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Stability analysis of a delayed Hopfield neural network
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In this paper, we study a class of neural networks, which includes bidirectional associative memory networks
and cellular neural networks as its special cases. By Brouwer’s fixed point theorem, a continuation theorem
based on Gains and Mawhin’s coincidence degree, matrix theory, and inequality analysis, we not only obtain
some different sufficient conditions ensuring the existence, uniqueness, and global exponential stability of the
equilibrium but also estimate the exponentially convergent rate. Our results are less restrictive than previously
known criteria and can be applied to neural networks with a broad range of activation functions assuming
neither differentiability nor strict monotonicity.
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[. INTRODUCTION fired, a solitonlike pulse propagates along the axon of neuron
j to a synapse of neuran the signal transport through the
Recently, theoretical and applied researches of the artifiaxon takes a finite amount of time known as the transmission
cial neural networks have been the new world-wide focuglelay 7j; . In this paper, we consider such delayed Hopfield
(see Refs[1-23)). Some of the reasons why Hopfield neural heural networks:
networks have received a great deal of attention are because
it can be used in applications to signal and image processing
[14], quadratic optimizatiof2], and fixed-point computation
[3]. The number of equilibria of the neural network relates to
its storage capacity. Some neural networks may have infiniten whichi=1,2, ... n, a; represents the rate with which the
associative memories. The networks described by differentiakh unit will reset its potential to the resting state in isolation
equations include examples in which the neural network camwhen disconnected from the network and external inpijjs,
have nondenumerably many equilibria. Hence, if the neuradienotes the strength of theh unit on theith unit, 7jj corre-
network is viewed as an associative memory, the more equisponds to the transmission delay of tith unit along the
libria the neural network has, the greater the storage capacitgxon of thejth unit, I; denotes the external bias or clamped
But when we use the neural network to solve optimizationinput from outside the network to théh unit, x; corresponds
problems, we want to design a neural network with fewerg the membrane potential of theh unit at timet, f;(x;)
equilibria. For example, in Ref§13,23, if an equilibriumis  denotes the conversion of the membrane potential of e
unique, it will be the global minimum point of the related unit into its firing rate. Throughout this paper, we assume
energy function. In such cases, it is almost necessary to hayfata, >0, 7;=0, Tj; e R, andl; e R are constants.
a unique equilibrium, which is global asymptotic stability,  Model (1) is the most popular and typical neural network
ensuring the convergence to an optimal solution startingnodel. Some other models, such as continuous Biidi-
from any initial guess. Therefore, in both applications, therectional associative memoryetworks and CNNscellular
stability of the neural networks is a prerequisite. On the othepeural networks are special cases of the network modgl

hand, Hopfield neural networks have the potential of perfor instance, the following BAM networkésee, for ex-
forming parallel computation, and some electronic imple-ample, Ref[9]):

mentations of Hopfield neural networks in very large scale

integrated technology have already been realized. However, ) P

in the implementation of artificial neural networks, time de- Ui(D)=—aui()+ >, a;;g;;(t—m;)+1;,

lays are unavoidably encountered. In fact, in models of elec- =1

tronic networks, time delays are likely to be present, due to

the finite switching speed of amplifiers. It is known that time

delays in the response of neurons can influence the stability K

of a network creating oscillatory and unstable characteristics. : _ _

See, for example, Ref$6,9,20, and the references cited vj(D)= ijj(t)+i21 bjihi(Ui(t= o) +J;,

therein. Therefore, it is crucial to take time delays into con-

sideration and to investigate the global asymptotic stability i=12,...p, (2)

of the Hopfield neural networks with delays. In the follow-

ing, we assume that the outputs of neurons reach other rean be deduced from the model of the foft) with n=k

ceiving neurons with certain time delays. If neurpmas  +p, Xx(t)=u;(t), fi(u)=h;(u), and a=qa; for i
=1,2,...k; and xj(t)=v;_(t), fi(u)=g;_(u), and g
=B for i=k+1k+2,...k+p. The connection

*Corresponding author. Email address: shangjguo@etang.com strengthsT;; are specified by

