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Using exact partition functions and finite-size corrections for the Ising model on finite square, plane trian-
gular, and honeycomb lattices and extending a meffioBhys19, L1215(1986)] to subtract leading singular
terms from the free energy, we obtain universal finite-size scaling functions for the specific heat, internal
energy, and free energy of the Ising model on these lattices with exact nonuniversal metric factors.
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Finite-size scaling has been of interest to scientists work-
ing on a variety of critical systems, including superfluids, z=> eXF{ﬁJZ 0i0j
spin models, percolation models, lattice gauge models, spin ol W
glass, etc[1-4]. Universal finite-size scaling and finite-size \yhereJ is the coupling constang= 1/(ksT) with kg being
corrections in finite critical systems have attracted much atihe Boltzmann constant anbl being the absolute tempera-
tention in recent decad¢8—-9]. Using renormalization group ture, o;= +1 is the Ising spin at sitg the first sum is over
arguments, in 1984 Privman and Fisher first proposed thall spin states and the second sum is over the nearest-
concepts of universal finite-size scaling functidh=SSF'3  neighbor pairg(i,j) of the spins. The exact partition func-
and nonuniversal metric factori2]. Using Monte Carlo tions for L; XL, SQ, PT and HC lattices for various
methoddq 10] and choosing aspect ratios of the squi@€),  periodic-aperiodic BC's argl3]
plane triangularPT), and honeycomiHC) lattices so that
these have the relative proportions,B72:y/3 [11], Hu et al. 1 4
and Okabeet al. found UFSSF’s for the percolation and the ZB=§2L1L2[Cosf(,8J)]Z'-1'-2’22 sPQ;, 2
Ising models on two-dimensional latticE3,4]. Since these =1
studies were based on numerical simulations, there is alwaXﬁhere ; is the coordination number of the lattice and
some numerical uncertainty in the obtained results. Here, wes o o in Table | are sign factors specified by BC's
use the exact partition functions of the Ising model on finitea'nd 0.=0 o= V=0 O,= ’
SQ, PT, and HC lattices with periodic-aperiodic boundary” sgn(elle —(ili)((zlm)’withz (120, 23 RR0(12)y - TR4
conditions[12,13 and an exact expansion methi@] to ob- ¢ 00
tain exact finite-size corrections of the free enef§y the gly-1 L,-1
) B - B ”
internal energyE”, and the specific hea® of the critical Q,,= pﬂo (EO [A — A

; €y

2w(p+w) 2m(q+v)
COSs + COS

Ising model on these lattices with periodic-periodizpy, gLy Lo
periodic-antiperiodic [§a), antiperiodic-periodic 4p), and 12
antiperiodic-antiperiodic 4a) boundary conditiongBC’s), —Azcos( 2mptp) 2m(qtv) ] . 3)
whereB denotes BC's. Using these coefficients and extend a gly Lo
method[14] to subtract leading singular term from the free .
energy, we subtract leading singular terms fréfly EB, and Hereg, Ag, A, A,, and the critical values g6J, B, are
B and find that the corresponding residuafs I'B, andweg listed in Table . -
N . To calculate the specific heat, we wriZ&€ as
[see Eqs(7)—(9) below] have a very good finite-size scaling
behavior. Choosing aspect ratios of the SQ, P-r:gimd \/I-lC lat- L 4
tices so that these have the relative proportiong312:/3 B_ . LiL./2 B
[11] and calculating exact nonuniversal metric factors from Zi=5l2sinf2ny) ] .21 e Zi(mRL), @
exact partition functions and finite-size corrections, we find
that AB, I'B, andW® of the SQ, PT, and HC lattices have TABLE . Sign factorse? in Eq. (2) for various BC's.
very nice universal finite-size scaling behavior.
The partition function of the Ising model is given by BC et H e3 o
pp + + + +
pa + + - -
ap + - + -
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TABLE II. Expressions fog, Ag, A;, A, in Eq.(3) and.J for
various latticest=tanh(gJ).

