PHYSICAL REVIEW E 67, 066103 (2003
Relaxation and metastability in a local search procedure for the random satisfiability problem
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An analysis of the average properties of a local search procéBRaredomWalkSAT for the satisfaction of
random Boolean constraints is presented. Depending on the c¢atibconstraints per variable, reaching a
solution takes a timdl,.s growing linearly [ T,es~ Tres(@)N, a<ay] or exponentially(T s~ exdN(@)],
a>ay) with the sizeN of the instance. The relaxation time,¢(«) in the linear phase is calculated through a
systematic expansion scheme based on a quantum formulation of the evolution operater- &gy the
system is trapped in some metastable state, and resolution occurs from escape from this state through crossing
of a large barrier. An annealed calculation of the height) of this barrier is proposed. The polynomial to
exponential cross-ovewy=2.7 is not related to the onset of clustering among solutions occurring at
=3.86.
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[. INTRODUCTION growth processes made it possible to reach some understand-
ing of the operation of complete algorithms for the satisfi-
The study of combinatorial problenjd] with statistical ~ ability [7,8] and for the vertex covef9,10] problems over
physics techniques started almost twenty years{ajdMost random classes of mputs._lncomplete algorithms constitute
of the efforts have been devoted to the calculation of thénother large class of solving procedures; they may be able
optimal solution of various probleméraveling salesman, ;EO find the hoptlmal sc;!ugpn very quickly, IID“t. may "’.‘:jsod”kjn
matching, graph or number partitioning, satisfiability of Iore\ller W'tdOUt ever mM mg[:_; 't(':A? %xamp_e IS prr](.)vr'] ett yt
Boolean constraints, vertex cover of graphs,)eds. a func- ocal procedures, 1.e., Monte fario dynamics, which attemp

tion of the definition parameters of their inputs distributions to find a solution from an arbitrary initial configuration
para Inpu ‘through a sequence of stochastic local moves in the configu-
Central to these studies is the characterization of the prope

X ) ©Fation space. When specialized to decision probléfos
ties of the extrema of correlated random variables, a questiojich the desired output is the answer YES or NO to a

of considerable importance in probability thed8]. From a 4 estion related to the inputs, as: is there a way to color a
computer science point of view, however, the main point isyiven graph with seven colors only®ocal search algorithms
the characterization of solving times. Concepts and tools iScan sometimes be made one-sided error probabilistic algo-
sued from the analysis of algorithms have allowed so far tqjthms [11]. When they stop, the answer is YES with cer-
understand the behavior and the efficiency of many algotainty. If they run for a time without halting, the probability
rithms of practical use[4,5], sorting for instance, but (over the nondeterministic choices of local moves in the con-
progress has been much slower in the analysis of search prfiguration spacethat the correct answer is NO is bounded
cedures for combinatorial problems. These are sophisticatefdom below by a functionf(t,N) tends to 1 whert—oo.
algorithms hardly amenable to rigorous analysis with avail-Obviously this function depends on the sixeof the input:
able techniquef6]. Statistical physics ideas and approxima-the larger the input, the larger the timig(N) it takes to
tion techniques may then be of great relevance to help deg€ach, say, a 99% confidence that the answer is NO, i.e.,
velop quantitative understanding and intuition about thef(t:(N),N)=0.99. Determining the scalingpolynomial or
operation of these algorithms. To some extent, the study oxponential of t.(N) with N is of capital importance to as-

algorithms may be seen as a part of out-of-equilibrium stasess the efficiency of the algorithm.
tistical physics. In this paper, we study this question for a local search

There exists a wide variety of algorithms for combinato-Procedure, the RandomWalkSAT algorittid®], and a deci-

rial problems[1]. Roughly speaking, two main classes may Sion Problem defined over an easy-to-parametrize class of
be identified. The first one includes complete algorithms NPUts: the random satisfiability problefd3]. Both proce-
ure and problem are defined in Sec. Il. We also recall the

guaranteed to provide the optimal solution. They essentiall ain results proven by mathematicians on these issues, and

roceed through an exhaustive albeit cletmaking use of .
Eranch-and-bogund proceduyearch througﬁthe gonfigura- present an overview (_)f thg phenomenology of RandomWalk-
= SAT. A major theoretical interest for studying the Random-

tion space, and may require very large computational timeSWaIkSAT algorithm is that it is, apparently, of purely dy-
i.e., scaling exponentially with the size of the inputs to benamical nature. Detailed balance is indeed verified in a
treated. Recently, notions borrowed from statistical physicgyig way: the equilibrium measure is nonzero over solu-
such as real-space renormalization and out-of-equilibriumjgns only, and the transition rates from a solution to any
other configuration are null. The equilibrium measure is
therefore of no use to understand long-time dynamics, a situ-

*Electronic address: guilhem@lIpt.ens.fr ation reminiscent of some models studied in out-of-
"Electronic address: monasson@Ipt.ens.fr equilibrium physics, e.g., the contact process for finite-size
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systemq 14]. We are thus left with a study of the dynamical admits at least one solution with high probability. Beyond
evolution of a spin system with disorder in the interactionsthis threshold, instances are almost never satisfiable. The ex-
(the instances of the combinatorial problem to be solved argstence of this transition has not been proven rigorously yet
randon), a still largely open problem in statistical physics [17], but bounds on the threshold exist; the probability of
[15]. We show in Sec. lll how the master equation for this gatisfaction tends to Irespectively to Dif «<3.42[18]
evolution can be written as a Hamiltonidin imaginary  (respectively ifa>4.506[19]) All the above definitions can
time) for 1/2 quantum spin systems, and use this representgyse extended to thi-SAT problem, where each clause is the
tion to get exact results and develop systematic eXpanSiOQﬁsjunction of K, rather than 3, literals. 2-SAT is an easy

for the quantities of interest, valid in some region of the olynomia) problem, whileK-SAT is an NP-complete prob-
parameter space. In Sec. IV, we present an approxmatl m for anyK=3. Location of the threshold is rigorously

analysis of the RandomWalkSAT procedure in the whole pa; i -
rameter space. We show that depending on the value of thknOWn for 2-SAT (a;=1) [20], but not forK=3. We shall

ratio « of the number of constraints péBoolearn degree of fg;ﬁ:i) 'S th]e following averages on the randsASAT en-

freedom, resolution is either achieved in linear time or re- - . ) . .
quires the escape from some metastable region in the con- Statistical mechanics studies have pointed out the exis-

figuration space, a slow process taking place over exponeﬁence of another phas_,e transitio_n tak_ing plac_:e in the satisfi-
tially large times. Interestingly, the dynamics generated byaPle phase ¢<ac) with a location first estimated aks
RandomWalkSAT is very similar to the physical dynamics of =3.95[21] and later ates=~3.86[22]. This phase transition
(spin) glassy systemEl5]. Some perspectives are presentedis related to the microscopic structure of the set of solutions.
in Sec. V. Note that a complementary study of the RandomDefine d, the Hamming distance between two solutions as
WalkSAT procedure was very recently carried out by Bar-the number of variables taking opposite values in these so-
thel, Hartmann, and Weidt.6]. lutions. Whena<ag, there exist an exponentially large
number of solutiongN), each pair of which is separated by a
path in the solution space, that is, a sequence of solutions
Il. DEFINITIONS, KNOWN RESULTS AND with a O(1) Hamming distance between successive solu-
PHENOMENOLOGY tions along the path. The solution space is made up of a
single cluster of solutions. Foas<a<a., the solution
o o ) . space breaks into an exponentially large number of clusters
The 3-Satisfiability(3-SAT) decision problem is defined (N separated by large voids without solutions. Two solu-
as follows. Consider a set d boolean variablei, I {ions in one cluster are linked through a path, while there is
=1,... N. Aliteral is either a variable; or its negatiorx;.  no path in the solution space linking two solutions in two
A clause is the logicabr between three distinct literals. It is gjfferent clusters. This clustering phenomenon, whose dis-
thus true as soon as one of the literals is true. A formula i$overy was inspired from previous works in the context of

the logicalanD betweerM clauses, it is true if and only if all  jnsormation storage in neural network®4], was subse-
the clauses are true. A formula is said todagisfiableif there ‘quently found in various combinatorial problerfis,26,

is an assignment of the variables such that the formula ig 4 rigorously demonstrated for the so-called random
true, unsatisfiableotherwise. . .
’ . L . XOR-SAT problem[27]. It is a zero-temperature signature of
3-SAT is anN P-complete problenil]; it is believed that fthe ergodicity breaking taking place in spin glaskss, 26,

there is no algorithm capable of solving every instance %%ts precise relationship with dynamical properties, and in par-
3-SAT in a time bounded from above by a polynomial of the . b . p with dy prop: ’ np:
ticular with the computational cost for finding a solution is

size of the instance. How well do existing aadoriori ex- :

ponential algorithms perform in practiceg Toognswer thesé]Ot fully elucidated ye{21,23,29

guestions, computer scientists have devised a simple way of )

generating random instances of the 3-SAT problem, with a B. The RandomWalkSAT algorithm

rich pattern of hardneq44.3]. Formulas are drawn in the fol- The operation of RandomWalkSAE&lso called Random-
lowing way. RepeaM times independently the same pro- Walk) on an instance of th&-SAT problem is as follows
cess; pick up a 3-uplet of distinct indices[ibN], uniformly  [12].