'xi<t>=—aixi<t>+j§lTijfj(xJ-(t—Tij))Hi, 1)

i=1,2,...k;
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0 if 1<i, j<k or k+1<i, j=n, Thus, there exist some patterns or memoftmsequilib-
ria) associated with each set of the external inputs when the
connection weightd;; are fixed.
bi_y; if ktlsisn and Isjsk. It should be noted that the assumptions of the activation
(€©)) functions in Theorem 1 are very general, assuming neither
] ) ] differentiability nor strict monotonicity. In particuld6,21],
By means of Brouwer's fixed point theorem, a continua-if the activation functions in systei) are all bounded oR,
tion theorem based on Gains and Mawhin’s coincidence dg-e  there exist positive constangs, i=1,2,...n, such
gree, matrix theory, and inequality analysis, we not only obnat|f.(u)|<gq; for all ue R andi=1,2, . .. n, then system
tain some new sufficient conditions ensuring the existenceynyst have at least one equilibrium. For example, in CNN
uniqueness, and global exponential stability of the equilib-modeL the activation function takes the foritu)=0.5(u
rium but also estimate the exponentially convergent rate.. 1|—|u—1|), which is bounded. Of course, the computa-

These conclusions are presented in terms of system paramgign of p(A) could be expensive for a large network. Recall

eters, and have an important leading significance in the dpa¢ for o given matria, its spectral radiup(M) is equal to
sign and applications of neural circuits for neural networkSha minimum of its all matrix norms ofl. i.e.. for any ma-

with delays. We not only unify and improve some previou;trix norm |-, p(M)<|M]|. Therefore, we have the follow-

results but al_so give some different criteria expressed ifhg two corollaries. Especially, Corollary 1 puts the con-
terms of matrix norms.

straints directly on the elements of the connection matrix and
decay rate, and can be used more conveniently.
Il. STABILITY ANALYSIS Corollary 1. In addition to assumptioii5), suppose that

In this section, we first introduce some elementary nota:[here exist positive real numbels(i=1,2, . . . n) such that

. . one of the following inequalities is satisfiedi) —d;a;
tions and lemmas. Let=max<; j<n{7;}. As usual, we intro- 9 q di) T

T;=9 aj« if 1sisk and k+lsj=n,

n - . W
duce the phase spa[ — 7,0];R") as the Banach space of +2;1=1|T'J|pld1<0 fc;r al HI 12_ AR (_") d.'.".’l'
continuous mappings frof— 7,0] to R" equipped with the +Ei=1|Tii|p‘dJ<0 or a '._1’2’ e b _ (I.”)
supremun{24] norm defined by =La|Tyldipy/(aydi) <1 for all j=1.2,...pn; (iv)
2{‘:12?21(|T”|d]—pj/(aidi))2<1. Then there exists at least
lell= max sup |@;i(t)] one equilibrium of systenl).
1<i=n —r<t<0 Corollary 2. In addition to assumptiofi5), suppose that

p(ATA)<1 whereA is defined as in Theorem 1. Then, there
for all ¢ e C([—7,0];R"). Note that for each given initial exists at least one equilibrium of systdf).
value ¢ e C([—7,0];R"), one can solve systenil) by The equilibrium or patterx* =(x7 ,x5, ... X5) of Eq.
method of steps to obtain a unique mappirg — 7,%) (1) is said to be globally asymptotically stable independent
—R" such thatx|;_,q=¢, X is continuous for allt=0, of the delays if every solution of E41) corresponding to an
almost differentiable and satisfies Efl) for t>0. This arbitrary given set of initial values satisfies !ianxi(t)
gives a unique solution of Eql) defined for allt=— 7.

For any given matrixA= (a;j)nxn, let p(A) denote the
spectral radius of. A matrix or a vectoA=0 means that all
the entries ofA are greater than or equal to zero, similarly
defineA>0. The following lemma is needed in the proof of
our main results.

Lemma 1[25]. If p(A)<1 for A=0, then E—A) !
=0, whereE denotes the identity matrix of size

=x{, i=1,2,...n. Moreover, if there exist constanid
=1 andA>0 such that for every solutior(t) of Eq. (1)
with any initial valuep € C([ — 7,0];R),

IXi(H)—x*|<M[le—x*e ™, i=1,2,...n,

thenx* is called to be globally exponentially stable axnds
called to be globally exponentially convergent rate.

