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Linear Glauber model
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We study the time-dependent and the stationary properties of the linear Glauber modktimensional
hypercubic lattice. This model is equivalent to the voter model with noise. By using the Green function
method, we get exact results for the two-point correlations from which the critical behavior is obtained. For
vanishing noise the model becomes critical with expon@#9, y=1, andv=1/2 for d=2, with logarith-
mic corrections at the upper critical dimensidp=2, andB=0, y=1/2, andv=1/2 ford=1. We show that
the model can be mapped into a particular reaction-diffusion model.
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I. INTRODUCTION namics of the Ising model in two or more dimensions, on the
other hand, it can be solved exactly in any dimension and is
The stochastic process introduced by Gladi¢assigned interesting enough to be studipeér se

to the one-dimensional Ising model a dynamics that the The linear Glauber model has been the subject of a study
model lacked due to its static definition. The dynamics is &y Scheucher and Spoli] and can be interpreted as the
one-spin-flip Markovian stochastic process governed by &oter model with noise. In the voter mod@—10 an indi-
master equation whose stationary state is the Gibbs probabilidual looks at one of its neighbors, chosen at random, and
ity associated with the Ising Hamiltonian. This property is assumes the opinion of this neighbor. With noise, the indi-
ensured by using transition rates that obey detailed balancgiqyal adopts the neighbor’s opinion with probability-1j
The use of a one-spin-flip transition rate guarantees that anyq the opposite opinion with probability the noise. The
spin configuration can be reached from any other so that fof 1o model is recovered in the limit of zero noise.
large times the spin configurations will be drawn according  +1. inear Glauber modébr noise voter modehas been

to the stationary Gibbs probability. I . . :
The dynamics introduced by Glauber is not the sole posrc'tUdIed in two dimensions by Krapivskg1] as a model for

sible dynamics for the Ising model. Glauber himgélf sug- surfa;:fe catalyt|c‘react|on gndhb_y de OI|v|eafa?jI. [11‘2] ar;d
gested another one-spin transition rate for the one—Drou © an@ Gpdrehe[lB] In their genera stg y of a class
dimensional Ising model. Other stochastic dynamics can b8f nonequilibrium models. The voter model is also a spgual
set up. One can use, for instance, the Metropolis procedufé?Se Of models that have been used to study the kinetics of
[2] to construct stochastic processes whose stationary prog@talytic reactions[11,14, competing learmning15], and
ability is the Gibbs probability associated with the one-cfitical coarsening without surface tensipi6]. _
dimensional Ising Hamiltonian or any other Ising Hamil- FOr a nonzero noise, the Glauber linear model displays
tonian in any dimensiori3,4]. Indeed, the various Monte just one phase, the paramagnetic phase. WirerD, the
Carlo methods available to study the Ising model reflect th&orrelation length diverges and the model becomes critical.
great number of such procesgéss]. Since the voter model displays a nonzero magnetization then,
Among the various one-spin-flip stochastic processes asit =0, there is a jump in the magnetization and the model
sociated with the Ising model, the original Glauber process ipresents a critical first-order transitigd2] resulting in a
unique in that it can be solved exactly, the basic reason beingritical exponeniB=0. Other critical exponents of the linear
the linearity of the flip transition rate. More precisely, con- Glauber model are=1/2 andz=2. The exponent related to
sider the class of stochastic models described by the onghe susceptibility is found to be=1 for d=2, with loga-
spin-flip ratew; associated with the siteof a regular lattice, rithmic corrections at the upper critical dimensidp=2,
w;(o)=c+ 0;0i(0), whereo denotes the collection of Ising andy=1/2 ford=1.
spin variablec is a constant, ang;(o) is a function of the Dornic et al.[16] in their study of coarsening phenomena
Ising spin variables. The original Glauber process is suclhave defined a class of two-dimensional models for which
thatg;(o) is linear in theo variables. If this transition rate is the ordering occurs with no surface tension. The critical ex-
used to describe the dynamics of Ising models in two ofponents of this class, called the universality class of the voter

more dimensions, the functiay (o) must be nonlinear. model [16], are the same as those of the linear Glauber
In this paper we are concerned with the analysis of anodel studied here.
stochastic linear model defined indadimensional hypercu- By using the Green function meth¢d7,18 we obtained

