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Stochastic model for heart-rate fluctuations
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Department of Physics, University of Turku, 20014 Turku, Finland

~Received 7 February 2003; published 13 June 2003!

A normal human heart rate shows complex fluctuations in time, which is natural, because the heart rate is
controlled by a large number of different feedback control loops. These unpredictable fluctuations have been
shown to display fractal dynamics, long-term correlations, and 1/f noise. These characterizations are statistical
and they have been widely studied and used, but much less is known about the detailed time evolution
~dynamics! of the heart-rate control mechanism. Here we show that a simple one-dimensional Langevin-type
stochastic difference equation can accurately model the heart-rate fluctuations in a time scale from minutes to
hours. The model consists of a deterministic nonlinear part and a stochastic part typical to Gaussian noise, and
both parts can be directly determined from the measured heart-rate data. Studies of 27 healthy subjects reveal
that in most cases, the deterministic part has a form typically seen in bistable systems: there are two stable
fixed points and one unstable one.
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I. INTRODUCTION

Various methods and models have been used in attem
to characterize the dynamics of the heart-rate control me
nism. For short time periods and under stationary conditio
there are successful models of heart-rate and blood pres
regulation@1,2#, but the characterization of a long-term b
havior has been a very difficult problem. Some models h
been introduced in order to explain long-term fluctuatio
but usually they can only describe well-controlledin vitro
experiments, or the models depend on a large numbe
parameters, which cannot be easily determined from exp
mental data@3#. Furthermore, these models can predict o
global statistical features such as scaling properties of po
spectrum and correlations@4#, and provide us very little in-
formation about the details of the time evolution.

Many features can be extracted from long time series
heart-rate measurements, quantities such as entropy
sures@5–11#, correlation dimension@12–17#, detrended fluc-
tuations @18–20#, fractal dimensions@10,21–23#, spectrum
power-law exponents@20,24#, and symbolic dynamics com
plexity @25–27#, but these are all purely statistical charact
izations and as such cannot provide us a mathematical m
of heart-rate dynamics, not even a simple one. Howe
some of these statistical methods do characterize the c
plexity of the dynamics underlying the time series@28#, or
are directly related to their fractal or chaotic features.
mathematical analysis of many physiological rhythms,
cluding long-term heart-rate fluctuations, has revealed
they are generated by processes that must be nonlinear,
linear systems cannot produce such a complex behavior@29#.
Nonlinear, purely deterministic models can display chao
dynamics and generate apparently unpredictable oscillati
but, in practice, it has not yet been possible to extract s
models from real noisy experimental data. It is also poss
that the underlying system is stochastic, i.e., the time ev
tion of the system is subject to a noise source.~This kind of
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dynamical noise is different from measurement noise, wh
is mostly generated in the experimental apparatus.! In any
case, there is an increasing evidence that noise, origin
either from the system itself or as a reflection of exter
influences, is actually an integral part of the dynamics
biological systems@30–32#.

A typical R-R interval recording is shown in Fig. 1. Th
time series is generated by recording a 24-h electrocar
gram and detecting theR-peak from each heartbeat, theR-R
interval is the time difference between two consecut
R-peaks. In the upper panel of Fig. 1, we have theR-R
interval time series for 6 h. We can see sections where
oscillations are rather regular, but there are also abr
changes. In the lower panel of Fig. 1, we have enlarge
part of the time series of about 50 min, and also in this ti
range we can see apparently random oscillations with ra
changes.