on all possible three-uplets. For each of the three correspond- (1) Choose randomly a configuration of the Boolean vari-
ing variables, choose the variable itself or its negation withables.

equal probability (1/2), and construct a clause with the cho- (2) If all clauses are satisfied, output “satisfiable.”

sen literals. Repetition of this procelsktimes gives a set of (3) If not, choose randomly one of the unsatisfied clauses
M independently chosen clauses, whose conjunction is thend one of theK variables of this clause. Flip the variable.
generated instance. The random generation of formulaNotice that the selected clause is now satisfied, but the flip
makes the set of possible formulas a probability space, witloperation may have violated other clauses that were previ-
a well-defined measure. ously satisfied.

Numerical experiments indicate that a phase transition (4) Go to step 2, until a limit on the number of flips fixed
takes place wheN,M — at fixed ratioa =M/N of clauses beforehand has been reached. Then output “don’t know.”
per variableg(in the thermodynamic limjt If « is smaller What is the output of the algorithm? Either “satisfiable”
than some critical value,=4.3, a randomly drawn instance and a solution is exhibited, or “don’t know” and no certainty

A. The random K-Satisfiability problem
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FIG. 1. Fractiong, of unsatisfied clauses as a function of tilm@umber of flips oveM) for two randomly drawn instances of 3-SAT
with ratiosa=2 (a) anda= 3 (b) with N=500 variables. Note the difference of time scales between the two figures. Ingexsleft, blow
up of the initial relaxation ofp,, taking place on th®©(1) time scale as ifia); right, histogrampsef @) of the fluctuations ofpy on the
plateau kt=<130.

on the status of the formula is reached. Papadimitriodinearly with the number of variableN. Figure 1a) shows
showed that RandomWalkSAT solves with high probabilitythe plot of the fractionp, of unsatisfied clauses as a function
any satisfiable 2-SAT instance in a number of stéliss) of  of time t (number of flips divided byM) for one instance
the order ofN? [12]. Recently, Schioing was able to prove with ratio «=2 andN=500 variables. The curves show a
the following very interesting result for 3-SAT30]. Call  fast decrease from the initial valjepo(t=0)=1/8 in the
“trial” a run of RandomWalkSAT consisting of the random largeN limit independent ofx] down to zero on a time scale
choice of an initial configuration followed by>38N steps of  t,..=0(1). Fluctuations become smaller and smallerNas
the procedure. If none df successive trials of RandomWalk- grows. t, is an increasing function of. This relaxation
SAT on a given instance has been succeg$las provided a regime corresponds to the one studied by Alekhnovich and
solution, then the probability that this instance is satisfiableBen-Sasson, andy>1.63 as expectedi3l]. Figure Za)
is lower than exp-Tx(3/4)]. In other words, afterT  symbolizes the behavior of the system in the relaxation re-
>(4/3)N trials of RandomWalkSAT, most of the configura- gime.
tion space has been “probed”; if there were a solution, it (2) For instances in the,y<a<a, range, the initial re-
would have been found. Though RandomWalkSAT is not daxation phase taking place ontaO(1) time scale is not
complete algorithm, the uncertainty on its output can besufficient to reach a solutiofFig. 1(b)]. The fractiong, of
made as small as possible and it can be used to prove unsaisat clauses then fluctuates around some plateau value for a
isfiability (in a probabilistic senge very long time. On the plateau, the system is trapped in a
Schaning’s bound is true for any instance. Restriction to metastablestate. The lifetime of this metastable stéteap-
special input distributions allows one to improve his result.ping time is so large that it is possible to define(quasj
Alekhnovich and Ben-Sasson showed that instances drawgquilibrium probability distributionpy(¢o) for the fraction
from the random 3-Satisfiability ensemble described abovey of unsat clauseginset of Fig. 1b)]. The distribution of
are solved in polynomial time with high probability when  fractions is well peaked around some average véheight
is smaller than 1.6331]. It is remarkable that despite the of the plateay with left and right tails decreasing exponen-
quenched character of the disorder in this prob(dme same tially fast with N, pn(eo)~exdNL(¢o)] with <0 [Fig.
clauses are seen various times in the course of the Searchy,'l Eyentually a large negative fluctuation will bring the
rigorous results on the dynamics of this spin model can b%ystem to a solutiongy=0). Assuming that these fluctua-

achieved. tions are independent random events occurring with prob-
) ability py(0) on an interval of time of order one, the solving
C. Phenomenology of the operation of RandomWalkSAT time is a stochastic variable with exponential distribution. Its

In this section, we briefly sketch the behavior of Random-average is, to leading exponential order, the inverse of the
WalkSAT, as seen from numerical experimef8g] and the ~ Probability that a solution is obtained on ti@(1) time
analysis presented later in this paper. We find that there is scale: [t,.s]~expN¢{) with {=—{(0). Escape from the
dynamical thresholdyy separating the following two re- metastable state therefore occurs through barrier crossing
gimes. and takes place on exponentially largeNntime scales, as

(1) For a<ag=2.7 for 3-SAT, the algorithm finds a so- confirmed by numerical simulations for different sizes.
lution very quickly, namely, with a number of flips growing Schaing’s resul{30] can be interpreted as a lower bound to
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FIG. 2. A schematic picture of the operation of RandomWalkSAT for ratiasnaller(a) or larger(b) than the dynamical threshold, .
Vertical axis is minus the logarithm of the probabiliivided byN) that the system has a fractigr of unsat clauses after a large number
of RandomWalkSAT flips. Its representative curve can be seen as an energy potential in which the configepgeanted by an empty
ball) rolls down towards the more probable value of the order paramgtesr up through stochastic fluctuations. The starting configuration
violatesg,= 1/8 of the clause§oint I). At small ratios(a), the configuration rolls down to reach polthrough a sequence of intermediary
points(I"). The search for a solution is essentially a fast relaxation tow@f@(N) time scalg. At large ratios(b), the ball first relaxes to
the bottom of the well(point P with abscissa corresponding to the plateau hegighten slow negativeball A) or positive (ball B)
fluctuations of the fractiorp, take place on exponentialiN) long time scales. The timig,.s~expN{)] it takes to the system to reach a

solution (point S) is, on the average, equal to the inverse probability MXpthat a fluctuation drives the system $o

the probabilityZ(0)>In(3/4), true for any instance. smaller than the “static” ratiax., where formulas go from
The plateau energy, that is, the fraction of unsatisfieatisfiable with high probability to unsatisfiable with high

clauses reached by RandomWalkSAT on the linear time scalerobability. In the intermediate rangey<a<ac, instances
is plotted in Fig. 3. Notice that the “dynamic” critical value &€ almost surely satisfiable, but RandomWalkSAT needs an

a4 above which the plateau energy is positifRandom- exponentially large time to prove so. Interestingly,and «,

WalkSAT stops finding a solution in linear timés strictly ~ coincides, for 2-SAT in agreement with Papadimitriou’s re-
sult[12]. Furthermore, the dynamical transition is apparently

0.075 , : : : not related to the onset of clustering taking placeat

Ill. EXACT RESULTS: SPECIAL CASES
AND EXPANSIONS

A. Evolution equations and quantum formalism

Boolean variables will be hereafter represented by Ising
spins S =1 (respectively—1) when the Boolean variable
X; is true (respectively false A microscopic configuration
S is specified by the states of all variablesS
=(S;,S,, ...,Sy). We then define a"2dimensional linear
space with canonical basf$S)}, orthonormal for the scalar
product(S’|S>=Hi55ir s Letus denote Prgi$, T] the prob-
ability that the system configuration $at timeT, i.e., after
T steps of the algorithm, and defih@3]

