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Splay-bend periodic deformation in nematic liquid crystal slabs
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We predict a two-dimensional splay-bend periodic deformation in a nematic slab with homeotropic boundary
conditions. The nematic director modulation is induced by surface contributions in the elastic energy, which are
linear in the deformation tensor. The instability appears only if the surface anchoring energy strength is small
enough, and if the two surfaces are different. The wave vector of the stripe modulation is proportional to the
thickness of the nematic slab. The order of magnitude of the surface elastic constants relevant to the linear
elastic terms in the deformation tensor, and the critical value of the anchoring eser@y® J/n?, to observe
the instability are discussed.
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[. INTRODUCTION slab confined by homeotropic surfaces, that acts in absence
of any external field or competing anchoring, and involves
Stripe physics is an example of a nontrivial ordering phe-only a splay-bend deformatiom is always parallel to a
nomenon in condensed-matter physics. In particular, stripglane(2D deformation, described by a tilt angl@he peri-
patterns in achiral centrosymmetric materials have been d¥dic structure can be induced by elastic terms linear in the
intense interest both for the underlying physics and for theéleformation tensor, but only when a rather weak anchoring
possible connection to applications of these materials. In thenergy is available. The characteristics of the periodic splay-
case of samples in the form of thin films and of nanostruchbend deformation as well as the conditions under which it
tures, surfaces suppress the inversion symmetry of the buk@n be observed are discussed. A similar structure has re-
and modulated structures may appear. cently been considered by another method, in the case of thin
Liquid crystals are anisotropic fluids formed by anisomet-ferromagnetic filmg15].
ric molecules. In the achiral nematic phase, molecules have

random positions but align themgelves along an average di- Il. ELASTIC PROBLEM
rection called nematic directer (n“=1), thus nematics be- _ _ _ o
have as uniaxial crystals with positional isotrddy. In nem- In our analysis, we consider a nematic slab limited by two

atic media, modulated structures have been predicted arfbstrates that induce homeotropic alignment. Cartesian ref-
observed either under the action of an external bulk field oerence frame is chosen withaxis, of unit vectok, perpen-

in nematic slabs with antagonistic alignment conditiomg-  dicular to the limiting surfaces &= +d/2. The total elastic
chanical field. The possibility to observe periodic structures free-energy density of the nematic sample is given by
induced by an external magnetic field has been discussed

long ago by Londberg and Meyg2]. In a different context, f=fs+fi+1,. (h)
e.g., instability induced by a mechanical field, the same prob-
lem has been discussed by several autf®+9]. Recently, it The surface tension terrfiy accounts for the nematic-

has been analyzed under what conditions periodic structuregpstrate interactions, and as usually is given in the form
can appear spontaneously in nematic liquid crystsisC), [16]

and it has been shown that the saddle-splay elastic constant

could be responsible for a ground state presenting periodic 1

modulation[10]. The latter periodic deformation involves fo=fo— EV(Z)(ITk)Z, (2
splay-bend and twist deformations, i.e., it is a three-

dimensional(3D) deformation[11,12. _ ) _ )

Lately, an important effort in the LC technology concernsWherefs, is the isotropic part of the surface tension and the
the realization of weak anchoring conditions in such a man¥(2) term describes the nematic orientation dependent part
ner to have a low working voltage for display applications©f the surface tensiofiL7]. In the following, we will assume
[13]. However, as we will show in this paper, at low enoughthat V(z) =V,U(z), whereV, is the maximum value of
anchoring energy, new effects can appear: the presence of¥42) andU(z) is a positive function different from zero only
surface field inducing Lifshitz-invariants-like terms, can de-in the surface layers at~=*d/2. For homeotropic align-
stroy the homogeneous alignment. In the absence of externdlent, the anchoring energy strength is positive.
fields, these terms are identically zero in the bulk. However, Termsf, and f, depend on the deformation tensor with
close to a limiting surface, where the bulk nematic symmetryelementsn; ;=dn;/dx;, where
is broken, these can exist. In particular, we predict a different
mechanism of periodic spontaneous deformation, in a NLC fi=—Ry(2)(n-k)(V-n)—R3(2)k-[nX(VXn)] (3)
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stantsR;(z) and R;(z) are different from zero only in the
surface layers where the nematic symmetry of the bulk is