A. _po_int XE= (X1, o .’X:)T. in R is_cz_illed to be an If we further assume that; ,i=1,2,...n, are globally
_equmbnur_n of systen(1) if this pointx* satisfies the follow- Lipschitz, then we shall obtain the uniqueness and global
ing equation:

exponential stability of the equilibrium. Namely, we have the
n following theorem.
ok o (® o Theorem 2.Assume that there exist non-negative con-
i _121 Tyfioq) i, 1=12,..n. @ stantsp;, j=1,2, ... n such that|f;(x)—f;(y)|<p;|x—yl|
for anyx,yeR andj=1,2,...n, andp(A)<1, whereA
Generally, Eq(4) may have more than one solutiefi. In =(@jj)nxn anday; zafllT”-|pj . Then systentl) has exactly
fact, we have the following theorem. one equilibriumx*. Moreover,x* is globally exponentially
Theorem 1Assume that each activation function satisfiesstable, and the globally exponentially convergent rate
<\*, where\* is the minimal positive real root of the
Ifi(w|<pijul+q; forall ueR, i=12,...n, (5 following equation:

where p;,q;, i=1,2,...n, are non-negative constants. N +age* p(A)—ay=0, (6)
Moreover, p(A)<1l, where A=(aj)nxn and a;
=a; *|T;;|p;. Then, systentl) has at least one equilibrium. anda,=min;—;.{a;}.
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Theorem 2 implies that the patterns associated with exter- lll. EXISTENCE OF PERIODIC SOLUTIONS
nal inputs are recalled by the convergence or global attrac- . . . . - .
tivity of system dynamics; global exponential stability means In this section, we investigate the periodic solutions of the
that the recall is “perfect” in the sense no hints or guessednodel of the form

are needed as in the case of local stability analysis; that is,
when the external inputs are provided to the system, irre-
spective of the initial values, systefd) converges to the
equilibrium associated with the inputs. Recall with the help
of hints and guesses corresponds to local stability of equilibwherei=1,2,... n andl,:R"—R is a continuously peri-
rium; since the initial values have to be in suitable neighborgic function with periodw, i.e., 1;(t+w)=1,(t). First, ap-

xi(t)= _aiXi(t)+j§=:l Tifi(t=m)+ (), (D)

hood of the corresponding equilibrium. Moreover, in order to lying the continuation theorem of Gaines and Mawl,

improve network performance, we can increase the expone

tially convergent rate to reduce the time that is required for

the system to recall.

Ye, Michel, and Wand?21] also obtained some sufficient
conditions ensuring the global stablity of Hopfield neural
networks with delays, i.e., lim _x(t) exists for any solution

ve can obtain the following results.

Theorem 3Assume that all the conditions in Theorem 1
hold, then there exists at least oaeperiodic solution of
system(7).

Thus, all conditions in Corollary 1 or 2 can also ensure
the existence of periodic solutions of syst€m. If we fur-

X(t). However, we consider the existence, uniqueness angher assume thaf;,i=1,2,...n, are globally Lipschitz,

globally exponential stability of the equilibrium. These are
two different notations. Moreover, in Reff21], there exist

then we shall obtain the uniqueness and global exponential

stability of the periodic solution of systef¥). Namely, we

some more restrictive conditions about the connectiomave the following theorem.

weight matrix and the activation functions, i.&.is symmet-
ric, Iimxéxfj(x)zl, Iimxﬂfwfl-(x)z -1, f]-’(x)>0, and

X‘ﬁwf-’(x)=0 for i=1,2,...n. Again, since matrix’s

spectral radius is equal to the minimum of its all matrix
norms, we have the following corollary.

Corollary 3. Assume that there exist non-negative con-
stantsp;, j=1,2, ... n such that|f;(x)—f;(y)|<pj|x—y|
foranyx,ye Randi=1,2, ... n, suppose further that either
p(ATA)<1, where A=(a;)nxn and a;=a; "|T;|p;, or
there exist positive real numbels (i=1,2, . .. n) such that
one of the inequalitiegi)—(iv) in Corollary 1 is satisfied.
Then, there exists exactly one equilibrium of systéhn
Moreover, all other solutions of syste(i) converge expo-
nentially to it ast— oo,

Because continuous BAM netwo(R) is a special case of
the network mode(l). Thus, applying Theorems 1 and 2 and
Corollaries 1-3, we have the following corollary.