bic lattice with one-spin-flip transition ratev;(o)=c exact results for the time-dependent as well as the stationary
+0i0;(0) such thatg;(o) is linear in theo variables. For behavior of the magnetization and the two-site correlation
dimensions greater than 1, such a linear model, which wéunction. In particular, we obtained the susceptibility and the
call the linear Glauber model, does not possess detailed batlensity of defects, a measure of the coarsening phenomena,
ance so that the stationary probability is not kncavpriori. as a function of noise and time. From these results we get the
If, on one hand, the linear Glauber model cannot be the dyeritical behavior and the critical exponents.
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IIl. MODEL and
Consider ad-dimensional hypercubic lattice in which at 14d N
each siter there is a spin variable, that takes the values P e —2p,+ q > press (6)
+1. The linear Glauber model is defined by the one-spin-flip @ o
rate which is valid forr # 0 with the conditionpg=1.
o A 2 Introducing the parameter by
Wr(U)_E 1_%0} = Tr+4(> 1) 1-x 2q
TN Ti-2q° @

where\ is a parameter in the intervakON<1 and the sum-
mation is over the @ nearest neighbors of the site The Egs.(5) and (6) are written as
parameterr sets the scale of time.
In one dimension, the stationary state of this model has d P
microscopic reversibility and is identified as the Gibbs prob- am= - Em (8)
ability of the one-dimensional nearest-neighbor Ising model.
In this case the parametgris related to the strengthof the 5,4
interaction between nearest-neighbor spins and to the tem-
peraturel by \ =tanh(2/kT) [1]. In two or more dimensions d 1
there is no such relationship because the model is irrevers- gqtPr= Tert og 25 (Pr+s—Pr), 9)
ible, that is, it does not satisfy detailed balance, and we do

not know the stationary probabilig priori. _where for convenience we have choses 1/2\. Equation
The model can also be interpreted as a voter model wntag) is valid for r 0 with the conditionpy= 1.

noise. At each time step a spin is chosen at random. Then one€' 1,4 time evolution equations are to be solved for initial

of its 2d nearest neighbors is chosen at random. The Chosey,ie that are translationally invariant. Here we will consider
spin takes the sign of the chosen nearest neighbor with probyoncorrelated initial states of the Bernoulli type such that
ability (1+\)/2=1—q and the opposite sign with probabil- (o)=mg and(o, o ,>=m2 In other words at=0 we have

ity (1—\)/2=q which is then interpreted as a noise. ' 0 T o

The master equation that governs the time evolution of m0)=m, and p,(0)=m? (10)
the probabilityP(o,t) of configurationo={o,} at timet is
given by except forpy(0)=1.
q The solution for the magnetization is
_ — r rey
GiP(@0=2 (WP, —wi(0)P(a,1)}, (2 ()= mee™ 2. 1

where the summation is over the sites of the hypercubic lat$0 thatm(«)=0 for £ #0 andm(>) =mq for £=0. Defin-

. ST : - i I
tice. Hereo" stands for that configuration obtained fram g the time correlation lengthr by m=mge """ we con-
by changingo, to — o, . clude that it diverges as~e "Il with v =1. In the follow-

From the master equation it is straightforward to obtaining we will focus on the pair correlation.
the time evolution of the magnetizatider,), given by
Il. STATIONARY SOLUTION

d A . :
m(m)Z (o) + 2d RGPS 3 A. Pair correlation
o . .

In the stationary state we have the equation
and of the pair correlatiofio,o,/), r’ #r, given by 1
; N ﬁiﬁ (prs5—Pr)—€p=0, (12)
ﬁ(ar(fr’>= —2(oo)+ 2d E {(orovr 45
° which is valid forr#0 and py=1. In order to solve this

oot (4) equation we start by introducing a paramedesuch that

valid for r’ #r. We are interested only in the translationally
invariant solution of these equations so that)=m will be
independent of and{o,o,/) will depend only on the differ-
ence vector —r’, that is,(o,0,/)=p,_, . The time evolu- ~ With this condition we can write an equation valid for any

1
>d 25 (ps—po)—epo=—a. (13)

tion for m andp, are then given by siter of a hypercubic lattice, namely,
d 1
Em:_(l_)\)m (5) Ezﬁ (Prys—pr)—ep,=—2ady, (14
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in which the parametea is to be chosen in such a way that

po=1.
The solution of Eq(14) is obtained as follows. LB, (s)
be the lattice Green function, defined by

T T e
SO
s+d 1> (1—cosk))
=

ik-r dk; - - - dkg

(2m)¢

(19

wherer=(ny,n,, ... ,ng), Nj=0,£1,£2,... is asite of
the  d-dimensional hypercubic  lattice  and k
=(kq,ky, ... kg). It is easily shown, by using a discrete
Fourier transform, tha®,(s) is the solution of

1
33 & (Gris= G =SG= 50, (16

where the sum is over all nearest neighbors of the origin.