0.025

Unsat fraction ¢, on plateau

1F{atio o ofzclauses pser variablé1

|S(T))=2 ProiST]|s), (1)
FIG. 3. Fractiong, of unsatisfied clauses on the metastable S
plateau as a function of the rati® of clauses per variable. Dia-
monds are the output of numerical experiment, and have been ofas the(time-dependentvectorial state of the system. Knowl-
tained through average of data from simulations at a givenISize edge of this vector gives access to the probability
(number of variablesover 1 000 samples of 3-SAT, and extrapola- Prof S,T]=(SS(T)) of being in a certain configuratiod.
tion to infinite sizeg(dotted line serves as a guide to the jeykhe RandomWalkSAT defines a Markov process on the set of

ratio at whiche, begins being positivayy=2.7, is smaller than the  configurations; during one step of the algorithm, the state
thresholdsas=~3.9 ande~4.3 above which solutions gather into \actor of the system changes according to

distinct clusters and instances have almost surely no solution, re-
spectively. The full line represents the prediction of the Markovian .
approximations of Secs. IV C and IV E. [S(T+1))=Wy|S(T)), 2
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where the evolution operator in discrete tiM% reads as d ~ ~ ~ .
Jt/S)=WIs(t)), W=M(Wy-1). (5)

~ PO . 1

_ — _ 2
Wy=2, Fe-UpETH, Fe—RECn‘Tf’ Formally, the solution of this equation is|S(t))
=e|5(0)), where|S(0))=(1/2Y)=4S) since the initial

A oM configuration is random. An important quantity to compute is
U,=0x E C”U'J-Z , E= E U,. (3)  the average fraction of unsatisfied clauses at tine., after
=1 (=1 T=Mt steps of the algorithm, averaged both on the history

. ... of the algorithm and on the distribution of formulas:
In the above expression, we have made use of several differ-

ent notations that we now explain. ThéxXN matrix C; 1 .

encodes the instanc€,; equals 1 if thefth clause contains o(t)= M[(OIEetW|S(O)>]. (6)
the literalx;, —1 if it contains the literalx;, and 0 other-

wise. Since every clause contailsliterals, Eicﬁi =K V<. For the sake of analytical simplicity, we shall study a slightly

The Pauli operators are defined througfiS)=S;|S) and different evolution operator in the next two sections, and use
af|S>=|§>, whereS is the configuration obtained fro®  the parameten to denote the time parameter of this modified
by flipping theith spin. It is a simple check that the argument evolution,

of functiongg in U€ is a diagonal operator in the canonical 1 M d

basis{|S)}, with eigenvaluesx=3=) ,C,S in {—K,—K W =W- MEZE (F,—1)-0,, d—lS(u)}zW’IS(u)).
+2,... K=2K}, equal to—K if and only if clauset is =1 u

unsatisfied. The function ()

Let us explain the meaning of this modification. The operator

K—1
gk (X)= 8y k= H (K—2p—x) (4) W’ would have been obtained, starting from the following
2"Klp=0 variant of the RandomWalkSAT stochastic process. At each

) ] ] ) step, choose a clause among Menes. If it is satisfied, do
is a polynomial of degre& in x equal to 1 ifx=—K andto  nqthing. If it is unsatisfied, flip one of its variables.

zero for all the other possible eigenvalues. Operatois In the thermodynamic limit, the fraction of unsatisfied
diagonal in the canonical basis too, with eigenvalues equal telausesp, is expected to become a self-averaging quantity,
the numbers of unsatisfied claus@dso called energyin  i.e., to be peaked with high probability around its

each configuration. Thereforél,-E~* in Eq. (3) acts as a  (t-dependentmean value. TurnindV into W’ thus amounts
filter retaining clausel only if it is unsatisfied, and with a to a local redefinition of time, independent of the instance of

weight equal to the inverse number of unsatisfied clausegj,e problem. In definitior(7), the operatoE/M can be re-
only unsat clauses can be chosen at each time step, eachifficed with its mean valuep,, leading to @/du)
these with the same probability., fIipsAthe spins of clause =, d/dt. The knowledge of th&\'—evolution of any ob-
€, each with probability K. Note thatWy conserves prob- servable in terms ofi can then be rewritten in terms of
abilities: (O|Wy=(O| where(O|=3«9 is the superposi- through
tion of all possible states.

In the thermodynamic limit, the evolution can be rewrit- t(u) = f“du,%(u,)_ ®)
ten in continuous time, defining=T/M, 0

T T T T T o T T T T T Bl
0.5 - 3
5 03 -
- N 1 =z _ge=F
E 04} i g
: 5
g o3| - '*é 021 7
g &
2 o2f - Q -
Q o 3
g B 0l ) i
S :
ook _ e,
g
=,
w2
0 1 1 1 1 1 < o 1 L 1 L 1
0 0.5 1 15 2 25 3 0 0.5 1 15 2 2.5 3
Time t @

FIG. 4. A comparison between numerics and analytical resultk fol. . Left panel: fraction of unsat clauseg(t) as a function of time
t for a=3 (top) and =1 (bottom). Dashed line: analytical curve, solid lifelmost superimposgdnumerical resultgsingle run withN
=10%. Right panel: asymptotic fraction of unsat clauses as a functiom. dolid line: theoretical predictiofil3), symbols: numerical
results(averaged over ten runs, ove[8,10], for N=10%, dashed line: ground-state energys.
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Examples of this time reparametrization will be shown be- An instance is described by a set of integéns; ,n;},
low. wherem; is the number of clauses in which the variable
appears, andnf,—n;)/2 is the number of times it has been
B. The K=1 case chosen without negation. The evolution operator in terms of

. . . u—time is the sum of site operators,
Let us first study the simple cage=1. A clause is then a

single literal, i.e., either a variable or its negation. If both a . « , < 2

variable and its negation appear in the formula, it is obvi- W, :E(miai —mitnjoi—nioioy). (C)
ously unsatisfiable. This is the case, with high probability in

the thermodynamic limit, as soon as>0. Static properties As the operatorﬁv{ on different sites commute, the evolu-
of the 1-SAT model are known exactf$4], and its dynam- tion operator can be diagonalized in each of thsubsets
ics under the RandomWalkSAT evolution can be solved tooindependently, and the vector state is a tensor product,

1
§(|+>i+|_>i) if m=0
[Swy=ei1q 4 (10

N —-mpu i
5521 1+S_(1-e ™) ||s) if m#0,
= + i

where| ), are the eigenvectors of’ with eigenvalues- 1. wherel , is the nth modified Bessel function. This is easily

The fraction of unsatisfied clauses for a given instance ang@nderstood: if a formula containg once and;Tl twice, the
averaged over the choices of the algorithm reads as optimal value isx, false. But the algorithm does not stop in
this configuration, as the clauge is then violated. Random-
1 . i - WalkSAT will keep on flipping the variable and make the
M<O|E|S(u)>:§_ 2M HE E(l—e .y average energy higher than the optimal one.

mi#O

2

In the thermodynamic limit, then,'s become independent C. The satisfiable phase of th&K =2 case
random variables with identical Poisson distributions of pa- .
andom variables with identical Poisson distributions of pa We now turn to the 2-SAT case, where every clause in-

rametera; (m;—n;)/2 obeys a Binomial law of parameter volves two variables. It has been rigorously proven that there
1/2 amongm; . Performing the quenched average over the : 9 yp

formula, the fraction of unsatisfied clauses reads IS a sharp threshold phenomenon taking placerat1 in
this problem[20]. For lower values ofx, the formulas are

1 1-exga(e "—1)] almost always satigfia_mble, beyond this t_hreshp!d they are al-
Qo)== — ) (120 ~ most always unsatisfiable. The dynamical critical threshold
2 2a of RandomWalkSAT has the same valug,= 1 [12]. Thus,
there is no metastability in 2-SAT; if a solution of the for-
These exact results are compared with numerical simulationgula exists it is almost surely found in polynomial time. Two
in Fig. 4. On the right panel has been drawn the asymptotiguestions of interest are: how fast will the number of unsat-
fraction of unsatisfied clauses obtained at large times, comsfiable clauses decrease during the evolution of the process
pared with the analytical prediction made above. The leftand how long will it take the algorithm to find a solution for
panel shows the time evolution of the fraction of unsatisfieda< 1? and what will be the typica] energy after a |0ng run of
clauses as a function of timefor two different values otv. the a|gorithm wherw>17? In this and the next sections, we
The analytical curve has been obtained through the rescalinghall address the first of these two questions, and leave the
explained at the end of the preceding section; from the exaclecond one to the next section.
value of po(u) given above, the original timgu) has been As in theK=1 case, one can use the quantum formalism
obtained by numerical integratiofEq. (8)], and the plot and write down the evolution operat®W’. There appear

®o(t) disb a parametric plof{t=t(u),eo=¢o(u)}, param- poth single site terms and couplings between pairs of sites,
etrized byu.