Corollary 4. For system(2), assume that there exigj
>0, g;>0, andy; and §; such thafg;(u)|<p;|u|+y; and
|hi(u)|=gj|lu|+ & for anyueR andi=1,2,...k and j
=1,2,...p, then each one of the following inequalities en-
sures the existence of equilibrium of syste(@): (i)
p(ATA)<1 and p(B™B)<1, where matrices A
= (la; *aij|)kxp andB=(|b; *bj;|) px«; (ii) there exist posi-
tive real numbersd; (i=1,2,...n) such that —d;a;
+EE:1|aij|pjdk+j<0 for i=1,2,...k and —dy,b;
+2{_4/bjilgidi<0 for j=1,2,... p; (iii) there exist posi-
tive real numbersd; (i=1,2,...n) such that —d;a;
+E]P:1|bji|qidk+j<0 for i=1,2,...k and _dk+jbj
+Ein=l|aij|pjdi<0 for J =12,... p.

In particular, ifg; andh; are globally Lipschitz, i.e., there
existsp;>0 andqg;>0 such thatg;(x) —g;(y)|<pj|x—y|
and |hj(x)—hi(y)|<qj|x—y| for any x,yeR and i
=12,...kandj=1,2,... p; and one of the above in-
equalities(i)—(iii ) holds then the equilibrium of syste(8) is
unique and all other solutions of systd®) converge expo-
nentially to it ast— oo.

Iim‘

Theorem 4Assume that all the conditions in Theorem 2
hold, then systen{7) has exactly onaw-periodic solution
X*(t). Moreover,x*(t) is globally exponentially stable and
the globally exponentially convergent ratec\*, where\*
is the minimal positive real root of Eq6) and matrixA is
defined as that in Theorem 2.

Corollary 5. Under the assumptions of Corollary 3, there
exists exactly onev-periodic solution of systeni7) and all
other solutions of Eq(7) converge exponentially to it as

— 00,

IV. ILLUSTRATIVE EXAMPLES

Example 1.Consider the following Hopfield neural net-
works with delays:

Xo(t) = —2%,(t) +2f 1 (x4 (t—0.5) + af(x,(t— 1))
2—a

+ —m,

5 ®)
where the signal transmission functiofig(x)=sinx and
fo(x)=x, thenp;=p,=1, a;,=3, a,=2, and

.

By a simple calculation, ifla|<(5—/17)/2 then p(A)
=(5|al+ Ja?+96)/12<1. By Theorem 2, it is easy to see
that system(8) has a globally asymptotically stable equilib-
rium (7, 7/2). Moreover, the globally exponentially conver-
gent rate A\ can be estimated by the inequality:\ 6
+eM(5|a| + Va?+96)—12<0. For example, ifa=0, then
the equilibrium @r, 7/2) of system(8) is globally asymptoti-
cally stable and the globally exponentially convergent rate
A<0.1336.

al3 2/3
1 al2
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Example 2.Consider the following Hopfield neural net- whereh, is theith component of vecton. Let
works with delays:

— T Ny |l<h =
K(0)= - 30+ 020,06t M)+ bt m) +1y(t), (ke K SRR L2

Then, it follows from Eq.(5) that for allue (2,
n n
+ —
12, O IRwi=a| Z mllfwl+n <3 alyl
where the signal transmission functiorfg(x)=2x and

fo(x)=—X, |(t)=3.4sin—cog, and | ,(t)=2.8cos$+sint 2 - "
thenp;=2, p,=1, a,=3, a,=2, and +a 11_21 [ Tijla+a 1|'i|<;l ajjh;j+Di=h;.
A:(2/15 1/2)_ Hence,F:Q0—Q is a continuous mapping. By Brouwer’s
25 1/ fixed point theoremF has at least one fixed point or equi-

] librium. The proof is complete.
By easy computationp(A)~0.7253<1. Then by Theorem

4, there exists exactly onern2periodic solution of syster(D)

and all other solutions of Eq9) converge exponentially to it APPENDIX B: PROOF OF COROLLARY 1

as t—o. It is easy to verify that (sifcost) is the For any matrix norr|-| and any nonsingular matrig,
2mr-periodic solution of the mode(9). Moreover, the glo- || A|s=||S™*AS| also defines a matrix norm. L& andQ be
bally exponentially convergent rate<0.0879. positive diagonal matrice® =diag{d;,d,, ... ,d,} andQ
=diagfa;,a,, . .. ,a,}, respectively. Then, Conditions)—

