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Anomalous pressure in fluctuating shear flow
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We investigate how the pressure in fluctuating shear flow depends on the sh&amdten the system size
L by studying fluctuating hydrodynamics under shear conditions. We derive anomalous forms of the pressure
for two limiting values of the dimensionless parameter SL?/ v, wherev is the kinematic viscosity. In the
casen<1, the pressure is not an intensive quantity because of the influence of the long-range spatial corre-
lations of momentum fluctuations. In the other limi¢-1, the long-range correlations are suppressed at large
distances, and the pressure is intensive. In this case, however, there is the interesting effect that the nonequi-
librium correction to the pressure is proportionalS8?, which was previously obtained with the projection
operator methodlK. Kawasaki and J. D. Gunton, Phys. Rev8A2048(1973)].
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It has been confirmed for over a century of study thatrecognized that a lack of detailed balance is responsible for
hydrodynamic equations describe macroscopic flow withvarious distinctive features. One of them is the generic exis-
high accuracy. However, a microscopic foundation of fluidtence of long-range spatial correlations of fluctuations of
mechanics has not yet been established except in the dilug®nserved quantitie’]. For example, a correlation of mo-
limit gas. There seems to be no basis in microscopic physicanentum fluctuations becomes spatially long ranged under
laws on which to establish the validity of the local equilib- shear condition$s,9].
rium assumption inherent in hydrodynamic equations. In- However, because the correlation function known at
deed, it may be the case that any proper equation of staffésent is strongly divergent in a long wavelength limit, a
must be incorporated with nonequilibrium effects. certain appropriate length scale may be introduced as a cut-

The anomalous form of equation of state under nonequioff. Therefore, we first need to know the momentum corre-
librium conditions was first discussed by Kawasaki and Gunlation function over the whole region of length scales. It may
ton [1]. They derived a nonanalytic dependence of the presbe suitable to study fluctuating hydrodynamics for this pur-
sure tensor on the shear rate for an uniformly sheared simplOsSe.
fluid. Subsequently, the same problem was studied by several Model. Let v;(r,t) be a fluctuating velocity field in an
authors in detai[1—4], and the nonanalytic response due toincompressible fluid with a constant temperattirthat is far
mode-coupling effects has now become evident. Neverthefrom the critical point. The time evolution afi(r,t) is de-
less, with regard to the normal stress, such predictions hawcribed by the continuity equation of the momentum,
not been fully confirmed by laboratory experiments or by
numerical simulation§5s]. pdwi+d;ll;;=0, @

In addition, quite recently, another type of anomalous .
nonequilibrium pressure has been reported by Aoki and Kusvhere the momentum flux tensbr is given by
nezov|[6]. They have studied numerically heat conduction
problems of anharmonic oscillator models and have found

that the nonequilibrium correction to the pressure is nearl . . L L .
ere, v is the kinematic viscosityp is a constant density,

proportional to the system size. This finding is remarkabl d saG . p ¢ ¢ sty
because it implies the absence of the intensivity of the pres“"Zln S represents a Gaussian random stress tensor satisfying

sure in this nonequilibrium system. As far as we know, therethe fluctuation-dissipation relatidii0],

is no theoretical explanation for this result so far. D e
In this paper, we propose a unified understanding of the (Sik(rDsim(r",t')) =2pTr[ (81 S+ Simm i)

two anomalies for a specific simple case, uniform shear flow — 25, Oiml3(r—r")s(t—t"). (3)

in a fluid. We establish a general criterion that can distin-

guish between nonintensive and nonanalytic nature of thghroughout this paper, the Boltzmann constant is set to unity.

pressure. We also give a brief comment on numerical experithe auxiliary fieldp in Eq. (2) can be replaced by use of the

I1j=pvjv;+pdi;—vp(div;+ djv)) +sjj . ?)

