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Tunable Lyapunov exponent in inverse magnetic billiards
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The stability properties of the classical trajectories of charged particles are investigated in a two-dimensional
inverse magnetic domain, where the magnetic field is zero inside the domain and constant outside. As an
example, we present detailed analysis for stadium-shaped domain. In the case of infinite magnetic field, the
dynamics of the system is the same as in the Bunimovich billiard, i.e., ergodic and mixing. However, for
weaker magnetic fields, the phase space becomes mixed and the chaotic part gradually shrinks. The numerical
measurements of the Lyapunov exponésased on the technique of Jacobi figldsd the regular-to-chaotic
phase space volume ratio show that both quantities can smoothly be tuned by varying the external magnetic
field. A possible experimental realization of the inverse magnetic billiard is also discussed.
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The investigation of standard billiard modéksg., Buni- To demonstrate our general arguments mentioned above,
movich [1] and Sinai billiard§2]) has played a pioneering we choose a well-known chaotic system, the Bunimovich
role since the very beginning of chaos theory. Recent devebilliard shown in Fig. 1. The magnetic fielperpendicular to
opments in nanotechnology have made it possible to experthe plang is zero inside the stadium-shaped region and con-
mentally realize such systems by electrostatically confining &tant 8 outside. A part of a typical classical trajectory is
two-dimensional electron ga@DEG) in high mobility het-  depicted in Fig. 1, for an intermediate value of the magnetic
erostructured3,4]. In these systems, the dynamics of thefield B=2. The trajectories in the configuration space are
electrons is dominated by ballistic motion. In the past de-traight segments inside the stadium, and circular arcs of
cade, a new perspective of the research of semiconducteyclotron radiusR.=1/3 out of this domain.(We assume,
systems has emerged by the application of spatially inhomdor simplicity, that the particle has unit mass, charge, and
geneous magnetic fields. The innomogeneity of the magnetigpeed. At the boundary of the domain, the two pieces of the
field can be realized experimentally either by varying thetrajectory join tangentially. As the magnetic field tends to
topography of the electron g45], or using ferromagnetic infinity, 8—, the charged particle spends less and less time
materials[6], or depositing a superconductor on top of theoutside the stadium, and it is also easy to see that in the
2DEG [7]. Numerous theoretical works also show the in-limiting case its motion is described by an elastic reflection
creasing interest in the study of electron motion in inhomo{rom the wall. For this reason we call our system inverse
geneous magnetic field]. magnetic billiard, although in the case of finite field no real

The aim of our theoretical work is to present an alterna-scatterings take place at the boundaries.
tive two-dimensional billiardlike system which exhibits a  According to the result of Bunimovicfl], the stadium-
crossover between a well-known, ergodic and mixing billiardshaped inverse magnetic billiard system is ergodic and mix-
system, and a pathological integrable system, as the appligdg in the 3= case, but as the magnetic field is decreased,
magnetic field is changed. The magnetic field is inhomogethe dynamics becomes partially regular and gradually more
neous: zero in a compact region of the plane and nonzerand more phase space volume is occupied by the
outside. We suppose that the system is in the ballistic regimé§olmogorov-Arnold-Moser tori(or R? leaves in the=0
such as in many other worksee, e.g. Refd3,9]), and our  case, which means that the phase space is mixed. This phe-
treatment is purely classical. Two characteristic quantities ohomenon can clearly be observed on the Poinsaetions
the dynamics of this type of system, which we dallerse (see Fig. 2 made for different magnetic field values. The
magnetic billiard are calculated numerically as a function of individual points in the Poincarsections are plotted each
the external magnetic fiel@: the Lyapunov exponemnt(3)