Note that the asymptotic value of the energy reached is

larger than the ground-state of&], w’ :Z Wy +§j Wi, (14)
M go(t)= 5 + > 1- e lg(a)—e ()] 1
imegy(t)= = >=[1-e “lg(a)—e “l4(a .
o 2 2a 2 ’ ' Wi':§(mi0ix_mi+2niUiz_niUf(Uiz)a (15
= ¢Gs: (13
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FIG. 5. Treelike clusters contributing to the expansions. Left pdfel2. Right panelK=3.

.1 ol + o] Fig. 5. Clauses are represented by dashed liioeK =2) or
Wi=glai| =5~ 1) ofo{—bjjoio] (16)  stars(for K=3). In principle, such an expansion is meaning-
ful only below the percolation threshold of the underlying
with random hypergraphy,=1[K(K—1)]. Beyonda,, a giant
component appears, whereas the sefis®3 takes into ac-
count clusters of siz&(In N) only. However, rearranging the
ni=2> Cy, mi:2 Cf

li series as an expansion in powers of(expanding out the
exponential inP;) allows one to extend its domain of valid-
ity beyonda,,, at least for quantities that are not singular at

a; => CiCy, by => CﬁCu ) (17 the pgrcolation threshold. .

! ! This method can be employed here. The evolution opera-
. i d hen thev sh tor W' is the sum of operators for each clustaf (F,).

Two-site operatorsV; do not commute when they share a gperators attached to two distinct clusters commute with

variable, andW’ cannot be factorized as in th€=1 case. each other as they do not have common variables. The en-

Yet, a cluster expansion in powers @fcan be implemented. g4y operatof can also be written as a sum over the clus-

A detailed presentation of this cluster expansion in a closelyg s thus the energy averaged over the history of the algo-

related context has been given elsewH@%]; the reader i (jihm has the property of additivity over clusters if the time

referred to this previous work for more details. The methodgyo1ution is studied in terms af. After averaging over the
is presented below for a generic valuekafWe call cluster

and denoteF, a maximal set of variables connected by
clauses. Any formul& can be decomposed as a conjunction 1

of these clusterénote that despite the similarities in denomi- Po(U) =2, —L PLEXWs. (19
nations, these clusters have nothing to do with the clustering s s

phenomenon in configuration spac€onsider now a quan- The eyolution and energy operators for a cluster witrari-

tity Q, depending on the realization of the disorder, namely,ables are Px 2" matrices\W!. andE,, respectively. With the

of formulaF, and additive with respect to the cluster decom-heIIO of a symbolic com[’)u'iation ss(;ftware packége one can
position Q(F)ZEFrQ(Fr)' Calculation of the averagkQ] easily study the small finite-size clusters by computing

over the random ensemble formulas @fcan be done as

follows. First, consider the different possible topologsesf EV(u)1.=[(O|E.eWsuls(0 20

the clusters and compuf®],, the quantity averaged over [(E) W ]s=[(O[BL™S(0))]s, 20

the choices of signs for a given topology, i.e., whether variwhere(O| and|S(0)) are now 2-dimensional row and col-

ables appear negated or not in a clause. Second, add up thegfin vectors, and the average is over the choices of negating
contributions with combinatorial factors giving the fre- or not negating the variables in the clauses.

quency of appearance of the different topologies, We have performed this task for clusters with up to four
sites; their contributions are summarized in Table I. Up to

formulas, the fraction of unsatisfied clauses reads as

i[Q]ZE ip [Ql.. (19) order o, the expansion leads to
M s a’Ls S s e_u l 3
. . 1) (u)=—+a(—e“’2——e”+—e2“ +a? ——e U2

The sum runs over the different topologiés,is the number 0 4 4 8 8 8
of sites in such a cluster, arRl, is the probability of a given
site belonging to ars-type cluster. In the thermodynamic n 1_9e7u+1673u/2_ ge*2”+ ie&‘)
limit, the finite-size clust(Ers},< which contribute to this sum are 64 8 32 64
treelike: Pg=(aK!)Mse -s**K, where mg=(Ls—1)/(K
—1) is the number of clauses of the cluster, afdis a az( ﬁ_lef [(3+3)/2]u_ \/§+1e—[(3—\3§)/2]u
symmetry factor. The smallest treelike clusters are shown in 32
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TABLE |. Contributions to the cluster expansions #r2. See left panel of Fig. 5.

Type  Ls K [(EX(W)]s [tresls
a 2 1 se v 1/4
b 3 32 ﬁe—ZU_,_ %e—u+%e—u/2 19/32
c 4 2 male U+ 10e 2+ 4e U2+ 538U+ 200 W2+ 2(2— (2)[e [T 221 2 (2+ \2)e 127 D)2l 125/128
d 4 213 s2s[e73U+ 1002+ 257U+ 3207 U2 2 (14 \3)e LB B2 _2 (1 [3)e [+ 3)2l] 259/256

examples about how to compute the average time needed to

ﬂe—[(ﬂ 2)121u ﬂe—[(z—&)m u solve a cluster of fixed topology.
16 16 The simplest example is a cluster made up of a single
+0(ad) 21) 2-SAT clause, X1\/X,). With probability 3/4, the initial ran-
' dom condition is already a solution. If not, it will take one-

time step to solve the cluster, as any of the two possible spin

) ) o flips will lead to a solution. Thus the average solving time is
The typical valuepy(t) of the fraction of unsatisfied clauses 1/4. Similar analysis can be done on bigger clusters, even if
afterT=t M steps of the algorithm is obtained from E81)  the counting becomes increasingly tiresome. As a byproduct,
through the rescaling of time defined in ). Our theory is  some flaws of the RandomWalkSAT heuristic appear.
compared in Fig. 6 to numerical simulations. The agreement The second example is the clusteq%/xz)/\(fz\/xg).
is excellent at the beginning of the time evolution, and wors-The eight configurations of the variables are represented in
ens at the end. A factor of explanation is that during the laskig. 7 with up or down spins corresponding to true or false
steps of the algorithm, the fraction of unsatisfied clauses igoolean variables. The four solutions are drawn in the shaded
low and thus for finite-size samples, the self-averaging hybox. Two configurations are turned into solutions in one flip
pothesis is violated. (single outcoming arroy Flipping a spin from each of the

Our approach is applicable to any valuekofnote, how-  remaining two configurationgwith two departing arrows

ever, that the size of the matrices to be diagonalized growkeads to a solution, or to the other configuration. Thus, the
faster with the number of clauses in the clusters studied, thatverage solving time starting from one of these configura-
is, with the order ina in the expansionbut is restricted to  tions is two time steps. Finally, the average solving time for
the a< a4 regime. The finite-size tree clusters considered athe cluster is 3/4. To obtain the average over the signs of this
any (finite) order in the expansion are indeed solved in linearsolving time, one still has to make the same study for the
time by RandomWalkSAT. In Sec. IV, another kind of ap- €ase where the two clauses are not contradictory on the cen-

proximation will allow us to study thex> a4 regime. jmmm -

As the number of steps needed to solve a formula is an

additive quantity over clusters, it can be calculated along the e j\
lines exposed above for the expansionpgf Let us give two |

! I
| 1
|
D. Cluster analysis of solving times | T T T 1
|
:
[}

o
%
I

1

I
-
T

1

Fraction unsat g

1 = =
0 0.1 0.2 0.3 0.4

Time t FIG. 7. An example of the behavior of RandomWalkSAT on a

FIG. 6. Fraction of unsat clauses as a function of timeKor finite cluster &;\/x,)/\(X2\/X3). Blocks of spins represent con-
=2, anda=0.6 (top) and «=0.3 (bottom). Dashed lines: cluster figurations of the Boolean variables, those in the shaded box are
expansion prediction. Solid lindalmost superimposednumerical  solutions. Arrows stand for possible transitions of the algorithm, see
results(averaged over ten runs fof=10 000). the text for details.
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TABLE II. Contributions to the cluster expansion for the solving time, gen&ralSee right panel

of Fig. 5.
Type LS KS(K!)mS/LS [tres]s
a’ K 1
o
’ 2
b 2K-1 K= 1 K+1
2 . 2K+l
22K K(K—1)
’ 3
c 3K-2  KA(K-1) 1 K+1  4K4+9K3+9K2+6K—4
2 —|3: 222Kt +
23K K(K=1) 3KYK-1)(2K—1)(K2-2)
’ 3
d 3K=2 K 3K+1) 2K+l
6 —[3.2%K 42K
2K K(K-1) K3ZK-1)
tral spin, hence the value 19/32 on typef Table . IV. APPROXIMATE ANALYSIS OF RANDOMWALKSAT