V. CONCLUSION (iv) in Corollary 1 correspond to the row norms, column

norms, and Frobenius norfor Euclidean norrmof matrix

Some sufficient conditions for global exponential stability DAD* [or DQA(DQ) Y], respectively

for a kind of neural networks with delays have been ob-
tained. For delayed neural networks or its special forms,

Cao and Zhoy5], Gopalsamy and H,10], Lu [18], Lu APPENDIX C: PROOF OF THEOREM 2

and He[19], and Zhou and Caf22] derived some stability Since A=D~{DAD YD where D

criteria. It is easy to see that Corollary 3 is a little generation_ diagas,a, a), p(DAD Y)=pA<1l. Thus, E
) 1 “n/» . 3

and improvement of their theorems. Therefore, our results_
not only unify and improve some previous results about sta-
bility analysis but also give some different criteria expressed, | i i :
in terms of matrix norms. In addition, the results in this paper =diag(dy,dy, ... .dy) with positive diagonal elements

. - 71 T . . ._
also allow nonsymmetric weight matrices and a broad ranggugzatlnat dtgriiﬁ;%?lﬁtk:n a(tjg)idtzi\(/e%iaAorEzQer:tsriztsncli:gn(’jllel
of activation functions assuming neither differentiability nor 9 y P 9 ' Y

D 'ATD is anM matrix [26], whereE denotes an identity
atrix of sizen. Therefore, there exists a diagonal matrix

strict monotonicity. As we noted above, all results in this n
paper are presentgd in terms of system parameters, and.have —ad+ 2 dj|T;|p<0, i=12,...n.
an important leading significance in the design and applica- =1

tions of neural circuits for neural networks with delays.
Hence, there must exist sufficiently small constant
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Foundation for University Excellent Teacher by the Ministry (C1)

of Education, and by the Key Project of the Ministry of

Education(No. [200278). It follows from the existence of globally Lipschitz con-

stants of f; that |f;(x)[<p|x|+|f;(0)], j=1.2,...n.

Hence, all the hypotheses in Theorem 1 hold wip

=[f;(0)] (j=1,2, ... n). Thus, from Theorem 1, systeft)
Let Fi(U)Zai_l[E?leijfj(Uj)+|i], i=1,2,...n, and has at least one equilibrium’_‘. Let x(t) be an arbitrary

F(u)=(F,(u),F5(u), ... ,Fn(u))T. Then Eq.(4) can be re- solution of system(1) and definey(t) =x(t) —x*, then we

written asx* =F(x*), wherex* is an equilibrium or a fixed have

point of the system(1). Let D;=a; ‘[Z]_|T;|a;+ 1|1, i

= n

APPENDIX A: PROOF OF THEOREM 1

=1,2,...n, andD=(D,,D,, ...,Dy)". In view of p(A) LN Ay, o (b C_
<1 and Lemma 1, we haveECA)"=0 and h=(E yi(t a,y,(t)+j21 Tigbyj(t=mp)), 1=12,...n,
—~A)"'D=0, ie, h=3[_,a;h;+D;, i=12,...n, (C2
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where gj(yj(t—rij))zfj(xj(t—ri,-))—fj(xj*). Thus, it is
sufficient to prove that (0,0..,0)" is globally exponen-
tially stable for systen{C2).

We consider the Lyapunov functional

V()/)(t):iz1 di( lyi(t)|eM

n t
+ |Tij|pjf
=1 t

- 7jj

yy(s)|ee ds|.

(C3
Obviously, for anyy(t) except 0,V(y)(t)>0. Calculating
the upper right derivative oV along the solutiony(t)

=(y1(1),y,(t), ...y, (t)T of Eq. (1) with any initial value
¢eC([—7,0],R", we have

n n
D+VS;1 dg( —ai|Yi(t)|eM+j21 T3 pily;(t=mj)|eM

+\]yi(t)[eM

+i21 di(]_Zl T3 pil]y;(t)| et i)
_|Yj(t_7'ij)|eM])

()\—ai)|yi(t)|e“+e“jgl |Tij|pj|yj(t)|e“)

-3

n n
121 (()\—aj)dﬁe)";l di|Tij|pj)|yj(t)|eM$O1
and so,

V(y)(t)=<V(y)(0).

