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Stability analysis of a delayed Hopfield neural network
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In this paper, we study a class of neural networks, which includes bidirectional associative memory networks
and cellular neural networks as its special cases. By Brouwer’s fixed point theorem, a continuation theorem
based on Gains and Mawhin’s coincidence degree, matrix theory, and inequality analysis, we not only obtain
some different sufficient conditions ensuring the existence, uniqueness, and global exponential stability of the
equilibrium but also estimate the exponentially convergent rate. Our results are less restrictive than previously
known criteria and can be applied to neural networks with a broad range of activation functions assuming
neither differentiability nor strict monotonicity.
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I. INTRODUCTION

Recently, theoretical and applied researches of the a
cial neural networks have been the new world-wide foc
~see Refs.@1–23#!. Some of the reasons why Hopfield neur
networks have received a great deal of attention are bec
it can be used in applications to signal and image proces
@14#, quadratic optimization@2#, and fixed-point computation
@3#. The number of equilibria of the neural network relates
its storage capacity. Some neural networks may have infi
associative memories. The networks described by differen
equations include examples in which the neural network
have nondenumerably many equilibria. Hence, if the neu
network is viewed as an associative memory, the more e
libria the neural network has, the greater the storage capa
But when we use the neural network to solve optimizat
problems, we want to design a neural network with few
equilibria. For example, in Refs.@13,23#, if an equilibrium is
unique, it will be the global minimum point of the relate
energy function. In such cases, it is almost necessary to h
a unique equilibrium, which is global asymptotic stabilit
ensuring the convergence to an optimal solution star
from any initial guess. Therefore, in both applications, t
stability of the neural networks is a prerequisite. On the ot
hand, Hopfield neural networks have the potential of p
forming parallel computation, and some electronic imp
mentations of Hopfield neural networks in very large sc
integrated technology have already been realized. Howe
in the implementation of artificial neural networks, time d
lays are unavoidably encountered. In fact, in models of e
tronic networks, time delays are likely to be present, due
the finite switching speed of amplifiers. It is known that tim
delays in the response of neurons can influence the stab
of a network creating oscillatory and unstable characterist
See, for example, Refs.@6,9,20#, and the references cite
therein. Therefore, it is crucial to take time delays into co
sideration and to investigate the global asymptotic stab
of the Hopfield neural networks with delays. In the follow
ing, we assume that the outputs of neurons reach othe
ceiving neurons with certain time delays. If neuronj has
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fired, a solitonlike pulse propagates along the axon of neu
j to a synapse of neuroni; the signal transport through th
axon takes a finite amount of time known as the transmiss
delayt i j . In this paper, we consider such delayed Hopfie
neural networks:

ẋi~ t !52aixi~ t !1(
j 51

n

Ti j f j„xj~ t2t i j !…1I i , ~1!

in which i 51,2, . . . ,n, ai represents the rate with which th
i th unit will reset its potential to the resting state in isolati
when disconnected from the network and external inputs,Ti j
denotes the strength of thej th unit on thei th unit, t i j corre-
sponds to the transmission delay of thei th unit along the
axon of thej th unit, I i denotes the external bias or clamp
input from outside the network to thei th unit,xi corresponds
to the membrane potential of thei th unit at time t, f j (xj )
denotes the conversion of the membrane potential of thej th
unit into its firing rate. Throughout this paper, we assu
that ai.0, t i j >0, Ti j PR, andI iPR are constants.

Model ~1! is the most popular and typical neural netwo
model. Some other models, such as continuous BAM~bidi-
rectional associative memory! networks and CNNs~cellular
neural networks!, are special cases of the network model~1!.
For instance, the following BAM networks~see, for ex-
ample, Ref.@9#!:

u̇i~ t !52a iui~ t !1(
j 51

p

ai j gj„v j~ t2t i j !…1I i ,

i 51,2, . . . ,k;

v̇ j~ t !52b jv j~ t !1(
i 51

k

bji hi„ui~ t2s j i !…1Jj ,

j 51,2, . . . ,p, ~2!

can be deduced from the model of the form~1! with n5k
1p, xi(t)5ui(t), f i(u)5hi(u), and ai5a i for i
51,2, . . . ,k; and xi(t)5v i 2k(t), f i(u)5gi 2k(u), and ai
5b i 2k for i 5k11,k12, . . . ,k1p. The connection
strengthsTi j are specified by
©2003 The American Physical Society02-1
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Ti j 5H 0 if 1< i , j <k or k11< i , j <n,

ai , j 2k if 1< i<k and k11< j <n,

bi 2k, j if k11< i<n and 1< j <k.
~3!

