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Anomalous pressure in fluctuating shear flow
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We investigate how the pressure in fluctuating shear flow depends on the shear rateSand on the system size
L by studying fluctuating hydrodynamics under shear conditions. We derive anomalous forms of the pressure
for two limiting values of the dimensionless parameterl5SL2/n, wheren is the kinematic viscosity. In the
casel!1, the pressure is not an intensive quantity because of the influence of the long-range spatial corre-
lations of momentum fluctuations. In the other limitl@1, the long-range correlations are suppressed at large
distances, and the pressure is intensive. In this case, however, there is the interesting effect that the nonequi-
librium correction to the pressure is proportional toS3/2, which was previously obtained with the projection
operator method@K. Kawasaki and J. D. Gunton, Phys. Rev. A8, 2048~1973!#.
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It has been confirmed for over a century of study th
hydrodynamic equations describe macroscopic flow w
high accuracy. However, a microscopic foundation of flu
mechanics has not yet been established except in the d
limit gas. There seems to be no basis in microscopic phys
laws on which to establish the validity of the local equili
rium assumption inherent in hydrodynamic equations.
deed, it may be the case that any proper equation of s
must be incorporated with nonequilibrium effects.

The anomalous form of equation of state under noneq
librium conditions was first discussed by Kawasaki and G
ton @1#. They derived a nonanalytic dependence of the pr
sure tensor on the shear rate for an uniformly sheared sim
fluid. Subsequently, the same problem was studied by sev
authors in detail@1–4#, and the nonanalytic response due
mode-coupling effects has now become evident. Never
less, with regard to the normal stress, such predictions h
not been fully confirmed by laboratory experiments or
numerical simulations@5#.

In addition, quite recently, another type of anomalo
nonequilibrium pressure has been reported by Aoki and K
nezov @6#. They have studied numerically heat conducti
problems of anharmonic oscillator models and have fou
that the nonequilibrium correction to the pressure is nea
proportional to the system size. This finding is remarka
because it implies the absence of the intensivity of the p
sure in this nonequilibrium system. As far as we know, th
is no theoretical explanation for this result so far.

In this paper, we propose a unified understanding of
two anomalies for a specific simple case, uniform shear fl
in a fluid. We establish a general criterion that can dist
guish between nonintensive and nonanalytic nature of
pressure. We also give a brief comment on numerical exp
ments that disagree with the mode-coupling theory.

The key idea of our study is to establish a possible re
tionship between the pressure anomalies and the long-r
spatial correlation of momentum fluctuations. It has be
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recognized that a lack of detailed balance is responsible
various distinctive features. One of them is the generic e
tence of long-range spatial correlations of fluctuations
conserved quantities@7#. For example, a correlation of mo
mentum fluctuations becomes spatially long ranged un
shear conditions@8,9#.

However, because the correlation function known
present is strongly divergent in a long wavelength limit,
certain appropriate length scale may be introduced as a
off. Therefore, we first need to know the momentum cor
lation function over the whole region of length scales. It m
be suitable to study fluctuating hydrodynamics for this p
pose.

Model. Let v i(r,t) be a fluctuating velocity field in an
incompressible fluid with a constant temperatureT that is far
from the critical point. The time evolution ofv i(r,t) is de-
scribed by the continuity equation of the momentum,

r] tv i1] jP i j 50, ~1!

where the momentum flux tensorP is given by

P i j 5rv iv j1pd i j 2nr~] iv j1] jv i !1si j . ~2!

Here, n is the kinematic viscosity,r is a constant density
and s represents a Gaussian random stress tensor satis
the fluctuation-dissipation relation@10#,

^sik~r,t !slm~r8,t8!&52rTn@~d i l dkm1d imdkl!

2 2
3 d ikd lm#d3~r2r8!d~ t2t8!. ~3!

