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Soliton molecules in trapped vector nonlinear Schro¨dinger systems

Vı́ctor M. Pérez-Garcı´a* and Vadym Vekslerchik†

Departamento de Matema´ticas, Escuela Te´cnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha,
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~Received 29 July 2002; published 27 June 2003!

We propose a method to build a great variety of stable multisoliton ‘‘molecules’’ with coupled light beams
in Kerr graded index~GRIN! media or atomic mixtures of Bose-Einstein condensates. We present a general
theory and discuss several specific cases, including two-, three-, and four-atom molecules made up of Gaussian
modes or vortices. A three-dimensional example is also presented.
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Since the begining of its history, physics has stud
simple objects and the ways in which they arrange to fo
more complex structures. Some remarkable successe
clude the atomic theory of matter, the structure of nucleu
terms of protons and neutrons and the substructure of nu
ons in terms of quarks, to cite a few examples.

Elementary robust objects made of light have been kno
since 1970s. In fact,spatial optical solitons—self-trapped
states of light with particlelike properties—have attracted
considerable attention during recent years as possible b
ing blocks of all-optical switching devices where light
used to guide and manipulate light itself@1,2#. Robust soli-
tonic structures appear also in Bose-Einstein condensa
where the dilute quantum gas supports robust structures
as one-dimensional dark solitons@3# or bright solitons@4#.

In nonlinear optics, the robust nature of spatial opti
solitons@2# allows one to draw an analogy with atomic phy
ics, treating spatial solitons as ‘‘atoms of light.’’ Furthe
more, when several light beams are combined to produca
vector soliton, this process can be viewed as the formation
composite states or ‘‘molecules of light.’’

The achievement of stable multisoliton states, with an
bitrary number of ‘‘atoms,’’ has been one of the goals
contemporary research in the field of nonlinear optics. Ma
structures of this type have been studied, for example,
raling solitons @5#, dipole and multipole vector soliton
@6–9#, self-trapped ring beams@10#, rotating propeller soli-
tons@11#, and rotating optical soliton clusters@12#. Although
these studies have provided a better understanding of di
ent aspects of soliton dynamics, it is clear thatmost of these
structures are unstable~i.e., they break due to different in
stabilities after a sufficiently long time!. The most remark-
able exception is that of dipole mode vector solitons@6,7# in
saturable media. However, the multipole vector solito
which have a larger number of atoms, are also unstable@8#.

In multicomponent Bose-Einstein condensates~BEC!,
simple nonlinear stationary solutions have been descr
@13–15#, but no attempt has been made to use them to b
more complex molecules.
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In this paper, we describe and analyze in detail a met
to build ‘‘soliton molecules’’ with several different proper
ties: ~i! an arbitrary number of atoms can be used to bu
these molecules;~ii ! the molecules exist in two-dimensiona
~2D! and three-dimensional scenarios thus providing the fi
soliton molecules, shown to exist forD53 ~all previous
analyses correspond to 2D systems@6–12#!; ~iii ! they are
stablefor any number of constituents;~iv! the molecules can
be built from different types of atoms~i.e., nodeless, vorti-
ces, . . .!; and ~v! exist in systems with the simplest type o
nonlinearity, the cubic one. Thus, our results can be app
to Kerr media in nonlinear optics and to Bose-Einstein co
densed gases.

The model. We will consider a system ofN complex fields
u1(t,r ),u2(t,r ), . . . ,uN(t,r ), ruled by the equations

i ] t uj~ t,r !5F2
1

2
D1V~r !1U j~ t,r !Guj~ t,r !, ~1!

for j 51, . . . ,N. The coupling term is given byU j (t,r )
5(kgjkuuk(t,r )u2 with gjkPR. Equations~1! are a set of
nonlinear Schro¨dinger equations~NLSE! which in BEC
problems describe multicomponent systems,uj being the
wave functions for each of the atomic species involved@13–
15#. In optics these equations describe the incoherent in
action between the slowly varying envelopes of the elec
field in paraxial beams in Kerr media. We chooseV(r )
5r2/2, which corresponds to an isotropic magnetic trapp
in BEC and to a GRIN fiber in the optical case.

Single component case: Soliton atoms. Let us first con-
sider the scalar case (N51). Solitons or stationary solution
of Eq. ~1! in the scalar case have the formu(t,r )
5fm(r )eimt and satisfy

mfm52
1

2
Dfm1

1

2
r2fm1gufmu2fm . ~2!

For a fixed normifiL2ª(* ufu2dV)1/2, any solution to Eq.
~2! will be a valid soliton atom for our purposes. The sim
plest case corresponds to a nodeless ground state solutio
the strong interaction case, its shape is close to the Thom
Fermi solution, and in the small interaction case~as it hap-
pens in nonlinear optics! it is close to a Gaussian function
s,
©2003 The American Physical Society04-1
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Many other complex stationary solutions to Eq.~2! are pos-
sible, such as vortices. These objects will play the role
atoms in what follows.

