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Linear and nonlinear response in the aging regime of the one-dimensional trap model
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~Received 28 March 2003; published 27 June 2003!

We investigate the behavior of the response function in the one-dimensional trap model using scaling
arguments that we confirm by numerical simulations. We study the average position of the random walk at time
tw1t, given that a small biash is applied at timetw . Several scaling regimes are found, depending on the
relative values oft, tw , andh. Comparison with the diffusive motion in the absence of bias allows us to show
that the fluctuation-dissipation relation is valid even in the aging regime, at least for times such that linear
response is obeyed. However, for sufficiently long times, the response always becomes nonlinear inh.
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The one-dimensional trap model~hereafter denoted a
1DTM! has been the focus of renewed attention, both in
mathematical community@1,2#, and also using a physics ap
proach@3,4#. This model was proposed in 1970s to descr
the properties of one-dimensional disordered conduc
@5,6#. Very recently, the direct relevance of this model for t
dynamics of DNA ‘‘denaturation bubbles’’ under torsion w
emphasized@7#. Although the ‘‘annealed’’ version of the
model, in which a new trapping time is randomly chos
from ana priori distribution at each step, is now well docu
mented@8–10#, the full analysis of the quenched model co
sidered here remains challenging. It was shown in Refs.@3,4#
that, besides interesting dynamical localization propert
the 1DTM exhibits different time scalings, depending
which correlation function is considered. To be more s
cific, the probability of not moving betweentw and tw1t,
calledP(tw1t,tw) in Ref. @3#, and the probability of occu-
pying the same site attw and tw1t, called C(tw1t,tw),
exhibit different scalings:P scales ast/tw

n with n,1,
whereasC behaves ast/tw . Then a natural question arises
this context: what is the relevant time scale that governs
response function of the particle to an external bias? T
question is interesting in the context of the physical appli
tions mentioned above, and also in the context of the out
equilibrium fluctuation-dissipation theorem that was mu
discussed recently@11#.

Let us first briefly recall the definition of the 1DTM. Con
sider a one-dimensional lattice, and associate to each siti a
quenched random variableEi.0, the energy barrier, chose
from an exponential distributionr(E)5Tg

21e2E/Tg. One
follows the evolution of a particle driven by a thermal noi
at temperatureT on the lattice. The particle has to overcom
the energy barrierEi in order to leave sitei and reach one
neighbor. This naturally leads to a mean-trapping timet i on
site i given by an Arrhenius lawt i5eEi /T, and distributed
according top(t)5m/t11m, with m5T/Tg ; we focus in the
following on the aging phasem,1. Note that the trapping
times are a coarse grained description of the underly
Langevin dynamics, which is not explicitly described in th
model. The quantityG0 is a microscopic frequency scale th
will be set to unity in the following. Once that particle ha
escaped the trap, it chooses one of the two nearest neigh
ing sites, with probabilityq2 for the left one andq151
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2q2 for the right one. Two particular cases have alrea
been studied in detail in the literature, namely, the unbia
case q151/2 @1,2,3# and the fully directed caseq151
@6,12,13#.

In order to compute a response function, one has to
define an external field to which the response will be ass
ated. The simplest choice is to consider small deviatio
from the unbiased case, i.e., to introduce a small biash,
independent of the site, such thatq65(16h)/2. Note that
this is equivalent, as long ash!1, to the introduction of a
uniform small force fieldF, which transforms the transition
probabilitiesq6 into q65q6

0 exp(6Fa/2kT). Here a is the
lattice spacing, which is set to unity in the following; th
correspondence is thenh5F/2kT. Physically, this force is
due to the external electric field in the case of conductors@5#,
or to an asymmetry of the DNA composition along the cha
in the model considered in Ref.@7#.

As far as the response is concerned, the two nat
choices are the average position of the walk after the bia
applied, or the average probability current. Interestingly
formal relation exists between the former and the lat
namely, that the current is the time derivative of the avera
position. Switching on a small biash at timetw and measur-
ing quantities at a subsequent timetw1t, we define for a
given sample of the disorder the average positionxh(t,tw)
and the total probability currentJh(t,tw) as

xh~ t,tw!5(
n

nPn~ t,tw!, ~1!

Jh~ t,tw!5(
n

fn21,n~ t,tw!, ~2!

with fn21,n[Wn21→n
h Pn212Wn→n21

h Pn being the local
current. Taking the derivative ofxh(t,tw) with respect tot,
one has

]xh

]t
5(

n
n

]Pn

]t
5(

n
n@fn21,n2fn,n11#. ~3!

