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Linear Glauber model

Mário J. de Oliveira
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We study the time-dependent and the stationary properties of the linear Glauber model in ad-dimensional
hypercubic lattice. This model is equivalent to the voter model with noise. By using the Green function
method, we get exact results for the two-point correlations from which the critical behavior is obtained. For
vanishing noise the model becomes critical with exponentsb50, g51, andn51/2 for d>2, with logarith-
mic corrections at the upper critical dimensiondc52, andb50, g51/2, andn51/2 for d51. We show that
the model can be mapped into a particular reaction-diffusion model.
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I. INTRODUCTION

The stochastic process introduced by Glauber@1# assigned
to the one-dimensional Ising model a dynamics that
model lacked due to its static definition. The dynamics i
one-spin-flip Markovian stochastic process governed b
master equation whose stationary state is the Gibbs prob
ity associated with the Ising Hamiltonian. This property
ensured by using transition rates that obey detailed bala
The use of a one-spin-flip transition rate guarantees that
spin configuration can be reached from any other so that
large times the spin configurations will be drawn accord
to the stationary Gibbs probability.

The dynamics introduced by Glauber is not the sole p
sible dynamics for the Ising model. Glauber himself@1# sug-
gested another one-spin transition rate for the o
dimensional Ising model. Other stochastic dynamics can
set up. One can use, for instance, the Metropolis proced
@2# to construct stochastic processes whose stationary p
ability is the Gibbs probability associated with the on
dimensional Ising Hamiltonian or any other Ising Ham
tonian in any dimension@3,4#. Indeed, the various Monte
Carlo methods available to study the Ising model reflect
great number of such processes@5,6#.

Among the various one-spin-flip stochastic processes
sociated with the Ising model, the original Glauber proces
unique in that it can be solved exactly, the basic reason b
the linearity of the flip transition rate. More precisely, co
sider the class of stochastic models described by the
spin-flip ratewi associated with the sitei of a regular lattice,
wi(s)5c1s igi(s), wheres denotes the collection of Ising
spin variable,c is a constant, andgi(s) is a function of the
Ising spin variables. The original Glauber process is s
thatgi(s) is linear in thes variables. If this transition rate is
used to describe the dynamics of Ising models in two
more dimensions, the functiongi(s) must be nonlinear.

In this paper we are concerned with the analysis o
stochastic linear model defined in ad-dimensional hypercu-
bic lattice with one-spin-flip transition ratewi(s)5c
1s igi(s) such thatgi(s) is linear in thes variables. For
dimensions greater than 1, such a linear model, which
call the linear Glauber model, does not possess detailed
ance so that the stationary probability is not knowna priori.
If, on one hand, the linear Glauber model cannot be the
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namics of the Ising model in two or more dimensions, on
other hand, it can be solved exactly in any dimension an
interesting enough to be studiedper se.

The linear Glauber model has been the subject of a st
by Scheucher and Spohn@7# and can be interpreted as th
voter model with noise. In the voter model@8–10# an indi-
vidual looks at one of its neighbors, chosen at random,
assumes the opinion of this neighbor. With noise, the in
vidual adopts the neighbor’s opinion with probability 12q
and the opposite opinion with probabilityq, the noise. The
voter model is recovered in the limit of zero noise.

The linear Glauber model~or noise voter model! has been
studied in two dimensions by Krapivsky@11# as a model for
surface catalytic reaction and by de Oliveiraet al. @12# and
Drouffe and Godre`che @13# in their general study of a clas
of nonequilibrium models. The voter model is also a spec
case of models that have been used to study the kinetic
catalytic reactions@11,14#, competing learning@15#, and
critical coarsening without surface tension@16#.

For a nonzero noise, the Glauber linear model displ
just one phase, the paramagnetic phase. Whenq→0, the
correlation length diverges and the model becomes criti
Since the voter model displays a nonzero magnetization th
at q50, there is a jump in the magnetization and the mo
presents a critical first-order transition@12# resulting in a
critical exponentb50. Other critical exponents of the linea
Glauber model aren51/2 andz52. The exponent related to
the susceptibility is found to beg51 for d>2, with loga-
rithmic corrections at the upper critical dimensiondc52,
andg51/2 for d51.