Throughout this paper, the Boltzmann constant is set to un
The auxiliary fieldp in Eq. ~2! can be replaced by use of th
incompressible condition] lv l50, which implies the relation

p5pB2] l]mslm2rD21~] lvm!~]mv l !, ~4!

wherepB is a constant.
We consider the system in a three-dimensional space

which 2`,x, z,`, and 2L/2<y<L/2. The boundary
conditions are imposed satisfying
©2003 The American Physical Society02-1
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v~x,L/2,z!5v~x,2L/2,z!1SLex , ~5!

which are chosen so as to make the analysis as simpl
possible. We study linear fluctuations around the aver
shear flow

^v~x,y,z!&5~Sy,0,0!. ~6!

Without loss of generality, we setS>0.
From Eq. ~1!, we have ] j^Py j&50 for the statistical

steady state. Because this represents a force balance
tion, the pressure in they direction is given bŷ Pyy&. Then,
using Eqs.~2! and ~4!, we write the pressurepy as

py5pB1r^vy
2&2rD21^~] lvm!~]mv l !&. ~7!

Now, the problem is to determine howpy depends on the
shear rateS and on the system sizeL.

The most general form of fluctuating hydrodynamics co
sists of a set of stochastic evolution equations for the ene
density, and momenta@10#. In our model, the thermal diffu-
sion constant and the sound damping constant are assum
be much larger than the kinematic viscosity. This assump
is made for simplicity here, otherwise the calculation of t
stress tensor becomes more complicated@3,4#.

Now, we make a comment on the local equilibrium a
sumption that is involved in hydrodynamic descriptions. L
, be a microscopic length, such as a mean-free path,
define a dimensionless parametere as

e5
,2S

n
. ~8!

In order to investigate the physical meaning of this para
eter, we first consider the casee→0. In this case, the loca
equilibrium assumption is valid because of the separation
scales. This implies that the shear flow does not influence
thermodynamic properties of the system. However, ife be-
comes of the order of unity, the molecular motion is violen
disturbed by the shear. Although it may be interesting
study such systems, we cannot use fluctuating hydrodyn
ics for that aim. From this brief consideration of these tw
limiting cases, we regard the parametere as representing the
extent of departure from the condition of local equilibriu
states. Because we seek the nonequilibrium correction to
pressure under shear within the framework of fluctuating
drodynamics, we consider the case of a small but finitee.

As the final condition on our model, we assumeL@,, so
that the continuum description is valid. Note that our mo
does not include the parameter, explicitly. It is included
only as a cutoff length when we encounter an ultravio
divergence.

Dimensional analysis.There are two independent dime
sionless parameters in the system:

l5
L2S

n
, D5

T

rn2L
. ~9!

Quite generally, we can write
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py2py
eq5

T

L3
f S L2S

n
,

T

rn2L
D , ~10!

wherepy
eq is the equilibrium pressure. We have assumed t

py2py
eq does not have ultraviolet divergences. The valid

of this assumption is not obvious, and it should be confirm
by a concrete calculation.

Because we carry out a linear analysis of the fluctuatio
we replacef (l,D) by f 0(l)[ f (l,D50). Then the prob-
lem is now reduced to deriving the form of the functio
f 0(l). However, because it is still difficult to find a gener
solution even in this simplified problem, we study two sp
cific cases,l!1 andl@1.

Whenl!1, all quantities may be expanded in powers
l. Due to the reflection symmetry, we havef 0(l).c0l2.
Here c0 is a constant whose value is calculated to
1/1152p below. We thus obtain

py2py
eq5c0TLS S

n D 2

. ~11!

Note that thisL dependence, which implies the breakdown
the intensive nature, is compatible with the result by Ao
and Kusnezov@6#. At the end of this paper, we discuss th
this anomalous behavior can be attributed to the long-ra
correlation of momentum fluctuations.

Next, we shall consider the opposite case,l@1. Note that
this condition does not necessarily imply the strong she
For example, this asymptotic case is realized by taking
limit L→`, while keeping the shear rateS small, in which
case the shear stress obviously remains small. Note also
planar Couette flow is linearly stable for all values ofl. If
we encounter no infrared divergence in the calculation
py2py

eq, we obtainf 0(l)5c1l3/2, becausepy2py
eq should

be independent ofL. In this case we have

py2py
eq5c1TS S

n D 3/2

. ~12!

