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We investigate the behavior of the response function in the one-dimensional trap model using scaling
arguments that we confirm by numerical simulations. We study the average position of the random walk at time
tyt1t, given that a small biak is applied at timet,,. Several scaling regimes are found, depending on the
relative values of, t,,, andh. Comparison with the diffusive motion in the absence of bias allows us to show
that the fluctuation-dissipation relation is valid even in the aging regime, at least for times such that linear
response is obeyed. However, for sufficiently long times, the response always becomes nonfinear in
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The one-dimensional trap modéhereafter denoted as —q_ for the right one. Two particular cases have already
1DTM) has been the focus of renewed attention, both in thdeen studied in detail in the literature, namely, the unbiased
mathematical communityl,2], and also using a physics ap- caseq.=1/2 [1,2,3 and the fully directed casg,=1
proach[3,4]. This model was proposed in 1970s to describd 6,12,13.
the properties of one-dimensional disordered conductors In order to compute a response function, one has to first
[5,6]. Very recently, the direct relevance of this model for thedefine an external field to which the response will be associ-
dynamics of DNA “denaturation bubbles” under torsion was ated. The simplest choice is to consider small deviations
emphasized7]. Although the “annealed” version of the from the unbiased case, i.e., to introduce a small lhias
model, in which a new trapping time is randomly chosenindependent of the site, such thgt =(1=h)/2. Note that
from ana priori distribution at each step, is now well docu- thiS iS equivalent, as long ds<1, to the introduction of a
mented8—10], the full analysis of the quenched model con- unlform .s-mall fqrce fle|d:,OWhICh transforms the trgn5|t|on
sidered here remains challenging. It was shown in Hgfg] ~ Probabilitiesq.. into q.. =q.exp(-Fa/kT). Herea is the
that, besides interesting dynamical localization propertiesl,attlce spacing, V\_’h'Ch IS set fo unity n the fo_IIowmg; .the
the 1DTM exhibits different time scalings, depending oncorrespondence is them=F/2kT. Physically, this force is

which correlation function is considered. To be more spe-due to the external electric field in the case of condudigys

cific, the probability of not moving betweety, andt,,+t or to an asymmetry of the_ DNA composition along the chain
called 1 (t, +1.t,)) in Ref. [3], and the probability of occu- " ¢ Model considered in Refr].

: h . q led C As far as the response is concerned, the two natural
pying the same site &, andt,+t, called C(t,+tty), choices are the average position of the walk after the bias is

exhibit different scalingsIl scales ast/t,, with v<1,  gpplied, or the average probability current. Interestingly, a
whereasC behaves at/'t,,. Then a natural question arises in formal relation exists between the former and the latter,
this context: what is the relevant time scale that governs th@amely, that the current is the time derivative of the average
response function of the particle to an external bias? Thiposition. Switching on a small bidsat timet,, and measur-
question is interesting in the context of the physical applicaing quantities at a subsequent tirhg+t, we define for a
tions mentioned above, and also in the context of the out-ofgiven sample of the disorder the average positigit,t,,)
equilibrium fluctuation-dissipation theorem that was muchand the total probability currerd(t,t,) as
discussed recentlyl1].

Let us first briefly recall the definition of the 1IDTM. Con-
sider a one-dimensional lattice, and associate to each a&ite Xh(t’tw):; NPa(Ltw), @
guenched random variablg >0, the energy barrier, chosen
from an exponential distributiop(E)=T, e ¥Ts. One
follows the evolution of a particle driven by a thermal noise In(ttw) =20 dn_1n(tity), 2
at temperaturd on the lattice. The particle has to overcome n
the energy barrieg; in order to leave sité and reach one h o )
neighbor. This naturally leads to a mean-trapping timen ~ With én_1n=Wq_1_1Pn1—W,_,_;Pn being the local
site i given by an Arrhenius lawr =e5/T, and distributed ~ current. Taking the derivative of,(t,t,,) with respect tat,
according top(7) = u/ 7" #, with u=T/T; we focus in the ~ON€ has
following on the aging phasg<1. Note that the trapping
times are a coarse grained description of the underlying —=E n
Langevin dynamics, which is not explicitly described in this at n
model. The quantity’y is a microscopic frequency scale that
will be set to unity in the following. Once that particle has Assuming periodic boundary conditions on a lattice of size
escaped the trap, it chooses one of the two nearest neighbdr; and letting eventually. — <, one can show that the sum
ing sites, with probabilityq_ for the left one andg, =1 reduces t&,¢,_1,, finally leading to