A relevant property is that any function of the form

u~r ,t !5fm„r2R~ t !…ei [mt1u(r ,t)] ~3!

is a solution of the scalar time-dependent NLSE, provid
R(t) satisfies (d2/dt2)R1R50 and u(r ,t)5„r ,(d/dt)R…

1 f (t), where f (t)5*0
t
„@(d/dt)R#22R2

…dt @16#. This
means that exact scalar time-dependent solutions, wh
centers evolve according to harmonic-oscillator-type eq
tions and preserve the shape of the stationary solution du
evolution, can be built. However, ifN>2, the property de-
scribed previously does not hold, in general, because of
cross interaction. In a general situation, the pulses col
and lose their individuality. Here we want to give some ide
on how to overcome this problem and build stationary n
trivial vector solitons of Eqs.~1!.

Formalism for the multicomponent case. Let us define the
modulusnj and phasef j of each wave packet throughuj

5Anjexp(iwj). Let us define also the center of mass of sp
cies j, Rj (t)5*dV nj r , and their total momentaPj (t)
5*dV nj“w j , whose evolution laws are

d

dt
Rj5Pj , ~4!

d

dt
Pj52Rj1

1

2 (
k

gjkFjk . ~5!

The first term in the right hand side of Eq.~5! corresponds to
the external potential, while the nonlinear force is given

Fjk5E dV~nk“nj2nj“nk!. ~6!

If nj for j 51, . . . ,N have small enough overlapping, it
possible to argue thatFjk will be a central force. Let us firs
notice that for the scalar case and far from the center of
wave packet, the self-interaction is small andu can be de-
scribed by the linear theory to ben(r )}e2r 2

@r 2m

1O(r 2m22)# for r→`. In the multicomponent case, if th
wave packets are separated, then the overlappings bet
the uj ’s will be small and “nj522(r2Rj )1O(ur
2Rj u21). Then, we get

Fjk52~Rj2Rk!E dV njnk1OS 1

uRk2Rku
D , ~7!

i.e., if the wave packets are separated, in the leading o
the intermode force is central.

Let us evaluate the factor*dV njnk , for illustrative pur-
poses, for the case whenuj ,k are solutions of linear problem
(gjk50) of the particular type,nj5Nj ur2Rj u2mje2(r2Rj )

2
,

whereNj are constants

E dV njnk5
p

2
NjNke

2(1/2)Qjk
2

Kmj ,mk
~Qjk!, ~8!
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whereQjk5Rj2Rk , Qjk5uQjku, andKmj ,mk
are polynomial

factors, the lowest order ones forD52 beingK0,0(Q)51,
K0,1(Q)5Q2/4, and K1,1(Q)5@22Q21 1

4 Q4#/4. In any
case, the specific form of the interaction is less crucial th
the fact that the forcesFjk are central.

Two-component case. For the two-component symmetri
(g125g215ḡ) case, Eqs.~5! read

d

dt
P152R11

1

2
ḡF12, ~9a!

d

dt
P252R22

1

2
ḡF12. ~9b!

The most interesting quantity isQ[Q125R12R2, which
gives the separation between the centers of mass of the
components and evolves according to (F[F12),

d2Q

dt2
1Q5ḡF. ~10!

As discussed above, ifQ is sufficiently large, the forceF
}Q and it can be presented in the potential formF
52(]/]Q)Wf(Q)52Wf8(Q)Q/Q. Then, Eq.~10! reads

d2Q

dt2
1Wtot8 ~Q!

Q

Q
50, ~11!

whereWtot5
1
2 Q21ḡWf(Q). In the approximation of inde-

pendent wave packets,Wf(Q)5*dV n1n2.
Equation~11! has two constants of motion: angular m

mentum L5Q3Q̇ and energy E5 1
2 (Q̇,Q̇)1Wtot(Q)

FIG. 1. ~a! PotentialW(Q) for gjk50 ~dashed line! and nonlin-
ear potentialWf(Q) ~dotted line! for the interaction of two Gauss
ian modes. Shown are the total potential forḡ/2p520 ~upper solid
line! and ḡ/2p5220 ~lower solid line!. ~b! A situation with L
50. Solid line shows the total potential for two Gaussian mod
with ḡ/2p55. Dashed line shows the potential for Gaussian p
vortex modes withḡ/2p520. The arrows mark the minima corre
sponding to nonrotating vector molecules.
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5 1
2 Q̇21Weff(Q), where Weff(Q)5Q2/21L2/(2Q2)

1ḡWf(Q). There will exist an equilibrium distanceQ0 for
which the effective potentialWeff is minimized. The reason is
that the centrifugal contribution is divergent forQ.0, while
the trap potential is unbounded forQ→` and the effective
nonlinear interaction should decay for largeQ and have a
maximum finite amplitude~Fig. 1!.

In the case of small interaction,Q0
lin.L1/2 leads to a ro-

tating solution of Eqs.~1!, provided the distances betwee
the components are kept large enough. For larger nonlin
terms,Q0 will deviate from Q0

lin (Qeq.Q0 for gjk.0 and
Qeq,Q0 for gjk,0) @Figs. 1~a!,1~b!#. WhenL50, the com-
bination of the trap force and the nonlinear term may a
have minima@Fig. 1~c!# corresponding to nonrotating solito
molecules.

