of the dynamic
evolution of a spin system with disorder in the interactio
~the instances of the combinatorial problem to be solved
random!, a still largely open problem in statistical physic
@15#. We show in Sec. III how the master equation for th
evolution can be written as a Hamiltonian~in imaginary
time! for 1/2 quantum spin systems, and use this represe
tion to get exact results and develop systematic expans
for the quantities of interest, valid in some region of t
parameter space. In Sec. IV, we present an approxim
analysis of the RandomWalkSAT procedure in the whole
rameter space. We show that depending on the value o
ratio a of the number of constraints per~Boolean! degree of
freedom, resolution is either achieved in linear time or
quires the escape from some metastable region in the
figuration space, a slow process taking place over expon
tially large times. Interestingly, the dynamics generated
RandomWalkSAT is very similar to the physical dynamics
~spin! glassy systems@15#. Some perspectives are present
in Sec. V. Note that a complementary study of the Rando
WalkSAT procedure was very recently carried out by B
thel, Hartmann, and Weigt@16#.

II. DEFINITIONS, KNOWN RESULTS AND
PHENOMENOLOGY

A. The random K-Satisfiability problem

The 3-Satisfiability~3-SAT! decision problem is defined
as follows. Consider a set ofN boolean variablesxi , i

51, . . . ,N. A literal is either a variablexi or its negationx̄i .
A clause is the logicalOR between three distinct literals. It i
thus true as soon as one of the literals is true. A formula
the logicalAND betweenM clauses, it is true if and only if al
the clauses are true. A formula is said to besatisfiableif there
is an assignment of the variables such that the formul
true,unsatisfiableotherwise.

3-SAT is anNP-complete problem@1#; it is believed that
there is no algorithm capable of solving every instance
3-SAT in a time bounded from above by a polynomial of t
size of the instance. How well do existing anda priori ex-
ponential algorithms perform in practice? To answer th
questions, computer scientists have devised a simple wa
generating random instances of the 3-SAT problem, wit
rich pattern of hardness@13#. Formulas are drawn in the fol
lowing way. RepeatM times independently the same pr
cess; pick up a 3-uplet of distinct indices in@1,N#, uniformly
on all possible three-uplets. For each of the three corresp
ing variables, choose the variable itself or its negation w
equal probability (1/2), and construct a clause with the c
sen literals. Repetition of this processM times gives a set o
M independently chosen clauses, whose conjunction is
generated instance. The random generation of form
makes the set of possible formulas a probability space, w
a well-defined measure.

Numerical experiments indicate that a phase transi
takes place whenN,M→` at fixed ratioa5M /N of clauses
per variables~in the thermodynamic limit!. If a is smaller
than some critical valueac.4.3, a randomly drawn instanc
06610
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admits at least one solution with high probability. Beyo
this threshold, instances are almost never satisfiable. The
istence of this transition has not been proven rigorously
@17#, but bounds on the threshold exist; the probability
satisfaction tends to 1~respectively to 0! if a,3.42 @18#
~respectively ifa.4.506@19#! All the above definitions can
be extended to theK-SAT problem, where each clause is th
disjunction of K, rather than 3, literals. 2-SAT is an eas
~polynomial! problem, whileK-SAT is an NP-complete prob
lem for any K>3. Location of the threshold is rigorousl
known for 2-SAT (ac51) @20#, but not forK>3. We shall
denote in the following averages on the randomK-SAT en-
semble by@•#.

Statistical mechanics studies have pointed out the e
tence of another phase transition taking place in the sat
able phase (a,ac) with a location first estimated atas

.3.95 @21# and later atas.3.86 @22#. This phase transition
is related to the microscopic structure of the set of solutio
Define d, the Hamming distance between two solutions
the number of variables taking opposite values in these
lutions. Whena,as , there exist an exponentially larg
number of solutions~N!, each pair of which is separated by
path in the solution space, that is, a sequence of solut
with a O(1) Hamming distance between successive so
tions along the path. The solution space is made up o
single cluster of solutions. Foras,a,ac , the solution
space breaks into an exponentially large number of clus
~N!, separated by large voids without solutions. Two so
tions in one cluster are linked through a path, while there
no path in the solution space linking two solutions in tw
different clusters. This clustering phenomenon, whose
covery was inspired from previous works in the context
information storage in neural networks@24#, was subse-
quently found in various combinatorial problems@25,26#,
and rigorously demonstrated for the so-called rand
XOR-SAT problem@27#. It is a zero-temperature signature
the ergodicity breaking taking place in spin glasses@15,28#.
Its precise relationship with dynamical properties, and in p
ticular with the computational cost for finding a solution
not fully elucidated yet@21,23,29#.

B. The RandomWalkSAT algorithm

The operation of RandomWalkSAT~also called Random-
Walk! on an instance of theK-SAT problem is as follows
@12#.

~1! Choose randomly a configuration of the Boolean va
ables.

~2! If all clauses are satisfied, output ‘‘satisfiable.’’
~3! If not, choose randomly one of the unsatisfied clau

and one of theK variables of this clause. Flip the variabl
Notice that the selected clause is now satisfied, but the
operation may have violated other clauses that were pr
ously satisfied.

~4! Go to step 2, until a limit on the number of flips fixe
beforehand has been reached. Then output ‘‘don’t know.

What is the output of the algorithm? Either ‘‘satisfiable
and a solution is exhibited, or ‘‘don’t know’’ and no certaint
3-2
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FIG. 1. Fractionw0 of unsatisfied clauses as a function of timet ~number of flips overM ) for two randomly drawn instances of 3-SA
with ratiosa52 ~a! anda53 ~b! with N5500 variables. Note the difference of time scales between the two figures. Insets of~b!: left, blow
up of the initial relaxation ofw0, taking place on theO(1) time scale as in~a!; right, histogramp500(w0) of the fluctuations ofw0 on the
plateau 1<t<130.
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on the status of the formula is reached. Papadimitr
showed that RandomWalkSAT solves with high probabil
any satisfiable 2-SAT instance in a number of steps~flips! of
the order ofN2 @12#. Recently, Scho¨ning was able to prove
the following very interesting result for 3-SAT@30#. Call
‘‘trial’’ a run of RandomWalkSAT consisting of the random
choice of an initial configuration followed by 33N steps of
the procedure. If none ofT successive trials of RandomWalk
SAT on a given instance has been successful~has provided a
solution!, then the probability that this instance is satisfiab
is lower than exp@2T3(3/4)N#. In other words, afterT
@(4/3)N trials of RandomWalkSAT, most of the configura
tion space has been ‘‘probed’’; if there were a solution
would have been found. Though RandomWalkSAT is no
complete algorithm, the uncertainty on its output can
made as small as possible and it can be used to prove u
isfiability ~in a probabilistic sense!.

Schöning’s bound is true for any instance. Restriction
special input distributions allows one to improve his resu
Alekhnovich and Ben-Sasson showed that instances dr
from the random 3-Satisfiability ensemble described ab
are solved in polynomial time with high probability whena
is smaller than 1.63@31#. It is remarkable that despite th
quenched character of the disorder in this problem~the same
clauses are seen various times in the course of the sea!,
rigorous results on the dynamics of this spin model can
achieved.

C. Phenomenology of the operation of RandomWalkSAT

In this section, we briefly sketch the behavior of Rando
WalkSAT, as seen from numerical experiments@32# and the
analysis presented later in this paper. We find that there
dynamical thresholdad separating the following two re
gimes.

~1! For a,ad.2.7 for 3-SAT, the algorithm finds a so
lution very quickly, namely, with a number of flips growin
06610
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linearly with the number of variablesN. Figure 1~a! shows
the plot of the fractionw0 of unsatisfied clauses as a functio
of time t ~number of flips divided byM ) for one instance
with ratio a52 andN5500 variables. The curves show
fast decrease from the initial value@w0(t50)51/8 in the
large-N limit independent ofa] down to zero on a time scale
t res5O(1). Fluctuations become smaller and smaller asN
grows. t res is an increasing function ofa. This relaxation
regime corresponds to the one studied by Alekhnovich
Ben-Sasson, andad.1.63 as expected@31#. Figure 2~a!
symbolizes the behavior of the system in the relaxation
gime.