‘Obviously, RandomWalkSAT can make “bad” choices on | this section, an analysis of RandomWalkSAT, based on
this very simple example, and “oscillate” a few time Steps the Markovian approximation for the evolution equati¢®s
between the two configurations before finding a solutionjs proposed. It allows a quantitative description of the main
One can imagine many local search heuristics that would dgsatures of RandomWalkSAT, namely, the asymptotic energy
better than RandomWalkSAT on the example shown beforeang the(exponentially smajlprobability of resolution in lin-

For instance, one could modify the algorithm so that once aRay time for generic values & anda (> ay). The approxi-
unsatisfied clause has been chosen randomly, it prefers to flipation scheme is also applied to the analysis of Random-
a variable with a low number of neighbors, or one with the\y5KSAT on thexor-SAT problem[36].
lowest number of contradicting clauses on it. The average
solving time of any of these heuristics, as long as the infor-
mation used to choose the variable to be flipped remains
local, can be studied by such a cluster expansion. These Consider an instance of thi€-SAT problem. Random-
simple enumerations could then provide an useful tesWalkSAT defines a Markov process on the space of configu-
ground for new heuristics. rations of the Boolean variables, see E2), of cardinality

For generaK, the enumeration of the possible histories of 2N, Call S(T) the configuration of the Boolean variables at a
clusters with three or less clauses leads to the quantitiegiven instantT (number of flipg of the evolution of the

A. Projected evolution

given in Table I, algorithm. An observabl& is a function of the configura-
tion, e.g., the number of clauses violated®yThe principle
1 K(K+1) 1 of the approach developed now is to track the evolution of
tres( @, K) = ?”L K—1 o2k+1? R(T)=R((T)), that is, of one number(or a low-
dimensional vectgrinstead of the whole configuration of
AKO+ K5+ BK3—10K2+2K 1 spins. To do so, we make use of the projection operator for-

2
3(K—1)(2K—1)(K?—2) 23K*1 “

malism described below.

+0(ad). (22) 5 02
. o ) ) _ g o0
This prediction is in a good agreement with numerical simu- -2
lations, see Fig. 8 for results in thé€=3 case. S od6
The validity of expressioif22) can be easily checked for g
K =2 from the findings of Sec. Il C. Indeed, in terms of the g 014
time t=T/M, the fraction of unsat clausesy(t) vanishes &
after a finite timet,.¢ given by & o b |
£ o
4
. o < 0.1 1 1 1 1
tres= I|mt(u)=f du’ g(u’). (23 0 0.2 0.4 0.6 08 1
Uso0 0 @

. o ) o FIG. 8. Average solving timé,.((«,3) for 3-SAT. Symbols:
Integration of Eq.(21) coincides with prediction22) for  numerical simulations, averaged over 1 000 runs Mot 10 000.
tres(@,2). Solid line: prediction from the cluster expansip).
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Let us partition the configuration space into equivalenceand the probability PrdiM o, T]=(Mg|/P(T)) that the con-
classes of microscopic configuratioBsassociated with the figuration of the variables is in cladd, at timeT, we obtain
same value of the macroscopic observaRIES). We call  within the Markovian approximatiof28),
Q(R)={9R(9) =R} these classes, an€l(R)| their cardi-
nalities (number of configurations in these clagsdset us

. ProdM{, T+1]=2, Ay'm. ProdM,,T (30
define the projection operat@? through its entries, Mo ] MEO MoMo Mo, T]

- 1 with Ay .=Nyrm /Dy and
(SIPIS) = [qRisy PR -RS). @4 Molo Mol Mo
N
where s denotes thévectoria) Kronecker function. One can NM('JMO:jZl ES 6(Mg— M(S))8(Mo—Mo(9))p;(S),

easily check that it is indeed a projectd®?=P, that con-
nects only configurations within the same class.
Now, consider tAhe state vect¢8(T)), Eg. (1) and its DMozES O(Mg—My(9)), (32
projection|P(T))="7P|S(T)). Its components have the same
value in each class, which is the averagd${fT)) over the  wherep,(S) is the probability of flipping spirk when the

microscopic  configurations in the class. CalQ(T) system is in configuratio8, i.e., the number of unsat clauses
=(1-P)|S(T))=|S(T))—|P(T)). From the master equa- in which spinj appears divided by the number of unsat
tion (2), we obtain clausesS denotes the configuration obtained fr@y flip-
o o ping spinj. The meaning of our Markovian approximation is
|P(T+1))="P-Wy|P(T))+P-Wgy|Q(T)), clear: the transition rate from one value of the observihje
o o to another is the average of the microscopic transition rates
|Q(T+1))=(1—P)-Wy|P(T))+(1—P)-Wy|Q(T)). from one microscopic configuration belonging to the first

(25 subsetl(M) to another belonging to the second one, with a
flat average on the starting subset. At timethe only avail-
able information in the projected process is that the system is
somewhere in the subset, and none of the corresponding mi-
T croscopic configurations can be privileged.
QM= 2, [(1-P)-Wg]T|P(T-T")),  (26) To perform the average over the disorder, i.e., on the ran-
T =1 dom distribution of formulas and comput@AMé MO]

where the initial state vectd5(0)) has been assumed to be :[NMS ’V'o/D’V'o]' we shall do the further approximation that
uniform on each class, so th@®(0))=0. Finally, the numerator and the denominator can be averaged sepa-

rately. This ‘annealed’ hypothesis can be justified in some
cases, see Sec. |V G. After some combinatorics, we find

The second equation can be formally “integrated” by itera-
tion,

:
IP(T+21))= > P-Wy-[(1=P)-Wg]" |P(T=T")),
T'=0

Z.N [ Mo\ [M =M, K| Mo~ Zu
2 ! = u — —
@0 TAwgug] zuZzSKMo(zu)( z, )(1 N)

Equation(27) expresses that, once coarse gained by the ac-

tion of the projection operation, the dynamics is not Markov- K| 4u K M Mo 2s
ian any longer. The principle of our approximation is pre- N B m

cisely to omit all memory effects, by neglecting non-

Markovian terms, i.e.T'=1 contributions in Eq(27), and Zs

averaging over disorder at each time step, S(Myg—Mg+2Z,-Z5). (32

>< J—
((ZK—l)N
[P(T+1))=[P-Wal|P(T)). (28) Z, is the number of unsatisfied clause which contains the

Obviously, the quality of the approximation depends on thevariable to be flipped. All these clauses will become satisfied
observableR. We shall see two examples in what follows. &fter the flip. The factoZ,,/(KMo) represents the probabil-
ity of flip of the variable, the factoN coming from the sum

over its index. Zs is the number of clauses satisfied prior to
the flip and violated after. The meaning of the Binomial laws
A natural choice we study in this and the next two sec-is transparent. Assume that the configuration violatgs
tions for the observabl® is M, which measures the num- clauses. In the absence of further information, the variable
bersM, of clauses unsatisfied by each configuration of thethat is going to flip has probabilitiK/N to be present in a

B. Transition matrix for the number of unsatisfied clauses

variables. Defining the bra given clausdthere are [) possibleK uplets overN vari-
ables, and {_7) that include a given variabjeFurthermore,

(M| = 2 (9, (29 a satisfied clause that contains the flipped variable has a
Se2(Mg) probability 1/(2—1) to become unsatisfied latez,, (re-

066103-10



RELAXATION AND METASTABILITY INALOCA L... PHYSICAL REVIEW E 67, 066103 (2003

spectivelyZg) is thus drawn from a binomial law with pa- linear time. We now make use of our Markovian hypothesis

rameterK/N (respectivelyK/[N(2“~1)]), over M, (resp.  to derive an approximate expression for

M—My) tries. This reasoning unveils the physical signifi-  Contrary to the preceding section, we now consider the

cance of our Markovian approximation; we neglect all cor-jarge deviation of the process with respect to its typical be-

relations between flipped variables and clauses that inevitayavior. This can be accessed through the study of the large

bly arise as the algorithm runs beyond the description injeviation functionm(¢g,t) of the fractiong, [39],
terms of the macroscopic variablé,.