ments that disagree with the mode-coupling theory. incompressible condition,v, =0, which implies the relation
The key idea of our study is to establish a possible rela-
tionship between the pressure anomalies and the long-range P=Pg— 9 ImSim—PA (v m) (Imv1), (4)

spatial correlation of momentum fluctuations. It has been
wherepg is a constant.
We consider the system in a three-dimensional space, for
*Electronic address: wada@daisy.phys.s.u-tokyo.ac.jp which —o<x, z<ew, and —L/2<y=<L/2. The boundary
TElectronic address: sasa@jiro.c.u-tokyo.ac.jp conditions are imposed satisfying
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v(x,L/12z)=v(x,—L/2,z)+SlLe,, (5) T (L2 T
_ e
. . i py py __3f T! 2 ’ (10)
which are chosen so as to make the analysis as simple as L priL
possible. We study linear fluctuations around the average eq - S
shear flow wherepyq is the equilibrium pressure. We have assumed that
p,—py* does not have ultraviolet divergences. The validity
(v(x,Y,2))=(SY,0,0). (6) of this assumption is not obvious, and it should be confirmed
by a concrete calculation.
Without loss of generality, we s&=0. Because we carry out a linear analysis of the fluctuations,

From Eq. (1), we havedi(Il,))=0 for the statistical we replacef(\,D) by fo(A)=f(N\,D=0). Then the prob-
steady state. Because this represents a force balance eqglem is now reduced to deriving the form of the function
tion, the pressure in thedirection is given byI1,,). Then,  fo(X). However, because it is still difficult to find a general

using Egs(2) and(4), we write the pressurp, as solution even in this simplified problem, we study two spe-
cific casesh <1 andA>1.
py=pg+ p(v)z,)—pA’l<(a|vm)((9mv|)). (7) When\ <1, all quantities may be expanded in powers of

\. Due to the reflection symmetry, we hafg(\)=Cco\?.

Now, the problem is to determine hopy depends on the Here ¢, is a constant whose value is calculated to be
shear rateS and on the system side 1/11527 below. We thus obtain

The most general form of fluctuating hydrodynamics con-
sists of a set of stochastic evolution equations for the energy, eq_ 2
density, and momentd0]. In our model, the thermal diffu- Py=Py=CoTL v 1D
sion constant and the sound damping constant are assumed to
be much larger than the kinematic viscosity. This assumptiofNote that thid dependence, which implies the breakdown of
is made for simplicity here, otherwise the calculation of thethe intensive nature, is compatible with the result by Aoki
stress tensor becomes more complica®d]. and Kusnezoy6]. At the end of this paper, we discuss that

Now, we make a comment on the local equilibrium as-this anomalous behavior can be attributed to the long-range
sumption that is involved in hydrodynamic descriptions. Letcorrelation of momentum fluctuations.
¢ be a microscopic length, such as a mean-free path, and Next, we shall consider the opposite cas®;,1. Note that

define a dimensionless parameteas this condition does not necessarily imply the strong shear.
For example, this asymptotic case is realized by taking the
= limit L—, while keeping the shear ragsmall, in which
e (®  case the shear stress obviously remains small. Note also that

planar Couette flow is linearly stable for all valuesxaf If

In order to investigate the physical meaning of this paramwe encounter no infrared divergence in the calculation of
eter, we first consider the cage-0. In this case, the local py— pqu, we obtainfo(A)=c;\%2 because,— pf,q should
equilibrium assumption is valid because of the separation dbe independent df. In this case we have
scales. This implies that the shear flow does not influence the
thermodynamic properties of the system. Howeveg be-
comes of the order of unity, the molecular motion is violently
disturbed by the shear. Although it may be interesting to
study such systems, we cannot use fluctuating hydrodynami-his Sdependence is the same as that obtained by Kawasaki
ics for that aim. From this brief consideration of these twoand Gunton. As we demonstrate below indeed, no infrared
limiting cases, we regard the parameteas representing the divergence is accompanied in the calculationpgf-py?,
extent of departure from the condition of local equilibrium and that calculation yields E¢12) with ¢;=1.06X 102
states. Because we seek the nonequilibrium correction to the Technical detailsWe first consider the case— and
pressure under shear within the framework of fluctuating hybegin by performing the Fourier expansion
drodynamics, we consider the case of a small but fiaite