Dornic et al. @16# in their study of coarsening phenomen
have defined a class of two-dimensional models for wh
the ordering occurs with no surface tension. The critical
ponents of this class, called the universality class of the vo
model @16#, are the same as those of the linear Glau
model studied here.

By using the Green function method@17,18# we obtained
exact results for the time-dependent as well as the statio
behavior of the magnetization and the two-site correlat
function. In particular, we obtained the susceptibility and t
density of defects, a measure of the coarsening phenom
as a function of noise and time. From these results we ge
critical behavior and the critical exponents.
©2003 The American Physical Society01-1
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II. MODEL

Consider ad-dimensional hypercubic lattice in which a
each siter there is a spin variables r that takes the value
61. The linear Glauber model is defined by the one-spin-
rate

wr~s!5
a

2 H 12
l

2d
s r(

d
s r1dJ , ~1!

wherel is a parameter in the interval 0,l<1 and the sum-
mation is over the 2d nearest neighbors of the siter . The
parametera sets the scale of time.

In one dimension, the stationary state of this model
microscopic reversibility and is identified as the Gibbs pro
ability of the one-dimensional nearest-neighbor Ising mod
In this case the parameterl is related to the strengthJ of the
interaction between nearest-neighbor spins and to the
peratureT by l5tanh(2J/kT) @1#. In two or more dimensions
there is no such relationship because the model is irrev
ible, that is, it does not satisfy detailed balance, and we
not know the stationary probabilitya priori.

The model can also be interpreted as a voter model w
noise. At each time step a spin is chosen at random. Then
of its 2d nearest neighbors is chosen at random. The cho
spin takes the sign of the chosen nearest neighbor with p
ability (11l)/2512q and the opposite sign with probabi
ity (12l)/25q which is then interpreted as a noise.

The master equation that governs the time evolution
the probabilityP(s,t) of configurations5$s r% at time t is
given by

d

dt
P~s,t !5(

r
$wr~s r !P~s r,t !2wr~s!P~s,t !%, ~2!

where the summation is over the sites of the hypercubic
tice. Heres r stands for that configuration obtained froms
by changings r to 2s r .

From the master equation it is straightforward to obt
the time evolution of the magnetization^s r&, given by

d

adt
^s r&52^s r&1

l

2d (
d

^s r1d&, ~3!

and of the pair correlation̂s rs r8&, r 8Þr , given by

d

adt
^s rs r8&522^s rs r8&1

l

2d (
d

$^s rs r81d&

1^s r8s r1d&%, ~4!

valid for r 8Þr . We are interested only in the translationa
invariant solution of these equations so that^s r&5m will be
independent ofr and^s rs r8& will depend only on the differ-
ence vectorr2r 8, that is,^s rs r8&5r r2r8 . The time evolu-
tion for m andr r are then given by

d

adt
m52~12l!m ~5!
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d

dt
r r522r r1

l

d (
d

r r1d , ~6!

which is valid for rÞ0 with the conditionr051.
Introducing the parameter« by

«5
12l

l
5

2q

122q
, ~7!

Eqs.~5! and ~6! are written as

d

dt
m52

«

2
m ~8!

and

d

dt
r r52«r r1

1

2d (
d

~r r1d2r r !, ~9!

where for convenience we have chosena51/2l. Equation
~9! is valid for rÞ0 with the conditionr051.

The time evolution equations are to be solved for init
states that are translationally invariant. Here we will consi
noncorrelated initial states of the Bernoulli type such th
^s r&5m0 and^s rs r8&5m0

2. In other words att50 we have

m~0!5m0 and r r~0!5m0
2 ~10!

except forr0(0)51.
The solution for the magnetization is

m~ t !5m0e2«t/2, ~11!

so thatm(`)50 for «Þ0 andm(`)5m0 for «50. Defin-
ing the time correlation lengtht by m5m0e2t/t we con-
clude that it diverges ast;«2n uu with n uu51. In the follow-
ing we will focus on the pair correlation.