By means of Brouwer’s fixed point theorem, a continu
tion theorem based on Gains and Mawhin’s coincidence
gree, matrix theory, and inequality analysis, we not only o
tain some new sufficient conditions ensuring the existen
uniqueness, and global exponential stability of the equi
rium but also estimate the exponentially convergent ra
These conclusions are presented in terms of system pa
eters, and have an important leading significance in the
sign and applications of neural circuits for neural netwo
with delays. We not only unify and improve some previo
results but also give some different criteria expressed
terms of matrix norms.

II. STABILITY ANALYSIS

In this section, we first introduce some elementary no
tions and lemmas. Lett5max1<i,j<n$tij%. As usual, we intro-
duce the phase spaceC(@2t,0#;Rn) as the Banach space o
continuous mappings from@2t,0# to Rn equipped with the
supremum@24# norm defined by

iwi5 max
1< i<n

sup
2t<t<0

uw i~ t !u

for all wPC(@2t,0#;Rn). Note that for each given initia
value wPC(@2t,0#;Rn), one can solve system~1! by
method of steps to obtain a unique mappingx:@2t,`)
→Rn such thatxu [ 2t,0]5w, x is continuous for allt>0,
almost differentiable and satisfies Eq.~1! for t.0. This
gives a unique solution of Eq.~1! defined for allt>2t.

For any given matrixA5(ai j )n3n , let r(A) denote the
spectral radius ofA. A matrix or a vectorA>0 means that all
the entries ofA are greater than or equal to zero, similar
defineA.0. The following lemma is needed in the proof
our main results.

Lemma 1@25#. If r(A),1 for A>0, then (E2A)21

>0, whereE denotes the identity matrix of sizen.
A point x* 5(x1* ,x2* , . . . ,xn* )T in Rn is called to be an

equilibrium of system~1! if this point x* satisfies the follow-
ing equation:

aixi* 5(
j 51

n

Ti j f j~xj* !1I i , i 51,2, . . . ,n. ~4!

Generally, Eq.~4! may have more than one solutionx* . In
fact, we have the following theorem.

Theorem 1.Assume that each activation function satisfi

u f i~u!u<pi uuu1qi for all uPR, i 51,2, . . . ,n, ~5!

where pi ,qi , i 51,2, . . . ,n, are non-negative constant
Moreover, r(A),1, where A5(ai j )n3n and ai j

5ai
21uTi j upj . Then, system~1! has at least one equilibrium
06190
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Thus, there exist some patterns or memories~or equilib-
ria! associated with each set of the external inputs when
connection weightsTi j are fixed.

It should be noted that the assumptions of the activat
functions in Theorem 1 are very general, assuming neit
differentiability nor strict monotonicity. In particular@6,21#,
if the activation functions in system~1! are all bounded onR,
i.e., there exist positive constantsqi , i 51,2, . . . ,n, such
that u f i(u)u,qi for all uPR and i 51,2, . . . ,n, then system
must have at least one equilibrium. For example, in CN
model, the activation function takes the formf (u)50.5(uu
11u2uu21u), which is bounded. Of course, the comput
tion of r(A) could be expensive for a large network. Rec
that for a given matrixM, its spectral radiusr(M ) is equal to
the minimum of its all matrix norms ofM, i.e., for any ma-
trix norm i•i , r(M )<iM i . Therefore, we have the follow
ing two corollaries. Especially, Corollary 1 puts the co
straints directly on the elements of the connection matrix a
decay rate, and can be used more conveniently.