This Sdependence is the same as that obtained by Kawa
and Gunton. As we demonstrate below indeed, no infra
divergence is accompanied in the calculation ofpy2py

eq,
and that calculation yields Eq.~12! with c151.0631022.

Technical details.We first consider the casel→` and
begin by performing the Fourier expansion

vy~r!5E dk

~2p!3
eik•rv̂y~k!. ~13!

In a statistically steady state, an equal-time correlation fu
tion can be defined as

^v̂y~k!v̂y~k8!&5Cyy~k!d3~k1k8!. ~14!

Equation~7! is then rewritten in the form

py5pB1rE dk

~2p!3
Cyy~k!, ~15!
2-2
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where we have used the result^(] lvm)(]mv l)&50, which is
readily obtained by] lv l50 and Eq.~3!. From Eqs.~1! and
~2!, we derive the equation of the correlation functio
Cyy(k):

2Skx

]Cyy~k!

]ky
522S nk222S

kxky

k2 D Cyy~k!

1
2nT

r
~kx

21kz
2!. ~16!

We can solve this equation by introducing the new wa
vectork85k1Stkxey , wheret is a fictitious time parameter
Using the standard manipulation@9,11#, we obtain

Cyy~k!5
2nT

r
~kx

21kz
2!E

0

`

dt e22nk2(t1t2Sk̂xk̂y1t3S2k̂x
2/3)

3~112tSk̂xk̂y1t2S2k̂x
2!2. ~17!

Combining Eqs.~15! and~17!, we find an integral expres
sion of the pressure@12#. WhenS50, this merely gives the
equilibrium pressurepy

eq, which can be written as

py
eq5pB1bT,23. ~18!

Here , is introduced as a short scale cutoff to avoid t
ultraviolet divergence, andb is a numerical constant. Be
causepB remains undetermined, this ultraviolet divergence
renormalized into it appropriately so thatpy

eq coincides with
the observable equilibrium pressure. In a nonequilibri
case (S.0), we find that the correction to the equilibrium
pressure is actually expressed in form~13!, andc1 is given
by

c15Ap

32

1

~2p!3E0

`

dt
1

t3/2
g~ t !, ~19!

with

g~ t !5E dV A~V!
B~V!1tC~V!

F11tB~V!1
t2

3
C~V!G3/2. ~20!

HereV5(u,f), dV5df du sinu andA, B, C are polyno-
mials of sinu, cosf, and sinf, which are determined from
Eq. ~17!. From numerical integrations, we obtainc1
51.0631022.

In the casel!1, we can utilize the calculation performe
above by simply replacing*dky(2p)21eikyy

••• with
(nL21ei2pny/L

••• in Eq. ~13!. In this way, an expression
similar to Eq.~17! with the replacementky→2p/L is found.
Then the expansion of this correlation function in powers
l leads to the desired form of the nonequilibrium pressure
Eq. ~11!, whose numerical factor is obtained asc0
51/1152p'2.831024.

Long-range correlations.Here we demonstrate that th
anomalous forms of the pressure~11! and ~12! are closely
06530
e

s

f
n

related to the long-range correlations of momentum fluct
tions. For simplicity, we restrict our attention to the fluctu
tions with k5(k,0,0). Two asymptotic forms of the correla
tion function are given as

Cyy~k,0,0!;
T

r S 11
1

2

S2

n2k4D , ~21!

for k2@S/n, and

Cyy~k,0,0!;
T

r S 2

3D 1/3

GS 2

3D S2/3

n2/3k4/3
, ~22!

for k2!S/n. Comparing these expressions with Eqs.~11!
and ~12!, the dependence of the pressure on the long-ra
fluctuations in each case becomes clear. The 1/k4 dependence
in Eq. ~21! reflects highly anomalous behavior of the flu
tuations with small wave numbers@13#. Note that there is a
range of wave numbers that satisfyk2@S/n but are still
much smaller than the characteristic wave number of eq
librium density fluctuations. On the other hand, Eq.~22!
shows that this long-range correlation is suppressed at sc
larger thanl[An/S, crossing over to a weaker correlatio
~see also Fig. 1!. This is equivalent to the stronger power-la
decay of the correlation function than 1/r in a real space
@14#. A new length scalel characterizes this crossover, whic
is intrinsic in the nonequilibrium system considering now