III. STATIONARY SOLUTION

A. Pair correlation

In the stationary state we have the equation

1

2d (
d

~r r1d2r r !2«r r50, ~12!

which is valid for rÞ0 and r051. In order to solve this
equation we start by introducing a parametera such that

1

2d (
d

~rd2r0!2«r052a. ~13!

With this condition we can write an equation valid for an
site r of a hypercubic lattice, namely,

1

2d (
d

~r r1d2r r !2«r r52ad r0 , ~14!
1-2
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in which the parametera is to be chosen in such a way th
r051.

The solution of Eq.~14! is obtained as follows. LetGr(s)
be the lattice Green function, defined by

Gr~s!5E
2p

p

•••E
2p

p eik•r

s1d21(
j 51

d

~12coskj !

dk1•••dkd

~2p!d
,

~15!

where r5(n1 ,n2 , . . . ,nd), nj50,61,62, . . . is asite of
the d-dimensional hypercubic lattice and k
5(k1 ,k2 , . . . ,kd). It is easily shown, by using a discre
Fourier transform, thatGr(s) is the solution of

1

2d (
d

~Gr1d2Gr !2sGr52d r0 , ~16!

where the sum is over all nearest neighbors of the orig
Comparing Eqs.~16! and ~14!, it follows that r r5aGr(«).
Since the parametera should be chosen so thatr051, then
a51/G0(«), and the stationary pair correlation is given b

r r5
Gr~«!

G0~«!
. ~17!

B. Susceptibility

The susceptibilityx is defined as the fluctuation

x5(
r

$^s0s r&2^s0&^s r&%. ~18!

Since in the stationary state^s r&50 for «Þ0 then

x5(
r

r r . ~19!

Summing each side of Eq.~14! over r we find the relation
x5a/«, which together with the resulta51/G0(«) gives

x5
1

«G0~«!
. ~20!

For small values ofs, it is well known @18# that G0(s) is
finite for dimensionsd.2, while in lower dimensions, it
diverges whens→0 as

G0~s!5~2s1s2!21/2;~2s!21/2, d51, ~21!

and

G0~s!;p21ln~1/s!, d52. ~22!

From these results we obtain the asymptotic behavior of
susceptibilityx(«) for small « as

x;«21/2, d51, ~23!

and
06610
.

e

x;
«21

u ln «u
, d52. ~24!

SinceG0(0) is finite for d.2 we have

x5
1

G0~0!
«21, d.2. ~25!

Therefore, the susceptibility diverges, in any dimension,
x;«2g with the exponentg51/2 for d51 andg51 for d
>2 with logarithmic corrections at the upper critical dime
sion dc52.

C. Pair correlation for «Ä0

A stationary solution for this case is obtained by taki
the limit «→0 in Eq. ~17!. Let us write

r r512
G̃r~«!

G0~«!
, ~26!

whereG̃r(«)5G0(«)2Gr(«) is given by

G̃r~«!5E
2p

p

•••E
2p

p 12cosk•r

«1d21(
j 51

d

~12coskj !

dk1•••dkd

~2p!d
.

~27!

In the limit «→0, the functionG0(«) diverges ifd<2, re-
maining finite if d.2. But G̃r(0) is a finite quantity in any
dimension. Therefore, when«→0 we haver r51 if d<2. If
d.2 we have

r r5
Gr~0!

G0~0!
, ~28!

which is strictly less than 1, except forr50.
Whens50, the divergence of the lattice Green functio

as defined by Eq.~15!, for d51 andd52, means that for
s50 no solution of Eq.~16! that decays asr→` is avail-
able. Ford.2, on the other hand, the Green function
bounded so that Eq.~28! is a solution. Turning back to the
original equation~12! for the pair correlation function, we
see by inspection thatr r51 is a solution of Eq.~12! for any
dimension. Ifd<2 the solutionr r51 is the sole solution.
However, if d.2 this solution is distinct from the solution
given by Eq.~28!. Actually, in this case any linear combina
tion of these two solutions, such thatr051, will be a solu-
tion of Eq. ~12!. The general stationary solution in three
more dimensions will be then

r r5c1~12c!
Gr~0!