Corollary 1. In addition to assumption~5!, suppose that
there exist positive real numbersdi ( i 51,2, . . . ,n) such that
one of the following inequalities is satisfied:~i! 2diai

1( j 51
n uTi j upjdj,0 for all i 51,2, . . . ,n; ~ii !2diai

1( j 51
n uTji upidj,0 for all i 51,2, . . . ,n; ~iii !

( i 51
n uTi j udj pj /(aidi),1 for all j 51,2, . . . ,n; ~iv!

( i 51
n ( j 51

n
„uTi j udj pj /(aidi)…

2,1. Then there exists at leas
one equilibrium of system~1!.

Corollary 2. In addition to assumption~5!, suppose that
r(ATA),1 whereA is defined as in Theorem 1. Then, the
exists at least one equilibrium of system~1!.

The equilibrium or patternx* 5(x1* ,x2* , . . . ,xn* ) of Eq.
~1! is said to be globally asymptotically stable independ
of the delays if every solution of Eq.~1! corresponding to an
arbitrary given set of initial values satisfies lim

t→`
xi(t)

5xi* , i 51,2, . . . ,n. Moreover, if there exist constantsM
>1 andl.0 such that for every solutionx(t) of Eq. ~1!
with any initial valuewPC(@2t,0#;R),

uxi~ t !2xi* u<M iw2x* ie2lt, i 51,2, . . . ,n,

thenx* is called to be globally exponentially stable andl is
called to be globally exponentially convergent rate.

If we further assume thatf i ,i 51,2, . . . ,n, are globally
Lipschitz, then we shall obtain the uniqueness and glo
exponential stability of the equilibrium. Namely, we have t
following theorem.

Theorem 2.Assume that there exist non-negative co
stantspj , j 51,2, . . . ,n such thatu f j (x)2 f j (y)u<pj ux2yu
for any x,yPR and j 51,2, . . . ,n, and r(A),1, whereA
5(ai j )n3n andai j 5ai

21uTi j upj . Then system~1! has exactly
one equilibriumx* . Moreover,x* is globally exponentially
stable, and the globally exponentially convergent ratel
,l* , where l* is the minimal positive real root of the
following equation:

l1a0eltr~A!2a050, ~6!

anda05min1<i<n$ai%.
2-2
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Theorem 2 implies that the patterns associated with ex
nal inputs are recalled by the convergence or global att
tivity of system dynamics; global exponential stability mea
that the recall is ‘‘perfect’’ in the sense no hints or gues
are needed as in the case of local stability analysis; tha
when the external inputs are provided to the system, i
spective of the initial values, system~1! converges to the
equilibrium associated with the inputs. Recall with the he
of hints and guesses corresponds to local stability of equ
rium; since the initial values have to be in suitable neighb
hood of the corresponding equilibrium. Moreover, in order
improve network performance, we can increase the expon
tially convergent rate to reduce the time that is required
the system to recall.

Ye, Michel, and Wang@21# also obtained some sufficien
conditions ensuring the global stablity of Hopfield neu
networks with delays, i.e., lim

t→`
x(t) exists for any solution

x(t). However, we consider the existence, uniqueness
globally exponential stability of the equilibrium. These a
two different notations. Moreover, in Ref.@21#, there exist
some more restrictive conditions about the connect
weight matrix and the activation functions, i.e.,T is symmet-
ric, lim

x→`
f j (x)51, lim

x→2`
f j (x)521, f j8(x).0, and

limuxu→`
f j8(x)50 for i 51,2, . . . ,n. Again, since matrix’s

spectral radius is equal to the minimum of its all mat
norms, we have the following corollary.

Corollary 3. Assume that there exist non-negative co
stantspj , j 51,2, . . . ,n such thatu f j (x)2 f j (y)u<pj ux2yu
for anyx,yPR andi 51,2, . . . ,n, suppose further that eithe
r(ATA),1, where A5(ai j )n3n and ai j 5ai

21uTi j upj , or
there exist positive real numbersdi ( i 51,2, . . . ,n) such that
one of the inequalities~i!–~iv! in Corollary 1 is satisfied.
Then, there exists exactly one equilibrium of system~1!.
Moreover, all other solutions of system~1! converge expo-
nentially to it ast→`.