Assuming periodic boundary conditions on a lattice of s
L, and letting eventuallyL→`, one can show that the sum
reduces to(nfn21,n , finally leading to
©2003 The American Physical Society05-1
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]xh

]t
~ t,tw!5Jh~ t,tw!. ~4!

Note that in the 1DTM, transition ratesWn→n61
h depend only

on n, so thatJh(t,tw)50 for h50, leading to a value of
x(t,tw)5x(0,0) in the absence of bias, for any given samp
Averaging over the disorder, it is clear that Eq.~4! is also
valid for the averaged quantities^x&h(t,tw) and ^J&h(t,tw).
Therefore, in the following we shall focus only on the ave
age position after a bias is applied.

In this section, we shall give some simple scaling arg
ments in order to predict the behavior of^x&h(t,tw) as a
function of the three variablest, tw , and h. Interestingly,
nontrivial regimes appear due to the fact that the limitsh
→0 and t,tw→` cannot be inverted. Note that the casetw
50 was studied in Ref.@6#, where it was shown that a non
trivial crossover line appears in the planeh,1/t. Let us recall
briefly these scaling arguments, since this will be usefu
the following. It is convenient to introduce the typical num
ber N of steps of the walk after timet, and to express both
^x&h andt as a function ofN. It is clear that̂ x&h.Nh; now
considering the typical numberNs of sites visited by the
walk, Ns can be approximately written as the sum of a d
contribution and of a diffusive one:

Ns;Nh1AN. ~5!

Consider first the caseNh@AN, corresponding toNs
;Nh. Given that the trapping timest i are distributed ac-
cording top(t)5m/t11m, the sum ofM independent vari-
ablestk behaves as(k51

M tk;M1/m. Since each site is visited
of the order ofN/Ns times,t can be expressed as

t;
N

Ns
(

i 52Ns/2

Ns/2

t i;NN s
(12m)/m , ~6!

which can be rewritten asN;tmhm21. Finally, ^x&h reads

^x&h;hmtm. ~7!

The criterion Nh@AN translates intohmtm@h(m21)/2tm/2,
or equivalentlyt@th;h2(11m)/(m). On the contrary, ifNh
!AN then Ns;AN, and N and t are related through
N;t2mn, so that

^x&h;ht2mn ~8!

with n[1/(11m). Therefore, the response is linear inh but
nonlinear int for t!th , and nonlinear both inh and t for
t@th .

Let us now turn to the response in the aging regi
tw@1. Then if t is small enough~to be specified later!, the
walk will essentially evolve within the space region of si
j(tw) already visited~the diffusion correlation length!. The
average trapping timet̄(tw) within this region is defined by

t̄~ tw!;E
1

tw
n mdt

t11m
;tw

n(12m) , ~9!
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which is the average value oft computed from the distribu-
tion p(t), taking into account the natural cutoff induced b
the dynamicstw

n @3#. Therefore, as long as the particle do
not escape from the initial region, the average posit
should drift at a constant velocityh/ t̄(tw) ~the lattice spacing
a is taken as the unit of length!, leading to

^x&h;ht/tw
n(12m) . ~10!

This short time regime is limited by two conditions: firs
uj(tw1t)2j(tw)u!j(tw), which implies t!tw , and also
u^x&hu!j(tw), which requirest!t* , wheret* is a new time
scale defined byt* [tw

n /h. Note, however, that this time
scale is only relevant ift* ,tw . If we are in the opposite
limit t@tw , thentw no longer plays any role and one reco
ers the results found above in the particular casetw50. So
one has to distinguish between several regimes, depen
on the relative values oft, tw , andt* .

~1! t* @tw ~or h!h* ;tw
2mn). In this case, three differen

regimes appear:

^x&h;ht/tw
n(12m) , t!tw , ~11!

^x&h;ht2mn, tw!t!th , ~12!

^x&h;hmtm, t@th , ~13!

whereth;h2(11m)/m as above.
~2! t* !tw ~or h@h* ). The behavior of̂ x&h can be sum-

marized as follows:

^x&h;h t/tw
n(12m) , t!t* , ~14!

^x&h;hmtm, t@t* , ~15!

It is interesting to reformulate the above equations in ter
of scaling functions,

^x&h5htw
2mn f 1~ t/tw!, h!h* , ~16!