(of the dominating chaotic componegnand the regular-to-

chaotic phase space volume ratig3). The obtained nu- ,// \ L Ry
merical results show that both quantities are smooth func- . %
tions of the magnetic field, which means that the global N, a=2 N/
dynamics of the system passes continuously from the inte- » e 3 1 X

grable (3=0) to the fully chaotic casef=x). As we shall : —~ / \
. L _ s 3 A\‘ /I,
see below, there is also a clearly visible correlated depen - g
dence between the variation of the quantitie§8) and '8 &H_x:_, k e
o(B). These results imply thahe degree of chaoticity can ' B
smoothly be tunethy the external magnetic field. We note  FIG. 1. The trajectories of a charged particle in the inverse
that Kosztinet al. have made similar investigations and ob- magnetic billiard. The cyclotron radius R.=1/8=1/2, in dimen-
servations in Andreev billiard systerh$0]. sionless units.
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FIG. 3. The regular to chaotic phase space volume @fR.)
(full square$ and the Lyaponov exponeR{R;) (open circlesas a
function of R.=1/B.

FIG. 2. The Poincarsection of the phase space. The points in  Although the volume of the chaotic bands inside the regu-
the dominating chaotic region were obtained by 50 000 iterations ofar islands(ignored in our treatmejis nonzero in principle,
a single trajectory, while for depicting the islands corresponding tathe numerical simulations demonstrésee Fig. 2 that their
the regular regions, a few different initial conditions were used. Thecontribution to the chaotic phase space volume is negligible
values of the cyclotron radii afe.=0.05,R;=0.3,R.=1, respec-  for this system.
tively. The positivity of the Lyapunov exponeir{R.) is one of

the most characteristic features of magnetic or nonmagnetic

time the particle enters the zero magnetic field region andilliard systemgsee, e.g., Ref.12] and references thergin
crosses the boundary of the stadium. Kmordinate of the We have numerically computed(R;) of the dominating
points (0=x<4+27) gives the position of the crossing, chaotic component as a function of the cyclotron radds
measured in counterclockwise direction from the point (see Fig. 3.
along the perimeter of the stadium, while theoordinate of The obtained function (R.) is again smooth, ag(R.).
the points (-1<y=<1) denotes the sine of the anglerep- It is also clearly visible that the numerical value of the
resenting the direction of the trajectory, relative to the normalLyapunov exponent strongly correlates with the regular
of the boundarysee Fig. 1 This Poincaresection represents phase space rati@(R;) measured previously. For weak
only the relevant part of the phase space, i.e., the trajectorigragnetic fields(if 8<2), the Lyapunov exponent is also
intersecting the stadium region. It is well known that in thissmall, but as the magnetic field grows, the valuenoin-
parameter space, the Poincanap is area preservir[d.1]. creases, too, and for strong fields 8=100) it saturates at

It is evident from Fig. 2 that for high magnetic fields, the the valuex ,~0.43, which agrees exactly with the Lyapunov
system is(almosy completely chaotic but with decreasing exponent of the ordinary Bunimovich billiafd 3].
magnetic field, the volume of the regular regions gradually In order to measure the Lyapunov exponent, we have in-
increases. As we have seen before, for» the system is vestigated the infinitesimal variations of the trajectories with
identical to the Bunimovich billiard, however, in ti2—0  the method of Jacobi fields, which was originally developed
limit the system becomes pathological in the sense that thfor the stability analysis of the geodetic flow on curved Rie-
cyclotron radius tends to infinity, so the particle returns to themannian manifold$14]. The method has successfully been
stadium domain after longer and longer time intervals. applied to magnetic billiard systems on plap®s] as well as