Lattice g Ag A A, Bed

SQ 1 (+tH)2 2t(1-t?) 0 3In(1+42)
PT 1 (1+t3)%+8t3 2t(1-t3)2 2t(1-t3)%  Liin/3
HC 1 1+3t4 2t3(1-t?) 2t3(1—-t?) iIn2+3)

where p=pJ, Z;(7,R,L)=Q,/(A,/2)9"12 7=D,Le¢, D,

is a nonuniversal metric factdi5], L=(L;L,)*? e=(T
—T.)/T., andR=L,/L, is the aspect ratio. Then, the spe-
cific heat CB/kg=(%%/L%)(9*In Z8/917) near r=0 can be
written as

CB

Ci(R)

L
1
L

Here Coo= Co,o’lgi CS(R): 77%[00,1— ZCO,Ofl_CO,ZRf%
—3CodnR], C?(R): _Cl\/ﬁﬂng: Ao,o(R):ao,O\/ﬁﬂg
—2Co07 4 AG(R) =~ (aoVRy/ m) o mRf3+a fy
—3afs], where =B, f1=(s5|0s|In|6s|+ 3] 64lin|6|
+85|65]In| 65])/F, f2= (5] 62| 03] | 64])IF, fa
=In(4]6,]|64[64)), F=(e%| 05|+ 25|64 +85]62]), with 6,
=6;(0,g) the Elliptic # functions of modulusy, andcgg,
Co1, Co2, C1, Agp, Ag, &3, andq are listed in Table Il

Based on Ref.[14], we write the free energyf®
=(1/L?)InZB neare=0 as

+0

1
B _ _— | AB
o =| CodnL+CERI+ ik Dz[AO(R)

Ao dR)
L

7+ 0O(7?). (5)

In L+O(

1
fB~FS+Ffe— E[CS(R)H:O,(Jn L]e?

—(D,L) 2WB(7,R,L), (6)

with scaling function WB. Here F§=fq+fg,/L2
+O(L™% and FP=pB.EqetBcEo1/L+O(L™?), where
fp0=0.9296954 ... for SQ, 0.8795854 ...
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FIG. 1. The scaling functiondPP(7,R=1,L), I'PP(r,R=1L),
andWPP(7,R=1L) as a function ofr with D,=1 for (a) SQ, (b)
PT, (c) HC lattices under periodic-periodipp) BC’s. I'"PP andWPP
are shown as left and right insets, respectively.

1.0250591 ... for HC latticesig,=InF—3Infs, Eq for
the SQ, PT, and HC lattices are listed in Table I, eEﬁtl

= - \/Cosz fz.

To study finite-size scaling, we define the scaling function

for PT, andfor the specific heatAB, as

TABLE Ill. Expressions forcg g, Co1, Co2, C1, 890s 89, a1, 0, @NdEqq; ve (=0.5772156649..) is

the Euler constant.

Lattice Coo Co1 Co2 ©C1 Ao ag a; q Eoo

sQ 8 8( a2 W) 4 202 2 16 5 e™ -2
= — Iy — —
™ T T 4 T

PT 12\/§ 12\/§ | 4\/§ N \E'TT 9 6 72\/§ 54 4\/§ e—w(v‘?—i)R/Z -2
m x |\ TYET T s

He 208 203 4B Br) 3 1 6/2 308 g5 enIims 2
™ p - BT g 4 B w 4 N&
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FIG. 2. The scaling functio®;AB(7,D3R,L) as a function ofr

; ; B
for SQ, PT, and HC lattices, arid; is defined in the text(a) R FIG. 3. The scaling functions D;W"(7,DsR,L) and

D,I'B(r,D3R,L) as a function ofr for SQ, PT, and HC lattices.
— ) — PT_ HC 1 3, ’ )
:é,gsggp B(CEJ)S'R_Lll/z 1024éC,SDlL _07%587 DPT_ oagnggg Di Boundary conditions and the values Rf L,, D}", and D! for
;nd' DHC.—.l. 6]8 N an’dF()cr)) R 1’/2 l;a Bé’sl I__—'768 'D',;T' (@), (b), and (c), respectively, are the same as the corresponding
1 — 4 “ ey - ’ ’ 1= 1 1 I I
=0.999 ..., andD!°=1.0167 . .. . Theinsets show curves near parts in Fig. 2.

