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Stochastic model for heart-rate fluctuations
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A normal human heart rate shows complex fluctuations in time, which is natural, because the heart rate is
controlled by a large number of different feedback control loops. These unpredictable fluctuations have been
shown to display fractal dynamics, long-term correlations, afichaise. These characterizations are statistical
and they have been widely studied and used, but much less is known about the detailed time evolution
(dynamics of the heart-rate control mechanism. Here we show that a simple one-dimensional Langevin-type
stochastic difference equation can accurately model the heart-rate fluctuations in a time scale from minutes to
hours. The model consists of a deterministic nonlinear part and a stochastic part typical to Gaussian noise, and
both parts can be directly determined from the measured heart-rate data. Studies of 27 healthy subjects reveal
that in most cases, the deterministic part has a form typically seen in bistable systems: there are two stable
fixed points and one unstable one.
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[. INTRODUCTION dynamical noise is different from measurement noise, which
is mostly generated in the experimental apparatims.any

Various methods and models have been used in attempease, there is an increasing evidence that noise, originated
to characterize the dynamics of the heart-rate control mechéither from the system itself or as a reflection of external
nism. For short time periods and under stationary conditiondnfluences, is actually an integral part of the dynamics of
there are successful models of heart-rate and blood pressupilogical system$30—-32.
regulation[1,2], but the characterization of a long-term be- A typical R-R interval recording is shown in Fig. 1. The
havior has been a very difficult problem. Some models havéme series is generated by recording a 24-h electrocardio-
been introduced in order to explain long-term fluctuationsgram and detecting thie-peak from each heartbeat, tReR
but usually they can only describe well-controlledvitro  interval is the time difference between two consecutive
experiments, or the models depend on a large number df-peaks. In the upper panel of Fig. 1, we have R
parameters, which cannot be easily determined from experintel’val time series for 6 h. We can see sections where the
mental datg3]. Furthermore, these models can predict onlyoscillations are rather regular, but there are also abrupt
global statistical features such as scaling properties of powethanges. In the lower panel of Fig. 1, we have enlarged a
spectrum and correlatiod], and provide us very little in- part of the time series of about 50 min, and also in this time
formation about the details of the time evolution. range we can see apparently random oscillations with rapid

Many features can be extracted from long time series ofhanges.
heart-rate measurements, quantities such as entropy mea-Itis well known that most short-time fluctuations of heart
sureg5—11], correlation dimensiofil2—17, detrended fluc- rate are generated by respiratigperiods typically in the
tuations[18—-20, fractal dimensiong10,21-23, spectrum couple of seconds rangand blood pressure regulatig¢so
power-law exponentf20,24], and symbolic dynamics com-
plexity [25—27), but these are all purely statistical character-
izations and as such cannot provide us a mathematical model__ 1500 4
of heart-rate dynamics, not even a simple one. However, g
some of these statistical methods do characterize the com-E 1000
plexity of the dynamics underlying the time seri&8], or o
are directly related to their fractal or chaotic features. A s04
mathematical analysis of many physiological rhythms, in- 0 5000 10008” 15000 26000
cluding long-term heart-rate fluctuations, has revealed that
they are generated by processes that must be nonlinear, sinci
linear systems cannot produce such a complex behp2@&pr
Nonlinear, purely deterministic models can display chaotic
dynamics and generate apparently unpredictable oscillations,'g 1250
but, in practice, it has not yet been possible to extract such = 4440
models from real noisy experimental data. It is also possible x
that the underlying system is stochastic, i.e., the time evolu-
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tion of the system is subject to a noise sour@éis kind of 17000 18000 19000
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*Electronic address: tom.kuusela@utu.fi FIG. 1. TypicalR-R interval time series recorded at night.
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FIG. 2. Schematic presentation of the method for analyzing the stochastic time series and calculating the deterministic and stochastic
parts of the dynamicfpart (a)]. Whenever the trajectory of the system passes near a certainxpioirthe state space, i.eX(t;)~x, the
future valueX(t;+ 7) of the trajectory is recorded. The distribution of these values is fitted by a Gaussian function with thex mean
+g(x) and deviatiorh(x), cf. Eq.(2). This is repeated for alt values. On the right there are two typical examples of the distribution of
future values, the initiak values are marked with dashed vertical bars and the fitted Gaussian curves with a thjglaitrib)].