In order to quantitatively characterize this change of thecurved surface§16,17. The main idea of the method is to
phase space portrait, we have numerically investigated thstudy the evolution of the so-called Jacobi fields along a
regular-to-chaotic phase space volume rati@s a function particular trajectory in the configuration space, which de-
of the cyclotron radiudk;=1/8 (i.e., the inverse magnetic scribe the infinitesimal variations of the trajectory. This tech-
field), and the results are shown in Fig. 3. The functionnique is essentially the same as the method using the tangent
¢(R.), measured by the box-counting method with a grid ofmap[11], but our approach is more transparent. The basic
250%x 250 rectangular sites, is smooth, and its behavior igechnical importance is that in our investigations, the coordi-
characteristically different for higher and lower magneticnates describing the infinitesimal variations are chosen in a
fields. For cyclotron radii less thaR;~0.01(i.e., for mag- more natural way: they are related to the unvaried trajectory
netic fields larger thamB;~ 100), the system is dominantly itself, and not to the somewhat artificial parameters of the
chaotic, and the area of the regular phase space regions $pace of the Poincargection. As a result, the stability ma-
practically negligiblg see also Fig. @)]. For cyclotron radii  trices(i.e., the tangent mapsave a much simpler form.
larger thanR,~0.3, however, the regular part increases on In more details, letyy(t) denote the trajectory in the con-
the Poincaresection[see also Fig. @)]. Between these two figuration spaceM, whose stability properties we intend to
extremities, i.e., for cyclotron radii comparable to the char-investigate, and ley,.(t) be a one-parameter family of var-
acteristic size of the billiard, the phase space of the system igd trajectories around the unvaried owg, i.e., for all &
definitely mixed[Fig. 2(b)] with regular islands of consider- e (—&q,gq), €0>0 the curvey, is a real trajectory in the
able area. configuration spacey,—o=vo, and the mapy:(—eg,€q)
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XR—M, (e,t)— vy, (1) is everywhere continuous, and  For investigating the long time stability of a given trajec-
piecewise smooth(lt is not smooth at the boundary of the tory v,, the eigenvaluesor the trace of the product matrix

“billiard.” ) The Jacobi fieldor infinitesimal variation vector
field Vyo corresponding to the variatiop, is the partial de-

rivative V, (t) = dv,(t)/de[, o
It can be shown that the Jacobi fielkis,o(t) satisfy cer-
tain second-order differential equation, calléalcobi equa-

tion; it is due to the fact that the varied curves are also
real trajectorie$14,14. In two-dimensional billiard systems,

. . . 3 . J_
V\;e rf]ound It gonvenlent to fix thhe'base ,VeCt‘{)%(t_)’yO(t)} into the billiard through the boundaryThis group of four
_O the coordinate system to the |_nvest|gated traje_ctp;@), matrices corresponds to a cycle in the Poincggetions of
in such a way that(t) is the(unit) vector tangential to the  Fig. 2. (The matricesT, T’ correspond to the outward and
trajectory at the time instarit and y(t) is obtained from the inward passage through the boundary, respectively.
o(t) by a rotation throught90°. In this basis, the Jacobi !N our simulations, matricesl) and product(2) corre-

o . _ : Sl sponding to about 25000 cycles were calculated explicitly,
field is written aSVVO(t) &0 vo(t) + n(1) 7o (1), and for and the Lyapunov exponents shown in Fig. 3 were computed

characterizing a giv_en infinite;imal variation the initial con- 55 tne logarithm of the largest eigenval(@actically, the
ditions £(to), 7(to), é(to), and7(to) have to be given(The  trace of the resulting matrix divided by the total time of
real functions and » are the coordinates of the Jacobi field flight.
V'yo') The fact that in thgB— <0 limit the inverse magnetic bil-
The number of these initial data can further be reduced byiard gives back the dynamics of the normal billiard system
2, if we notice thati) the longitudinal variationg(t) as well ~ with elastic walls can be checked also in terms of the stabil-
as (i) the variations altering the spedie., for which & ity matrice_s. A bit_ !engthy b_ut straightforward calculation
—B7+0, see, e.g., Ref16]) are irrelevant in the present yields that if the billiard wall is a circle of curvatuig then
investigation, and they decouple from the other coordinates,

<+ (T3EgT3Pa) (T2E,ToPo) (T1E T4 Py) ()

have to be calculated, where the individual matrices in the
expression describe, in reverse order, the stability of the cor-
responding segments of the motién the billiard, through

the boundary outwards, in the magnetic field and back again

so they can be disregarddth the casdi) the Jacobi field is 1 0
tangential to the unvaried trajectory,, thus the varied .