G0~0!
, ~29!

wherec is an arbitrary parameter.
As we saw above, the stationary magnetization ism0 for

«50. If m0Þ61 there is an apparent contradiction with th
stationary solutionr r51 for d<2, sincer r51 implies a
magnetization equal to 1 or21. This apparent contradiction
1-3



ion

(1

th

rr

v-

-

-

n

for

sult

lt

he

n
n
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is resolved by observing that if we start from a configurat
with magnetizationm0 then with probability (11m0)/2 the
system will reach magnetization 1 and with probability
2m0)/2 it will reach magnetization21.

D. Density of defects

A measure of the coarsening phenomenon is given by
density r12 of defects, defined as the density of12
nearest-neighbor pairs of sites. It is related to the pair co
lation between two nearest-neighbor sitesrx , wherex de-
notes any one nearest neighbor of the origin, that is,r12

5(12rx)/2. Sincerx5Gx(«)/G0(«), the density of defects
is given by

r125
1

2 H 12
Gx~«!

G0~«!J . ~30!

Now, settingr50 in Eq. ~16! and using symmetry we
obtain a relation betweenGx(s) and G0(s), namely,Gx(s)
2(11s)G0(s)521 @20#, so that

Gx~s!

G0~s!
511s2

1

G0~s!
. ~31!

In view of the result~31! and using the asymptotic beha
ior of the Green functionG0(s) given by Eqs.~21! and~22!
we obtain the following results for small values of«:

r12;«1/2, d51, ~32!

r12;
1

u ln «u
, d52, ~33!

andr12 vanishes in the limit«→0. For d.2, the density
r12 approaches a finite value in this limit, namely,

r125
1

2G0~0!
, d.2. ~34!

E. Large zr z behavior

To obtain the behavior for large values ofur u we consider
the continuum case of Eq.~12!, that is, we consider the equa
tion

¹2r5a2r, ~35!

wherea5A2d«. Seeking for a spherically symmetric solu
tion we get the equation

d2r

dr2
1

d21

r

dr

dr
5a2r, ~36!

whose solution is of the type

r5Ar2d/211g~ar !, ~37!

where the functiong(x) obeys the modified Bessel equatio
06610
e

e-

x2g9~x!1xg8~x!2H x21S d

2
21D 2J g~x!50, ~38!

whose solution is the modified Bessel functionKd/221(x).
Therefore the solution is

r r5Ar2d/211Kd/221~ar !. ~39!

Using the asymptotic behavior of the Bessel function
large argument we get

r r;
e2ar

r (d21)/2
. ~40!

Therefore the pair correlation decays exponentially, a re
valid for r @a21. The correlation lengthj5a21 behaves as
j;«21/2 so thatn51/2 for any dimension. From this resu
it follows that the exponentz5n uu /n52 for any dimension.

When«50 we need to study only the cased.2 since for
d<2 we haver r51. If d.2 and for large values ofur u we
have to solve

d2r

dr2
1

d21

r

dr

dr
50, ~41!

to obtain

r;
1

r d22
. ~42!

The pair correlation function then decays algebraically. T
exponenth defined throughr;1/r d221h is thereforeh
50.