Therefore, we obtain
n n n
;l di|yi(t)|e“$2:l di( |Yi(0)|+j21 ITijlp;

0
X f |yj(S)|e)‘(s+Tii)dS)
-

n
1 1+N et — 1),21 |Ti,-|pj)||so||-

Thus,
lyi(h]<=Me™™,

for all t=0 andi=1,2,...n, where M=d, 'SP d[1
+N " Yer— 1)Z{_4|T;jlp;]. This implies that the periodic
solution x* (t) is globally exponentially stable. Moreover,
the exponentially convergent rate s which is a positive
number satisfying inequalityC1).

PHYSICAL REVIEW E67, 061902 (2003

APPENDIX D: PROOF OF THEOREM 3

In order to use the continuation theorem for H{),
we denoteZ (resp X) as the set of all continuouslfresp.
differentiably) w-periodic functions u(t)
=(X,(1),%(1) . .. Xo(1))T definded orR, and denote

[Xilo= max|x(t)], i=1,2,...n,

te[O,w]

lu[o="max{|xi|o}, |u|1=ma><{|u|0,|U|0}.

1<i=n

Then, X and Z are Banach spaces when they are endowed
with the normg|- |, and|- |, respectively. Set

(Nu)i(t):_aixi(t)+j§=:l Ti Fi(x;(t=7;)) +1;(1),
. _ 1 (w
(Lu)(t)=u(t), PU_WJO u(t)dt, ueX,

1 (w
Qz= Wfo z(t)dt, zeZ.
It is not difficult to show that
w
ke =R", |mL:(ZEZ:f z(t)dtzo} is closed inZ,
0

dim KerL=n=codim ImL_,
andP,Q are continuous projectors such that
ImP=ker., keQ=ImL=Im(I—-Q).
It follows thatL is a Fredholm mapping of index zero. Fur-

thermore, the generalized inverséof L) Kp:ImL
—kerPNDomL reads as

t 1 (ot
(Kpu)i(t)=J0xi(s)ds— ZJO foxi(s)dsdt

fori=1,2,...n, ueZ. Thus, we have

1 (o "
(QNU)i:EJO _aixi(t)+j21 Tijfj(xj(t_Tij))"'li(t)}dt,

_aiXi(S)"‘jZl Tijfi(x(s=73;))

+Ii(s)}ds— %jowfot

+j21 Tijfj(xj(s— 7))+ 1i(s)

t
(Ke1-QNU(D= |

—aiXi(s)

dsdt

061902-5
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—ax(s)

t 1) (o
{3l
+2 Ty fi0¢(5— 7))+ 1 (s)}ds

fori=1,2,...pn. Clearly, QN andK,(I —Q)N are continu-
ous. An application of the Arzela-Ascoli theorem Kqy(l

—Q)N results in the fact tha ,(1 — Q)N(2) Ecompact for
any open bounded)CX. Moreover, QN(Q) is clearly

bounded. Thud\ is L compact or() with any open bounded

setQ)CX.

PHYSICAL REVIEW E67, 061902 (2003

Clearly,h;,i=1,2,... n are independent of. Moreover, it
follows from Eq.(D1) that

iOl=halbO1+A 2 [Tyll04(t=n)l+ A1)

n
<a|hi+ >, a;hj+D;|=2ha.
=1
Namely, we have
Ixi|o=<2hja;, i=12,...n. (D4)

Now we reach the position to search for an appropriate et A=max;{h(1+2a)}. Then, there exists somi>1

open bounded subsél for the application of the continua- such thatdh;>A for all i=1,2, ..

tion theorem. Corresponding to the operator equation
=ANx,A €(0,1), we have

n

Xi(t)=—Naix(t) +>\E T F 0 (t= 7))+ N1 (D)

(D1)

fori=1,2,...n. Assume thau=u(t) e X is a solution of
Eq. (D1) for a certain Ae(0,1). Then, for anyi