1
B =I1lim=InProfMy=Mey, T=tM]. (3
C. Average evolution and the metastable plateau m(¢o.t) NowN Mo o I St

The evolution equation for the average fractigg(T)
=Zu,MoProfMy, T]/M of unsatisfied clauses at time

=tM is easily computed in the large-size limit from Eqgs.
(30) and (32). In particular, the average fraction of unsat
clauses equals

Introduction of the reduced time is a consequence of the
following remark.O(1) changes in the fractiop,, that is,
O(N) changes in the numbe, of unsatisfied clauses are
most likely to occur after a number of flips of the ordemof

To compute the large deviation functien we introduce the

K_q generating function oM,
- _ _o—Ky—-1
pola K="t —(en 2D 1), (39
o
G[y,T]:ME Prolf Mo, T]exp(yMo), (39)
0

with ¢o(0)=1/2X. Two regimes appear. If the ratia is
smaller than the critical value wherey is a real-valued number. In the thermodynamic limit,

G is expected to scale exponentially withwith a rate

2K—
ag(K)= : (34) -1
K g(y,0)= lim SIn Gy, T=tM]=max 7(¢o,t) + ay¢ol,
N— o ®0
the average fraction of unsat clausgs vanishes after a fi- (39

nite timet,.s. Typically, the algorithm will find a solution
aftert,.sX M steps(linear inN), and then stops. Prediction
for aq are in a good but not in a perfect agreement with
estimates from numerical simulations, e.g@q=7/3 versus

ag=2.7— 2.8 for 3-SAT. The average solving timg(«,K) 1 ga(v.t K
predicted within this approximation is given by the time at — 9(y.t) =—y+ @ (eV—1)

s equal to the Legendre transform affrom insertion of defi-
nition (37) into Eq. (38). Using evolution equation&0) and
(32), we obtain the following equation fag,

@o(t) in Eq. (33) vanishes. It logarithmically diverges as a ot 2K-1
reaches the dynamical threshold at fixed
- ag(y.t)
1 +Kle V—-1- (e¥-1) 3y
tres(a,K)~——K|n(ad(K)—0[), a—ag(K)™. (395
2 (40)
On the contrary, whem>a4(K), ¢, converges to a finite along with the initial condition
and positive value
O)=aln| 1 ! + e 41
QDO(CY,K):? 1- a ’ (36)

The average evolution studied in the preceding section can
be found again from the location of the maximum wfor,
gquivalently, from the derivative ofy in y=0: ¢q(t)

= (1/a)dgldy(0t). The logarithm of the probability of that

@ solution is reached after@(N) time is given by

whent—oo (Fig. 3). RandomWalkSAT is not able to find a
solution and gets trapped at a positive level of unsatisfie
clauses. This situation arises in the linfitcN,N—«, and

corresponds to the metastable plateau identified in Sec. Il

— V(@)
D. Large deviations and escape from the metastable plateau {(a,K)=m(po=0t—x)= fo dyzy,a), (42

As explained above, wham> a4, the system gets almost
surely trapped in a metastable portion of the configuratiorvhere z(y,a)=[y— aK (e~ 1)/(2“~1))/[K(e ™Y~ 1— (e
space with a nonzero number of unsatisfied clauses. Numeri-1)/(2—1))] andy(«) is the negative root of.
cal experiments indicate the Existence of_an exponentially predictions forZ in the K=3 case are plotted in Fig. 9.
small-inN probability ~exp(N{(«)) with (<0 that this They are compared to experimental measureg, dhat is,
scenario is not correct, and that a solution is indeed found ithe logarithm(divided byN) of the average solving times. It
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ratio o of clauses per variable

2 24 28 32 36 ProdM’, T+1]=>, [Ayw]ProdM,T], (43
0.00 . M

with

-0.02

NZo o) o s
[Aini]=2 i 0M' =M=A-Z)P(ZIM), (44
Z 0

whereZ=(29,21,25, ... .Zi 2%, ... Zx-1,Z5_1.Z) is a
(2K—1) dimensional vector. Componeatis the number of
clauses of typeé where the variable which is going to flip
appears. Iz} of theseZ; clauses, this variable was one of
thei satisfying literals. It is not necessary to introduce com-
. ponentsZg and Zy for they have obvious valuegespec-

\ .

-0.06 ; ; : tively, equal to 0 andZy). A denotes aK+1)X(2K—1)

FIG. 9. Large deviations for the 3-SAT problem. The logarithm Matrix such that - Z gives the change in the Obiervame
(in basee) ¢ of the probability of successful searabver the linear When the variable is flipped. Theh line of A-Z reads
in N time scalg is plotted as a function of the ratie of clauses per —Z;+Z;,;+(Z;_1—Z’_;). Clauses that contained the
variables. Predictions faf(«,3) have been obtained within the ap- flipped variable and were of typeprior to the flip are no
proximations of Sec. IV OEq. (42), dot-dashed cunjeand Sec. longer of this type after the flithence the term-2;), those
IV E [fourth order solution of Eq(47), solid curvd. Diamonds  which were of type + 1 and satisfied by the variable become
corresponds téminug the logarithm{ of the average solving times  of type i (+Zis+1), as those which were of type-1 and
(averaged over 2000 to 10 000 samples depending on the values ghsatisfied by the flipping variable-+HZ;_;— Z°_,). The

a,N, divided by N and extrapolated th—«) obtained from nu- - = " - . .
. ; . . robability of Z conditioned orM is, as in the simpler case
merical simulations. Error bars are of the order of the size of th - .
of Sec. IV B, a product of Binomial laws

diamond symbol. Sching's bound is¢=In(3/4)=—0.288.
Mi-zK-1 /7.
iI;[1 (Zf)

i\Z i\z-Z
Pl w5

, Repeating the procedures of Secs. IV C and IV D, we find
The calculation of Sec. IVB can be extended to otherthe following.

observables. In the following, we consider the case of & (1) The average fraction of unsat clauses is calculated in
vectorial observable\, with K+1 components. Our start- Appendix A and reads as
ing point is the classification of clauses into types. A clause

is said to be of type, with i=0, ... K, if the variables of

-0.04 |

In prob. success in linear time/N

K . z
is expected on intuitive grounds exposed in Sec. Il C that P(i|l\7|)=H (M|> (E) '( 3 E
coincides with—¢ (Fig. 2). Despite the roughness of our i=o \ Z;J\N N
Markovian approximation, theoretical predictions are in

qualitative agreement with numerical experiments. %

E. Taking into account clause types

the configuratiorsS satisfyi amongK of its literals. Ifi=0 eola,K, t)= i+ i —1 _11_ (46)

the clause is unsatisfied while, as sooria4, the clause is 2K aK| (1+tank at))k

satisfied. Let us calM;(S) the number of clauses of type

and M(S)=[Mq(S), ... ,Mk(S)] the vector made with The critical ratio separating polynomial from exponential
these population sizes. Clearly;M;(S)=M for any con-  search is found at the same value as in Sec. I\NYRK)
figuration. If Mo(S) =0 thenSis a solution of the formula. =(2X—1)/K. The average fraction of unsatisfied clauses on

VectorM is a natural characterization of the configuration ofthe plateau ¢, in thet— o limit) whena> a4(K) has also
variables(and of the instange and contains essential infor- the same expression, cf. E(6). Note, however, that the
mation about the operation of the algorithm. Indeed, the alfinite time evolution differs in the two calculations. When
gorithm stops if the numbe¥, of unsatisfied clauses van- a<ayq, the solving time, . is given by the vanishing ag,
ishes. In addition, at each step of the algorithm, a singlén Eq. (46), and differs from its value found within the sim-
variable is flipped; clauses of typebecome of type =1 if pler approximation of Sec. IV B.
they include this variable, or remain of typ@therwise. (2) The probability of easylinear time search is acces-
Within our Markovian annealed approximation, the prob-siple from the large deviation function(,t) of the frac-
ability Prol{I\7I,T] that the configuration of the variables is tions ¢; of clauses of type &i=<K. Its Legendre transform

in cIassQ(|\7I) at time T obeys the evolution equation, g()7,t) obeys the partial differential equati¢RDE)
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1 d9g(y,t) K a*>1 (limit value of ¢ at large rescaled timgsThe two
P —Yotyi+ E (K—i)eYis17Vi schemes of approximation given in Secs. IV B and IV E both
@ =0 yield

ag(y.t)

X +ieYi-17Yi—K)

1 * 1%
7y, “0 o5 (a* 1) =1+ —(e "' -1, (52)
o

along with the initial condition

—| |e¥
i=o 2K\ i
:1+£ *+E( *)2+0((a*)?) (53
The logarithm(divided byN) of the probability of the search 2® T3l a )

to be successful on the N time scale, is given by

thed(a*)=— —*ln(l—a*)
a

g(y,0)=aln . (48)

_ — 1
{(a,K)=maxg(yo,y1=Y2="-=yx=0t). (49 @3(a*)=1—a—*=a*—1+O((a*—1)2)- (54)
Yo

We have not been able to calculate exadflyor generic ~ Note that the smalk* expansion(S3) for the solving time
values ofa andK, but have resorted to a polynomial expan- coincides with the exact expansion obtained from £)
sion of g in powers of its argumentg; . The expansion has with the above rescaling af andK. We conjecture that the
been done up to order four with the help of a symbolic com-€quality holds for higher orders%3) in «*, and that the
putation software package fa¢=3, and up to order two above expressions for ¢g(a*,t*) and thus for

analytically for anyK. Calculations are detailed in Appendix t:‘es(a*);{;(a*) are correct.