Comparing Eqgs(16) and (14), it follows that p,=aG,(¢).
Since the parameter should be chosen so thag=1, then
a=1/Gy(e), and the stationary pair correlation is given by

. G (e)
PrGo(e)”

17

B. Susceptibility
The susceptibilityy is defined as the fluctuation

X= E {(ao0r)—(oo){(or)}. (19

Since in the stationary stater,)=0 for e #0 then

X:Z Pr -

(19

Summing each side of E¢14) overr we find the relation
x=ale, which together with the resuli=1/Gy(¢) gives

1

X= 860(8). (20)
For small values 08§, it is well known[18] thatGy(s) is
finite for dimensionsd>2, while in lower dimensions, it
diverges whers—0 as
Go(s)=(2s+5?) 2~(25)7 1% d=

1, (21

and
d=2.

Go(s)~m In(1/s), (22

From these results we obtain the asymptotic behavior of the

susceptibilityy(g) for smalle as
x~&e Y% d=1, (23)

and
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8_1

X’Vm, d:2 (24)

SinceGy(0) is finite ford>2 we have
L d>2 25
X= ms ’ . ( )

Therefore, the susceptibility diverges, in any dimension, as
x~—¢&~ ¥ with the exponenty=1/2 ford=1 andy=1 for d

=2 with logarithmic corrections at the upper critical dimen-
siond.=2.

C. Pair correlation for e=0

A stationary solution for this case is obtained by taking
the limit e—0 in Eq.(17). Let us write

. Gie) -
Pr= Go(S)' ( )
whereG,(g)=Gy(c) — G,(¢) is given by
~ ™ ™ 1—cosk-r dk;---d
Gier= [ . 5 )dkd-
" ”s+d—121(1—coskj) i
=
(27)

In the limit e—0, the functionGy(&) diverges ifd<2, re-
maining finite ifd>2. ButG,(0) is a finite quantity in any
dimension. Therefore, when—0 we havep, =1 if d=2. If
d>2 we have

G,(0)

Pr GO(O) ’ (28)
which is strictly less than 1, except for=0.

Whens=0, the divergence of the lattice Green function
as defined by Eq(15), for d=1 andd=2, means that for
s=0 no solution of Eq(16) that decays as— is avail-
able. Ford>2, on the other hand, the Green function is
bounded so that Eq28) is a solution. Turning back to the
original equation(12) for the pair correlation function, we
see by inspection that, =1 is a solution of Eq(12) for any
dimension. Ifd=2 the solutionp,=1 is the sole solution.
However, ifd>2 this solution is distinct from the solution
given by Eq.(28). Actually, in this case any linear combina-
tion of these two solutions, such tha§=1, will be a solu-
tion of Eq.(12). The general stationary solution in three or
more dimensions will be then

G,(0)
Go(0)’

pr=c+(1—c) (29

wherec is an arbitrary parameter.
As we saw above, the stationary magnetizatiomjsfor
e=0. If my# =1 there is an apparent contradiction with the

stationary solutionp,=1 for d=<2, sincep,=1 implies a
magnetization equal to 1 or 1. This apparent contradiction
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is resolved by observing that if we start from a configuration 5 , (d 2
with magnetizatiorm, then with probability (# mg)/2 the X“g"(x) +xg' (x) =) x“+ 5—1) g(x)=0, (38
system will reach magnetization 1 and with probability (1
—mo)/2 it will reach magnetization-1. whose solution is the modified Bessel functiln,_;(x).
Therefore the solution is
D. Density of defects 3
pr=Ar Y K yp_y(ar). (39

A measure of the coarsening phenomenon is given by the
density p, . of defects, defined as the density ef—  Using the asymptotic behavior of the Bessel function for
nearest-neighbor pairs of sites. It is related to the pair corretarge argument we get
lation between two nearest-neighbor sifgs wherex de-

notes any one nearest neighbor of the origin, thapis, e o
=(1—py)/2. Sincep,=G,(&)/Gy(e), the density of defects P a (40
is given by
1 Gy(e) Therefore the pair correlation decays exponentially, a result
p+_=—( - X—] (300 valid for r>a 1. The correlation lengt§= ! behaves as
2 Gole) é~g~ Y2 50 thaty=1/2 for any dimension. From this result

it follows that the exponent= v /v=2 for any dimension.