broken[18]. The functional dependence &fonn; ; is iden- whereA =\/d is the nondimensional wavelength and
tical to the flexoelectric free energy term, which appears

is linear in the deformation tensor. The surface elastic con- 1/2
G=F/K f f gdédn,

when a NLC is submitted to a dc electric figtt]. Therefore, 1 R(7)d 1

the presence of a limiting surface is equivalent to a kind of g=fd?/K=— —sU(77)COS°-0— 0 §+_(92§+ 6% ).
surface field. In the case of a solid isotropic surface, this K= 20 7
surface field is of the fornE({)=E({)k where { is the ©)

distance from the solid surface. The couplingE(f¢) with
the polar properties induced by a mechanical deformatlorb(
gives rise tof, . Note that if the nematic sample is limited by
two identical substrates, the relevant surface field is an od
function of z.

f, is the usual quadratic elastic free-energy density of
NLCqs, which can be written as the sum of the Frank free- 5Gb_fl/2 f/\[a_g_<ia_g+ 79 ”
energy density19] 112J0 9§30 dmab,

According to the variational calculus, for the function

&,7m) to minimize G, the relevant differential equation is

glven by the conditionG=6G,+ 6G,+6G,=0 [21],
where

1 ) ) ) X 660(§,m)dédy,
fe=5[Ku(V )2+ Kafn- (VXM ]2+ Kgd nX (VX))

A o J
(4) 5G§=f [(aag ) 59(5,1/2)—(%)
and of a surfacelike term =112 =102
fs1= = (Kt K9 V- [nV-n+nX(VXm]. (5 ><50(§,—1/2)}d§,

K11, Kyo, andK ;5 are the splay, twist, and bend bulk elastic
constants, respectively, which favor homogeneous states, and 12 ag
K, is the saddle-splay elastic constant. The term associated 6G,,=f ‘(W 60(A\,7m)
with K,4, by means of Gauss theorem, gives rise only to a —12 &) =
surface contributio20], but it has nothing to do with the a9
surface properties of the material. - ﬁ) 50(0,77)} dz. (10

Now we assume that the nematic director is everywhere & e=0

parallel to thex-z plane:n=isin#+k cosé, wherei is the - o
unit vector parallel to the axis andé is the tilt angle than The conditiond(&+ A, 7) = 6(&,7) + = implies that the
forms with z axis. Since #=6(x,z) then nV.n+nx (v  derivatived . and the variationsé(¢, ) have the same pe-
Xn)=—i0,+k0,, where 6,=ad6/ox and 0,=d6/gz. ~ nodicity, i.e., 6(E+A,n)=0,¢n) and 56(&+ A, 7)
Consequently, the surfacelike contribution vanishes identi=80(£,7). By taking into account these conditions(,, is
cally: fs,=0. The present analysis is restricted in the one’@Wwritten as
elastic constant approximation in the bulk;(=K), and in
the interfacial layersR;(z) = R3(z) =R(z). The general an- G = fl’z ( 9 ) _( g ) 50
) ; . . . = — o (0,7)d7.
isotropic approach will be given elsewhere. In this frame- T )|\ 90 e=A a0 ¢ £=0
work, the total free-energy density, beside a constant term, is (11)
given by

Substitutingg from Eq. (9) into Egs.(10) and (11), we
f——EV(z) co2p— R(2)0,+= K(az Jr02) 6) obtain for 6G,, 6G,, and5G,, the expressions

12 (Afg
Since we look for a periodic deformation along thexis, 5Gb=f f [EU(n)sin(za)—(eygng 9,,7,7)]
the nematic tilt angled has to be of the type&(x+\,z) ~12J0
= 0(x,z) + 7 because of the apolar character of the nematic X 56(&, m)dedy,

director, where\ is the period of the modulated structure.
Finally, the total energy per period of the nematic slab is