~2! For instances in thead,a,ac range, the initial re-
laxation phase taking place on at5O(1) time scale is not
sufficient to reach a solution@Fig. 1~b!#. The fractionw0 of
unsat clauses then fluctuates around some plateau value
very long time. On the plateau, the system is trapped i
metastablestate. The lifetime of this metastable state~trap-
ping time! is so large that it is possible to define a~quasi!
equilibrium probability distributionpN(w0) for the fraction
w0 of unsat clauses.@Inset of Fig. 1~b!#. The distribution of
fractions is well peaked around some average value~height
of the plateau!, with left and right tails decreasing expone
tially fast with N, pN(w0);exp@Nz̄(w0)# with z̄<0 @Fig.
2~b!#. Eventually a large negative fluctuation will bring th
system to a solution (w050). Assuming that these fluctua
tions are independent random events occurring with pr
ability pN(0) on an interval of time of order one, the solvin
time is a stochastic variable with exponential distribution.
average is, to leading exponential order, the inverse of
probability that a solution is obtained on theO(1) time
scale: @ t res#;exp(Nz) with z52 z̄(0). Escape from the
metastable state therefore occurs through barrier cros
and takes place on exponentially large-in-N time scales, as
confirmed by numerical simulations for different size
Schöning’s result@30# can be interpreted as a lower bound
3-3
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FIG. 2. A schematic picture of the operation of RandomWalkSAT for ratiosa smaller~a! or larger~b! than the dynamical thresholdad .
Vertical axis is minus the logarithm of the probability~divided byN) that the system has a fractionw0 of unsat clauses after a large numb
of RandomWalkSAT flips. Its representative curve can be seen as an energy potential in which the configuration~represented by an empt
ball! rolls down towards the more probable value of the order parameterw0, or up through stochastic fluctuations. The starting configura
violatesw051/8 of the clauses~point I!. At small ratios~a!, the configuration rolls down to reach pointS through a sequence of intermedia
points~I’ !. The search for a solution is essentially a fast relaxation towardsS @O(N) time scale#. At large ratios~b!, the ball first relaxes to
the bottom of the well~point P with abscissa corresponding to the plateau height!. Then slow negative~ball A) or positive ~ball B)
fluctuations of the fractionw0 take place on exponentially~N! long time scales. The time@ t res;exp(Nz)# it takes to the system to reach

solution ~point S) is, on the average, equal to the inverse probability exp(Nz̄) that a fluctuation drives the system toS.
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the probabilityz̄(0). ln(3/4), true for any instance.
The plateau energy, that is, the fraction of unsatisfi

clauses reached by RandomWalkSAT on the linear time s
is plotted in Fig. 3. Notice that the ‘‘dynamic’’ critical valu
ad above which the plateau energy is positive~Random-
WalkSAT stops finding a solution in linear time! is strictly

FIG. 3. Fractionw0 of unsatisfied clauses on the metasta
plateau as a function of the ratioa of clauses per variable. Dia
monds are the output of numerical experiment, and have been
tained through average of data from simulations at a given sizN
~number of variables! over 1 000 samples of 3-SAT, and extrapol
tion to infinite sizes~dotted line serves as a guide to the eye!. The
ratio at whichw0 begins being positive,ad.2.7, is smaller than the
thresholdsas.3.9 andac.4.3 above which solutions gather int
distinct clusters and instances have almost surely no solution
spectively. The full line represents the prediction of the Markov
approximations of Secs. IV C and IV E.
06610
d
le

smaller than the ‘‘static’’ ratioac , where formulas go from
satisfiable with high probability to unsatisfiable with hig
probability. In the intermediate rangead,a,ac , instances
are almost surely satisfiable, but RandomWalkSAT needs
exponentially large time to prove so. Interestingly,ad andac
coincides, for 2-SAT in agreement with Papadimitriou’s r
sult @12#. Furthermore, the dynamical transition is apparen
not related to the onset of clustering taking place atas .

III. EXACT RESULTS: SPECIAL CASES
AND EXPANSIONS

A. Evolution equations and quantum formalism

Boolean variables will be hereafter represented by Is
spins Si51 ~respectively21) when the Boolean variable
xi is true ~respectively false!. A microscopic configuration
S is specified by the states of all variables:S
5(S1 ,S2 , . . . ,SN). We then define a 2N-dimensional linear
space with canonical basis$uS&%, orthonormal for the scala
product^S8uS&5) idS

i8 ,Si
. Let us denote Prob@S,T# the prob-

ability that the system configuration isS at timeT, i.e., after
T steps of the algorithm, and define@33#

uS~T!&5(
S

Prob@S,T#uS&, ~1!

as the~time-dependent! vectorial state of the system. Know
edge of this vector gives access to the probabi
Prob@S,T#5^SuS(T)& of being in a certain configurationS.

RandomWalkSAT defines a Markov process on the se
configurations; during one step of the algorithm, the st
vector of the system changes according to

uS~T11!&5ŴduS~T!&, ~2!

b-

e-
3-4
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where the evolution operator in discrete timeŴd reads as

Ŵd5 (
,51

M

F̂,•Û,•Ê21, F̂,5
1

K (
i 51

N

Cli
2s i

x ,

Û,5gKS (
j 51

N

Cl j s j
zD , Ê5 (

,51

M

Û, . ~3!

In the above expression, we have made use of several d
ent notations that we now explain. TheM3N matrix C, i
encodes the instance,C, i equals 1 if the,th clause contains
the literal xi , 21 if it contains the literalx̄i , and 0 other-
wise. Since every clause containsK literals, ( iC, i

2 5K ;,.
The Pauli operators are defined throughs i

zuS&5Si uS& and
s i

xuS&5uSi&, whereSi is the configuration obtained fromS
by flipping thei th spin. It is a simple check that the argume
of function gK in Û, is a diagonal operator in the canonic
basis $uS&%, with eigenvaluesx[( i 51

N C, iSi in $2K,2K
12, . . . ,K22,K%, equal to2K if and only if clause, is
unsatisfied. The function

gK~x!5dx,2K5
1

2KK!
)
p50

K21

~K22p2x! ~4!

is a polynomial of degreeK in x equal to 1 ifx52K and to
zero for all the other possible eigenvalues. OperatorÊ is
diagonal in the canonical basis too, with eigenvalues equa
the numbers of unsatisfied clauses~also called energy! in
each configuration. Therefore,Û,•Ê21 in Eq. ~3! acts as a
filter retaining clause, only if it is unsatisfied, and with a
weight equal to the inverse number of unsatisfied clau
only unsat clauses can be chosen at each time step, ea
these with the same probability.F̂, flips the spins of clause
,, each with probability 1/K. Note thatŴd conserves prob-
abilities: ^OuŴd5^Ou where ^Ou5( Ŝ Su is the superposi-
tion of all possible states.

In the thermodynamic limit, the evolution can be rewr
ten in continuous time, definingt5T/M ,
06610
r-

t

to

s;
of

d

dt
uS~ t !&5ŴuS~ t !&, Ŵ5M ~Ŵd21̂!. ~5!

Formally, the solution of this equation isuS(t)&
5etŴuS(0)&, where uS(0)&5(1/2N)(SuS& since the initial
configuration is random. An important quantity to compute
the average fraction of unsatisfied clauses at timet, i.e., after
T5Mt steps of the algorithm, averaged both on the hist
of the algorithm and on the distribution of formulas:

w0~ t !5
1

M
@^OuÊetŴuS~0!&#. ~6!

For the sake of analytical simplicity, we shall study a sligh
different evolution operator in the next two sections, and u
the parameteru to denote the time parameter of this modifie
evolution,

Ŵ85Ŵ•

1

M
Ê5 (

,51

M

~ F̂,21̂!•Û, ,
d

du
uS~u!&5Ŵ8uS~u!&.

~7!

Let us explain the meaning of this modification. The opera
Ŵ8 would have been obtained, starting from the followin
variant of the RandomWalkSAT stochastic process. At e
step, choose a clause among theM ones. If it is satisfied, do
nothing. If it is unsatisfied, flip one of its variables.