Because continuous BAM network~2! is a special case o
the network model~1!. Thus, applying Theorems 1 and 2 an
Corollaries 1–3, we have the following corollary.

Corollary 4. For system~2!, assume that there existpj
.0, qi.0, andg j andd i such thatugj (u)u<pj uuu1g j and
uhi(u)u<qi uuu1d i for any uPR and i 51,2, . . . ,k and j
51,2, . . . ,p, then each one of the following inequalities e
sures the existence of equilibrium of system~2!: ~i!
r(ATA),1 and r(BTB),1, where matrices A
5(uai

21ai j u)k3p andB5(ubi
21bi j u)p3k ; ~ii ! there exist posi-

tive real numbersdi ( i 51,2, . . . ,n) such that 2diai

1( j 51
p uai j upjdk1 j,0 for i 51,2, . . . ,k and 2dk1 jbj

1( i 51
k ubji uqidi,0 for j 51,2, . . . ,p; ~iii ! there exist posi-

tive real numbersdi ( i 51,2, . . . ,n) such that 2diai

1( j 51
p ubji uqidk1 j,0 for i 51,2, . . . ,k and 2dk1 jbj

1( i 51
n uai j upjdi,0 for j 51,2, . . . ,p.

In particular, ifgj andhi are globally Lipschitz, i.e., there
exists pi.0 andqi.0 such thatugj (x)2gj (y)u<pj ux2yu
and uhi(x)2hi(y)u<qi ux2yu for any x,yPR and i
51,2, . . . ,k and j 51,2, . . . ,p; and one of the above in
equalities~i!–~iii ! holds then the equilibrium of system~2! is
unique and all other solutions of system~2! converge expo-
nentially to it ast→`.
06190
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III. EXISTENCE OF PERIODIC SOLUTIONS

In this section, we investigate the periodic solutions of t
model of the form

ẋi~ t !52aixi~ t !1(
j 51

n

Ti j f j„xj~ t2t i j !…1I i~ t !, ~7!

where i 51,2, . . . ,n and I i :R1→R is a continuously peri-
odic function with periodv, i.e., I i(t1v)5I i(t). First, ap-
plying the continuation theorem of Gaines and Mawhin@27#,
we can obtain the following results.

Theorem 3.Assume that all the conditions in Theorem
hold, then there exists at least onev-periodic solution of
system~7!.

Thus, all conditions in Corollary 1 or 2 can also ensu
the existence of periodic solutions of system~7!. If we fur-
ther assume thatf i ,i 51,2, . . . ,n, are globally Lipschitz,
then we shall obtain the uniqueness and global expone
stability of the periodic solution of system~7!. Namely, we
have the following theorem.

Theorem 4.Assume that all the conditions in Theorem
hold, then system~7! has exactly onev-periodic solution
x* (t). Moreover,x* (t) is globally exponentially stable an
the globally exponentially convergent ratel,l* , wherel*
is the minimal positive real root of Eq.~6! and matrixA is
defined as that in Theorem 2.

Corollary 5. Under the assumptions of Corollary 3, the
exists exactly onev-periodic solution of system~7! and all
other solutions of Eq.~7! converge exponentially to it ast
→`.

IV. ILLUSTRATIVE EXAMPLES

Example 1.Consider the following Hopfield neural ne
works with delays:

x18~ t !523x1~ t !1a f1„x1~ t21!…22 f 2„x2~ t20.4!…14p,

x28~ t !522x2~ t !12 f 1„x1~ t20.5!…1a f2„x2~ t21!…

1
22a

2
p, ~8!

where the signal transmission functionsf 1(x)5sinx and
f 2(x)5x, thenp15p251, a153, a252, and

A5S a/3 2/3

1 a/2D .