X

P,
d

t =; n[¢n—1,n_¢n,n+1]- 3
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Xh which is the average value afcomputed from the distribu-
—r (Ltw) =dn(tity). (49 tion p(7), taking into account the natural cutoff induced by
the dynamicg,, [3]. Therefore, as long as the particle does

Note that in the 1DTM, transition rat&§” .., depend only not escape from the initial region, the average position
on n, so thatJ,(t,t,)=0 for h=0, leading to a value of should drift at a constant velocity r(t,,) (the lattice spacing
x(t,t,,) =x(0,0) in the absence of bias, for any given samplea is taken as the unit of lengthleading to
Averaging over the disorder, it is clear that Hd) is also Y1)
valid for the averaged quantitigs)(t,t,) and(J)(t,t,). (Xn~ht/ty ™. (10)
Therefore, in the following we shall focus only on the aver-
age position after a bias is applied.

In this section, we shall give some simple scaling argu

This short time regime is limited by two conditions: first,
JE(t,+1)— &(t,) | < &(ty,), which implies t<t,,, and also
ments in order to predict the behavior ¢f)(t,t,) as a (0| < £(tw), Wh'ih rquU|rest<t*, wheret” is a new time
function of the three variables t,,, and h. Interestingly, ~Scale defined by*=t;/h. Note, however, that this time
nontrivial regimes appear due to the fact that the lichits Scale is only relevant if* <t,,. If we are in the opposite
—0 andt,t,— cannot be inverted. Note that the cdge limit t>t,,, thent,, no longer .plays any _role and one recov-
=0 was studied in Ref6], where it was shown that a non- €rs the results found above in the particular cgse0. So
trivial crossover line appears in the plangt. Let us recall ON€ has to distinguish between several regimes, depending
briefly these scaling arguments, since this will be useful " the relative values df t,,, andt*. .

the following. It is convenient to introduce the typical num- (1) t*>t,, (orh<h*~t,,*%). In this case, three different
ber N of steps of the walk after timg and to express both €gimes appear:

(x)n andt as a function oN. It is clear that(x),=Nh; now

~ v(1-p) <
considering the typical numbek/; of sites visited by the (Xn~htty ™, t<ty, (11)
walk, AV can be approximately written as the sum of a drift 2w
contribution and of a diffusive one: (n~ht™, by <t<ty, (12)

Ni~Nh+ yN. (5) (x)n~h*#t#, t>t, (13)

wheret,~h~1*#/% a5 above.
(2) t* <t,, (or h>h*). The behavior ofx), can be sum-
marized as follows:

Consider first the caseNh>./N, corresponding to\
~Nh. Given that the trapping times; are distributed ac-
cording top(7)=u/r'"#, the sum ofM independent vari-

ablesr, behaves a§,’l’_':17-k~ MY Since each site is visited (X)p~h t/t;’v(l’“) ottt (14)
of the order ofN/Aj times,t can be expressed as
N2 (Xn~h#t#, t>t*, (15
_~— o (1-m)! .. . . .
‘ Ne i=2/\f/2 =NV, ©) It is interesting to reformulate the above equations in terms
s

of scaling functions,
which can be rewritten aN~t“h*~1. Finally, (x),, reads

(X)h=ht2""f,(t/t,), h<h*, (16)
(X)p~h*#t*. 7)
(X)p=tlrfo(ht/th),  hs>h*, (17)

The criterion Nh> /N translates intoh#t#sh(#-1)/2u/2 _ _ . _ ,
or equivalentlyt>t,~h~1*#/(®) On the contrary, ifNh ~ With the following asymptotic behavior for the functions

<N then NV;~yN, and N and t are related through fi(2) andfy(2):

_t2uv
N sothat h~2(2<), H~2" (z21), (19
(})n~ht?#” tS)
fo(z)~z (z<1), fy(2)~z* (z>1). (29
with v=1/(1+ w). Therefore, the response is linearhbut

nonlinear int for t<t,, and nonlinear both it andt for ~ 1ne scaling functionf,(z) only accounts for the time re-

t>t, . gimes described by Eqg&ll) and(12), i.e., for times smaller

Let us now turn to the response in the aging regimenan tﬂ' However, since we are in the small bias cdse
t,>1. Then ift is small enoughto be specified laterthe ~ <tw”’. tn is much larger thar,, so that this crossover
walk will essentially evolve within the space region of size Scalé is difficult to exhibit numerically. But one should bear
&(t,,) already visited(the diffusion correlation lengih The  in mind that the response always becomes nonlinear at suf-