Whene =0 we need to study only the cade-2 since for
d<2 we havep,=1. If d>2 and for large values df| we
have to solve

Now, settingr=0 in Eq. (16) and using symmetry we
obtain a relation betwee®,(s) and Gy(s), namely,G,(s)
—(1+5s)Gy(s)=—1 [20], so that

Gy(s) 1 2
=1+s— ——. (31 dp d-1dp
Go(s) Go(s) ar2 + rdr =0, (41)
In view of the resul{31) and using the asymptotic behav- ,
ior of the Green functioiG,(s) given by Egs(21) and(22) (O obtain
we obtain the following results for small values ©f 1
by ~s' d=1, (32 T 42
1 The pair correlation function then decays algebraically. The
P Tine|’ d=2, (33 exponenty defined throughp~1/r9=27 is therefore 5
=0.
andp, _ vanishes in the limit—0. Ford>2, the density
p+_ approaches a finite value in this limit, namely, IV. TIME-DEPENDENT SOLUTION FOR £=0
1 A. Pair correlation
P==2G4(0)’ d>2. (34) In this section we will consider only the case=0 and

the initial conditionmy=0. The time evolution of the pair
correlationp, =(oo,) is given b

E. Large |r| behavior pi=(o0or) 19 y

d 1

To obtain the behavior for large values|of we consider - _ 43
the continuum case of E(L2), that is, we consider the equa- dt”r" 2d 25 (Pres™pr). “3
tion

valid for r # 0 with the conditionpg=1.
V2p=a?p, (35) Defining the Laplace transform
wherea=2de. Seeking for a spherically symmetric solu- A~ it
tion we get the equation pr(2)= 0 pr(D)e "dt, (44
d’p d—1dp we have
— — — 2
dr2+ ar e (36)
~ 1 - -
- 2pi=5g 2 (Prss—po), (45)
whose solution is of the type o
p=Ar" 92 1g(qr), (37) valid for r#0, where we have used the initial condition

p:(0)=0 forr+#0. As before we introduce now an equation
where the functiorg(x) obeys the modified Bessel equation for ,30, namely,
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. 1 A . from which follows
Zpo=5g 2 (Ps=Po) +b, (46)
x(H~t"% d=1, (57)
whereb(z) is to be chosen so that= 1/z, which is equiva- .
lent to choosingpg=1. - _
Following the same procedure used before one obtains the XM Int’ d=2, (58)
solution
- ~ and
pr(2)=bG(2). (47)
1
Since nowp(z) = 1/z we getb=1/z2Gy(z), so that x(t)= mt, d>2. (59
Gi(2)

pr(2)= . (48 If we write x(t)~t¢ we have=1/2 ford=1 andZ=1 for
2Go(2) d=2 with a logarithmic correction at the upper critical di-
The limiting valuep, (=) can be obtained from mensiond.=2. This result for{ is consistent with the rela-
tion {=(d—2vy/v)/z [19].

R . G(2)
pi(0)=limzp,(2)= Ilm—z. (49

240 2-.0C0(2) C. Density of defects

S o _ Let us determine the largebehavior of the density of
This limit is 1 for d<2. If d>2 it is strictly less than 1, defectsp. _, related to the pair correlatiop, by p, = (1

except forr=0, and is given by —p,)/2. Their Laplace transforms are related by
G,(0) R 1(1 .
(=)= 50 (50 pe—(2)= E[E—pxm} (60
B. Susceptibility so that
The Laplace transforny(z) of the susceptibility R 1 . G(2) o1
p+—(z)_z Go(Z) . ( )
XO=2 pi(t) (51)
' Using the result31) together with the asymptotic behav-
is given by ior of Gy(s) for small values of given by Egs(21) and(22)
we have
. . b A
X(Z)=Z p(2)=>. (52) P (~z ¥ d=1, (62)