In the thermodynamic limit, the fraction of unsatisfie
clausesw0 is expected to become a self-averaging quant
i.e., to be peaked with high probability around i
(t-dependent! mean value. TurningŴ into Ŵ8 thus amounts
to a local redefinition of time, independent of the instance
the problem. In definition~7!, the operatorÊ/M can be re-
placed with its mean valuew0, leading to (d/du)
[w0d/dt. The knowledge of theŴ8—evolution of any ob-
servable in terms ofu can then be rewritten in terms oft
through

t~u!5Eu

du8w ~u8!. ~8!
FIG. 4. A comparison between numerics and analytical results forK51. Left panel: fraction of unsat clausesw0(t) as a function of time
t for a53 ~top! anda51 ~bottom!. Dashed line: analytical curve, solid line~almost superimposed!: numerical results~single run withN
5104). Right panel: asymptotic fraction of unsat clauses as a function ofa. Solid line: theoretical prediction~13!, symbols: numerical
results~averaged over ten runs, overtP@8,10#, for N5104), dashed line: ground-state energywGS.
3-5
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Examples of this time reparametrization will be shown b
low.

B. The KÄ1 case

Let us first study the simple caseK51. A clause is then a
single literal, i.e., either a variable or its negation. If both
variable and its negation appear in the formula, it is ob
ously unsatisfiable. This is the case, with high probability
the thermodynamic limit, as soon asa.0. Static properties
of the 1-SAT model are known exactly@34#, and its dynam-
ics under the RandomWalkSAT evolution can be solved t
an

t
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r

th

io
ot
om
le
e

li
xa

d
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An instance is described by a set of integers$mi ,ni%,
wheremi is the number of clauses in which the variablei
appears, and (mi2ni)/2 is the number of times it has bee
chosen without negation. The evolution operator in terms
u—time is the sum of site operators,

Ŵi85
1

2
~mis i

x2mi1nis i
z2nis i

xs i
z!. ~9!

As the operatorsŴi8 on different sites commute, the evolu
tion operator can be diagonalized in each of thei subsets
independently, and the vector state is a tensor product,
uS(u)&5 ^ i 51
N H 1

2
(u1& i1u2& i) if mi50

1

2 (
S561

S 11S
ni

mi
(12e2miu) D uS& i if miÞ0,

~10!
y
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-
e

in-
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al-
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r-
o
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r
of
e
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sm

es,
whereu6& i are the eigenvectors ofs i
z with eigenvalues61.

The fraction of unsatisfied clauses for a given instance
averaged over the choices of the algorithm reads as

1

M
^OuÊuS~u!&5

1

2
2

1

2M (
i /miÞ0

ni
2

mi
~12e2miu!. ~11!

In the thermodynamic limit, themi ’s become independen
random variables with identical Poisson distributions of p
rametera; (mi2ni)/2 obeys a Binomial law of paramete
1/2 amongmi . Performing the quenched average over
formula, the fraction of unsatisfied clauses reads

w0~u!5
1

2
2

12exp@a~e2u21!#

2a
. ~12!

These exact results are compared with numerical simulat
in Fig. 4. On the right panel has been drawn the asympt
fraction of unsatisfied clauses obtained at large times, c
pared with the analytical prediction made above. The
panel shows the time evolution of the fraction of unsatisfi
clauses as a function of timet, for two different values ofa.
The analytical curve has been obtained through the resca
explained at the end of the preceding section; from the e
value ofw0(u) given above, the original timet(u) has been
obtained by numerical integration@Eq. ~8!#, and the plot
w0(t) is a parametric plot$t5t(u),w05w0(u)%, param-
etrized byu.

Note that the asymptotic value of the energy reache
larger than the ground-state one@34#,

lim
t→`

w0~ t !5
1

2
1

e2a21

2a
.

1

2
@12e2aI 0~a!2e2aI 1~a!#

5wGS, ~13!
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whereI n is thenth modified Bessel function. This is easil
understood: if a formula containsx1 once andx̄1 twice, the
optimal value isx1 false. But the algorithm does not stop
this configuration, as the clausex1 is then violated. Random
WalkSAT will keep on flipping the variable and make th
average energy higher than the optimal one.

C. The satisfiable phase of theKÄ2 case

We now turn to the 2-SAT case, where every clause
volves two variables. It has been rigorously proven that th
is a sharp threshold phenomenon taking place atac51 in
this problem@20#. For lower values ofa, the formulas are
almost always satisfiable, beyond this threshold they are
most always unsatisfiable. The dynamical critical thresh
of RandomWalkSAT has the same value,ad51 @12#. Thus,
there is no metastability in 2-SAT; if a solution of the fo
mula exists it is almost surely found in polynomial time. Tw
questions of interest are: how fast will the number of uns
isfiable clauses decrease during the evolution of the pro
and how long will it take the algorithm to find a solution fo
a,1? and what will be the typical energy after a long run
the algorithm whena.1? In this and the next sections, w
shall address the first of these two questions, and leave
second one to the next section.

As in theK51 case, one can use the quantum formali
and write down the evolution operatorW8. There appear
both single site terms and couplings between pairs of sit

Ŵ85(
i

Ŵi81(
iÞ j

Ŵi j8 , ~14!

Ŵi85
1

8
~mis i

x2mi12nis i
z2nis i

xs i
z!, ~15!
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FIG. 5. Treelike clusters contributing to the expansions. Left panel:K52. Right panel:K53.
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Ŵi j8 5
1

8 Fai j S s i
x1s j

x

2
21Ds i

zs j
z2bi j s i

xs j
zG ~16!

with

ni5(
l

Cli , mi5(
l

Cli
2 ,

ai j 5(
l

Cli Cl j , bi j 5(
l

Cli
2Cl j . ~17!

Two-site operatorsŴi j8 do not commute when they share

variable, andŴ8 cannot be factorized as in theK51 case.
Yet, a cluster expansion in powers ofa can be implemented
A detailed presentation of this cluster expansion in a clos
related context has been given elsewhere@35#; the reader is
referred to this previous work for more details. The meth
is presented below for a generic value ofK. We call cluster
and denoteFr a maximal set of variables connected
clauses. Any formulaF can be decomposed as a conjuncti
of these clusters~note that despite the similarities in denom
nations, these clusters have nothing to do with the cluste
phenomenon in configuration space!. Consider now a quan
tity Q, depending on the realization of the disorder, nam
of formulaF, and additive with respect to the cluster deco
position Q(F)5(Fr

Q(Fr). Calculation of the average@Q#

over the random ensemble formulas ofQ can be done as
follows. First, consider the different possible topologiess of
the clusters and compute@Q#s , the quantity averaged ove
the choices of signs for a given topology, i.e., whether va
ables appear negated or not in a clause. Second, add up
contributions with combinatorial factors giving the fre
quency of appearance of the different topologies,

1

M
@Q#5(

s

1

aLs
Ps@Q#s . ~18!

The sum runs over the different topologies,Ls is the number
of sites in such a cluster, andPs is the probability of a given
site belonging to ans-type cluster. In the thermodynami
limit, the finite-size clusters, which contribute to this sum a
treelike: Ps5(aK!) mse2LsaKKs , where ms5(Ls21)/(K
21) is the number of clauses of the cluster, andKs is a
symmetry factor. The smallest treelike clusters are show
06610
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,
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Fig. 5. Clauses are represented by dashed lines~for K52) or
stars~for K>3). In principle, such an expansion is meanin
ful only below the percolation threshold of the underlyin
random hypergraph,ap51/@K(K21)#. Beyondap , a giant
component appears, whereas the series~18! takes into ac-
count clusters of sizeO(ln N) only. However, rearranging the
series as an expansion in powers ofa ~expanding out the
exponential inPs) allows one to extend its domain of valid
ity beyondap , at least for quantities that are not singular
the percolation threshold.

This method can be employed here. The evolution ope
tor Ŵ8 is the sum of operators for each clusterŴ8(Fr).
Operators attached to two distinct clusters commute w
each other as they do not have common variables. The
ergy operatorÊ can also be written as a sum over the clu
ters, thus the energy averaged over the history of the a
rithm has the property of additivity over clusters if the tim
evolution is studied in terms ofu. After averaging over the
formulas, the fraction of unsatisfied clauses reads as

w0~u!5(
s

1

aLs
Ps@^E&~u!#s . ~19!