By a simple calculation, ifuau,(52A17)/2 then r(A)
5(5uau1Aa2196)/12,1. By Theorem 2, it is easy to se
that system~8! has a globally asymptotically stable equilib
rium (p,p/2). Moreover, the globally exponentially conve
gent rate l can be estimated by the inequality: 6l
1el(5uau1Aa2196)212,0. For example, ifa50, then
the equilibrium (p,p/2) of system~8! is globally asymptoti-
cally stable and the globally exponentially convergent r
l,0.1336.
2-3
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Example 2.Consider the following Hopfield neural ne
works with delays:

x18~ t !523x1~ t !10.2f 1„x1~ t2p!…1 f 2„x2~ t2p!…1I 1~ t !,

x28~ t !522x2~ t !10.4f 1„x1~ t20.5p!…1 f 2„x2~ t20.5p!…

1I 2~ t !, ~9!

where the signal transmission functionsf 1(x)52x and
f 2(x)52x, I 1(t)53.4sint2cost, and I 2(t)52.8cost1sint
thenp152, p251, a153, a252, and

A5S 2/15 1/3

2/5 1/2D .

By easy computation,r(A)'0.7253,1. Then by Theorem
4, there exists exactly one 2p-periodic solution of system~9!
and all other solutions of Eq.~9! converge exponentially to i
as t→`. It is easy to verify that (sint,cost) is the
2p-periodic solution of the model~9!. Moreover, the glo-
bally exponentially convergent ratel,0.0879.

V. CONCLUSION

Some sufficient conditions for global exponential stabil
for a kind of neural networks with delays have been o
tained. For delayed neural networks~1! or its special forms,
Cao and Zhou@5#, Gopalsamy and He@9,10#, Lu @18#, Lu
and He@19#, and Zhou and Cao@22# derived some stability
criteria. It is easy to see that Corollary 3 is a little generat
and improvement of their theorems. Therefore, our res
not only unify and improve some previous results about s
bility analysis but also give some different criteria express
in terms of matrix norms. In addition, the results in this pap
also allow nonsymmetric weight matrices and a broad ra
of activation functions assuming neither differentiability n
strict monotonicity. As we noted above, all results in th
paper are presented in terms of system parameters, and
an important leading significance in the design and appl
tions of neural circuits for neural networks with delays.
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APPENDIX A: PROOF OF THEOREM 1

Let Fi(u)5ai
21@( j 51

n Ti j f j (uj )1I i #, i 51,2, . . . ,n, and
F(u)5„F1(u),F2(u), . . . ,Fn(u)…T. Then Eq.~4! can be re-
written asx* 5F(x* ), wherex* is an equilibrium or a fixed
point of the system~1!. Let Di5ai

21@( j 51
n uTi j uqj1uI i u#, i

51,2, . . . ,n, andD5(D1 ,D2 , . . . ,Dn)T. In view of r(A)
,1 and Lemma 1, we have (E2A)T>0 and h5(E
2A)21D>0, i.e., hi5( j 51

n ai j hj1Di , i 51,2, . . . ,n,
06190
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wherehi is the i th component of vectorh. Let

V5$~x1 ,x2 , . . . ,xn!TPRn;uxi u<hi , i 51,2, . . . ,n%.

Then, it follows from Eq.~5! that for all uPV,

uFi~u!u<ai
21F (

j 51

n

uTi j uu f j~uj !u1uI i uG<(
j 51

n

ai j uuj u

1ai
21(

j 51

n

uTi j uqj1ai
21uI i u<(

j 51

n

ai j hj1Di5hi .

Hence,F:V→V is a continuous mapping. By Brouwer’
fixed point theorem,F has at least one fixed point or equ
librium. The proof is complete.

APPENDIX B: PROOF OF COROLLARY 1

For any matrix normi•i and any nonsingular matrixS,
iAiS5iS21ASi also defines a matrix norm. LetD andQ be
positive diagonal matricesD5diag$d1 ,d2 , . . . ,dn% and Q
5diag$a1 ,a2 , . . . ,an%, respectively. Then, Conditions~i!–
~iv! in Corollary 1 correspond to the row norms, colum
norms, and Frobenius norm~or Euclidean norm! of matrix
DAD21 @or DQA(DQ)21], respectively.