curves are just the time shifts of the original one, whilg lim [T(=8,~wEWLAT(B,u)]=~ _ 2_q 11
means that we restrict the attention to a constant energy shell e CoSw

of the phase space, as it is usual in Hamiltonian sysfems. (©)

In planar billiard systems, it is an elementary geometric

problem to find the solupons of the J"’.‘COb' equation In terms, ey, is the stability matrix corresponding to an elastic re-
of the transverse coordinategt) and »(t) (see, e.g., Ref. fiection on the wall of curvatureg [16], as it is expected.

[15]). Generally, the solution is given by a linear transforma- e now comment on the conditions of the experimental
tion [Z:]zL[z], where the matribL has the following spe- realization of the inverse magnetic billiards. This arrange-
cial forms for the straight flight in zero magnetic fiel)( ~ ment can be realized by depositing a superconductor patch
for the curved flight in nonzero magnetic fiel&), and for ~ (€.9., of stadium shapen the top of a 2DEGe.g., using

the boundary transitionT() with magnetic field changa g, ~ GaAs/ALGa,_,As heterostructujeand applying an external
respectively: homogeneous magnetic field. The magnetic field is excluded

from the region covered by the superconductor, due to the
Meissner effect.

1t cog Bt) lsin(ﬁt) There are four characteristic lengths in the system: the
P(t)= 0 1’ E(t,8)= : Fermi wavelengtHtypically =40 nm[3]), the character-
— Bsin(Bt)  cog Bt) istic lengthr of the systenie.g., the radius of the stadiym

(1)  the cyclotron radiuf., and the mean free pattiwhich can
be as high as Tonm [3]). The classical ballistic motion of
the electrons requires that<r,R.<I. (The last condition
assures that the electron travels through several Poincare
cycles without scattering on impuritiedzigure 3 shows that
the relevant values of the ratiB./r are in the range of
Heret is the time of flight(so Bt is the angle of flight B 0.01-1.0. The magnetic field can be as high as a few tesla
denotes the magnetic field, apdis the angle of incidence at without destroying superconductivity. This implies th¢
the boundary, measured in the way shown in Fig. 1. It is=50 nm (using that the effective mass of electrongy
worth noticing that all the three types of matrices are one=0.067,, wherem, is the mass of the electron, art}

0

T(AB.w)= ABtanu 1

parameter subgroups of SLE, i.e., of the group of X2 =14 meV[3]). Assuming that the size of a superconductor
real matrices with unit determinant. The matrideand T grain is aboutr=1 um, the cyclotron radii are 50, 300,
are parabolic, while the transformatioksare elliptic. 1000 nm corresponding to dal® /r in Fig. 2. This implies
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that parametep in Fig. 2 corresponds to the experimental We would like to stress that in the inverse magnetic bil-
values of the magnetic field 2, 0.3, 0.1 T, respectively. Thdiards the degree of chaoticity can smoothly be turtgd
semiclassical or full quantum mechanical treatment of thevarying only one experimental parameter, namely the exter-
problem can be an extension of our work. nal magnetic field. This may motivate the experimental real-
The advantage of our suggested setup in comparison wittzation and study of our presently proposed system.
Andreev billiards(in which chaoticity can also be tunabiies
that in our system, the electrons travel in a homogeneous We gratefully acknowledge very helpful discussions with
heterostructure without any scattering on the boundary of th€. W. J. Beenakker and A. Voros. This work was supported
stadium, whereas in the case of Andreev billiards the usuallyn part by the Hungarian-British Intergovernmental Agree-
non-negligible normal reflections at the interface of the nor-ment on Cooperation in Education, Culture, and Science and
mal and superconducting region may suppress the effect aechnology, and the Hungarian Science Foundation OTKA

discussed in Ref.10]. Grant Nos. T034832, T042981, F043749, and D37788.
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