IV. TIME-DEPENDENT SOLUTION FOR «Ä0

A. Pair correlation

In this section we will consider only the case«50 and
the initial conditionm050. The time evolution of the pair
correlationr r5^s0s r& is given by

d

dt
r r5

1

2d (
d

~r r1d2r r !, ~43!

valid for rÞ0 with the conditionr051.
Defining the Laplace transform

r̂ r~z!5E
0

`

r r~ t !e2ztdt, ~44!

we have

zr̂ r5
1

2d (
d

~ r̂ r1d2 r̂ r !, ~45!

valid for rÞ0, where we have used the initial conditio
r r(0)50 for rÞ0. As before we introduce now an equatio
for r̂0, namely,
1-4
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zr̂05
1

2d (
d

~ r̂d2 r̂0!1b̂, ~46!

whereb̂(z) is to be chosen so thatr̂051/z, which is equiva-
lent to choosingr051.

Following the same procedure used before one obtains
solution

r̂ r~z!5b̂Gr~z!. ~47!

Since nowr̂0(z)51/z we getb̂51/zG0(z), so that

r̂ r~z!5
Gr~z!

zG0~z!
. ~48!

The limiting valuer r(`) can be obtained from

r r~`!5 lim
z→0

zr̂ r~z!5 lim
z→0

Gr~z!

G0~z!
. ~49!

This limit is 1 for d<2. If d.2 it is strictly less than 1,
except forr50, and is given by

r r~`!5
Gr~0!

G0~0!
. ~50!

B. Susceptibility

The Laplace transformx̂(z) of the susceptibility

x~ t !5(
r

r r~ t ! ~51!

is given by

x̂~z!5(
r

r̂ r~z!5
b̂

z
. ~52!

The last equality follows from Eqs.~45! and~46!. Therefore

x̂~z!5
1

z2G0~z!
. ~53!

To determine the long time behavior we need the beha
of x̂(z) for small values ofz. Using asymptotic results fo
the Green function given by Eqs.~21! and ~22!, we have

x̂~z!;
1

z3/2
, d51, ~54!

x̂~z!;
1

z2u ln zu
, d52, ~55!

and

x̂~z!5
1

G0~0!

1

z2
, d.2, ~56!
06610
he

r

from which follows

x~ t !;t1/2, d51, ~57!

x~ t !;
t

ln t
, d52, ~58!

and

x~ t !5
1

G0~0!
t, d.2. ~59!

If we write x(t);tz we havez51/2 for d51 andz51 for
d>2 with a logarithmic correction at the upper critical d
mensiondc52. This result forz is consistent with the rela
tion z5(d22g/n)/z @19#.

C. Density of defects

Let us determine the larget behavior of the density of
defectsr12 , related to the pair correlationrx by r125(1
2rx)/2. Their Laplace transforms are related by

r̂12~z!5
1

2 H 1

z
2 r̂x~z!J ~60!

so that

r̂12~z!5
1

2z H 12
Gx~z!

G0~z!J . ~61!

Using the result~31! together with the asymptotic behav
ior of G0(s) for small values ofs given by Eqs.~21! and~22!
we have

r̂12~z!;z21/2, d51, ~62!

and

r̂12~z!;
1

zu ln zu
, d52, ~63!

from which we obtain

r12~ t !;t21/2, d51, ~64!

and

r12~ t !;
1

ln t
, d52, ~65!

so thatr12(t) vanishes in the limitt→` for d<2. For d
.2, the densityr12(t) approaches a constant value giv
by

r12~`!5
1

2

1

G0~0!
. ~66!
1-5
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V. GENERAL TIME-DEPENDENT SOLUTION

A. Pair correlation

The time evolution of the pair correlationr r5^s0s r& is
given by

d

dt
r r5

1

2d (
d

~r r1d2r r !2«r r , ~67!

valid for rÞ0 with the conditionr051.
Defining the Laplace transform

r̂ r~z!5E
0

`

r r~ t !e2ztdt, ~68!

we have

zr̂ r2m0
25

1

2d (
d

~ r̂ r1d2 r̂ r !2«r̂ r , ~69!

valid for rÞ0, where we have used the initial conditio
r r(0)5m0

2 for rÞ0. Again we introduce an equation forr̂0,
namely,

zr̂02m0
25

1

2d (
d

~ r̂d2 r̂0!2«r̂01b̂, ~70!

whereb̂(z) is to be chosen so thatr̂051/z, which is equiva-
lent to choosingr051.