=1,2,...n, x(t), as the components af(t), are all con-
tinuously differentiable. Thus, there extst[0,w] such that

|%i(t;)|=max.o,.;|xi(t)]. Hence, x;(t})=0. This implies

that
aixi<ti>=j§1 Tii F0 (6 — 7))+ 1i(4) (D2)
fori=1,2,...n. Thus,
LTy i(t)
Ixi(t)]= ;1;ijfj(xj(ti_7'ij))+T

n

i T, I (t
<2 le,|1(t ol+ 2| qu, [H(®f

a;

_

_ A

5 Tila; (LD
5, T, Tl 140

q;

I

n
> ajj|x;(t))|+Dj,
=1

where Dij=a; [E 1| Tijla;+ maxcou{[1i(H)]}]. In view
of p(A)<1 and Lemma 1, we haveE( A)T>O and h
=(E—A) D=0, where D=(D;,D,,...,D,)". There-
fore,

Ix(t)|<h; for i=1,2,...pn

whereh; is theith component of vectoh. Thus, we have
1.2,...n

[Xilo<h; for i= (D3)

. n. We take
QO ={ueX;—dh<u(t)<dh forall t}.

If u=(X1,%p, ... X, edQNnkeL=9QNR", thenu is a
constant vector irR" with |x;|=dh; for i=1,2,...n. It
follows that

n

(@NU =2 + 3, Tyt )+ 1f“|i<t>dt,

fori=1,2,...n. We claim that

[(QNu);|>0 for i=1,2,...n (D5)

Contrarily, suppose that there exists some{1,2,...n}
such that [(QNu)|=0, ie., —ax+3{_Tjf J(x)

+ = [$1,(t)dt=0. Then, there exists sont& € [0,w] such
that

n

—aixi+zl Tii (%)) +1;(t*)=0.
=

Thus,

dh.=|xi|\j2| "'|f( X)) + \2

In view of d>1 anddh=d(Ah+D)>Adh+D, we have
dhi>327_,a;dhj+D; fori=12,...n. It follows from the
above inequality thatth;<dh;, which is a contradiction.
Therefore, Eq(D5) holds, and hence,

QNu#0, for uedQnker.

Define ¢: Q2 Nker. X[0,1]— X/ImL = X® by

P(u,pu)=pdiag —a;,—ay, ...,—a,)u+(1—u)QNu
for all u=(Xy,Xp, ... X,) €eQNkel.,=QNR" and u
e[0,1].

Whenue dQnNke. andu e[0,1], u=(Xq, ... X)) isa
constant vector iR" with |x;|=dh;(i=1,2, ... n). Thus,
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n which contradicts that dhi>2?:laijdhj+Di for i
[ (U, m)|o= maxy |—ax;+(1—pu) E Ti;fi(x;) =1,2,...n. Thus, Eq.(D6) holds. Therefore,
1<i=n
1o Y(u,u)#0 forany ue dQdNkerl.
+Zf l;(t)dt
0

Using the property of topological degree and takihgmQ

We claim that —ker, (X1, ... X)) —(Xq, ... Xy, we have
|4p(u, m)[0>0. (D6) deg JON,Q NkerL,0)=ded #( - ,0), 2 Nkerl,0)
Contrarily, suppose thats(u,u)|o=0, then we have =ded (-,1),QNker,0)
=degdiag —a4, ...,

—aX;+(1—pu) Z Tiifi(x)) + 1fw|i(t)dt -

—a,),QNkerl,0)=1.
(D7)
Therefore, according to the continuation theorem of Gaines

and Mawhin[27], system(7) has at least one-periodic
solution.

for all i=1,2,...n. It follows that there exists somg
e[0,0] such that

_aiXi‘l‘(l—M

p
*
Z i F1 )+ 1t )} 0. APPENDIX E: PROOF OF THEOREM 4

Using the similar arguments to the proof of Theorem 2,
system(7) has at least on@-periodic solutionx* (t). Let
T, | 1,(t%)| x(t) be an arbitrary solution of systef@) and definey(t)
2 il |f( DI+ '( ) } =x(t)—x*(t) then we have EQq(C2) with g(y;(t—7;;))
:fj(xj(t_TI]))_f](X]k(t_TI])) Thus, it is sufficient to
n prove that O is globally exponentially stable for syst&D2).
<2 —dh.+D: We can apply the same arguments as that in the proof of
=T Theorem 2 to complete the proof of this theorem.

Thus,

=[x|<(1—w)
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