As the final condition on our model, we assutne €, so _ dk . .~
that the continuum description is valid. Note that our model vy(r)= (277)39 vy(K). (13
does not include the parametérexplicitly. It is included

only as a cutoff length when we encounter an ultravioletin a statistically steady state, an equal-time correlation func-

32
(12)

py—py= c1T<

14

divergence. tion can be defined as
Dimensional analysisThere are two independent dimen-
sionless parameters in the system: (ﬁy(k)ﬁy(k’))=ny(k) 3(k+k'). (14)
L3S T Equation(7) is then rewritten in the form
AN=—— D= 9)
g priL dk

=pg+ J ——C,(k), 15

Quite generally, we can write Py=PeTp (2m)3 (k) 19
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where we have used the res((t,v ) (Jmv,))=0, which is
readily obtained by,v;=0 and Eq.(3). From Egs.(1) and
(2), we derive the equation of the correlation function
Cyy(K):
dC,y(K) k.k F(
yy _ 2 Xy x)
_SK<(9—|(y_ 2| vk 2S k2 ny(k)
2vT 5
+ —— (kg +k3). (16
p
We can solve this equation by introducing the new wave 10"l — — — R
vectork’ =k+ Stke, , wheret is a fictitious time parameter. 10 10 10 10 107
Using the standard manipulati¢@,11], we obtain *
FIG. 1. Plots of numerically evaluated scaling functib(x),
Co(k)= ZVT(k2+k2)fwdt e—2vk2(t+t28k<ﬁy+t382ﬁ§/3) where the correlation functiorC,,(k) is written in the form
vy p X g Cyy(K)=p 'T[1+F(kl)]. Note thatp TF(kl) corresponds to

the nonequilibrium correction to the momentum correlation func-
X (1+2tSkk, +125%k2)2. (17)  tion. The solid line and the dotted line represent the asymptotic
functions calculated from the exact integral formkg(fx) for large
Combining Eqgs(15) and(17), we find an integral expres- x>1 and for smalix<1, respectively. These asymptotic functions
sion of the pressurgl2]. WhenS=0, this merely gives the are equivalent to resuli@1) and (22).
equilibrium pressur@iq, which can be written as
related to the long-range correlations of momentum fluctua-
py=pg+ bTe¢ 3. (18  tions. For simplicity, we restrict our attention to the fluctua-
tions with k= (k,0,0). Two asymptotic forms of the correla-
Here ¢ is introduced as a short scale cutoff to avoid thetion function are given as
ultraviolet divergence, ant is a numerical constant. Be-

causepg remains undetermined, this ultraviolet divergence is 1 &
renormalized into it appropriately so thg§? coincides with Cyy(k,0,0)~ o 1+3 D24 (21
the observable equilibrium pressure. In a nonequilibrium
case §5>0), we find that the correction to the equilibrium . 2> 5/, and
pressure is actually expressed in fot@8), andc, is given ’
by U3 [\ 23
C k,0,0)~—(—) F(—)—, (22
\/; : f “dtog(t) (19 ! S
©1= V325 3 329,

32(2m*Jo t for k?<S/v. Comparing these expressions with E¢kl)

with and (12), the dependence of the pressure on the long-range

fluctuations in each case becomes clear. Tké dépendence

in Eq. (21) reflects highly anomalous behavior of the fluc-
(20)  tuations with small wave numbe[43]. Note that there is a

range of wave numbers that satisky>S/v but are still

much smaller than the characteristic wave number of equi-

librium density fluctuations. On the other hand, Eg2)
HereQ=(0,¢), dQ=d¢ désind andA, B, C are polyno-  shows that this long-range correlation is suppressed at scales
mials of sing, cos¢, and sing, which are determined from |arger thanl=\/v/S, crossing over to a weaker correlation
Eq. (17. From numerical integrations, we obtain;  (see also Fig. )l This is equivalent to the stronger power-law