Following the same procedure used before, one obt
the solution

r̂ r5
1

~z1«!
m0

21b̂Gr~z1«!. ~71!

Since nowr̂0(z)51/z we get

b̂5S 1

z
2

1

~z1«!
m0

2D 1

G0~z1«!
, ~72!

so that

r̂ r5
1

~z1«!
m0

21S 1

z
2

1

~z1«!
m0

2D Gr~z1«!

G0~z1«!
. ~73!

Let r r
0(t) be the solution corresponding to the initial co

dition r r(0)50 and«50, and letr̂ r
0(z) be its Laplace trans

form. Then from this last equation we have

r̂ r
0~z!5

Gr~z!

zG0~z!
, ~74!

so that

r̂ r5
1

~z1«!
m0

21S 12m0
21

«

zD r̂ r
0~z1«!. ~75!

From this equation it is easy to find that
06610
ns

r r~ t !5m0
2e2«t1~12m0

2!r r
0~ t !e2«t1«E

0

t

r r
0~ t8!e2«t8dt8.

~76!

Therefore, if the solutionr r
0(t) is known, the solution for«

Þ0 andm0Þ0 can be obtained from this equation.

B. Susceptibility

The Laplace transformx̂(z) of the susceptibility

x~ t !5(
r

$r r~ t !2m0
2e2«t% ~77!

is given by

x̂~z!5(
r

H r̂ r~z!2
1

z1«
m0

2J 5
b̂

z1«
. ~78!

The last equality follows from Eqs.~69! and~70!. Therefore

x̂~z!5S 12m0
21

«

zD x̂0~z1«!, ~79!

where

x̂0~z!5
1

z2G0~z!
~80!

is the Laplace transform of the susceptibilityx0(t) corre-
sponding to the case«50 andm050. Then

x~ t !5~12m0
2!e2«tx0~ t !1«E

0

t

e2«t8x0~ t8!dt8. ~81!

C. The limit t\`

To get the limitt→` we use the important property of th
Laplace transform

lim
t→`

F~ t !5 lim
z→0

zF̂~z!, ~82!

valid for a given functionF(t) and its Laplace transform
F̂(z). Since

zr̂ r~z!5
z

~z1«!
m0

21~12m0
2!zr̂ r

0~z1«!1«r̂ r
0~z1«!,

~83!

we get

r r~`!5«r̂ r
0~«!5

Gr~«!

G0~«!
, ~84!

which is independent of the initial conditionm0
2. Therefore,

as long as«Þ0, the stationary solution~17! is approached
no matter what the initial condition is.

For the case«50, we have
1-6
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zr̂ r~z!5m0
21~12m0

2!zr̂ r
0~z! ~85!

and

r r~`!5m0
21~12m0

2! lim
z→0

Gr~z!

G0~z!
~86!

will depend on the initial condition except ford<2, since in
this case the ratioGr(z)/G0(z)→1 asz→0 so thatr r(`)
51 independent of the initial condition. Ford.2, the lim-
iting pair correlation is then

r r~`!5m0
21~12m0

2!
Gr~0!

G0~0!
, ~87!

which coincides with the stationary pair correlation~29! with
the arbitrary constantc5m0

2.
From the relationr125(12rx)/2 and taking into ac-

count the relation~31!, one gets the following equation fo
the density of defects, valid ford.2:

r12~`!5
1

G0~0!
r12~0!, ~88!

where we used the fact thatr12(0)5(12m0
2)/2. For d

<2, r12(`)50.
In the limit t→` the susceptibility is

x~`!5 lim
z→0

zx̂~z!5
1

«G0~«!
, ~89!

which coincides with the stationary susceptibility found b
fore.