called Meyer waves with periods of about 10 §88]). Inthe  limit 7—0 and get the differential equatiofl) [if the 7
following, we are not interested in these fast rhythwhich ~ dependence is given byg(X(t); )~ rg(X(t))], but in the
can be analyzed quite well using linear or semilinear modpresent case it will turn out that there is a minimunfor

els), but rather in time scales from minutes to hours. We willwhich model(2) seems to be valid. We assume thandh
show that in this time range, the dynamiCS of the heart'ratgo not have an expncit time dependence’ but they may de-
fluctuations can be well described by a one-dimensionahend on the delay. It is convenient to extract the ter¥(t)
Langevin-type difference equation. This equation contains @, the deterministic part, as is done in E8), then a nonzero

deterministic part and an additive Gaussian noise, and WS(X(t);T) stands for changes in the state of the system. An

have four_nd that. it works well when thg delay parameter Nessential feature of models of the above type is that for time
the equation is in the range of 2—20 min.

evolution, we only need to know the state at one given mo-
ment and not its evolution in the past, i.e., they are Markov-

Il. THE MODEL ian [34,37.
An important and wide class of dynamic systems can be_ 1he computational problem is now to determine the func-
described by the Langevin differential equati@4,35 tionsg andh from measured time series and to verify that the
description using Eq(2) is accurate. The principle of the
dX(t) method is very simpld38,39: at every timet; when the
g~ 9X®),D)+hX(®),HT (D). (1) trajectory of the system meets an arbitrary but fixed print

in state space, we look at the future state of the system at

Here, X(t) represents the state of the system at timthe ~ fimeti+ 7. The set of these future valuéfer a chosenxand
function g gives the nonlinear deterministic change, and, in7) has a distribution in the state space and from this distri-
the last termh is the amplitude of the stochastic contribution Pution we can determine the deterministic pg(x) and the
andT'(t) stands for uncorrelated white noise with a vanish-Stochastic par(x), see Fig. 2a). In practice, we first divide
ing mean. These kinds of stochastic differential equation$he range of the dynamical variabXeinto equal boxes. By
always need an interpretation rule for the noise term, norscanning the whole measured time series we check When
mally one uses the Ito interpretatidB6]. In general, the inside a given boxx, i.e., [X(t;) —x|<Ax, wherex is the
functionsg andh could depend explicitly on time Equation ~ Middle value of the box andx is the half-width of the box.
(1) can be easily generalized to higher dimensions. We willVhenX s found on the box, we look at the future value of
now show that the long-term behavior of the heart-rate cathe variableX(t;+7), wherer is the fixed delay parameter.

be modeled using differenceversion of the Langevin equa- Since the trajectory of the system passes each box several
tion [34] times, we can calculate the distribution of the future values

X(tj+7) for each boxx. If we assume that the noise is
X(t+7)=X(t)+g(X(t); )+ h(X(t); DI (t). (2)  Gaussian, we can fit a Gaussian function on each distribu-
tion, and as a result we get the mean and the deviation pa-
Here X(t) again represents the state of the system, which imameters for eack; the mean of this distribution is equal to
this case is th&®-R interval, at timet, andr is the time delay. x+g(x) and the deviation is equal to(x) [40,41]. A typical
If arbitrary small delays are possible, then one can take thecase is given in Fig.®), and it shows that the distribution is
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FIG. 3. Typical results derived froiR-R interval time series using time delay=500. We have shown the deterministic pgfX) (the
left pane), the stochastic patt(X) (the middle pang] and the correlation coefficient of the distributi@he right panelas a function of the
dynamical variableX. The range corresponding to the correlation threshold level of 0.8 is marked with the vertical lines.