5G = fOA{ev,,(g,l/z) 60(£,112)— 6 ,(£,—1/2)

di2 [
f f fdxdz (7)
a/2.70 X 86(¢,—1/2)}dé,
By introducing the reduced coordinategs=x/d and % "
_ H H 2
=z/d, gnd the nondimensional constantV,d“/K, F can 5anf {6 (A7)~ 0 ,0,7)}50(0,p)d7. (12
be rewritten in the form —1/2
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The periodicityd ((é+ A, 7)= 0 /&, 7) yields 6G,=0. The 12 1/2
condition §G=0, for all 56(&, ») belonging to theC; class, r= f—l/ZR( n)dnp and u= J_l/zU(ﬁ)dﬂ- (19
such that §6(¢é+A,n)=05660(&,7), gives the differential

equation At the zeroth order ire, the wave vector minimizingb
e =G/A=Gy/A [22] is gq=rd/K. The corresponding value
0 6t 0, EU( 7)sin(26)=0 (13 of Gg is Go(min)=—(1/2)(rd/K)?A. At the first order ine,
we have
with the boundary conditions ,(¢,=1/2)=0. 1/rd\2 1
G:G0+8G1:_[§ ? +ZSU}A. (20)

IIl. PERTURBATION ANALYSIS

In what follows, we assume that=V,d2/K<1. We ex- TheT modu!ated structure is stable if the relevant energy per
pand 6 as a power series in the small parameterd(£, ) period, G, is smaller than the energg, for homogeneous
= 0o(&,m)+80,(£ 1) +£20,(£,7)+ - -- . Then we substi- homeotropic _allgnment6(=0). From Eqgs.(8) and (9), and_
tute it in Eq.(13) and in the relevant boundary conditions, (19), We obtainGy=—(e/2)uA. Then, at the zeroth order in
and equate corresponding powers:oft the zeroth order in =~ & the modulated structure is always stable with respect to

¢, Eq. (13 becomes f[he homeotropic one. To thg first order_a'n it is stable or21Iy
if Go+eG1=<Gy, from which we deriveue<2(rd/K)~.
Oo:(£,m)+ 0g,,,(£,7)=0, (14  This inequality gives the upper limit ofi to observe the

_ _ o periodic deformation. Instead of the quantitreandu, it is
and 6 ,(£,+1/2)=0. While the first-order terms in give  more convenient to introduce the parameters

1 ) dr2 dr2 K
Or et 019y =5U(7)SIN(26), (15) b=f dlzR(z)dz:rd and W=j d/ZVOU(z)dz=u(~3E.

(21)

and 6, ,(§,+1/2)=0.
Further, since the functio(¢,7) belongs to the class In terms ofb andw, the condition on the anchoring energy is
0(é+A,m)=0(£,m)+m, the perturbation expansion @&  written w=<2b?/Kd, and the wavelength of the modulated
yields  0g(é+A,n)=0p(&,p)+7  and  G,(E+A,n) structure is
=6,(&,m), fori=1. The general solution of E¢l4) is then
AN=Ad=(m/q)d=m(K/b)d, (22

” 2
0o(é,m)=qé+pn+ 2 [Ancos)'( nT”) i.e., it is proportional to the thickness of the sample. Using
n=1 the latter expression fax, the critical condition on the an-
20 choring energy can be rewritten as

2
+B sink(n— )]sin(n—g). (16)
" AT A w=w,, = 2b%Kd=272Kd/\2. 23)

The relevant boundary conditions yielp=0 and 7o the lowest approximation ir:, the above described
Bncoshfim/A) £ Asinhir/A)=0, for n=1. The latter equa- modulated structure isindependent.
tion implies A,=B,=0. Thus, the solution, at the zeroth

order ing, is 6y5(&,7)=qé. The wave vectoq is then de-

. . . - IV. DISCUSSION
termined by imposing that the total free energy has a mini-

mum. Substituting the perturbation expansiondointo Eq. As discussed above, if the nematic sample is limited by
(9) and using the solutioy(&,7)=qgé, we obtain, to the two identical substrates, the surface field is an odd function
first order ine, g=go+€09,, where of the z coordinate:R(z)=—R(—2z), and thereforeb=0,
which leads toh—, i.e., no-periodic deformation. In this
_ R(pd 1, situation, the linear terms in the deformation tensor could
Yo~ ~ K Eq ' induce a deformation along ttecoordinate, but cannot in-
duce a periodic deformation along tkecoordinate. Experi-