It is well known that most short-time fluctuations of hea
rate are generated by respiration~periods typically in the
couple of seconds range! and blood pressure regulation~so

FIG. 1. TypicalR-R interval time series recorded at night.
©2003 The American Physical Society04-1
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FIG. 2. Schematic presentation of the method for analyzing the stochastic time series and calculating the deterministic and
parts of the dynamics@part ~a!#. Whenever the trajectory of the system passes near a certain pointx in the state space, i.e.,X(t i)'x, the
future valueX(t i1t) of the trajectory is recorded. The distribution of these values is fitted by a Gaussian function with the mx
1g(x) and deviationh(x), cf. Eq. ~2!. This is repeated for allx values. On the right there are two typical examples of the distribution
future values, the initialx values are marked with dashed vertical bars and the fitted Gaussian curves with a thick line@part ~b!#.
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called Meyer waves with periods of about 10 sec@33#!. In the
following, we are not interested in these fast rhythms~which
can be analyzed quite well using linear or semilinear m
els!, but rather in time scales from minutes to hours. We w
show that in this time range, the dynamics of the heart-r
fluctuations can be well described by a one-dimensio
Langevin-type difference equation. This equation contain
deterministic part and an additive Gaussian noise, and
have found that it works well when the delay parameter
the equation is in the range of 2–20 min.

II. THE MODEL

An important and wide class of dynamic systems can
described by the Langevin differential equation@34,35#

dX~ t !

dt
5g„X~ t !,t…1h„X~ t !,t…G~ t !. ~1!

Here, X(t) represents the state of the system at timet, the
function g gives the nonlinear deterministic change, and,
the last term,h is the amplitude of the stochastic contributio
andG(t) stands for uncorrelated white noise with a vanis
ing mean. These kinds of stochastic differential equati
always need an interpretation rule for the noise term, n
mally one uses the Ito interpretation@36#. In general, the
functionsg andh could depend explicitly on timet. Equation
~1! can be easily generalized to higher dimensions. We
now show that the long-term behavior of the heart-rate
be modeled using adifferenceversion of the Langevin equa
tion @34#

X~ t1t!5X~ t !1g„X~ t !;t…1h„X~ t !;t…G~ t !. ~2!

HereX(t) again represents the state of the system, whic
this case is theR-R interval, at timet, andt is the time delay.
If arbitrary small delayst are possible, then one can take t
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limit t→0 and get the differential equation~1! @if the t
dependence is given byg„X(t);t…'tg„X(t)…], but in the
present case it will turn out that there is a minimumt for
which model~2! seems to be valid. We assume thatg andh
do not have an explicit time dependence, but they may
pend on the delayt. It is convenient to extract the termX(t)
in the deterministic part, as is done in Eq.~2!, then a nonzero
g„X(t);t… stands for changes in the state of the system.
essential feature of models of the above type is that for t
evolution, we only need to know the state at one given m
ment and not its evolution in the past, i.e., they are Mark
ian @34,37#.

The computational problem is now to determine the fun
tionsg andh from measured time series and to verify that t
description using Eq.~2! is accurate. The principle of the
method is very simple@38,39#: at every timet i when the
trajectory of the system meets an arbitrary but fixed poinx
in state space, we look at the future state of the system
time t i1t. The set of these future values~for a chosenx and
t) has a distribution in the state space and from this dis
bution we can determine the deterministic partg(x) and the
stochastic parth(x), see Fig. 2~a!. In practice, we first divide
the range of the dynamical variableX into equal boxes. By
scanning the whole measured time series we check whenX is
inside a given boxx, i.e., uX(t i)2xu<Dx, wherex is the
middle value of the box andDx is the half-width of the box.
WhenX is found on the box, we look at the future value
the variable,X(t i1t), wheret is the fixed delay paramete
Since the trajectory of the system passes each box se
times, we can calculate the distribution of the future valu
X(t i1t) for each boxx. If we assume that the noise i
Gaussian, we can fit a Gaussian function on each distr
tion, and as a result we get the mean and the deviation
rameters for eachx; the mean of this distribution is equal t
x1g(x) and the deviation is equal toh(x) @40,41#. A typical
case is given in Fig. 2~b!, and it shows that the distribution i
4-2
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FIG. 3. Typical results derived fromR-R interval time series using time delayt5500. We have shown the deterministic partg(X) ~the
left panel!, the stochastic parth(X) ~the middle panel!, and the correlation coefficient of the distribution~the right panel! as a function of the
dynamical variableX. The range corresponding to the correlation threshold level of 0.8 is marked with the vertical lines.
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actually very well described by Gaussian noise~the correla-
tion is better than 0.95; the correlation is calculated
A12Sres /Stot, whereSres is the sum of the squared resid
als andStot is the variance!. From the given data, we can i
this way determine the functionsg(X) and h(X) needed in
the stochastic model~2!. It should be noted that we can ca
culate only the absolute value ofh(X), since the deviation
parameter found from the fitted Gaussian function is in
squared form.