The evolution and energy operators for a cluster withn vari-
ables are 2n32n matrices,Ŵs8 andÊs , respectively. With the
help of a symbolic computation software package, one
easily study the small finite-size clusters by computing

@^E&~u!#s5@^OuÊse
Ŵs8uuS~0!&#s, ~20!

where^Ou and uS(0)& are now 2n-dimensional row and col-
umn vectors, and the average is over the choices of nega
or not negating the variables in the clauses.

We have performed this task for clusters with up to fo
sites; their contributions are summarized in Table I. Up
ordera2, the expansion leads to

w0~u!5
e2u

4
1aS 1

4
e2u/22

3

8
e2u1

1

8
e22uD1a2S 2

3

8
e2u/2

1
19

64
e2u1

1

8
e23u/22

9

32
e22u1

3

64
e23uD

1a2SA321

32
e2 @~31A3!/2# u2

A311

32
e2@~32A3!/2# u
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TABLE I. Contributions to the cluster expansions forK52. See left panel of Fig. 5.

Type Ls Ks @^E&(u)#s @ t res#s

a 2 1 1
4 e2u 1/4

b 3 3/2 1
16e22u1

5
16e2u1

1
8 e2u/2 19/32

c 4 2 1
128@e23u110e22u14e23u/2153e2u120e2u/212(22A2)@e2@(21A2)/2u#12(21A2)e2@(22A2)/2#u# 125/128

d 4 2/3 3
256@e23u110e22u125e2u132e2u/222(11A3)e2@(32A3)/2#u22(12A3)e2@(31A3)/2#u# 259/256
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1
22A2

16
e2@~21A2!/2# u1

21A2

16
e2@~22A2!/2# uD

1O~a3!. ~21!

The typical valuew0(t) of the fraction of unsatisfied clause
afterT5t M steps of the algorithm is obtained from Eq.~21!
through the rescaling of time defined in Eq.~8!. Our theory is
compared in Fig. 6 to numerical simulations. The agreem
is excellent at the beginning of the time evolution, and wo
ens at the end. A factor of explanation is that during the
steps of the algorithm, the fraction of unsatisfied clause
low and thus for finite-size samples, the self-averaging
pothesis is violated.

Our approach is applicable to any value ofK ~note, how-
ever, that the size of the matrices to be diagonalized gr
faster with the number of clauses in the clusters studied,
is, with the order ina in the expansion! but is restricted to
the a,ad regime. The finite-size tree clusters considered
any ~finite! order in the expansion are indeed solved in line
time by RandomWalkSAT. In Sec. IV, another kind of a
proximation will allow us to study thea.ad regime.

D. Cluster analysis of solving times

As the number of steps needed to solve a formula is
additive quantity over clusters, it can be calculated along
lines exposed above for the expansion ofw0. Let us give two

FIG. 6. Fraction of unsat clauses as a function of time forK
52, anda50.6 ~top! and a50.3 ~bottom!. Dashed lines: cluste
expansion prediction. Solid lines~almost superimposed!: numerical
results~averaged over ten runs forN510 000).
06610
nt
-
st
is
-

s
at

t
r

n
e

examples about how to compute the average time neede
solve a cluster of fixed topology.

The simplest example is a cluster made up of a sin
2-SAT clause, (x1~x2). With probability 3/4, the initial ran-
dom condition is already a solution. If not, it will take one
time step to solve the cluster, as any of the two possible s
flips will lead to a solution. Thus the average solving time
1/4. Similar analysis can be done on bigger clusters, eve
the counting becomes increasingly tiresome. As a byprod
some flaws of the RandomWalkSAT heuristic appear.

The second example is the cluster (x1~x2)`( x̄2~x3).
The eight configurations of the variables are represente
Fig. 7 with up or down spins corresponding to true or fa
boolean variables. The four solutions are drawn in the sha
box. Two configurations are turned into solutions in one fl
~single outcoming arrow!. Flipping a spin from each of the
remaining two configurations~with two departing arrows!
leads to a solution, or to the other configuration. Thus,
average solving time starting from one of these configu
tions is two time steps. Finally, the average solving time
the cluster is 3/4. To obtain the average over the signs of
solving time, one still has to make the same study for
case where the two clauses are not contradictory on the

FIG. 7. An example of the behavior of RandomWalkSAT on

finite cluster (x1~x2)`( x̄2~x3). Blocks of spins represent con
figurations of the Boolean variables, those in the shaded box
solutions. Arrows stand for possible transitions of the algorithm,
the text for details.
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TABLE II. Contributions to the cluster expansion for the solving time, generalK. See right panel
of Fig. 5.

Type Ls Ks(K!) ms/Ls @ t res#s

a8 K 1 1

2K

b8 2K21 K2

2
1

22K F2K111
K11

K~K21!G
c8 3K22 K3(K21)

2
1

23K F3•22K12K11
K11

K~K21!
1

4K419K319K216K24

3K2~K21!~2K21!~K222!
G

d8 3K22 K3

6
1

23K F3•22K12K
3~K11!

K~K21!
2

2K11

K2~K21!
G
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tral spin, hence the value 19/32 on typeb of Table I.
Obviously, RandomWalkSAT can make ‘‘bad’’ choices o

this very simple example, and ‘‘oscillate’’ a few time ste
between the two configurations before finding a soluti
One can imagine many local search heuristics that would
better than RandomWalkSAT on the example shown bef
For instance, one could modify the algorithm so that once
unsatisfied clause has been chosen randomly, it prefers to
a variable with a low number of neighbors, or one with t
lowest number of contradicting clauses on it. The aver
solving time of any of these heuristics, as long as the in
mation used to choose the variable to be flipped rema
local, can be studied by such a cluster expansion. Th
simple enumerations could then provide an useful
ground for new heuristics.

For generalK, the enumeration of the possible histories
clusters with three or less clauses leads to the quant
given in Table II,

t res~a,K !5
1

2K
1

K~K11!

K21

1

22K11
a

1
4K61K516K3210K212K

3~K21!~2K21!~K222!

1

23K11
a2

1O~a3!. ~22!

This prediction is in a good agreement with numerical sim
lations, see Fig. 8 for results in theK53 case.

The validity of expression~22! can be easily checked fo
K52 from the findings of Sec. III C. Indeed, in terms of th
time t5T/M , the fraction of unsat clausesw0(t) vanishes
after a finite timet res given by

t res5 lim
u→`

t~u!5E
0

`

du8w0~u8!. ~23!

Integration of Eq.~21! coincides with prediction~22! for
t res(a,2).
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IV. APPROXIMATE ANALYSIS OF RANDOMWALKSAT

In this section, an analysis of RandomWalkSAT, based
the Markovian approximation for the evolution equations~2!
is proposed. It allows a quantitative description of the m
features of RandomWalkSAT, namely, the asymptotic ene
and the~exponentially small! probability of resolution in lin-
ear time for generic values ofK anda (.ad). The approxi-
mation scheme is also applied to the analysis of Rand
WalkSAT on theXOR-SAT problem@36#.

A. Projected evolution

Consider an instance of theK-SAT problem. Random-
WalkSAT defines a Markov process on the space of confi
rations of the Boolean variables, see Eq.~2!, of cardinality
2N. Call S(T) the configuration of the Boolean variables a
given instantT ~number of flips! of the evolution of the
algorithm. An observableR is a function of the configura-
tion, e.g., the number of clauses violated byS. The principle
of the approach developed now is to track the evolution
R(T)[R„S(T)…, that is, of one number~or a low-
dimensional vector! instead of the whole configuration o
spins. To do so, we make use of the projection operator
malism described below.

FIG. 8. Average solving timet res(a,3) for 3-SAT. Symbols:
numerical simulations, averaged over 1 000 runs forN510 000.
Solid line: prediction from the cluster expansion~22!.
3-9
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Let us partition the configuration space into equivalen
classes of microscopic configurationsS associated with the
same value of the macroscopic observableR(S). We call
V(R)5$SuR(S)5R% these classes, anduV(R)u their cardi-
nalities ~number of configurations in these classes!. Let us
define the projection operatorP̂ through its entries,

^S1uP̂uS2&5
1

uV„R~S1!… u
d„R~S1!2R~S2!…, ~24!

whered denotes the~vectorial! Kronecker function. One can
easily check that it is indeed a projector,P̂25P̂, that con-
nects only configurations within the same class.