actually very well described by Gaussian noffee correla- middle fixed point is repulsive. Due to the stochastic part, the
tion is better than 0.95; the correlation is calculated asystem has a tendency to jump between the stable points if
V1—Sies/Sior» WhereS,¢s is the sum of the squared residu- the amplitude of the noise is high enough. Far away from the
als andS;,; is the variance From the given data, we can in stable pointsg(X) increases or decreases strongly and this
this way determine the functiorg®X) andh(X) needed in  forces the system rapidly back to oscillate around the stable
the stochastic modéR). It should be noted that we can cal- points. The amplitude of the stochastic part of the system,
culate only the absolute value b{X), since the deviation functionh(X), is almost constant, except between the stable
parameter found from the fitted Gaussian function is in &oints where it has a clear maximufthe middle panel in
squared form. _ _ _ Fig. 3. One interpretation is that the system has a larger
In our analysis we have usdR interval time series of jnnerent freedom to oscillate randomly when the trajectory is
22-24 , corresponding to 80.000—-100.000 data points. OWaqyeen the stable points, but outside this range the character
data.|s actually mterva! data, i.e., it consists of a sequence Qff e system is more deterministic. From the physiological
R-R interval values. It is then convenient to count the delay oint of view, this kind of dynamics can be useful since it

?n our analysis in terms of hea_rt be_ats rathgr than_second ats theR-R interval to wander most of the time but prevents
€., we “"’.‘VG not qsed cumula.tlve time as time variable bullt from escaping too far away from the normal range. On the
the beat index. Since thBR-R interval values vary a lot

within the used delay range, the beat index actually gives zgght panel in Fig. 3, we have shown the correlation coeffi-

delay as if computed with the average beat rate. We haVC|ent of each local distribution. Most of the time, the corre-

tested both methods and found only minor differences bef—%ltlorl is remarkably high, about 0.85-0.95; but near the larg-

. . . . est and the smallet values, there are only rather few data
tween themin the details of the functiong andh). We will points and therefore the corresponding distributions do not

show later that the functional forms a@f and h are quite h . . . .
) .o . . ) ave a clear Gaussian shape resulting with lower correlation.
insensitive on the time delay, and since this holds for bOthI'he hioh avera |ati e i | indicati h
methods we will use the more convenient beat index. gh average correlation value Is a clear indication that
the noise in this system is really a Gaussian type. We have
used the value of 0.8 as a threshold level, and the corre-
Ill. RESULTS sponding range is marked with the vertical lines in Fig. 3.
What is remarkable in this description is that the func-
tional forms ofg(X) andh(X) are fairly independent of the
In Fig. 3, we have presented results obtained for a particudelay parameter in a rather extensive delay range, typically
lar case using the method described earlier. The value of thE00—1000 beat&corresponding to 2—20 minin Fig. 4, we
delay parameter was 500 beats, and the number of boxeshave plotted the functiong(X) andh(X) for a range ofr
used to construct local distributions was 150. Distributionsvalues. Theg function is practicallyr independent, except
were fitted using a Gaussian function. Tgex) function, the  for the shortesR-R intervals, where some cumulative effects
deterministic part of the system, is displayed on the left paneshow up. Theh function seems to grow very slowly as
in Fig. 3. It has a very clear and simple functional form increases. For still smaller delay valuegX) is more flat
(between the vertical lingsvhich is typical for systems ex- andh(X) is more scattered, and for longer delaysX) is
hibiting a bistable behavidiB4,42. The function crosses the typically a straight line and(X) is constant. Behavior at
zero line three times; these crossings are the fixed points dhese extremes can be easily understood by recalling that
the system. The fixed points marked with arrows are stablewhen the time scale is small, the heart-rate system is clearly
without any noise term these points attract all nearby stateswultidimensional—depending directly on blood pressure,
because the control functian(X) is locally decreasing. The respiration, and other rapidly changing physiological