In our analysis we have usedR-R interval time series of
22–24 h, corresponding to 80.000–100.000 data points.
data is actually interval data, i.e., it consists of a sequenc
R-R interval values. It is then convenient to count the de
in our analysis in terms of heart beats rather than seco
i.e., we have not used cumulative time as time variable
the beat index. Since theR-R interval values vary a lot
within the used delay range, the beat index actually give
delay as if computed with the average beat rate. We h
tested both methods and found only minor differences
tween them~in the details of the functionsg andh). We will
show later that the functional forms ofg and h are quite
insensitive on the time delay, and since this holds for b
methods we will use the more convenient beat index.

III. RESULTS

A. A typical case

In Fig. 3, we have presented results obtained for a part
lar case using the method described earlier. The value o
delay parametert was 500 beats, and the number of box
used to construct local distributions was 150. Distributio
were fitted using a Gaussian function. Theg(X) function, the
deterministic part of the system, is displayed on the left pa
in Fig. 3. It has a very clear and simple functional for
~between the vertical lines! which is typical for systems ex
hibiting a bistable behavior@34,42#. The function crosses th
zero line three times; these crossings are the fixed point
the system. The fixed points marked with arrows are sta
without any noise term these points attract all nearby st
because the control functiong(X) is locally decreasing. The
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middle fixed point is repulsive. Due to the stochastic part,
system has a tendency to jump between the stable poin
the amplitude of the noise is high enough. Far away from
stable points,g(X) increases or decreases strongly and t
forces the system rapidly back to oscillate around the sta
points. The amplitude of the stochastic part of the syste
functionh(X), is almost constant, except between the sta
points where it has a clear maximum~the middle panel in
Fig. 3!. One interpretation is that the system has a lar
inherent freedom to oscillate randomly when the trajectory
between the stable points, but outside this range the chara
of the system is more deterministic. From the physiologi
point of view, this kind of dynamics can be useful since
lets theR-R interval to wander most of the time but preven
it from escaping too far away from the normal range. On
right panel in Fig. 3, we have shown the correlation coe
cient of each local distribution. Most of the time, the corr
lation is remarkably high, about 0.85–0.95; but near the la
est and the smallestX values, there are only rather few da
points and therefore the corresponding distributions do
have a clear Gaussian shape resulting with lower correlat
The high average correlation value is a clear indication t
the noise in this system is really a Gaussian type. We h
used the value of 0.8 as a threshold level, and the co
sponding range is marked with the vertical lines in Fig. 3