The last equality follows from Eqg45) and (46). Therefore  and

~ 1
X = - Z)N—y d:2| (63)
x(2) 2Go(2) (53 P Z|Inz|
To determine the long time behavior we need the behavioflom which we obtain
of ;((z) for small values ofz. Using asymptotic results for “12 g1 64
the Green function given by Eg&1) and(22), we have p+—(O~TT o (64)
. 1 and
2)~—, d=1, 54
x(2) i (59) .
p+—(t)~mv d:21 (65)
- 1
X2)~—5—, d=2, (55 o .
Z°|InZ] so thatp, _(t) vanishes in the limit—o for d<2. Ford
>2, the densityp, _(t) approaches a constant value given
and by

. 1
X(Z):m;, da>2, (56)

(66)
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V. GENERAL TIME-DEPENDENT SOLUTION t ,
p,(t)=mge_“-}—(l—mg)p?(t)e_€t+sJop?(t’)e_€t dt’.

(76)

A. Pair correlation

The time evolution of the pair correlatign=(oq0,) is

given by Therefore, if the solutiop?(t) is known, the solution fok
d 1 #0 andmy#0 can be obtained from this equation.
tpr 2d 26 Pr+6—Pr) —EPr, (67)

B. Susceptibility

valid for r #0 with the conditionp=1. The Laplace transforny(z) of the susceptibility
Defining the Laplace transform

. . X(=2 {pi(t)—mie”*Y} (77)
pi(2)= fo pr(he” dt, (68) r

is given by
we have

—6 78
"z

- - 1
X(2)=2 [pr(Z)—mmS

. 1 . . .
Zpr—m§=% Eﬁ (Pr+6—Pr)—€p;, (69

The last equality follows from Eq$69) and(70). Therefore
valid for r#0, where we have used the initial condition

p:(0)=m3 for r 0. Again we introduce an equation fpp, S 12y &0
namely, x(z)=|1-mg+ S| X (z+e), (79
- , 1 ~ A A a where
Zpo—My=54 > (ps—po)—2poth, (70
o
oL ~ o X'(2)= (80)
whereb(z) is to be chosen so that=1/z, which is equiva- z2°Gy(2)

lent to choosingy=1
Following the same procedure used before, one obtainis the Laplace transform of the susceptibiligf(t) corre-

the solution sponding to the case=0 andmy=0. Then
t !
=) ma+bG,(z+e). (72 X(t)z(l—mg)e’stxo(t)+sfoe’“ X°(tHdt’. (81
Since nowp(z) =1/z we get C. The limit tes
(1 1 5 1 To get the limitt— o we use the important property of the
= (E_ Z+e) mo) Go(z+2)’ (72)  Laplace transform

limF(t)=limzF(z), (82)

t—oo z—0

so that

(73) valid for a given functionF(t) and its Laplace transform
0)Go(z+e)" £ ;
0 F(z). Since

A (1 1 2)@,(z+e)
Pz ™ 2T 5 )

Let p?(t) be the solution corresponding to the initial con-

- z - -
dition p,(0)=0 ande =0, and letp?(z) be its Laplace trans- ~ ZPr(2)= Z+2) ma+(1—md)zpy(z+e)+epl(z+e),
form. Then from this last equation we have (83

G (z) we get
_G (s)
-~ 2 o €l which is independent of the initial conditio’né. Therefore,
P zre) M0 1=mo+ 7 |pr(zte). (79 as long as=#0, the stationary solutiofl?) is approached
no matter what the initial condition is.
From this equation it is easy to find that For the case=0, we have
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zﬁ,(z)=m§+(1—m§)z;§?(z) (85) _ In one dimens_ion there are four possible reactidias:
diffusion to the right or to the left, (1)—(—1,1) or
(—=1,1)—(1,—1), with probability 1/2;(b) creation of two
particles, 1,—1)—(1,1), with probability (1+\)/2; and
(2) (c) annihilation of two particles, (1,5 (—1,—1), with
(86)  probability (1-\)/2. In a square lattice there are 16 possible
reactions. Among them we have the creation and annihilation
_ . . . . of four particles with probabilities (£\)/2 and (1-\)/2,
will depend on the initial condition except fd<2, since in  regpactively. We remark that the particles are created and
this case the rati@,(2)/Go(z) 1 asz—0 so thatp(*)  znpihilated in an even number. We remark that whenl
=1 independent of the initial condition. Far>2, the lim- ;¢ noisg the full lattice configuration is an absorbing
iting pair correlation is then state.
In one dimension the &-7" transformation above is a
G:(0) (87) one-to-one transformation so that eachonfiguration is al-
Go(0)’ lowed. In two or more dimensions ther*7” transformation
is no longer a one-to-one transformation and notration-
which coincides with the stationary pair correlati@®) with  figurations are permitted. However, if one starts with one
the arbitrary constart=mg. allowed 7 configuration the evolution defined by the transi-
From the relationp, _=(1—p,)/2 and taking into ac- tion rate(90) will, of course, always give allowed configu-
count the relatior(31), one gets the following equation for rations. In this case, we may ask for the stationary density of
the density of defects, valid fat>2: particlespp=[( ;+x) +1]/2. According to the &-7" trans-
formation, this is given by ,=[(o,0,,,)+1]/2, or, in the
case of translational invariance,=(px+1)/2=1—p, .