B. Predictions for{(@) in the K=3 case are plotted in The logarithm of the probability of fast search far
Fig. 9. > ay(K) needs to be rescaled too,

F. The large K limit * (@)= lim Kg(a*25/K,K), (59

K—o00
A comparison between results of Secs. IVB and IV E
shows that the output of the calculation quantitatively de-to acquire a well-defined limit wheK—cc. The scalar ap-
pends on the observable under study. However, we may eyroximation of Sec. IV D gives the asymptotic result
pect some simplification to take place for larffe In this

limit, if a clause gets unsatisfied twice, or mafisut <K — e Vet y—a*(e=1)

times, it is very unlikely that each variable will be flipped Fla)= fo dy e V-1

more than once, and memory effects are lost. Therefore, the

Markovian annealed approximation is expected to become =—(a*—1)°+0((a* —1)3), (56)

correct. However, to avoid a trivial limit, the ratia of ~
clauses per variable must be rescaled accordingly. Inspectiomhere y(a*) is the negative root of the numerator in the
of the above resulf34) indicates that the correct scaling is above integral. The quadratic resolution of the PDE arising
a,K— at fixed ratioa* = K/2X. The dynamical thresh- from the study of Sec. IV Ecf. Appendix B also leads to
old separating linear from exponential searches is located ithis result arounda® =1. Unfortunately, the exact results
obtained in Sec. Il are of no help to confirm ident{&6).
aj=1. (50
As the critical threshold oK-SAT is known to scale as G. The xor-SAT case
a(K)~2KIn 2 for largeK [34,38, instances are always sat-  XOR-SAT is a version of a satisfiability problem, much
isfiable on the reduced* scale. simpler than SAT from a computational complexity point of
For a* <1, the initial fraction of unsatisfied clauses is view[25,27,36,37. One still drawsK-uplets of variables, but
=1/, and decreases b®(1) per unit of reduced tim¢  €ach clause bears only one signstead of one for each
giving t,es~ 1/2X. For the same reason, the height which variable in theK-SAT version, and the clause is said to be
is reached after (1) relaxation time whem* >1, is of  satisfied if the exclusiver (XOR) of its boolean variables is
the order of 1/8. It is therefore natural to define the rescaledequal to the sign of the clause. For a given clause, there are
fraction of unsatisfied clauses through 2X~1 satisfiable assignments of the variables and also'2
unsatisfiable assignments, in deep contrast with SAT where
@f (a* t*)=lim 2%¢q(a*2K/K,K,t*/2K),  (51)  these numbers are, respectively, equal to-2 and 1.
Ko XOR-SAT may be recast as a linear algebra problem, where a
) ) o set of M equations involvingN Boolean variables must be
from which we obtain the rescaled solving tirtfgS(a*) for  gatisfied modulo 2, and is therefore solvable in polynomial
a* <1 (vanishing of ¢3) and plateau heigh§(a*) for  time by various methods, e.g., Gaussian elimination. Never-
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FIG. 10. Large deviations for thi€-xor-SAT problem forK =3 (left) andK=5 (right). The logarithm(in basee) ¢ of the probability
of successful searcfover the linear time scales plotted as a function of the rati@ of clauses per variables. Diamonds corresponds to
(minus the logarithm{ of the average solving timgaveraged over 10,000 samples, divided\bgnd extrapolated thl— o) obtained from
numerical simulations. Error bars are smaller than the size of the diamond symbol.

theless, it is legitimate to ask what the performance of localvith g(y,0)= «In[(1+€")/2]. Resolution in the large time
search methods as RandomWalkSAT are for this kind ofimit is straightforward, with the results shown in Fig. 10.
computational problem. The agreement with numerics is good, especiallil asows.

A fundamental feature okOR-SAT is that, whenever a The relatively simple structure ofor-SAT makes pos-
spin is flipped, all clauses where this spin appears changsble the test of some of the approximations we made. We
status: the satisfied ones become unsatisfiedvaredversa  show in Appendix C that the annealed hypothesis in the cal-
There is thus no need to distinguish between clauses satisfietlation of the evolution matrii is justified in the thermo-
by a different number of literals, and the macroscopic ob-dynamic limit. The validity of this approximation in the case
servable we track is the numbigr, of unsatisfied clauses for of 3-SAT (Sec. IV B) is not established for finit&.
configurationS as in Sec. IV B. It is an easy check that the  As for K-SAT, quantities of interest have a well-defined
transition matri{ A] for XOR-SAT is given by the expression large «,K limit provided the ratioa* = a/ay(K)=a K is
(32) where X—1 is replaced with 1. Main results are the kept fixed,;

following.
(1) The average fraction of unsatisfied clauggét) reads @5 (a* ,t*)=lim @o(a*/K,K,t*)
as K—o
1 —2aKt _ 1 1 _oa*t*

(po(a,K,t):E—F m(e -1, (57) _§+§(e -1), (60)
and becomes asymptotically strictly positive if the ratiof _ _ _ )
clauses per variables exceeds(K)=1/K, smaller than the *(a*)=lim K{(a*IK,K)= dyzly,a*)

0

clustering and critical ratiosgs=0.818 anda,=0.918 for Ko
K=3, respectively{25,27. The overall picture of the algo- 1
rithm behavior is identical to the SAT case. =— E(a* —1)24+0((a*—1)3), (61)

(2) When a>ay4(K), the average fraction of unsatisfied
clauses on the plateau is given by ~ i
wherez(y,a*)=[y—a*(e'—1)]/(e Y—€Y) andy(a*) is
o 1 1 the negative root ot.
@o(ayK)ZE(l—R)- (59
V. CONCLUSION AND PERSPECTIVES

(3) The partial differential equation for the generating

S In this paper, we have studied the dynamics of a simple
function is

search procedure for the satisfaction of Boolean constraints,

L the RandomWalkSAT algorithm. We have shown using
J - J complementary techniquésxpansions and approximations

Z - _ y_ y_aY)—

@ atg(y,t) y+aK(e=1)+K(e € )07 9ty that, for randomly drawn input instances, RandomWalkSAT

(59 may have two qualitatively distinct behaviors. Instances with
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small ratios o« of clauses per variable are almost surely -1
solved in a time growing linearly with their size. On the
contrary, for ratios above a threshald, the dynamics gets
trapped for an exponentially large time in a region of the v=| 0 |,
configuration space with a positive fraction of unsatisfied
clauses. A solution is finally reached through a large fluctua-
tion from this metastable state.

The freezing taking place aty does not seem to be re-
lated to the onset of clustering between solutip®$]. In- 1 i
deed, the value of is expected to change with the local K
search rules. It would be interesting to pursue the study ini-
tiated in the present work to understand if and how the ex- 1 -1
istence of this dynamical threshold is related to some prop- B
erty of the(statig energy landscape, as in mean-field models W=
of spin glasse$15]. Another useful improvement would be 0 K 1
to go beyond the Markovian approximation of Sec. IV. Un-
fortunately, keeping a finitéwith respect toN) number of
retarded terms in Eq27) should not be sufficient to achieve 0 0 o o0 ... ... -1
this goal. Improvements will require to take into account an (A2)
extensive number of terms, or to extend the quantum formal-
ism of Sec. Ill to the study of the metastable phase. Anothefo solve Eq.(Al), it results convenient to introduck(x,t),
possible direction of research would be to use projection opthe polynomial inx whose coefficients are the fractiogs
erators on observables of extensive dimengib®40. Our  we want to determine,
Markovian approximation, expected to be exact in the large
a,K limit, should be a starting point for a systematic expan- K _
sion of the quantities of intereg¢plateau height, lifetime of CD(X’I):ZO j(t)X. (A3)
the metastable regime, etcFinally, extension of our analy- =
sis to more sophisticated local search heuristics would b
useful.