These results provide the following physical picture. T
momentum fluctuations exhibit the long-range correlat
described by Eqs.~21! and~22!. WhenL! l , this correlation
yields the nonintensive contribution to the pressure given
Eq. ~11!. On the other hand, whenL is chosen to be suffi-
ciently large, the long-range correlation is suppressed
scales larger thanl, and this leads to the nonanalytic she
rate dependence given by Eq.~12! instead.

FIG. 1. Plots of numerically evaluated scaling functionF(x),
where the correlation functionCyy(k) is written in the form
Cyy(k)5r21T@11F(kl)#. Note that r21TF(kl) corresponds to
the nonequilibrium correction to the momentum correlation fun
tion. The solid line and the dotted line represent the asympt
functions calculated from the exact integral form ofF(x) for large
x@1 and for smallx!1, respectively. These asymptotic function
are equivalent to results~21! and ~22!.
2-3
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Discussion.In a nonequilibrium system, an external fie
having a spatial gradient~i.e., shear flow! induces the cou-
pling of fluctuations with different wave vectors. In a pertu
bative expansion to the lowest order in shear rate, a corr
tion function has the same form as Eq.~21!. This may cause
an infrared divergence in the calculation ofpy2py

eq.
Roughly speaking, Eq.~11! is obtained when the cutoff scal
is chosen asL, while Eq. ~12! is obtained when it is chose
as l. We have demonstrated the validity of this intuitive a
gument by computing the correlation function rigorously.

The predicted finite-size dependence of pressure~11! un-
der the conditionl!1 is fairly striking. Sincel 5An/S may
be less than 1 mm for water at standard temperature
pressure and for experimentally accessible shear rate,
possible to design an experimental device correspondin
the conditionl!1. On the other hand, from Eqs.~8!, ~12!,
and~18!, (py2py

eq)/py
eq is found to be proportional toe3/2 in

the casel@1, ande2 in the casel!1, respectively. This
indicates that the nonequilibrium correction vanishes in lo
equilibrium states~i.e., e→0), as expected. For example,e
is less than 1028 when the shear rate is 103 s21 for water
considered above. Thus, unfortunately, the nonequilibri
correction may be too small to observe for simple flu
under ordinary experimental conditions in either case.

This fact, however, does not eliminate the fundamen
significance of the present study. In constructing a theoret
framework of nonequilibrium statistical mechanics, th
‘‘ e-effect’’ must be taken into consideration, because a
tistical distribution can be reduced to a local canonical
semble only in the limiting casee→0. Furthermore, making
use of the experimental technique developed in the mic
an

ev
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and nanofluid studies may enable us to detect the none
librium effect for real fluids in the near future. We also e
pect that our findings stimulates further numerical stud
such as molecular dynamic simulations.

Recently, Marcelliet al. reported the analytic dependenc
of pressure in shear flow observed in simulations of noneq
librium molecular dynamics@5#. Because the shear cond
tions were chosen to satisfye>1 andl@1 in their simula-
tions, their result is not directly comparable to ou
However, we believe that the qualitative feature of our res
does not change even in the casee>1. We suspect that thei
model system does not exhibit long-range momentum co
lation because of the absence of the local conservation
momentum. That might be the reason why their result
inconsistent with the existing mode-coupling theories@1–4#
and ours. We expect that measuring momentum correla
functions will help resolve the discrepancy, probably fav
ably with the mode-coupling theory.

Finally, we give a general remark on the possibility
describing an equation of state for a nonequilibrium stea
state, using a thermodynamic function. An experimental
of this possibility has recently been proposed in Ref.@15#, in
which the intensivity of the pressure is postulated. Therefo
the recovery of the intensivity in our calculation has a s
nificant meaning with regard to the construction of therm
dynamics extended to steady states.
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