Now, consider the state vectoruS(T)&, Eq. ~1! and its
projectionuP(T)&[P̂uS(T)&. Its components have the sam
value in each class, which is the average ofuS(T)& over the
microscopic configurations in the class. CalluQ(T)&
5(12P̂)uS(T)&5uS(T)&2uP(T)&. From the master equa
tion ~2!, we obtain

uP~T11!&5P̂•ŴduP~T!&1P̂•ŴduQ~T!&,

uQ~T11!&5~12P̂!•ŴduP~T!&1~12P̂!•ŴduQ~T!&.
~25!

The second equation can be formally ‘‘integrated’’ by iter
tion,

uQ~T!&5 (
T851

T

@~12P̂!•Ŵd#T8uP~T2T8!&, ~26!

where the initial state vectoruS(0)& has been assumed to b
uniform on each class, so thatuQ(0)&50. Finally,

uP~T11!&5 (
T850

T

P̂•Ŵd•@~12P̂!•Ŵd#T8uP~T2T8!&,

~27!

Equation~27! expresses that, once coarse gained by the
tion of the projection operation, the dynamics is not Marko
ian any longer. The principle of our approximation is pr
cisely to omit all memory effects, by neglecting no
Markovian terms, i.e.,T8>1 contributions in Eq.~27!, and
averaging over disorder at each time step,

uP~T11!&.@P̂•Ŵd#uP~T!&. ~28!

Obviously, the quality of the approximation depends on
observableR. We shall see two examples in what follows

B. Transition matrix for the number of unsatisfied clauses

A natural choice we study in this and the next two se
tions for the observableR is M0, which measures the num
bersM0 of clauses unsatisfied by each configuration of
variables. Defining the bra

^M0u5 (
SPV(M0)

^Su, ~29!
06610
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and the probability Prob@M0 ,T#5^M0uP(T)& that the con-
figuration of the variables is in classM0 at timeT, we obtain
within the Markovian approximation~28!,

Prob@M08 ,T11#5(
M0

AM
08M0

Prob@M0 ,T# ~30!

with AM
08M0

[NM
08M0

/DM0
and

NM
08M0

5(
j 51

N

(
S

d„M02M0~S!…d„M082M0~Sj !…pj~S!,

DM0
5(

S
d„M02M0~S!…, ~31!

where pj (S) is the probability of flipping spink when the
system is in configurationS, i.e., the number of unsat clause
in which spin j appears divided by the number of uns
clauses.Sj denotes the configuration obtained fromS by flip-
ping spinj. The meaning of our Markovian approximation
clear: the transition rate from one value of the observableM0
to another is the average of the microscopic transition ra
from one microscopic configuration belonging to the fi
subsetV(M0) to another belonging to the second one, with
flat average on the starting subset. At timeT, the only avail-
able information in the projected process is that the system
somewhere in the subset, and none of the corresponding
croscopic configurations can be privileged.

To perform the average over the disorder, i.e., on the r
dom distribution of formulas and compute@AM

08 M0
#

5@NM
08 M0

/DM0
#, we shall do the further approximation tha

the numerator and the denominator can be averaged s
rately. This ‘annealed’ hypothesis can be justified in so
cases, see Sec. IV G. After some combinatorics, we find

@AM
08 M0

#5 (
Zu ,Zs

ZuN

KM0
S M0

Zu
D S M2M0

Zs
D S 12

K

ND M02Zu

3S K

ND ZuS 12
K

~2K21!N
D M2M02Zs

3S K

~2K21!N
D Zs

d~M082M01Zu2Zs!. ~32!

Zu is the number of unsatisfied clause which contains
variable to be flipped. All these clauses will become satisfi
after the flip. The factorZu /(KM0) represents the probabil
ity of flip of the variable, the factorN coming from the sum
over its indexj. Zs is the number of clauses satisfied prior
the flip and violated after. The meaning of the Binomial law
is transparent. Assume that the configuration violatesM0
clauses. In the absence of further information, the varia
that is going to flip has probabilityK/N to be present in a
given clause@there are (K

N) possibleK uplets overN vari-
ables, and (K21

N21) that include a given variable#. Furthermore,
a satisfied clause that contains the flipped variable ha
probability 1/(2K21) to become unsatisfied later.Zu ~re-
3-10
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spectivelyZs) is thus drawn from a binomial law with pa
rameterK/N „respectivelyK/@N(2K21)#…, over M0 ~resp.
M2M0) tries. This reasoning unveils the physical signi
cance of our Markovian approximation; we neglect all c
relations between flipped variables and clauses that ine
bly arise as the algorithm runs beyond the description
terms of the macroscopic variableM0.

C. Average evolution and the metastable plateau

The evolution equation for the average fractionw0(T)
5(M0

M0Prob@M0 ,T#/M of unsatisfied clauses at timeT

5tM is easily computed in the large-size limit from Eq
~30! and ~32!. In particular, the average fraction of uns
clauses equals

w0~a,K,t !5
1

2K
1

2K21

aK2K
~e2aK(1222K)21t21!, ~33!

with w0(0)51/2K. Two regimes appear. If the ratioa is
smaller than the critical value

ad~K !5
2K21

K
, ~34!

the average fraction of unsat clausesw0 vanishes after a fi-
nite time t res . Typically, the algorithm will find a solution
after t res3M steps~linear inN), and then stops. Prediction
for ad are in a good but not in a perfect agreement w
estimates from numerical simulations, e.g.,ad57/3 versus
ad.2.722.8 for 3-SAT. The average solving timet res(a,K)
predicted within this approximation is given by the time
w0(t) in Eq. ~33! vanishes. It logarithmically diverges asa
reaches the dynamical threshold at fixedK,

t res~a,K !;2
1

2K
ln~ad~K !2a!, a→ad~K !2. ~35!

On the contrary, whena.ad(K), w0 converges to a finite
and positive value

w̄0~a,K !5
1

2K S 12
ad~K !

a D , ~36!

when t→` ~Fig. 3!. RandomWalkSAT is not able to find
solution and gets trapped at a positive level of unsatis
clauses. This situation arises in the limitT}N,N→`, and
corresponds to the metastable plateau identified in Sec.

D. Large deviations and escape from the metastable plateau

As explained above, whena.ad , the system gets almos
surely trapped in a metastable portion of the configurat
space with a nonzero number of unsatisfied clauses. Num
cal experiments indicate the existence of an exponenti
small-in-N probability ;exp„Nz̄(a)… with z̄,0 that this
scenario is not correct, and that a solution is indeed foun
06610
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linear time. We now make use of our Markovian hypothe
to derive an approximate expression forz̄.

Contrary to the preceding section, we now consider
large deviation of the process with respect to its typical
havior. This can be accessed through the study of the la
deviation functionp(w0 ,t) of the fractionw0 @39#,

p~w0 ,t !5 lim
N→`

1

N
ln Prob@M05Mw0 ,T5tM #. ~37!

Introduction of the reduced time is a consequence of
following remark.O(1) changes in the fractionw0, that is,
O(N) changes in the numberM0 of unsatisfied clauses ar
most likely to occur after a number of flips of the order ofN.
To compute the large deviation functionp, we introduce the
generating function ofM0,

G@y,T#5(
M0

Prob@M0 ,T#exp~yM0!, ~38!

wherey is a real-valued number. In the thermodynamic lim
G is expected to scale exponentially withN with a rate

g~y,t ![ lim
N→`

1

N
ln G@y,T5tM #5max

w0

@p~w0 ,t !1ayw0#,

~39!

equal to the Legendre transform ofp from insertion of defi-
nition ~37! into Eq.~38!. Using evolution equations~30! and
~32!, we obtain the following equation forg,

1

a

]g~y,t !

]t
52y1

aK

2K21
~ey21!

1KS e2y212
1

2K21
~ey21!D ]g~y,t !

]y
.

~40!

along with the initial condition

g~y,0!5a lnS 12
1

2K
1

ey

2KD . ~41!