Xl w
(=}
o

%he set oK + 1 linear coupled differentiglAl) reduces to a
partial differential equation o®(x,t):

Jd b
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(A5)

SettingV (x,t) = ®(x,t) + 1/(aK), the constant terms in Eq.
(A4) can be eliminated, with the resulting PDE fér,
APPENDIX A: GENERATING FUNCTION FOR THE
AVERAGE EVOLUTION A% Ad
. o W(x,t)=aK(x— 1)‘1’(x,t)+a(1—x2)g(x,t).
Defining ¢=(¢q, .. .,px)=2ZyProdM, TIM/M and (AB)
the reduced timeé=T/M, one get from EQq(30),

This can be transformed into a wave equation ydix,t)
da =(1+x) " KP(x,1):
¢ - -
o (D =a(1=X0)— (x.1).

with v a (K+1)-dimensional vector and/, a (K+1)Xx(K This equation is solved in terms of an arbitrary function of a
+1) matrix defined as single argument,
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We, now explain the resolution at quadratic order for a
. (A8) generic value oK. At linear order, following the calculation
exposed in Appendix A,

xX ) =w

1
—tanh 1(x) +1t
o

Knowledge of®(x,0) for all x, Eq. (A5) allows us to deter-

mine unambiguously» o _1(K 1\ 6o
ai—atILn:c@i(t)—z—K : a+R K (B4)
_1 1 —K
w(u)= 2_K+ oK LT tanktau)] . A9y particular,ag=[ a— a4(K)]/2%. Then considering the mo-

nomials of second order in the expansion of the equation, a
Going backwards, we obtain the expression of the generatin?‘flt of (K+1)(K+2)/2 linear equations determine the coef-
function icients a;; . As we shall not try to solve the equation at
higher orders for this generic case, we need @gly. Again,
K we introduce a generating function to turn the discrete alge-
- braic problem into an analytic oné(s)=3; ;a;;s'*) obeys
(A10) the ordinary differential equation,

K1
+_
aK

1+Xx

2

1+ xtanh at)
1+tank at)

D(x,t)=

2\ K—-1
and of the fractions of clauses of typthrough an expansion _ R _ ts
of the latter in powers 0k, 2KI(9) = (s+ DI (5)=(s~1)| 1=(1+aK) 2
(BS)
K\l1 1 [tanHat)] Sjo _ o _ ,
@j(t)= i ok Y aK s oK aK|” with the conditionf(1)=0 stemming from Eq(B2). This
2" aR[1+tanf(at)]> @ equation can be easily solved, yielding
(A11)
(o) 2"—1( (K—1)22K+2K+2K—K2K+1)
APPENDIX B: PERTURBATIVE RESOLUTION OF THE ago= = - .
00 22K K(2K—1)(2%—1)

LARGE DEVIATION PDE
(B6)

In this appendix, we sketch the resolution of PDE, Eg.
(47), in the long-time limit, where the functiog becomes At this order of the expansion, the extremum @fin the
independent of time. We expand it in powers of its argu-subspacg;=0, Vi=1 is reached ity,= —ay/ag and leads
ments: to {(a,K)=—ad/(2aq).

K K
1
v _ APPENDIX C: VALIDITY OF THE ANNEALED
t—o0)=> ayi+ = aiyiyi+---. (Bl
9y ) Z‘o it i,j§=:0 Y1y BD HYPOTHESIS FOR THE XOR-SAT PROBLEM

We justify in this appendix the annealed average of the
Markovian transition matrix in th#or-SAT case. Our analy-
sis is based on the Chebyshev inequalil]: a positive
integer valued random variable with a variance negligible
with respect to the square of its average is sharply peaked
around its mean value. Cdll=256(U—U(S)) the num-

Substituting this expansion into E¢47), one obtains by
identification of the monomials ig; an infinite set of linear
equations on the coefficients gf which can be solved order
by order. ConstrainE; ;=1 imposes a condition og,

g(y+cl)=ac+g(y), B2 per of configurations witHJ unsatisfied clauses. The first
- , ) moment ofD over the distribution oKOR-SAT instances is
where 1=(1,1,...,1) anct is an arbitrary constant. easy to compute. After averaging, th& 2onfigurations of

In the case<=3, we have solved the set of equations onthe variables contribute equally to the sum; for each of these,
the coefficients ofj up to order four in they;'s with the help  the numberU of unsatisfied clause has a binomial distribu-
of a symbolic computation software. To calculgtewe need tion of parameter 1/2 among thé clauses. In the thermo-
to know g as a function ofyq only, with y;=0, Vi=1. We  dynamic limit, using Stirling’s formula and denoting,
find =U/M,

3a-7  1050-94 , 26460¢+10753 , (D]~ eNfi(e0.e)
9¥o) =55 Yo ~1gz0 Yot~ 1o3se0 VO

29 645+ 66244 ,
18923520 YO

f1(@o,@)=In2+ af — @gln o= (1— @g)IN(1—¢g) —IN2]
+0(y3). (B3) (CD

_ _ o up to polynomial corrections. Suppose tha§<<1/2. Call
Whena> aq(K=3)=7/3, this function has a nontrivial ex- ¢{!)(«) the root off, at fixeda. It is a growing function of
tremum, in whichg takes the valu€(«). «a, vanishing fore<1, and monotically increasing to 1/2 as
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a gets large. Fokpg> (pg”(a), f4 is positive and D] ex- 04
ponentially large. Whewy< ¢{)(a), [Dy] is exponentially
small. 03k
Consider now the second momdi2Z] and its leading '
behavior[D6]~exr[Nf2(ch,a)]. We introduce the generat-
ing function S 02
2 [DZ]e—ZXU 01
5 U
27md O . 0
:J o S e XUS)HUSI+HAUS) U] (C2) 0
0 2T .S

The average on the right-hand side can be readily performed F!G: 11. Study of the moments O, for 3-xor-SAT. Solid line:
as theM clauses are drawn independently. The trace on thé/larkowan annealed prediction for the asymptotic fraction of unsat
two configurations reduces to a sum on the Hamming disS/auS€spo. Long-dashed liney?. Short-dashed linap(? . Sym-
tance between them. Evaluation of this sum and the integr%ds; asymptotic fraction of unsat clauses on the plateau, obtained

over 6 by the Laplace method yields rough numerical simulations.

D2 2K !
extfag0,a) ~2axg0]=S(x,a),  (CY P 1 S 10 (€9

0 [DU]Z NK72

(2) If the global maximum ofS is not in y=1/2, f,

whereS(x, «) is the maximum ovely of 5 5
>f4, thus[D{]>[Dy]“

S(y,x,@)=In2—yIny—(1—y)In(1—y) — ax We have computed numerically fd€=3 the function
’ Yy ’ ’ o (a) such that fore,> {?)(«), the global maxima of
+aIn[1+pe(y)(coshx—1)]. (C4) s located iny=1/2. Itis a growing function of, vanishing

when «<0.889[37], and growing monotically to 1/2 when

Here,pe(y)=[1+ (1—27)K]/2 is the probability that a ran- diverges. The results are shown in Fig.(all three curves
domly drawn clause satisfiger violateg two configurations  reachg,=1/2 whena— o without crossing each otherin
at Hamming distancd= yN. We are thus left with the prob- the course of the algorithm operatiop, decreases from its
lem of determiningS(x,«) and of computing its Legendre initial value (1/2) down to its plateau value, and remains
transform with respects toto obtainf,. As the derivative of confined to the region in the phase diagram where the second
Pe in y=1/2 vanishes, this point is always an extremunSof moment method appliesso™> 02> o). This proves that,
Two cases must be distinguished, depending on the value gfithin the Markovian approximation, the annealed average is
¢o, Which fixesx [27,37,42: correct: as the denominator of the transition matrix is peaked

() If y=1/2 is the global maximum ofS then around its mean value, the numerator and denominator can
fo(@g,a)=2f1(¢g,a), in other words,[D3]~[Dy]% In  be averaged separately. This analysis cannot be done in the
this case, it is possible to compute the polynomial correcease ofK-SAT, for which the second moment fails as soon as
tions by expanding around the saddle point, a>0 [42].
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