and

pr(©)=m3+(1—m?)lim c
r 0 0 ZHOGO(Z)

pr()=mj+(1—mj)

pe-(2)= GO(O)p+‘(O)’ (88) The density of vacanciep,=1—p, equals the density of
defectsp=p, _.
where we used the fact that+_(0):(1—m§)/2. Ford By virtue of the results obtained for the density of defects
<2, p;_(*)=0. we draw the following conclusions for the density of vacan-
In the limit t—o the susceptibility is cies. For nonzero noisg, approaches, exponentially with
time, a finite value which for small values efbehaves as
I ° _ 1 o1 _
X(w)—isz(Z)— 2Gq(e)’ (89 pv-er  d=1, (91
and
which coincides with the stationary susceptibility found be-
fore. 1
Py~ W, d=2. (92)

VI. EQUIVALENT REACTION-DIFFUSION MODELS
) ) ) ] ) For d>2 the density vacancies approach a constant value
Consider ad-dimensional hypercubic lattice and supposeg;iyen by

that each bond connecting two nearest-neighbor sites can be

either occupied by a particle or vacant. We attach to the bond 1

connecting sites andr’ a variabler, ,, that takes the value p":r(O)’ d>2. (93
+1 or —1 according to whether a bond is occupied or 0

empty. The particles diffuse and react according to certaifq, zerg noiseg =0, the density of vacancies behaves as
rules to be specified. We are interested to know the reaction-

diffusion system that can be mapped into the linear Glauber p~t" Y2 d=1, (94)
model defined by Eq(1). To this end we make the transfor-

mation 7, ,»= 0,0,/ S0 that each configuratioo={o,} is  and

mapped into the configuratior= {7, ,/}.

The spin flipo,— — o, will correspond to changing the 1
variables 7, ,»— — .+, that is, to change the sign of the ARTYE d=2, (99
variables attached tod2bonds coming out of site. In other
words, we may say that at each time step tlieparticles  for long times, vanishing whemn—o so that the system
next to the given site, chosen at random, react in such a wai¢aches the absorbing state, characterizeghsy0. Ford
that if a bond is occupied it becomes empty, and vice versas2, the density of vacancies approaches a nonzero value

The transition ratev,(7) of such a reaction is which, according to Eq(88), is given by
o A 1
Wr(T):E[l_Eé 7?,H—ﬁ]- (90 pv(m)Zmpv(O). (96)
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In this case the absorbing state is not reached and the systesion. The exponeny=1 for d=2, with logarithmic correc-

remains in an active state. tions at the upper critical dimensiah,=2, andy=1/2 for
d=1. We have also obtained an exact expression for the
VIl. CONCLUSION density of defectp,_ . We have also mapped the Glauber

model into a reaction-diffusion model which for zero noise

We have investigated the linear Glauber model 0n gy55 the full lattice as an absorbing state. Bet2 the ab-
d-dimensional hypercubic lattice. The model is one of the,

i A sorbing state is always reached, whereasdfer2 the final
simplest nonequilibrium models that can be solved exactlyg; i depends on the initial conditions.

By the use of the Green function method we have calculated
the two-point correlation functions from which we have ob-
tained the critical behavior and the critical exponents. The
model belongs to the universality class of the voter model | wish to acknowledge Tr@a Tomefor helpful discussions

[16], with exponentg3=0, v=1/2, andz=2 for any dimen-  and her critical reading of the manuscript.
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