The average evolution studied in the preceding section
be found again from the location of the maximum ofp or,
equivalently, from the derivative ofg in y50: w0(t)
5(1/a)]g/]y(0,t). The logarithm of the probability of tha
a solution is reached after aO(N) time is given by

z̄~a,K !5p~w050,t→`!5E
0

ỹ(a)
dyz~y,a!, ~42!

where z(y,a)5@y2aK(ey21)/(2K21)#/@K„e2y212(ey

21)/(2K21)…# and ỹ(a) is the negative root ofz.
Predictions forz̄ in the K53 case are plotted in Fig. 9

They are compared to experimental measures ofz, that is,
the logarithm~divided byN) of the average solving times. I
3-11
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is expected on intuitive grounds exposed in Sec. II C thaz

coincides with2 z̄ ~Fig. 2!. Despite the roughness of ou
Markovian approximation, theoretical predictions are
qualitative agreement with numerical experiments.

E. Taking into account clause types

The calculation of Sec. IV B can be extended to oth
observablesR. In the following, we consider the case of
vectorial observableMW , with K11 components. Our start
ing point is the classification of clauses into types. A clau
is said to be of typei, with i 50, . . . ,K, if the variables of
the configurationS satisfy i amongK of its literals. If i 50
the clause is unsatisfied while, as soon asi>1, the clause is
satisfied. Let us callMi(S) the number of clauses of typei,
and MW (S)5@M0(S), . . . ,MK(S)# the vector made with
these population sizes. Clearly,( iM i(S)5M for any con-
figuration. If M0(S)50 thenS is a solution of the formula.
VectorMW is a natural characterization of the configuration
variables~and of the instance!, and contains essential info
mation about the operation of the algorithm. Indeed, the
gorithm stops if the numberM0 of unsatisfied clauses van
ishes. In addition, at each step of the algorithm, a sin
variable is flipped; clauses of typei become of typei 61 if
they include this variable, or remain of typei otherwise.

Within our Markovian annealed approximation, the pro
ability Prob@MW ,T# that the configuration of the variables
in classV(MW ) at timeT obeys the evolution equation,

FIG. 9. Large deviations for the 3-SAT problem. The logarith

~in basee) z̄ of the probability of successful search~over the linear
in N time scale! is plotted as a function of the ratioa of clauses per

variables. Predictions forz̄(a,3) have been obtained within the ap
proximations of Sec. IV D@Eq. ~42!, dot-dashed curve# and Sec.
IV E @fourth order solution of Eq.~47!, solid curve#. Diamonds
corresponds to~minus! the logarithmz of the average solving time
~averaged over 2 000 to 10 000 samples depending on the valu
a,N, divided byN and extrapolated toN→`) obtained from nu-
merical simulations. Error bars are of the order of the size of

diamond symbol. Scho¨ning’s bound isz̄> ln(3/4).20.288.
06610
r

e

f

l-

le

-

Prob@MW 8,T11#5(
MW

@AMW 8MW #Prob@MW ,T#, ~43!

with

@AMW 8MW #5(
ZW

NZ0

KM0
d~MW 82MW 2D•ZW !P~ZW uMW !, ~44!

whereZW 5(Z0 ,Z1 ,Z1
s , . . . ,Zi ,Zi

s, . . . ,ZK21 ,ZK21
s ,ZK) is a

(2K21) dimensional vector. ComponentZi is the number of
clauses of typei where the variable which is going to flip
appears. InZi

s of theseZi clauses, this variable was one o
the i satisfying literals. It is not necessary to introduce co
ponentsZ0

s and ZK
s for they have obvious values~respec-

tively, equal to 0 andZK). D denotes a (K11)3(2K21)
matrix such thatD•ZW gives the change in the observableMW

when the variable is flipped. Thei th line of D•ZW reads
2Zi1Zi 11

s 1(Zi 212Zi 21
s ). Clauses that contained th

flipped variable and were of typei prior to the flip are no
longer of this type after the flip~hence the term2Zi), those
which were of typei 11 and satisfied by the variable becom
of type i (1Zi 11

s ), as those which were of typei 21 and
unsatisfied by the flipping variable (1Zi 212Zi 21

s ). The

probability of ZW conditioned onMW is, as in the simpler case
of Sec. IV B, a product of Binomial laws

P~ZW uMW !5)
i 50

K S Mi

Zi
D S K

ND ZiS 12
K

ND Mi2Zi

)
i 51

K21 S Zi

Zi
sD

3S i

K D Zi
sS 12

i

K D Zi2Zi
s

. ~45!

Repeating the procedures of Secs. IV C and IV D, we fi
the following.

~1! The average fraction of unsat clauses is calculated
Appendix A and reads as

w0~a,K,t !5
1

2K
1

1

aK F 1

~11tanh~at !!K
21G . ~46!

The critical ratio separating polynomial from exponent
search is found at the same value as in Sec. IV B,ad(K)
5(2K21)/K. The average fraction of unsatisfied clauses
the plateau (w0 in the t→` limit ! whena.ad(K) has also
the same expression, cf. Eq.~36!. Note, however, that the
finite time evolution differs in the two calculations. Whe
a,ad , the solving timet res is given by the vanishing ofw0
in Eq. ~46!, and differs from its value found within the sim
pler approximation of Sec. IV B.

~2! The probability of easy~linear time! search is acces
sible from the large deviation functionp(wW ,t) of the frac-
tions w i of clauses of type 0< i<K. Its Legendre transform
g(yW ,t) obeys the partial differential equation~PDE!

of

e
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1

a

]g~yW ,t !

]t
52y01y11(

i 50

K

~~K2 i !eyi 112yi

31 i eyi 212yi2K !
]g~yW ,t !

]yi
~47!

along with the initial condition

g~yW ,0!5a lnF(
i 50

K
1

2K S K

i D eyiG . ~48!

The logarithm~divided byN) of the probability of the search
to be successful on the 0(N) time scale, is given by

z̄~a,K !5max
y0

g~y0 ,y15y25•••5yK50,t !. ~49!

We have not been able to calculate exactlyz̄ for generic
values ofa andK, but have resorted to a polynomial expa
sion of g in powers of its argumentsyi . The expansion has
been done up to order four with the help of a symbolic co
putation software package forK53, and up to order two
analytically for anyK. Calculations are detailed in Append
B. Predictions forz̄(a) in the K53 case are plotted in
Fig. 9.

F. The large K limit

A comparison between results of Secs. IV B and IV
shows that the output of the calculation quantitatively d
pends on the observable under study. However, we may
pect some simplification to take place for largeK. In this
limit, if a clause gets unsatisfied twice, or more~but !K
times!, it is very unlikely that each variable will be flippe
more than once, and memory effects are lost. Therefore,
Markovian annealed approximation is expected to beco
correct. However, to avoid a trivial limit, the ratioa of
clauses per variable must be rescaled accordingly. Inspec
of the above result~34! indicates that the correct scaling
a,K→` at fixed ratioa* 5aK/2K. The dynamical thresh
old separating linear from exponential searches is locate

ad* 51. ~50!

As the critical threshold ofK-SAT is known to scale as
ac(K);2Kln 2 for largeK @34,38#, instances are always sa
isfiable on the reduceda* scale.

For a* ,1, the initial fraction of unsatisfied clauses
.1/2K, and decreases byO(1) per unit of reduced timet,
giving t res;1/2K. For the same reason, the heightw0, which
is reached after aO(1) relaxation time whena* .1, is of
the order of 1/2K. It is therefore natural to define the rescal
fraction of unsatisfied clauses through

w0* ~a* ,t* !5 lim
K→`

2Kw0~a* 2K/K,K,t* /2K!, ~51!

from which we obtain the rescaled solving timet res* (a* ) for

a* ,1 ~vanishing ofw0* ) and plateau heightw̄0* (a* ) for
06610
-

-
x-

he
e

on

in

a* .1 ~limit value of w0* at large rescaled times!. The two
schemes of approximation given in Secs. IV B and IV E bo
yield

w0* ~a* ,t* !511
1

a*
~e2a* t* 21!, ~52!

t res* ~a* !52
1

a*
ln~12a* !

511
1

2
a* 1

1

3
~a* !21O„~a* !3

…, ~53!

w̄0* ~a* !512
1

a*
5a* 211O„~a* 21!2

…. ~54!