^x&h5tw
mn f 2~ht/tw

n !, h@h* , ~17!

with the following asymptotic behavior for the function
f 1(z) and f 2(z):

f 1~z!;z ~z!1!, f 1~z!;z2mn ~z@1!, ~18!

f 2~z!;z ~z!1!, f 2~z!;zm ~z@1!. ~19!

The scaling functionf 1(z) only accounts for the time re
gimes described by Eqs.~11! and~12!, i.e., for times smaller
than th . However, since we are in the small bias caseh
!tw

2mn , th is much larger thantw , so that this crossove
scale is difficult to exhibit numerically. But one should be
in mind that the response always becomes nonlinear at
ficiently long times, even whenh→0.

We have not found the way to include all thet, tw , andh
regimes in a single scaling function. We now report on t
numerical results on the response function, and comp
them to the scaling predictions of the preceding section
5-2
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the small field regimeh!h* (tw), the scaling predicted by
Eq. ~16! is well satisfied. Figure 1 shows the resulting co
lapse of the data for three different values ofh(h52
31023, 531023, and 831023) and three different value
of the waiting timetw(tw5103, 104, and 105) at temperature
m5 1

2 .
In the opposite regime,h@h* (tw), Eq. ~17! is also well

obeyed, as shown in Fig. 2 for biash50.1, 0.2, 0.3, waiting
times tw5104, 105, 106, 107, andm5 1

2 . Note that for clar-
ity, data corresponding toh50.2 and 0.3 are presented fo
tw5105 only. We have checked for several values ofm that
the short time and large time behaviors of the scaling fu
tions f 1(z) and f 2(z) given by Eqs.~18! and ~19! are also
correctly predicted, see Figs. 1 and 2 for the casem5 1

2 .

FIG. 1. Rescaled response in the small field regime@h
!h* (tw)#, using Eq.~16!, for h5231023, 531023, 831023,
and tw5103, 104, 105 (m51/2). The resulting collapse is good
even though some deviations appear both at short and large ti
The predicted asymptotic scaling behavior is well obeyed~dashed
lines!.

FIG. 2. Rescaled response in the large bias regime@h
@h* (tw)#, using Eq.~17!, for h50.1, 0.2, 0.3,tw5104, 105, 106,
107 ~see text!, and m51/2, showing a very good collapse of th
data, except for smallt where finite time effects become noticeab
The asymptotic behavior of the scaling function is also well p
dicted ~dashed lines!.
06510
-

If one wishes to draw a link with the correlation function
C(tw1t,tw) and P(tw1t,tw) defined above~see also Ref.
@3#!, it might appear that̂ x&h(t,tw) should be associate
with C(tw1t,tw), due to thet/tw scaling in Eq.~16!. How-
ever, this is limited to the very small bias case. Interesting
in the opposite regimeh@h* (tw), ^x&h(t,tw) is a function of
t/t* (t* ;tw

n /h), up to a prefactor dependent ontw . So at
fixed h, ^x&h(t,tw) scales ast/tw

n , as P(tw1t,tw) does. In
fact, this relation is not purely formal, but indeed corr
sponds to the underlying physics. During the unbiased t
interval@0,tw#, the walk typically visits deep traps with cha
acteristic time;tw

n .
Once the bias is applied, the evolution is dominated

these deepest traps, before eventually reaching a long
regime independent oftw . If the bias is very small, the walk
will visit these traps a large number of times~of the order of
tw
mn @3#!, and the aging dynamics thus resembles closely

of C(tw1t,tw) in the absence of bias. On the contrary, ifh is
large enough, the walk will visit only a few times~of the
order of 1/h) the deepest traps occupied at timetw , so that
the aging dynamics is dominated by the time needed to le
the deep traps for the first time, in close analogy w
P(tw1t,tw). Moreover, it is worth mentioning that if one
applies the bias fromt50 instead oftw , and compute the
resulting average displacement between timestw and tw1t,
different scalings are obtained. For small fields, the displa
ment ^x&(t,tw) behaves aŝx&(t,tw)5htw

2mn f 1(t/tw) as in
the previous case, but for largerh, one finds a scaling of the
form ^x&(t,tw)5tw

m f 3(ht/tw). So in this case, at/tw scaling
also appears, but for a different reason: because of the
the trapping times reached after a timetw are now of the
order oftw itself instead oftw

n , but the walk visits these trap
a finite number of times (;1/h) after timetw .