APPENDIX C: PROOF OF THEOREM 2

Since A5D21(DAD21)D where D
5diag(a1,a2, . . . ,an), r(DAD21)5rA,1. Thus, E
2D21ATD is anM matrix @26#, whereE denotes an identity
matrix of sizen. Therefore, there exists a diagonal matr
Q5diag(d1 ,d2 , . . . ,dn) with positive diagonal element
such that the product matrix (E2D21ATD)Q is strictly di-
agonally dominant with positive diagonal entries. Namely

2aidi1(
j 51

n

dj uTji upi,0, i 51,2, . . . ,n.

Hence, there must exist sufficiently small constantl
P(0,a0) such that

~l2ai !di1elt(
j 51

n

dj uTji upi,0, i 51,2, . . . ,n.

~C1!

It follows from the existence of globally Lipschitz con
stants of f j that u f j (x)u<pj uxu1u f j (0)u, j 51,2, . . . ,n.
Hence, all the hypotheses in Theorem 1 hold withqj
5u f j (0)u ( j 51,2, . . . ,n). Thus, from Theorem 1, system~1!
has at least one equilibriumx* . Let x(t) be an arbitrary
solution of system~1! and definey(t)5x(t)2x* , then we
have

ẏi~ t !52aiyi~ t !1(
j 51

n

Ti j gj„yj~ t2t i j !…, i 51,2, . . . ,n,

~C2!
2-4
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where gj„yj (t2t i j )…5 f j„xj (t2t i j )…2 f j (xj* ). Thus, it is
sufficient to prove that (0,0, . . . ,0)T is globally exponen-
tially stable for system~C2!.

We consider the Lyapunov functional

V~y!~ t !5(
i 51

n

diS uyi~ t !uelt

1(
j 51

n

uTi j upjE
t2t i j

t

uyj~s!uel(s1t i j )dsD .

~C3!

Obviously, for anyy(t) except 0,V(y)(t).0. Calculating
the upper right derivative ofV along the solutiony(t)
5„y1(t),y2(t), . . . ,yn(t)…T of Eq. ~1! with any initial value
wPC(@2t,0#,Rn), we have

D1V<(
i 51

n

diS 2ai uyi~ t !uelt1(
j 51

n

uTi j upj uyj~ t2t i j !uelt

1luyi~ t !ueltD 1(
i 51

n

diS (
j 51

n

uTi j upj@ uyj~ t !uel(t1t i j )

2uyj~ t2t i j !uelt# D
<(

i 51

n

diS ~l2ai !uyi~ t !uelt1elt(
j 51

n

uTi j upj uyj~ t !ueltD
5(

j 51

n S ~l2aj !dj1elt(
i 51

n

di uTi j upj D uyj~ t !uelt<0,

and so,

V~y!~ t !<V~y!~0!.

Therefore, we obtain

(
i 51

n

di uyi~ t !uelt<(
i 51

n

diS uyi~0!u1(
j 51

n

uTi j upj

3E
2t i j

0

uyj~s!uel(s1t i j )dsD
<(

i 51

n

diS 11l21~elt21!(
j 51

n

uTi j upj D iwi .

Thus,

uyi~ t !u<Me2lt,

for all t>0 and i 51,2, . . . ,n, where M5di
21( i 51

n di@1
1l21(elt21)( j 51

n uTi j upj #. This implies that the periodic
solution x* (t) is globally exponentially stable. Moreove
the exponentially convergent rate isl, which is a positive
number satisfying inequality~C1!.
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APPENDIX D: PROOF OF THEOREM 3

In order to use the continuation theorem for Eq.~7!,
we denoteZ ~resp X) as the set of all continuously~resp.
differentiably! v-periodic functions u(t)
5„x1(t),x2(t) . . . ,xn(t)…T definded onR, and denote

uxi u05 max
tP[0,w]

uxi~ t !u, i 51,2, . . . ,n,

uuu05 max
1< i<n

$uxi u0%, uuu15max$uuu0 ,uu̇u0%.

Then, X and Z are Banach spaces when they are endow
with the normsu•u1 and u•u0, respectively. Set

~Nu! i~ t !52aixi~ t !1(
j 51

n

Ti j f j~xj~ t2t i j !!1I i~ t !,

~Lu!~ t !5u̇~ t !, Pu5
1

wE0

w

u~ t !dt, uPX,

Qz5
1

wE0

w

z~ t !dt, zPZ.