A. A typical case
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FIG. 4. Examples of the deterministic paytX) (the left panel and the stochastic par(X) (middle panel calculated with various
values of the delay parameter40 (thick line), 80 (thin line), 160 (thick line), 320 (thin line), and 640(thick line). The values of thg(X)
function atX=780 ms(marked with vertical dashed line in the left panate plotted as a function of the delay in the right panel, there is
a plateau around a delay of 100—1000 beats.

variables—and our one-dimensional description is no longeand 7 in Fig. 3. We also found three cases where (&)
valid. On the other hand, if the delay parameter is very largefunction seems to have even more zétase 8 in Fig. b

we cannot reconstruct the local dynamics in terms of IocaD_nIy very few _cases could not be cl_early class_ifi_ed as
distributions, we just get the global distribution that is inde-bistable or multistable. In these cases, it can be difficult to
pendent of dynamics and no longer Gaussian. In the righfiterpret the results. It is possible that the dynamical variable
panel of Fig. 4, we have given the values of tiX) func-  did not explore the whole state phase, and therefore we can
tion at X =780 ms(marked with a vertical dashed line in the S€€ only part of the(X) function; case 9 in Fig. 5 is an
left pane) computed with delays of 5-10 240 beats. We carf*ample of this where the system has only one stable fixed
see a plateau in the delay range of 100-1000 beats Whicﬁo'nt and no unstable points at all. The stochastic parts
means that thg(X) curves for these delays are bundled. InLfUnctionh(X)] are fairly similar: they are almost constant,
principle, the curves for a delay ofs2should be obtainable €XCEPt that in all cases there are maxima onRHR interval
by iterating Eq.(2) with delay . Direct numerical calcula- ranges petween the staple .flxed points of the deterministic
tions of joint probabilities using experimentally determined part, as in the example in Fig. 3.

" N The description given by Eq2) contains both a deter-
g(X) (within 100-1000 beats delay rangendicate that inigtic and a stochastic component. It is important to real-

g(X) andh(X) do not change significantly in one iteration, ;e that the stochastic part is not a small perturbation but in
mostly because in our case the Gaussian distribution is not gt forms an essential part of the description, furthermore, it
narrow. In general, iterations tend to sharpen the bends i§ 10—20 times higher than the measurement ngiseer-
g(X) and this feature is indeed visible in Fig. 4. The small tainty in detecting the position of tHe-peak, which is typi-
dependency ofy and h in the range of shorR-R intervals  cally only 2—5 ms. One way to compare the deterministic
can then be interpreted either as the expected result frorand stochastic components is to note that the size of the bend
repeated iterations or as a sign of higher-order dynamicsn the g(X) function is of the order of 30—50 ms, while the
possibly the heart-rate regulation system is more compleaverage size of thie(X) function is about 70—110 ms, as can

when the system must readjust at a fast heart rate. be seen in Fig. 3.The extraction of small details in thgg X)
function under such noise is of course possible only because
B. Variation between subjects the noise is so cleanly Gaussia©n the other hand, the

In order to find whether different subjects have any com-fjIStance between the stable fixed points inghk) function

mon features in the deterministic and stochastic paxt) is of the order of 50—-250 ms and, therefore, the probability

andh(X), we analyzed the data from 27 healthy subjects Ofthat the system jumps between stable points is not extremely

. . high, but nevertheless possible. It is also possible that exter-
various age and geqder (%8 cases from PhysiofaBkand nal factors drive the system from one stable point to another,
9 cases from Kuopio University HospijalAnalyses were

done using the same parameter values as in Fig. 3. The dEi_nce during night time, the meaR-R interval is typically
terministic part, they(X) function, is displayed in Fig. 5 for onger than during day timpalthough theR-R interval can

a set of nine typical cases. The most common form for thi abruptly jump to the faster rate also during the night, as can

function is the bistable type, already shown in Fig. 3, Wher;be seen on the lower panel in Fig]. 1

the g(X) function has three zeros, and 60% of all cases can
be classified to this groupcases 1-5 in Fig.)5 The next
most common group, 25% of all cases, hag(X) function If model (2) were to describe the true heart-rate dynamics,
with five zeros, a kind of double pitchfork systeftases 6 the functionsg(X) and h(X) should have some constant