Besides the correlationC and P considered hereabove
the natural self-correlation associated with^x&h is the mean
square displacement restricted to the time interval@ tw ,tw
1t#, in the absence of bias field:

^Dx2&0~ t,tw![^@x~ tw1t !2x~ tw!#2&0 , ~20!

where the bracketŝ•••& denote both a thermal averageand
an average over the disorder. Using the effective trapp
time t̄(tw), one can also estimatêDx2&0(t,tw) in the short
time diffusive regime to bêDx2&0(t,tw);t/ t̄(tw). This ex-
pression can only be valid if̂Dx2&0(t,tw)!j(tw)2, which
yields t!tw . In the opposite regimet@tw , one recovers the
tw50 result^Dx2&0(t,tw);j(tw1t)2;j(t)2. In summary

^Dx2&0~ t,tw!;t/tw
n(12m) , t!tw , ~21!

^Dx2&0~ t,tw!;t2mn, t@tw . ~22!

This means that̂Dx2&0(t,tw) can be written in the scaling
form:

^Dx2&0~ t,tw!5tw
2mng~ t/tw!. ~23!
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Figure 3 displays the numerical data obtained
^Dx2&0(t,tw), for waiting timestw ranging from 103 to 107,
using Eq.~23!. One can see that the collapse is perfect.

Given the quantities computed above, it is natural to t
the fluctuation-dissipation~or Einstein! relation ~FDR!. This
is done in the inset of Fig. 3, which displays^x&h(t,tw)/h
versus^Dx2&0(t,tw) in log-log scale, forh5531023, tw
5103, and m51/2. This relation appears to be very we
satisfied over the whole range of time where the respons
linear, although the system is strongly out of equilibriu
This contrasts with many disordered models where the F
is modified even in the linear regime@11#.

We now give a general argument in order to demonst
the validity of the FDR for the trap model in the aging r
gime. It was shown in Ref.@6# that for a given configuration
of the disorder and a given initial positionx(tw), the follow-
ing fluctuation-dissipation relation holds, in the limith→0:

FIG. 3. Rescaled diffusion̂Dx2&0(t,tw) in the absence of bias
using Eq.~23!, for tw5103, 104, 105, 106, and 107, andm51/2.
The different curves are indistinguishable to the eye. The das
lines indicate the slopes 1 and 2/3, respectively. Note, however,
for computational reasons, timet is limited to 107. Inset: FDR plot
^x&h(t,tw)/h versus^Dx2&0(t,tw) for tw5103, h5531023, and
m51/2. FDR is clearly satisfied over the whole range of time wh
the response is linear, i.e., whent!th'107.
o

nt
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^Dx&h5^Dx&01h@^Dx2&02^Dx&0
2#, ~24!

with Dx[x(tw1t)2x(tw) andt is finite. For the purpose o
clarity, we distinguish here between average on thermal
tories aftertw (^•••&) and average over thermal historie
before tw—thus overx(tw)—and over the disorder (•••).
Now applying this second type of average to the previo
equation, we get

^x&h~ t,tw!5
F

2kT
^Dx2&0~ t,tw!, ~25!

where we have used the fact that for the trap model^Dx&0
50, see Eq.~4!, andh has been replaced by its ‘‘physical
expressionF/2kT. So we conclude that the fluctuation
dissipation relation is indeed valid in this out-of-equilibriu
and disordered system, with a temperature equal to the
temperatureT. In particular, this implies that the scalin
functions f 1(•) and g(•) are identical. Note that such a
‘‘aging Einstein relation’’ has already been found in the a
nealed version of the model@9#.

As a conclusion, we note that the influence of an exter
bias in disordered system can be highly nontrivial. In t
simple one-dimensional trap model discussed here, we
ready find several regimes in thet,tw ,h ‘‘cube.’’ One of the
most interesting result is that the response becomes nonli
at long times, even in the limit where the external bias ten
to zero. We expect this effect to be rather generic, and
actually already noticed in both theoretical and experimen
works on the role of magnetic field in spin glass dynam
@14,15#.

We have also extended the above arguments to the S
model with an external bias~for a review, see Ref.@16#!,
which for reasons of space we cannot detail here. Already
tw50 and small external forceF, one finds in general four
different time regimes for the average displacement^x&.
There is, in particular, a regime where^x& grows as ln2t, but
with an F independent prefactor, before the asymptotic
gime where^x&;taF sets in. In other examples, such as
walker on a percolation network, the response can even
nonmonotonous withF @6,17#.
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