N e o . ficiently long times, even wheh—0.
average trapping time(t,,) within this region is defined by We )r/1avegnot found the way t:include all thet,,. andh
W 1

v ud regimes in a single scaling function. We now report on the
Rtw)wftwuwtcv(lw)’ (99  humerical results on the response function, and compare
1 gite them to the scaling predictions of the preceding section. In
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ok ' ' ' If one wishes to draw a link with the correlation functions
C(t,+t,t,) andII(t,+t,t,) defined abovesee also Ref.
[3]), it might appear thatx)u(t,t,) should be associated
with C(t,,+1,t,), due to thet/t,, scaling in Eq.(16). How-
ever, this is limited to the very small bias case. Interestingly,
in the opposite regimb>h* (t,,), (x)n(t,ty) is a function of
t/t* (t*~t,/h), up to a prefactor dependent ¢p. So at
fixed h, (x)n(t,t,) scales ag/t,,, asII(t,+t,t,) does. In
fact, this relation is not purely formal, but indeed corre-
| ) | sponds to the underlying physics. During the unbiased time
102k | interval[ 0t,,], the walk typically visits deep traps with char-
acteristic time~ty,.
oz 0'1 - L 1‘0 s 0 Once the bias is applied, the evolution is .dominated _by
) ) ot the_se d_eepest traps, before evgntu_ally reaching a long time
regime independent af, . If the bias is very small, the walk
FIG. 1. Rescaled response in the small field regipre Wil Visit these traps a large number of timesf the order of
<h*(t,)], using Eq.(16), for h=2x10"3, 5x10 3, 8x10 3, t&? [3]), and the aging dynamics thus resembles closely that
andt,=10°, 10", 10° (»=1/2). The resulting collapse is good, of C(t,,+1,t,) in the absence of bias. On the contran i
even though some deviations appear both at short and large timd@arge enough, the walk will visit only a few timgef the
The predicted asymptotic scaling behavior is well obef@ashed  order of 1h) the deepest traps occupied at titgg so that
lines). the aging dynamics is dominated by the time needed to leave
the deep traps for the first time, in close analogy with
the small field regimen<h*(t,), the scaling predicted by TII(t,+t,t,). Moreover, it is worth mentioning that if one
Eq. (16) is well satisfied. Figure 1 shows the resulting col- applies the bias fromi=0 instead oft,,, and compute the
lapse of the data for three different values loh=2  resulting average displacement between titgeandt,,+t,
x 1073, 5x10 3, and 8<10 %) and three different values different scalings are obtained. For small fields, the displace-
of the waiting timet,,(t,,= 10°, 10%, and 16) at temperature ment (x)(t,t,,) behaves agx)(t,t,)=ht2"f(t/t,) as in
w=s3. the previous case, but for largkeyone finds a scaling of the
In the opposite regimen>h*(t,,), Eq.(17) is also well  form (x)(t,t,) =t“f4(ht/t,). So in this case, #'t,, scaling
obeyed, as shown in Fig. 2 for bias=0.1, 0.2, 0.3, waiting also appears, but for a different reason: because of the bias,
timest,,=10%, 10°, 1%, 10/, andx=3. Note that for clar-  the trapping times reached after a tig are now of the
ity, data corresponding th=0.2 and 0.3 are presented for order oft,, itself instead ot’,, but the walk visits these traps
t,,=10° only. We have checked for several valueswothat 3 finite number of times+ 1/h) after timet,, .
the short time and Iarge time behaviors of the Scaling func- Besides the correlatio@ and Il considered hereabove,
tions f,(z) andf,(z) given by Eqs.(18) and(19) are also  the natural self-correlation associated wit),, is the mean
correctly predicted, see Figs. 1 and 2 for the case;. square displacement restricted to the time intefugl,t,,
+t], in the absence of bias field:

2uv
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%
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|