Note that the smalla* expansion~53! for the solving time
coincides with the exact expansion obtained from Eq.~22!
with the above rescaling ofa andK. We conjecture that the
equality holds for higher orders (>3) in a* , and that the
above expressions for w0* (a* ,t* ) and thus for

t res* (a* ),w̄0* (a* ) are correct.
The logarithm of the probability of fast search fora

.ad(K) needs to be rescaled too,

z̄* ~a* !5 lim
K→`

K z̄~a* 2K/K,K !, ~55!

to acquire a well-defined limit whenK→`. The scalar ap-
proximation of Sec. IV D gives the asymptotic result

z̄* ~a* !5E
0

ỹ(a* )
dy

y2a* ~ey21!

e2y21

52~a* 21!21O„~a* 21!3
…, ~56!

where ỹ(a* ) is the negative root of the numerator in th
above integral. The quadratic resolution of the PDE aris
from the study of Sec. IV E~cf. Appendix B! also leads to
this result arounda* 51. Unfortunately, the exact result
obtained in Sec. III are of no help to confirm identity~56!.

G. The XOR-SAT case

XOR-SAT is a version of a satisfiability problem, muc
simpler than SAT from a computational complexity point
view @25,27,36,37#. One still drawsK-uplets of variables, but
each clause bears only one sign~instead of one for each
variable in theK-SAT version!, and the clause is said to b
satisfied if the exclusiveOR ~XOR! of its boolean variables is
equal to the sign of the clause. For a given clause, there
2K21 satisfiable assignments of the variables and also 2K21

unsatisfiable assignments, in deep contrast with SAT wh
these numbers are, respectively, equal to 2K21 and 1.
XOR-SAT may be recast as a linear algebra problem, whe
set of M equations involvingN Boolean variables must b
satisfied modulo 2, and is therefore solvable in polynom
time by various methods, e.g., Gaussian elimination. Nev
3-13
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FIG. 10. Large deviations for theK-XOR-SAT problem forK53 ~left! andK55 ~right!. The logarithm~in basee) z̄ of the probability
of successful search~over the linear time scale! is plotted as a function of the ratioa of clauses per variables. Diamonds corresponds
~minus! the logarithmz of the average solving times~averaged over 10,000 samples, divided byN and extrapolated toN→`) obtained from
numerical simulations. Error bars are smaller than the size of the diamond symbol.
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theless, it is legitimate to ask what the performance of lo
search methods as RandomWalkSAT are for this kind
computational problem.

A fundamental feature ofXOR-SAT is that, whenever a
spin is flipped, all clauses where this spin appears cha
status: the satisfied ones become unsatisfied andvice versa.
There is thus no need to distinguish between clauses sati
by a different number of literals, and the macroscopic o
servable we track is the numberM0 of unsatisfied clauses fo
configurationS as in Sec. IV B. It is an easy check that th
transition matrix@A# for XOR-SAT is given by the expressio
~32! where 2K21 is replaced with 1. Main results are th
following.

~1! The average fraction of unsatisfied clausesw0(t) reads
as

w0~a,K,t !5
1

2
1

1

2aK
~e22aKt21!, ~57!

and becomes asymptotically strictly positive if the ratioa of
clauses per variables exceedsad(K)51/K, smaller than the
clustering and critical ratios,as.0.818 andac.0.918 for
K53, respectively@25,27#. The overall picture of the algo
rithm behavior is identical to the SAT case.

~2! When a.ad(K), the average fraction of unsatisfie
clauses on the plateau is given by

w̄0~a,K !5
1

2 S 12
1

aK D . ~58!

~3! The partial differential equation for the generatin
function is

1

a

]

]t
g~y,t !52y1aK~ey21!1K~e2y2ey!

]

]y
g~y,t !

~59!
06610
l
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with g(y,0)5a ln@(11ey)/2#. Resolution in the large time
limit is straightforward, with the results shown in Fig. 1
The agreement with numerics is good, especially asK grows.

The relatively simple structure ofXOR-SAT makes pos-
sible the test of some of the approximations we made.
show in Appendix C that the annealed hypothesis in the
culation of the evolution matrixA is justified in the thermo-
dynamic limit. The validity of this approximation in the cas
of 3-SAT ~Sec. IV B! is not established for finiteK.

As for K-SAT, quantities of interest have a well-define
large a,K limit provided the ratioa* 5a/ad(K)5a K is
kept fixed;

w0* ~a* ,t* !5 lim
K→`

w0~a* /K,K,t* !

5
1

2
1

1

2a*
~e22a* t* 21!, ~60!

z̄* ~a* !5 lim
K→`

K z̄~a* /K,K !5E
0

ỹ(a* )
dyz~y,a* !

52
1

2
~a* 21!21O„~a* 21!3

…, ~61!

where z(y,a* )5@y2a* (ey21)#/(e2y2ey) and ỹ(a* ) is
the negative root ofz.

V. CONCLUSION AND PERSPECTIVES

In this paper, we have studied the dynamics of a sim
search procedure for the satisfaction of Boolean constra
the RandomWalkSAT algorithm. We have shown usi
complementary techniques~expansions and approximation!
that, for randomly drawn input instances, RandomWalkS
may have two qualitatively distinct behaviors. Instances w
3-14
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small ratios a of clauses per variable are almost sure
solved in a time growing linearly with their size. On th
contrary, for ratios above a thresholdad , the dynamics gets
trapped for an exponentially large time in a region of t
configuration space with a positive fraction of unsatisfi
clauses. A solution is finally reached through a large fluct
tion from this metastable state.

The freezing taking place atad does not seem to be re
lated to the onset of clustering between solutions@21#. In-
deed, the value ofad is expected to change with the loc
search rules. It would be interesting to pursue the study
tiated in the present work to understand if and how the
istence of this dynamical threshold is related to some pr
erty of the~static! energy landscape, as in mean-field mod
of spin glasses@15#. Another useful improvement would b
to go beyond the Markovian approximation of Sec. IV. U
fortunately, keeping a finite~with respect toN) number of
retarded terms in Eq.~27! should not be sufficient to achiev
this goal. Improvements will require to take into account
extensive number of terms, or to extend the quantum form
ism of Sec. III to the study of the metastable phase. Anot
possible direction of research would be to use projection
erators on observables of extensive dimension@16,40#. Our
Markovian approximation, expected to be exact in the la
a,K limit, should be a starting point for a systematic expa
sion of the quantities of interest~plateau height, lifetime of
the metastable regime, etc.!. Finally, extension of our analy
sis to more sophisticated local search heuristics would
useful.
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tèmes de´sordonne´s quantiques.’’

APPENDIX A: GENERATING FUNCTION FOR THE
AVERAGE EVOLUTION

Defining wW 5(w0 , . . . ,wK)5(MW Prob@MW ,T#MW /M and
the reduced timet5T/M , one get from Eq.~30!,

dwW

dt
5vW 1aKWr•wW ~A1!

with vW a (K11)-dimensional vector andWr a (K11)3(K
11) matrix defined as
06610
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vW 5S 21

1

0

A

0

D ,

Wr51
21

1

K
0 0 0 . . . 0

1 21
2

K
0 0 . . . 0

0
K21

K
21

3

K
0 . . . 0

A A A A A . . . A

0 0 0 0 . . . . . . 21

2 .

~A2!

To solve Eq.~A1!, it results convenient to introduceF(x,t),
the polynomial inx whose coefficients are the fractionsw i
we want to determine,

F~x,t !5(
j 50

K

w j~ t !xj . ~A3!

The set ofK11 linear coupled differential~A1! reduces to a
partial differential equation onF(x,t):

]F

]t
~x,t !5211x1aK~x21!F~x,t !1a~12x2!

]F

]x
~x,t !.

~A4!

At initial time, the variables are chosen randomly to be tr
or false, without any correlation with the formula studie
Thus, the number of satisfied literals in a clause obey
binomial law with parameter 1/2:w j (0)5(1/2K)( j

K). The
initial condition onF reads thus

F~x,0!5S 11x

2 D K

. ~A5!