It is not difficult to show that

kerL5Rn, ImL5H zPZ:E
0

w

z~ t !dt50J is closed in Z,

dim KerL5n5codim ImL,

andP,Q are continuous projectors such that

ImP5kerL, kerQ5ImL5Im~ I 2Q!.

It follows that L is a Fredholm mapping of index zero. Fu
thermore, the generalized inverse~of L) KP :ImL
→kerPùDomL reads as

~KPu! i~ t !5E
0

t

xi~s!ds2
1

vE0

vE
0

t

xi~s!dsdt

for i 51,2, . . . ,n, uPZ. Thus, we have

~QNu! i5
1

vE0

vF2aixi~ t !1(
j 51

n

Ti j f j„xj~ t2t i j !…1I i~ t !Gdt,

„KP~ I 2Q!Nu…i~ t !5E
0

tF2aixi~s!1(
j 51

n

Ti j f j~xj~s2t i j !!

1I i~s!Gds2
1

vE0

vE
0

tF2aixi~s!

1(
j 51

n

Ti j f j„xj~s2t i j !…1I i~s!Gdsdt
2-5
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2S t

v
2

1

2D E
0

vF2aixi~s!

1(
j 51

n

Ti j f j„xj~s2t i j !…1I i~s!Gds

for i 51,2, . . . ,n. Clearly,QN andKp(I 2Q)N are continu-
ous. An application of the Arzela-Ascoli theorem toKp(I
2Q)N results in the fact thatKp(I 2Q)N(V̄) is compact for
any open boundedV,X. Moreover, QN(V̄) is clearly
bounded. Thus,N is L compact onV̄ with any open bounded
setV,X.

Now we reach the position to search for an appropri
open bounded subsetV for the application of the continua
tion theorem. Corresponding to the operator equationLx
5lNx,lP(0,1), we have

ẋi~ t !52laixi~ t !1l(
j 51

n

Ti j f j„xj~ t2t i j !…1lI i~ t !

~D1!

for i 51,2, . . . ,n. Assume thatu5u(t)PX is a solution of
Eq. ~D1! for a certain lP(0,1). Then, for any i
51,2, . . . ,n, xi(t), as the components ofu(t), are all con-
tinuously differentiable. Thus, there existt iP@0,v# such that
uxi(t i)u5maxtP[0,v] uxi(t)u. Hence, ẋi(t i)50. This implies
that

aixi~ t i !5(
j 51

n

Ti j f j„xj~ t i2t i j !…1I i~ t i ! ~D2!

for i 51,2, . . . ,n. Thus,

uxi~ t i !u5U(
j 51

n
Ti j

ai
f j„xj~ t i2t i j !…1

I i~ t i !

ai
U

<(
j 51

n uTi j upj

ai
uxj~ t i2t i j !u1(

j 51

n uTi j uqj

ai
1

uI i~ t !u
ai

<(
j 51

n uTi j upj

ai
uxj~ t j !u1(

j 51

n uTi j uqj

ai
1

uI i~ t !u
ai

<(
j 51

n

ai j uxj~ t j !u1Di ,

where Di5ai
21@( j 51

p uTi j uqj1maxtP[0,v]$uI i(t)u%#. In view
of r(A),1 and Lemma 1, we have (E2A)T>0 and h
5(E2A)21D>0, where D5(D1 ,D2 , . . . ,Dn)T. There-
fore,

uxi~ t i !u<hi for i 51,2, . . . ,n,

wherehi is the i th component of vectorh. Thus, we have

uxi u0<hi for i 51,2, . . . ,n. ~D3!
06190
e

Clearly,hi ,i 51,2, . . . ,n are independent ofl. Moreover, it
follows from Eq.~D1! that

uẋi~ t !u<lai uxi~ t !u1l(
j 51

n

uTi j uu f j„xj~ t2t i j !…u1luI i~ t !u

<aiFhi1(
j 51

n

ai j hj1Di G52hiai .

Namely, we have

uẋi u0<2hiai , i 51,2, . . . ,n. ~D4!