7=0in more detail. Similarly, the scaling function for the free energy®, is

PWB(7,R,L) B

fB
AB(T,R,L)=T=k—B—[CE(RHCo,dnL] WB(T,R,L)z—(DZL)Z[%{fB—(fo’0+LL;
1 Ao R 1
=5 AS(R)+ O’f )InL+O T 7+0(7?) Eoxl 1 4
2 +BC(EO,O+T’)€+§[CO(R)+CO,dnL]62
C3%R) 1
+ L +O(F). (7)

1
:EABTZ-FO(TS). 9
According to the definition of internal energyE®
= — (1.3 (9In Z®)/(d7), we define the scaling function for  In the scaling functiom®, CB(R) is the leading term in
the internal energyl’B, as finite-size corrections. Thus, the finite-size effect for e
boundary condition is the smallest in comparison with the

5 JWB(7,R,L) 5 31 pa, ap, and aa BC’s. The behaviors ofAB(7,R=1L),
7 RL)=—————= Dol Be) E"~| Boot I'8(r,R=1L), andWB(r,R=1L) as a function ofr with
1 D,=1 for the SQ, PT, and HC lattices withp BC’s are
+ _[C(BJ(R)+CO,dn Lle; =ABr+0O(72). shown in Figs. (la) 1(b) and Xc), resp_ec;twe!y, wh|ch show
c that these quantities have very nice finite-size scaling behav-
(8) ior.
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To study the UFSSF's ohB(7,R,L), we take aspect ra- To show examples of[¥,/D,) and UFSSF's, we note
tios of the SQ, PT, and HC lattices to have the relative prothat for R=1, (D1/D5)pt=0.968 ... (pp),
portions 13/3/2:\/3. Equation(7) implies that for large lat- 1.02%7...(pa), and  (0;/D;y)yc=1.032...(pp),
tices, the slope oA® as a function of- at 7=0 is determined 1.098L ... (pa). For R=1/2 and 1/3, we havell;/D,)pt
by AZ. We can further multiply the scaling function by an- =0.9864...(pp), 0.986t...(pa), and ([O1/D3)nc

other nonuniversal metric fact®, to obtain =1.052...(pp), 1.05D ... (pa). We find that the values
of D,/D, are roughly 0.986..., 1.052 ... for the PT

Di[ & Ay oR) 1 and HC lattices in the range 0.8.R<0.75 and the values

D,A%(7,R,L)= D | AR+ ——1n L+O<E) T are same for th@p and pa BC’s. Using these values and
2 calculatingD, based on exact specific heat for such finite

1 lattices, we plot thé®;AB(7,D3R,L) for the SQ, PT, and HC

+0(7)+0 Nk (10 lattices in Figs. 23), 2(b), and Zc), respectively, which show

that the residual specific heats have very nice universal
finite-size scaling behavior. Based &F, I'B, and W8 in
Eqgs.(7)—(9), we can further multiply the scaling functions of
the internal energy and the free energy by the sBmeand
obtain UFSSF's foD,I'®(7,D3R,L) andD;W&(7,D3R,L),

We can take values @, /D, so that the leading terms in the
right-hand sides of Eq10) have the same slope for SQ, PT,
and HC lattices. Accordingly, we tak®¢ /D,)sq=1 for the

H B B
SQ lattice, D;/Da)pr= Ag'SQ(RSQ)/AgPT(RPT) for the PT \/hich are plotted in Figs.(8)-3(c). These figures also show
lattice, and D1/D2)nc= Ao sd Rsg)/Aonc(Ruc) for the HC ey ice universal finite-size scaling behavior.
lattice. To explore the behaviors of the amplitud§ as a Although the results of this paper are based on analytic
function of R, we considerA§(D3R) with scale factorD;  expressions for the physical quantities of the Ising model,
=1,J3/2,/3 for the SQ, PT, and HC lattices, respectively. our formulations can be extended to numerical or experimen-
The sign of theAg(D3R), in general, gives the information tal studies of finite critical systemd6]. For example, the
about the location 4,,,) of the maximum of the specific CoefficientsC§(R) andCoq of Eq. (7) can be evaluated by
heat. WhenAg(D3R) is positive, 74> 7.=0, and when usir_1g extrapolation techniques to _analyze simulation or ex-
AB(D3R) is negative rma<1.. For thepp andpa BC's, the perimental data, then one can define the scaling function of
behaviors Ong(DgR) for the SQ, PT, and HC lattices are the specific heat S|n_1!lar to that in E¢7). _As a result, the
roughly in a similar feature in the region okOR<1. How- UFSSF for the specific heat can be obtained.

ever, for theap andaa BC’s, the curves oA§(D3R) for the We thank H. W. J. Blte for a critical reading. This work
SQ lattice are quite different from those for PT and HC lat-was supported in part by the NSC of the RQ@Taiwan
tices. under Grant No. NSC 91-2112-M-001-056.
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