C. Same subject at different times
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FIG. 5. Typical deterministic functiong(X) derived from different subjects. Cases 1-5 represent the simple bistable situation, cases 6
and 7 have three stable points, case 8 is multistable, and case 9 has only a single stable fixed point.

features specific for each subject. In order to look at thisare remarkably similar, both having clear bistable character.
aspect we made two recordings from the same subject withitn the R-R interval range of 500—-800 ms, the results are
four days, the results are shown in Fig. 6. In general, thalmost identical and the only difference seems to be a scaling
deterministic and stochastic parts from different recordingsowards the shorteR-R intervals in the 800—1100 ms range
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FIG. 6. The deterministic parts
g(X) (left pane) and stochastic
partsh(X) (right pane] computed
from the R-R interval time series
recorded from the same subject on
different days. The data from the
first recording are marked with
solid dots and data from the sec-
ond recording, four days later,
with open dots.
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FIG. 7. The deterministic pag(X) (left column, stochastic par(X) (middle column, and correlation coefficier(right column for
the original datarow A) and for two surrogate versiorisows B and @. For surrogate data, the original data have been shuffled using
section sizes of 800row B) and 400(row C) data points.

of the second recording. In the first recording the mean valuéurther. In this analysis, we have used the same delay of 500
of the R-R interval calculated over the 24 h period was 781data points as used previously, and when the section size
ms and in the second one 726 ms. Therefore in the secongsed in the shuffling process is less than this delay, all dy-
recording the shorted®-R intervals are significantly more namical properties disappear, as expected in the case of true
frequent and this can affect the analysis results. These devime evolution. Therefore, we conclude that our results are

tions could also reflect true changes on the underlying congerived from the dynamical properties of the heartbeat data,
trol system: it is well known that there are daily variations ongnd not from their overall statistical characteristics.

functions of the autonomic nervous system.

D. Surrogate analysis IV. CONCLUSION

As a further validity check, we also performed surrogate -
analysis[44,45 in ord?a/r to eliminate theppossibility that t%]e Our results indicate that the human heart-rate control dy-
results are generated just from a peculiar distribution of thé!2Mics can be accurately modeled with the one-dimensional
R-R intervals imitating real dynamics. For this purpose, theStOCh"J‘St'_C dl_ffe_rence equgtmﬁﬂ), Wher_e _the_ tlme_delay pa-
data was shuffled by dividing it into sections of equal size,/@Meter is within 2—20 min. Stochasticity is an integral part
which were then repositioned randomly. As a result, we get & the dynamics, and in this delay range the effects of other
new time series where the dynamical structure has been pa\farlables are either embedded into the stochastic part of the
tially destroyed depending on the section size. Results of thi§ystem or averaged over time with no net effect. It is remark-
surrogate analysis are shown in Fig. 7. The top panels digble that the form of the control functiog(X) is similar
play the deterministig(X) and stochastiti(X) parts of the from case to case. Their typically bistable character is also
system and the correlation coefficient without any data shufwell justified on common physiological grounds. From this
fling (row Ain Fig. 7). On the next row(row B in Fig. 7 we initial study, we cannot yet identify what kind of dynamical
have used sections of 800 data points for shuffling. There argtructure is typical for healthy subjed@lthough our results
only small changes in the deterministic part, but the correlaalready indicate that a simple bistable system is most com-
tion has decreased noticeably. When the section size is 4000n featurg, and therefore the model cannot yet be used
(row C in Fig. 7, we can no longer see the bistable charactedirectly for clinical work, for this purpose, one needs exten-
in the deterministic part, the stochastic part is flat with highersive demographic studies. We can nevertheless speculate that
mean level, and the average level of the correlation coeffithe form of the control functiorg(X) should provide us
cient has dropped well below our threshold value 0.8. Withsome information about the health of the subject. Also, some
still smaller section sizes, the results do not change angf the current knowledge based on statistical measures of
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