1 R(#7)d mentally, the splay-bend instability could be obtained, e.g.,

9:1=— EU(W)COSZ(qg)—T91,§+q91,§- (17 with a nematic slab confined between two plates that induce
homeotropic alignment, but treated with different kinds of

Since 0,(é+ A, 7)= 6,(£,7), the total energyG per period  surfactants. In practice, if not special care is taken, the two
is surfaces of a nematic cell are not identical even if the sur-

factant treatment is the same. Therefore, the latter condition,

r 5 1 in order to observe the instability, can be easily fulfilled.
G=GoteG1=| — 1A+ 507 |A—ZuAe, (18 In the case that the linear elastic constaRtgz) and
Rs(z) have a flexoelectric origin, these are of the form
where the parametersandu are given by Ri(2)=e;iE(2), whereE(z) is a surface field originating,
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e.g., from selective ionic adsorptid@3]. E(z) decreases in H (1/2)—H (—1/2)

an exponential manner with the distance from the substrate, == 4q sinhq . (26)
over a typical length of the order of the Debye screening

length L. The amplitude of the surface field Bs=o'/e,

whereo is the surface density of adsorbed charges @l according to theory of the potentigPoisson’s equation
the average dielectric constant of the nematic medium. "Ezg], the functionH(7) is given by

this framework, for a compensated nematic liquid crystal

with e;;~10 ! C/m [24], 0~10 ° C/n?, e~5¢,, andLp

~0.6 um[25], b~e; Lpo/ € is of the order of 101 N. For 1 (12 (=

a nematic cell with thicknessl~10 um, and takingK HW)ZE f cog2q)U(7")

~10"!' N, we calculate the critical anchoring energy;, -~12J0

~10"® J/n?. This value of anchoring energy is rather low XIn[¢2+ (5’ — n)2]ddy’, (27)

and therefore the conditiow=w,, is not satisfied by con-
ventional homeotropic anchoring treatments. In homeotropic

nematic cells, anchoring energy of the order of 10/n*  \yhich can be easily determined ondé ) is defined.
has been reporte@6]. A further reduction of the anchoring At the first order ine, the tilt angle 8(&, %)= 0o(£)
energy with the temperature is obtained especially in the vi- ¢ 9. (¢, 7) is now 5 dependent. By operating as before, it is

cinity of the clearing poinf27], but in this case the growth possible to determine the new critical anchoring energy to
of an isotropic wetting filn{28] should prevent the observa- gpserve the modulated structure.

tion of the above predicted texture instability. Nevertheless,
surface treatments giving rise to very weak anchoring begin
to be reported13,14 and the predicted instability could be
soon tested.

As discussed above, at the lowest ordeg jrthe periodic We have shown that the presence of surface fields can
instability is characterized by a tilt angle whichzsndepen-  destroy the homogeneous nematic alignment when the an-
dent. Of course, this property does not exist any longéiisf  choring energy is weak enough. The instability should cause
expanded to the first order i In this case, the solution of a periodic 2D splay-bend deformation in a nematic slab with
Eq. (15 with boundary conditionss; ,(¢é+1/2)=0, and homeotropic boundary conditions. The instability is activated

V. CONCLUSION

such asf;(é+A,n)=0,(&,7m), Is only if (a) the anchoring energy becomes lower than a criti-
) _ cal anchoring energy evaluated of the order of 40/n¥,
01(§,m)=[asinh(2q7) +b cosi2q») +H(7n)]sin(29¢), and (b) the two substrates are not identical. Note that the

(29 anchoring critical value is rather low suggesting special sur-
face treatment in order to observe such an instability. The
instability mechanism acts, in absence of any external bulk
field (magnetic or electricor mechanical field, and gives rise

whereH(7) is the particular solution of the ordinary differ-
ential equation

_ 2 - to a stripe modulation. We obtained the nematic director tilt
H.anl ) = (2R = (12U(). (25 angle profile by means of a perturbation method, in which
and the constants andb are given by the expansion parameter is proportional to the anchoring en-
ergy strength. At the lowest order, the tilt angleisdepen-
_ H,(AR2+H (=12 dent. The wavelength of the modulated structure is propor-
B 4q coshq ' tional to the thickness of the nematic slab.
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