VI. EQUIVALENT REACTION-DIFFUSION MODELS

Consider ad-dimensional hypercubic lattice and suppo
that each bond connecting two nearest-neighbor sites ca
either occupied by a particle or vacant. We attach to the b
connecting sitesr andr 8 a variablet r ,r8 that takes the value
11 or 21 according to whether a bond is occupied
empty. The particles diffuse and react according to cer
rules to be specified. We are interested to know the react
diffusion system that can be mapped into the linear Glau
model defined by Eq.~1!. To this end we make the transfo
mation t r ,r85s rs r8 so that each configurations5$s r% is
mapped into the configurationt5$t r ,r8%.

The spin flips r→2s r will correspond to changing the
variablest r ,r8→2t r ,r8 , that is, to change the sign of th
variables attached to 2d bonds coming out of siter . In other
words, we may say that at each time step the 2d particles
next to the given site, chosen at random, react in such a
that if a bond is occupied it becomes empty, and vice ve
The transition ratewi(t) of such a reaction is

wr~t!5
a

2 H 12
l

2d (
d

t r ,r1dJ . ~90!
06610
-

be
d

r
in
n-
er

ay
a.

In one dimension there are four possible reactions:~a!
diffusion to the right or to the left, (1,21)→(21,1) or
(21,1)→(1,21), with probability 1/2;~b! creation of two
particles, (21,21)→(1,1), with probability (11l)/2; and
~c! annihilation of two particles, (1,1)→(21,21), with
probability (12l)/2. In a square lattice there are 16 possib
reactions. Among them we have the creation and annihila
of four particles with probabilities (11l)/2 and (12l)/2,
respectively. We remark that the particles are created
annihilated in an even number. We remark that whenl51
~zero noise! the full lattice configuration is an absorbin
state.

In one dimension the ‘‘s-t ’’ transformation above is a
one-to-one transformation so that eacht configuration is al-
lowed. In two or more dimensions the ‘‘s-t ’’ transformation
is no longer a one-to-one transformation and not allt con-
figurations are permitted. However, if one starts with o
allowedt configuration the evolution defined by the trans
tion rate~90! will, of course, always give allowed configu
rations. In this case, we may ask for the stationary densit
particlesrp5@^t r ,r1x&11#/2. According to the ‘‘s-t ’’ trans-
formation, this is given byrp5@^s rs r1x&11#/2, or, in the
case of translational invariance,rp5(rx11)/2512r12 .
The density of vacanciesrv512rp equals the density o
defectsr5r12 .

By virtue of the results obtained for the density of defe
we draw the following conclusions for the density of vaca
cies. For nonzero noise,rv approaches, exponentially wit
time, a finite value which for small values of« behaves as

rv;«1/2, d51, ~91!

and

rv;
1

u ln «u
, d52. ~92!

For d.2 the density vacancies approach a constant va
given by

rv5
1

2G0~0!
, d.2. ~93!

For zero noise,«50, the density of vacancies behaves as

rv;t21/2, d51, ~94!

and

rv;
1

ln t
, d52, ~95!

for long times, vanishing whent→` so that the system
reaches the absorbing state, characterized byrv50. For d
.2, the density of vacancies approaches a nonzero v
which, according to Eq.~88!, is given by

rv~`!5
1

G0~0!
rv~0!. ~96!
1-7
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In this case the absorbing state is not reached and the sy
remains in an active state.

VII. CONCLUSION

We have investigated the linear Glauber model on
d-dimensional hypercubic lattice. The model is one of t
simplest nonequilibrium models that can be solved exac
By the use of the Green function method we have calcula
the two-point correlation functions from which we have o
tained the critical behavior and the critical exponents. T
model belongs to the universality class of the voter mo
@16#, with exponentsb50, n51/2, andz52 for any dimen-
.

th

ev

06610
em

a
e
y.
d

e
l

sion. The exponentg51 for d>2, with logarithmic correc-
tions at the upper critical dimensiondc52, andg51/2 for
d51. We have also obtained an exact expression for
density of defectsr12 . We have also mapped the Glaub
model into a reaction-diffusion model which for zero noi
has the full lattice as an absorbing state. Ford<2 the ab-
sorbing state is always reached, whereas ford.2 the final
state depends on the initial conditions.
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