FIG. 2. Evolution of initial datau1(r ,t)5f0„r2R1(0)…e3iy,
u2(r ,t)5f0„r1R1(0)…e23iy with g115g125g22510, *njdV51,
R1(0)5(3,0), andf0 is the scalar ground state.~a!–~c! Density
plots ofn1(r ,t)1n2(r ,t) on the spatial region@28,8#3@28,8#. ~d!
Evolution ofR1(t): X1(t) ~solid! andY1(t) ~dashed!. ~e! Evolution
of Q(t).

FIG. 3. Evolution of a three-component system withuj (r ,0)

5(1/Ap)e2[(x2xj )
21(y2yj )

2]/2ei (vx jx1vy jy), (xj ,yj )5d0„cos(2pj/3),
sin(2pj/3)…, (vx j ,vy j)5d0„sin(2pj/3),2cos(2pj/3)… for j 50,1,2.
Parameter values:gi j 53,d052,*njdV51. ~a!–~c! Density plots of
( j 51

3 nj (r ,t). ~d! Evolution of R1 : „X1(t),Y1(t)… andQ12(t).
06180
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o

From Weff we may also obtain the frequency of sma
oscillations aroundQ0, which is

V25113L2/Q0
41ḡWf9~Q0!. ~12!

This is a precise prediction of the theory which will be us
to verify its quantitative validity.

Examples of soliton molecules. Let us now present severa
examples of the soliton molecules discussed previously. F
we have studied the case of a pair of weakly interact
soliton atoms. The results, obtained with a symplectic sec
order in time split-step integrator, are summarized in Fig
where it is seen how the small interaction induces only sm
oscillations ofQ(t) ~without distortion of the wave packets!,
whose dominant fast frequency agrees with the prediction
Eq. ~12!.

In Fig. 3, three Gaussian solitons interact more stron
due to the larger number of components and the smaller
tance between the beams. In this case, the oscillations o
distances between componentsQi j remain small@Fig. 3~d!#
although some oscillations of the positions of the beams
appreciable@Figs. 3~a!–3~c!#. This leads to a multiscale be
havior with a fast frequency given by Eq.~12!. Other slower
frequencies related to the details of the interaction app
whose detailed analysis will be the subject of future wo
Although this particular configuration is stable, the pres

FIG. 4. Same as Fig. 3 but withgi j 55. ~a–c! Density plots of
( j 51

3 nj (r ,t). ~d! Long-time evolution ofQ12(t).

FIG. 5. Same as Fig. 4 but with a Gaussian soliton replaced
a vortex soliton.~a!–~c! Density plots of( j 51

3 nj (r ,t). ~d! Evolution
of Q12(t) ~solid! andQ13(t) ~dashed!.
4-3
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example is a three-body problem for which many behavi
are possible, such as stable solutions, resonances, chao
In fact, if the values of the nonlinear coefficient are i
creased, the beams deform more strongly and the interm
distancesQ(t) suffer strong oscillations@Fig. 4~d!# although
the structure remains stable after long periods of time, c
taining about one hundred revolutions of the soliton arou
the center.

Replacing one of the Gaussian solitons by a vortex sol
~Fig. 5!, the asymmetry and the longer interaction range
the vortex soliton~for which n;r 2e2r 2

) make this configu-
ration unstable and the initial configuration is destroyed a
a few rounds.

If only well-separated vortex solitons are used as ato
stable evolutions can be obtained~Fig. 6!. The stability of the
four-vortex molecule, shown in Fig. 6, confirms that o
scheme is useful to build soliton molecules with differe
types of atoms.

We have also analyzed several soliton molecules in th
spatial dimensions. In Fig. 7, we summarize the results fo
stable configuration made up of two weakly interacti
Gaussian solitons. The evolution for long times shows t
the intercomponent distanceQ(t) suffers only small oscilla-
tions @Fig. 7~f!# which manifest on the plots where mo

FIG. 6. Evolution of four-vortex solitons placed initially a
(4,0),(0,4),(24,0),(0,24) and orthogonal speeds of equal modu
Interaction isg510. ~a!–~d! Density plots of( j 51

4 nj (r ,t). The
system remains stable after the fifty full rounds that take place f
t50 to t5300.
let

s.
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interaction is apparent@Figs. 7~c!,7~d!#. The stability of this
three-dimensional object is remarkable since it correspo
to the first soliton molecule described in three dimensio
More complex molecules with larger number of compone
can be built in three dimensions.

Conclusions. In this paper, we have presented several s
ton molecules built up from scalar solitons of the trapp
NLSE. They exist forD52 and D53, are stable, can be
built with any number of lobes, and can be made from d
ferent types of elementary components, such as Gauss
like modes, vortices, etc.
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FIG. 7. Weak interaction of two Gaussian soliton

u1(r ,0)5(1/p3/4)e2[(x22)21y21z2]/2e22iy, u2(r ,0)5(1/p3/4)

3e2[(x12)21y21z2]/2e2iy with gjk510. ~a!–~e! Isosurface plots of
n1(r ,t)1n2(r ,t) for n11n250.01. ~f! Evolution of the intermode
distanceQ(t) andX1(t).
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