B(Q)+tC(Q)
2
1+tB(Q)+ EC(Q)

g(t)=f dQ A(Q) -

=1.06x10 2. decay of the correlation function thanrlih a real space
In the case\ <1, we can utilize the calculation performed [14]. A new length scalé characterizes this crossover, which
above by simply replacingfd ky(Zw)‘le"‘yy~ -+ with  is intrinsic in the nonequilibrium system considering now.

s,L-te2™YL. .. in Eq. (13). In this way, an expression  These results provide the following physical picture. The
similar to Eq.(17) with the replacemerk,—2x/L is found.  momentum fluctuations exhibit the long-range correlation
Then the expansion of this correlation function in powers ofdescribed by Eqg21) and(22). WhenL <1, this correlation

\ leads to the desired form of the nonequilibrium pressure iryields the nonintensive contribution to the pressure given in
Eq. (11), whose numerical factor is obtained ax Eqg. (11). On the other hand, whel is chosen to be suffi-
=1/11527~2.8x 104, ciently large, the long-range correlation is suppressed at

Long-range correlationsHere we demonstrate that the scales larger thah and this leads to the nonanalytic shear

anomalous forms of the pressuf®l) and (12) are closely rate dependence given by E42) instead.
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DiscussionlIn a nonequilibrium system, an external field and nanofluid studies may enable us to detect the nonequi-
having a spatial gradiert.e., shear floywinduces the cou- librium effect for real fluids in the near future. We also ex-
pling of fluctuations with different wave vectors. In a pertur- pect that our findings stimulates further numerical studies
bative expansion to the lowest order in shear rate, a correlauch as molecular dynamic simulations.
tion function has the same form as Eg1). This may cause Recently, Marcelliet al. reported the analytic dependence
an infrared divergence in the calculation @f,— piq. of pressure in shear flow observed in simulations of nonequi-
Roughly speaking, Eq11) is obtained when the cutoff scale librium molecular dynamicg5]. Because the shear condi-
is chosen as, while Eq.(12) is obtained when it is chosen tions were chosen to satisgz=1 and\>1 in their simula-
asl. We have demonstrated the validity of this intuitive ar-tions, their result is not directly comparable to ours.
gument by computing the correlation function rigorously. However, we believe that the qualitative feature of our result

The predicted finite-size dependence of presslitpun-  does not change even in the casel. We suspect that their
der the condition\ <1 is fairly striking. Sincd = /»/Smay  model system does not exhibit long-range momentum corre-
be less than 1 mm for water at standard temperature aridtion because of the absence of the local conservation of
pressure and for experimentally accessible shear rate, it ;Ifomentum. That might be the reason why their result is
possible to design an experimental device corresponding ticonsistent with the existing mode-coupling theoffiés 4]
the condition\<1. On the other hand, from Eqgg8), (12), and ours. We expect that measuring momentum correlation
and(18), (p,— p§cy/p§q is found to be proportional te*?in  functions will help resolve the discrepancy, probably favor-

the casen>1, ande? in the case\<1, respectively. This ably with the mode-coupling theory.

indicates that the nonequilibrium correction vanishes in Iocald Fm_il.ly, we give ? ger}er:taltrep"nark on the.Fsss'b'“? 0(;
equilibrium statedi.e., e—0), as expected. For example, escribing an equation of state for a nonequiibrium steady

is less than 10° when the shear rate is 16! for water  State using a thermodynamic function. An experimental test
considered above. Thus, unfortunately, the nonequilibriunﬁ)f t.h|s pos.3|b|llty. has recently been proposed in RES], in

correction may be too small to observe for simple fluidsWhICh the mtenswlty_of the_p_res_sure IS postula_ted. Theref(_)re,
under ordinary experimental conditions in either case. the recovery of the intensivity in our calculation has a sig-

This fact however. does not eliminate the fundamentapiﬁcam meaning with regard to the construction of thermo-

significance of the present study. In constructing a theoreticacllyn""mICS extended to steady states.

framework of nonequilibrium statistical mechanics, this

“ e-effect” must be taken into consideration, because a sta- The authors acknowledge K. Kawasaki for stimulating

tistical distribution can be reduced to a local canonical enconversations. This work was supported by grants from the
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