What is remarkable in this description is that the fun
tional forms ofg(X) andh(X) are fairly independent of the
delay parametert in a rather extensive delay range, typical
100–1000 beats~corresponding to 2–20 min!. In Fig. 4, we
have plotted the functionsg(X) and h(X) for a range oft
values. Theg function is practicallyt independent, excep
for the shortestR-R intervals, where some cumulative effec
show up. Theh function seems to grow very slowly ast
increases. For still smaller delay values,g(X) is more flat
and h(X) is more scattered, and for longer delaysg(X) is
typically a straight line andh(X) is constant. Behavior a
these extremes can be easily understood by recalling
when the time scale is small, the heart-rate system is cle
multidimensional—depending directly on blood pressu
respiration, and other rapidly changing physiologic
4-3
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FIG. 4. Examples of the deterministic partg(X) ~the left panel! and the stochastic parth(X) ~middle panel! calculated with various
values of the delay parametert:40 ~thick line!, 80 ~thin line!, 160 ~thick line!, 320 ~thin line!, and 640~thick line!. The values of theg(X)
function atX5780 ms~marked with vertical dashed line in the left panel! are plotted as a function of the delay in the right panel, ther
a plateau around a delay of 100–1000 beats.
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variables—and our one-dimensional description is no lon
valid. On the other hand, if the delay parameter is very lar
we cannot reconstruct the local dynamics in terms of lo
distributions, we just get the global distribution that is ind
pendent of dynamics and no longer Gaussian. In the r
panel of Fig. 4, we have given the values of theg(X) func-
tion atX5780 ms~marked with a vertical dashed line in th
left panel! computed with delays of 5–10 240 beats. We c
see a plateau in the delay range of 100–1000 beats w
means that theg(X) curves for these delays are bundled.
principle, the curves for a delay of 2t should be obtainable
by iterating Eq.~2! with delay t. Direct numerical calcula-
tions of joint probabilities using experimentally determin
g(X) ~within 100–1000 beats delay range! indicate that
g(X) andh(X) do not change significantly in one iteratio
mostly because in our case the Gaussian distribution is no
narrow. In general, iterations tend to sharpen the bend
g(X) and this feature is indeed visible in Fig. 4. The smalt
dependency ofg and h in the range of shortR-R intervals
can then be interpreted either as the expected result f
repeated iterations or as a sign of higher-order dynam
possibly the heart-rate regulation system is more comp
when the system must readjust at a fast heart rate.

B. Variation between subjects

In order to find whether different subjects have any co
mon features in the deterministic and stochastic parts,g(X)
andh(X), we analyzed the data from 27 healthy subjects
various age and gender (18 cases from PhysioBank@43# and
9 cases from Kuopio University Hospital!. Analyses were
done using the same parameter values as in Fig. 3. The
terministic part, theg(X) function, is displayed in Fig. 5 for
a set of nine typical cases. The most common form for t
function is the bistable type, already shown in Fig. 3, wh
the g(X) function has three zeros, and 60% of all cases
be classified to this group~cases 1–5 in Fig. 5!. The next
most common group, 25% of all cases, has ag(X) function
with five zeros, a kind of double pitchfork system~cases 6
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and 7 in Fig. 5!. We also found three cases where theg(X)
function seems to have even more zero~case 8 in Fig. 5!.
Only very few cases could not be clearly classified
bistable or multistable. In these cases, it can be difficult
interpret the results. It is possible that the dynamical varia
did not explore the whole state phase, and therefore we
see only part of theg(X) function; case 9 in Fig. 5 is an
example of this where the system has only one stable fi
point and no unstable points at all. The stochastic pa
@function h(X)] are fairly similar: they are almost constan
except that in all cases there are maxima on theR-R interval
ranges between the stable fixed points of the determin
part, as in the example in Fig. 3.

The description given by Eq.~2! contains both a deter
ministic and a stochastic component. It is important to re
ize that the stochastic part is not a small perturbation bu
fact forms an essential part of the description, furthermore
is 10–20 times higher than the measurement noise~uncer-
tainty in detecting the position of theR-peak!, which is typi-
cally only 2–5 ms. One way to compare the determinis
and stochastic components is to note that the size of the b
in the g(X) function is of the order of 30–50 ms, while th
average size of theh(X) function is about 70–110 ms, as ca
be seen in Fig. 3.@The extraction of small details in theg(X)
function under such noise is of course possible only beca
the noise is so cleanly Gaussian.# On the other hand, the
distance between the stable fixed points in theg(X) function
is of the order of 50–250 ms and, therefore, the probabi
that the system jumps between stable points is not extrem
high, but nevertheless possible. It is also possible that ex
nal factors drive the system from one stable point to anot
since during night time, the meanR-R interval is typically
longer than during day time@although theR-R interval can
abruptly jump to the faster rate also during the night, as
be seen on the lower panel in Fig. 1#.