W

W
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T
1

<x>(t,t )/ht

(AX2)o(t,t) =([X(ty+1) = X(ta)1%)o, (20

where the bracketé - -) denote both a thermal averaged

an average over the disorder. Using the effective trapping
time 7(t,,), one can also estimat&Ax?)q(t,t,,) in the short
time diffusive regime to b&Ax?)y(t,t,)~t/7(t,). This ex-
pression can only be valid fAX?)(t,t,)<&(t,)2 which
yieldst<t,,. In the opposite regime>t,,, one recovers the
t,="0 result{Ax?)q(t,t,) ~ &(ty+ )2~ £(t)2. In summary

uv
<x>(t,tw) / t,

L W W WSS W— (AX)o(t,ty) ~t/tE M) | t<t,, (21)
10 10 10 10 10 10 10

ht/e”
a (AX?)o(t,t,)~ 1247, t>t,,. (22
FIG. 2. Rescaled response in the large bias regirhe

>h*(t,)], using Eq.(17), for h=0.1, 0.2, 0.3t,=10%, 1¢%, 1, This means thatAx2),(t,t,) can be written in the scaling
10’ (see text, and u=1/2, showing a very good collapse of the form:
data, except for smatlwhere finite time effects become noticeable.
The asymptotic behavior of the scaling function is also well pre- 5 2w
dicted (dashed lines (AX%)o(t,tw) =t g(t/ty,). (23)
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(AX)p=(AX)o+h[(Ax?)o—(AX)F], (24)

with Ax=x(t,,+t) —x(t,) andt is finite. For the purpose of
clarity, we distinguish here between average on thermal his-
tories aftert,, ((---)) and average over thermal histories
beforet,—thus overx(t,)—and over the disorder (- -).
Now applying this second type of average to the previous
equation, we get

I F—
(On(t,tw) = 5 {AX)o(t, ), (25

where we have used the fact that for the trap mddet),
=0, see Eq(4), andh has been replaced by its “physical”
expressionF/2kT. So we conclude that the fluctuation-
FIG. 3. Rescaled diffusiofiax?)o(t,t,) in the absence of bias, dissipation relation is inde_ed valid in this out-of-equilibrium
using Eq.(23), for t,,=10%, 10%, 1%, 1¢F, and 16, and w=1/2. and disordered system, with a temperature equal to th(_a bath
The different curves are indistinguishable to the eye. The dasheffmperatureT. In particular, this implies that the scaling
lines indicate the slopes 1 and 2/3, respectively. Note, however, thatinctions f1(-) and g(-) are identical. Note that such an
for computational reasons, timés limited to 10. Inset: FDR plot ~ “aging Einstein relation” has already been found in the an-
(On(t,ty)/h versus(Ax?)o(t,t,) for t,=10°, h=5x107%, and nealed version of the modgd].
w=1/2. FDRis clearly satisfied over the whole range of time where As a conclusion, we note that the influence of an external
the response is linear, i.e., whest,~10". bias in disordered system can be highly nontrivial. In the
simple one-dimensional trap model discussed here, we al-
Figure 3 displays the numerical data obtained forready find several regimes in thg,,,h “cube.” One of the
(Ax?)o(t,t,,), for waiting timest,, ranging from 16 to 10/, most interesting result is that the response becomes nonlinear
using Eq.(23). One can see that the collapse is perfect.  at long times, even in the limit where the external bias tends
Given the quantities computed above, it is natural to testo zero. We expect this effect to be rather generic, and was
the fluctuation-dissipatiofor Einstein relation(FDR). This  actually already noticed in both theoretical and experimental
is done in the inset of Fig. 3, which display®)u(t,ty)/h  works on the role of magnetic field in spin glass dynamics
versus{Ax?)y(t,t,) in log-log scale, forh=5x10"3, t,,  [14,15.
=10, and u=1/2. This relation appears to be very well ~We have also extended the above arguments to the Sinai
satisfied over the whole range of time where the response imodel with an external biafor a review, see Refl16]),
linear, although the system is strongly out of equilibrium.which for reasons of space we cannot detail here. Already for
This contrasts with many disordered models where the FDR,,=0 and small external forcg, one finds in general four
is modified even in the linear reginjé1]. different time regimes for the average displaceméxi.
We now give a general argument in order to demonstrat@here is, in particular, a regime whefe) grows as I#t, but
the validity of the FDR for the trap model in the aging re- with an F independent prefactor, before the asymptotic re-
gime. It was shown in Ref6] that for a given configuration gime where(x)~t*" sets in. In other examples, such as a
of the disorder and a given initial positict,,), the follow-  walker on a percolation network, the response can even be
ing fluctuation-dissipation relation holds, in the linhit-0: nonmonotonous withr [6,17].
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