Let A5max1<i<n$hi(112ai)%. Then, there exists somed.1
such thatdhi.A for all i 51,2, . . . ,n. We take

V5$uPX;2dh,u~ t !,dh for all t%.

If u5(x1 ,x2 , . . . ,xn)TP]VùkerL5]VùRn, then u is a
constant vector inRn with uxi u5dhi for i 51,2, . . . ,n. It
follows that

~QNu! i52aixi1(
j 51

n

Ti j f j~xj !1
1

vE0

v

I i~ t !dt,

for i 51,2, . . . ,n. We claim that

u~QNu! i u.0 for i 51,2, . . . ,n. ~D5!

Contrarily, suppose that there exists somei P$1,2, . . . ,n%
such that u(QNu) i u50, i.e., 2aixi1( j 51

n Ti j f j (xj )

1 1
v *0

vI i(t)dt50. Then, there exists somet* P@0,v# such
that

2aixi1(
j 51

n

Ti j f j~xj !1I i~ t* !50.

Thus,

dhi5uxi u<(
j 51

n uTi j u
ai

u f j~xj !u1
uI i~ t* !u

ai
<(

j 51

n

ai j dhj1Di .

In view of d.1 and dh5d(Ah1D).Adh1D, we have
dhi.( j 51

n ai j dhj1Di for i 51,2, . . . ,n. It follows from the
above inequality thatdhi,dhi , which is a contradiction.
Therefore, Eq.~D5! holds, and hence,

QNuÞ0, for uP]VùkerL.

Definec:VùkerL3@0,1#→X/ImL5Xc by

c~u,m!5mdiag~2a1 ,2a2 , . . . ,2an!u1~12m!QNu

for all u5(x1 ,x2 , . . . ,xn)TPVùkerL5VùRn and m
P@0,1#.

WhenuP]VùkerL andmP@0,1#, u5(x1 , . . . ,xn)T is a
constant vector inRn with uxi u5dhi( i 51,2, . . . ,n). Thus,
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uc~u,m!u05 max
1< i<n

H U2aixi1~12m!F (
j 51

n

Ti j f j~xj !

1
1

vE0

v

I i~ t !dtGUJ .

We claim that

uc~u,m!u0.0. ~D6!

Contrarily, suppose thatuc(u,m)u050, then we have

2aixi1~12m!F (
j 51

n

Ti j f j~xj !1
1

vE0

v

I i~ t !dtG50,

~D7!

for all i 51,2, . . . ,n. It follows that there exists somet*
P@0,v# such that

2aixi1~12m!F (
j 51

p

Ti j f j~xj !1I i~ t* !G50.

Thus,

dhi5uxi u<~12m!F (
j 51

n uTi j u
ai

u f j~xj !u1
uI i~ t* !u

ai
G

<(
j 51

n

ai j dhj1Di ,
M

tw

, I

s

s
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which contradicts that dhi.( j 51
n ai j dhj1Di for i

51,2, . . . ,n. Thus, Eq.~D6! holds. Therefore,

c~u,m!Þ0 for any uP]VùkerL.

Using the property of topological degree and takingJ:ImQ
→kerL, (x1 , . . . ,xn)T→(x1 , . . . ,xn)T, we have

deg~JQN,VùkerL,0!5deg~c~•,0!,VùkerL,0!

5deg~c~•,1!,VùkerL,0!

5deg„diag~2a1 , . . . ,

2an!,VùkerL,0…51.

Therefore, according to the continuation theorem of Gai
and Mawhin @27#, system~7! has at least onev-periodic
solution.

APPENDIX E: PROOF OF THEOREM 4

Using the similar arguments to the proof of Theorem
system~7! has at least onev-periodic solutionx* (t). Let
x(t) be an arbitrary solution of system~7! and definey(t)
5x(t)2x* (t) then we have Eq.~C2! with gj„yj (t2t i j )…
5 f j„xj (t2t i j )…2 f j„xj* (t2t i j )…. Thus, it is sufficient to
prove that 0 is globally exponentially stable for system~C2!.
We can apply the same arguments as that in the proo
Theorem 2 to complete the proof of this theorem.
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