C. Same subject at different times

If model ~2! were to describe the true heart-rate dynami
the functionsg(X) and h(X) should have some constan
4-4
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FIG. 5. Typical deterministic functionsg(X) derived from different subjects. Cases 1–5 represent the simple bistable situation, c
and 7 have three stable points, case 8 is multistable, and case 9 has only a single stable fixed point.
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features specific for each subject. In order to look at t
aspect we made two recordings from the same subject w
four days, the results are shown in Fig. 6. In general,
deterministic and stochastic parts from different recordin
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are remarkably similar, both having clear bistable charac
In the R-R interval range of 500–800 ms, the results a
almost identical and the only difference seems to be a sca
towards the shorterR-R intervals in the 800–1100 ms rang
n

-
,

FIG. 6. The deterministic parts
g(X) ~left panel! and stochastic
partsh(X) ~right panel! computed
from the R-R interval time series
recorded from the same subject o
different days. The data from the
first recording are marked with
solid dots and data from the sec
ond recording, four days later
with open dots.
4-5
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FIG. 7. The deterministic partg(X) ~left column!, stochastic parth(X) ~middle column!, and correlation coefficient~right column! for
the original data~row A! and for two surrogate versions~rows B and C!. For surrogate data, the original data have been shuffled u
section sizes of 800~row B! and 400~row C! data points.
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of the second recording. In the first recording the mean va
of the R-R interval calculated over the 24 h period was 7
ms and in the second one 726 ms. Therefore in the sec
recording the shortestR-R intervals are significantly more
frequent and this can affect the analysis results. These de
tions could also reflect true changes on the underlying c
trol system: it is well known that there are daily variations
functions of the autonomic nervous system.

D. Surrogate analysis

As a further validity check, we also performed surroga
analysis@44,45# in order to eliminate the possibility that th
results are generated just from a peculiar distribution of
R-R intervals imitating real dynamics. For this purpose, t
data was shuffled by dividing it into sections of equal si
which were then repositioned randomly. As a result, we g
new time series where the dynamical structure has been
tially destroyed depending on the section size. Results of
surrogate analysis are shown in Fig. 7. The top panels
play the deterministicg(X) and stochastich(X) parts of the
system and the correlation coefficient without any data sh
fling ~row A in Fig. 7!. On the next row~row B in Fig. 7! we
have used sections of 800 data points for shuffling. There
only small changes in the deterministic part, but the corre
tion has decreased noticeably. When the section size is
~row C in Fig. 7!, we can no longer see the bistable charac
in the deterministic part, the stochastic part is flat with high
mean level, and the average level of the correlation coe
cient has dropped well below our threshold value 0.8. W
still smaller section sizes, the results do not change
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further. In this analysis, we have used the same delay of
data points as used previously, and when the section
used in the shuffling process is less than this delay, all
namical properties disappear, as expected in the case of
time evolution. Therefore, we conclude that our results
derived from the dynamical properties of the heartbeat d
and not from their overall statistical characteristics.

IV. CONCLUSION

Our results indicate that the human heart-rate control
namics can be accurately modeled with the one-dimensio
stochastic difference equation~2!, where the time delay pa
rameter is within 2–20 min. Stochasticity is an integral p
of the dynamics, and in this delay range the effects of ot
variables are either embedded into the stochastic part of
system or averaged over time with no net effect. It is rema
able that the form of the control functiong(X) is similar
from case to case. Their typically bistable character is a
well justified on common physiological grounds. From th
initial study, we cannot yet identify what kind of dynamic
structure is typical for healthy subjects~although our results
already indicate that a simple bistable system is most c
mon feature!, and therefore the model cannot yet be us
directly for clinical work, for this purpose, one needs exte
sive demographic studies. We can nevertheless speculate
the form of the control functiong(X) should provide us
some information about the health of the subject. Also, so
of the current knowledge based on statistical measure
4-6
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heart-rate time series can probably be explained within
framework of our model. Another interesting observation
the importance of the stochastic part; it could be the resu
integrating the effects of a more detailed control mechan
over time, but it could also reflect some truly stochastic
ternal and external influences.
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