SettingC(x,t)5F(x,t)11/(aK), the constant terms in Eq
~A4! can be eliminated, with the resulting PDE forC,

]C

]t
~x,t !5aK~x21!C~x,t !1a~12x2!

]C

]x
~x,t !.

~A6!

This can be transformed into a wave equation onx(x,t)
5(11x)2KC(x,t):

]x

]t
~x,t !5a~12x2!

]x

]x
~x,t !. ~A7!

This equation is solved in terms of an arbitrary function o
single argument,
3-15



ti

q

u

r

on

-

a

-
n, a
f-

at

ge-

the

ble
ked

t

se,
u-
-

s

G. SEMERJIAN AND R. MONASSON PHYSICAL REVIEW E67, 066103 ~2003!
x~x,t !5vS 1

a
tanh21~x!1t D . ~A8!

Knowledge ofF(x,0) for all x, Eq. ~A5! allows us to deter-
mine unambiguouslyv

v~u!5
1

2K
1

1

aK
@11tanh~au!#2K. ~A9!

Going backwards, we obtain the expression of the genera
function

F~x,t !5S 11x

2 D K

1
1

aK H F11xtanh~at !

11tanh~at ! GK

21J
~A10!

and of the fractions of clauses of typei through an expansion
of the latter in powers ofx,

w j~ t !5S K
j D F 1

2K
1

1

aK

@ tanh~at !# j

@11tanh~at !#K
2

d j 0

aKG .

~A11!

APPENDIX B: PERTURBATIVE RESOLUTION OF THE
LARGE DEVIATION PDE

In this appendix, we sketch the resolution of PDE, E
~47!, in the long-time limit, where the functiong becomes
independent of time. We expand it in powers of its arg
ments:

g~yW ,t→`!5(
i 50

K

aiyi1
1

2 (
i , j 50

K

ai j yiyj1••• . ~B1!

Substituting this expansion into Eq.~47!, one obtains by
identification of the monomials inyi an infinite set of linear
equations on the coefficients ofg, which can be solved orde
by order. Constraint( iw i51 imposes a condition ong,

g~yW1c1W !5ac1g~yW !, ~B2!

where 1W 5(1,1, . . . ,1) andc is an arbitrary constant.
In the caseK53, we have solved the set of equations

the coefficients ofg up to order four in theyi ’s with the help
of a symbolic computation software. To calculatez̄, we need
to know g as a function ofy0 only, with yi50, ; i>1. We
find

g~y0!5
3a27

24
y01

105a294

1920
y0

21
26 460a110 753

193 560
y0

3

1
29 645a166 244

1 8923 520
y0

41O~y0
5!. ~B3!

Whena.ad(K53)57/3, this function has a nontrivial ex
tremum, in whichg takes the valuez̄(a).
06610
ng

.

-

We, now explain the resolution at quadratic order for
generic value ofK. At linear order, following the calculation
exposed in Appendix A,

ai5a lim
t→`

w i~ t !5
1

2K S K

i D S a1
1

K D2
d i0

K
. ~B4!

In particular,a05@a2ad(K)#/2K. Then considering the mo
nomials of second order in the expansion of the equatio
set of (K11)(K12)/2 linear equations determine the coe
ficients ai j . As we shall not try to solve the equation
higher orders for this generic case, we need onlya00. Again,
we introduce a generating function to turn the discrete al
braic problem into an analytic one.f (s)[( i , jai j s

i 1 j obeys
the ordinary differential equation,

2K f ~s!2~s11! f 8~s!5~s21!F12~11aK !S 11s2

2 D K21G
~B5!

with the condition f (1)50 stemming from Eq.~B2!. This
equation can be easily solved, yielding

a005 f ~0!5
2K21

22K S a2
~K21!22K12K12K2K2K11

K~2K21!~2K21!
D .

~B6!

At this order of the expansion, the extremum ofg in the
subspaceyi50, ; i>1 is reached iny052a0 /a00 and leads
to z̄(a,K)52a0

2/(2a00).

APPENDIX C: VALIDITY OF THE ANNEALED
HYPOTHESIS FOR THE XOR-SAT PROBLEM

We justify in this appendix the annealed average of
Markovian transition matrix in theXOR-SAT case. Our analy-
sis is based on the Chebyshev inequality@41#: a positive
integer valued random variable with a variance negligi
with respect to the square of its average is sharply pea
around its mean value. CallDU5(Sd(U2U(S)) the num-
ber of configurations withU unsatisfied clauses. The firs
moment ofDU over the distribution ofXOR-SAT instances is
easy to compute. After averaging, the 2N configurations of
the variables contribute equally to the sum; for each of the
the numberU of unsatisfied clause has a binomial distrib
tion of parameter 1/2 among theM clauses. In the thermo
dynamic limit, using Stirling’s formula and denotingw0
5U/M ,

@DU#;eN f1(w0 ,a),

f 1~w0 ,a!5 ln 21a@2w0ln w02~12w0!ln~12w0!2 ln 2#
~C1!

up to polynomial corrections. Suppose thatw0,1/2. Call
w0

(1)(a) the root off 1 at fixeda. It is a growing function of
a, vanishing fora<1, and monotically increasing to 1/2 a
3-16
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a gets large. Forw0.w0
(1)(a), f 1 is positive and@DU# ex-

ponentially large. Whenw0,w0
(1)(a), @DU# is exponentially

small.
Consider now the second moment@DU

2 # and its leading
behavior@DU

2 #;exp@Nf2(w0,a)#. We introduce the generat
ing function

(
U

@DU
2 #e22xU

5E
0

2p du

2p (
S1 ,S2

@e2x[U(S1)1U(S2)] 1 iu[U(S1)2U(S2)] #. ~C2!

The average on the right-hand side can be readily perfor
as theM clauses are drawn independently. The trace on
two configurations reduces to a sum on the Hamming
tance between them. Evaluation of this sum and the inte
over u by the Laplace method yields

ext
w0

@ f 2~w0 ,a!22axw0#5S~x,a!, ~C3!

whereS(x,a) is the maximum overg of

S~g,x,a!5 ln 22g ln g2~12g!ln~12g!2ax

1a ln@11pe~g!~coshx21!#. ~C4!

Here,pe(g)5@11(122g)K#/2 is the probability that a ran
domly drawn clause satisfies~or violates! two configurations
at Hamming distanced5gN. We are thus left with the prob
lem of determiningS(x,a) and of computing its Legendr
transform with respects tox to obtainf 2. As the derivative of
pe in g51/2 vanishes, this point is always an extremum ofS.
Two cases must be distinguished, depending on the valu
w0, which fixesx @27,37,42#:

~1! If g51/2 is the global maximum ofS, then
f 2(w0 ,a)52 f 1(w0 ,a), in other words,@DU

2 #;@DU#2. In
this case, it is possible to compute the polynomial corr
tions by expanding around the saddle point,
R

e

f

06610
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e
-
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@DU
2 #

@DU#2
;11

1

NK22

a2K!

2
@124w0~12w0!#. ~C5!

~2! If the global maximum ofS is not in g51/2, f 2
. f 1, thus@DU

2 #@@DU#2.
We have computed numerically forK53 the function

w0
(2)(a) such that forw0.w0

(2)(a), the global maxima ofS
is located ing51/2. It is a growing function ofa, vanishing
whena,0.889 @37#, and growing monotically to 1/2 when
a diverges. The results are shown in Fig. 11~all three curves
reachw051/2 whena→` without crossing each other!. In
the course of the algorithm operation,w0 decreases from its
initial value ~1/2! down to its plateau value, and remain
confined to the region in the phase diagram where the sec
moment method applies:w0.w0

(2).w0
(1) . This proves that,

within the Markovian approximation, the annealed averag
correct: as the denominator of the transition matrix is pea
around its mean value, the numerator and denominator
be averaged separately. This analysis cannot be done in
case ofK-SAT, for which the second moment fails as soon
a.0 @42#.

FIG. 11. Study of the moments ofDU for 3-XOR-SAT. Solid line:
Markovian annealed prediction for the asymptotic fraction of un
clausesw0. Long-dashed line:w0

(2) . Short-dashed line:w0
(1) . Sym-

bols: asymptotic fraction of unsat clauses on the plateau, obta
through numerical simulations.
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