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Splay-bend periodic deformation in nematic liquid crystal slabs
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We predict a two-dimensional splay-bend periodic deformation in a nematic slab with homeotropic boundary
conditions. The nematic director modulation is induced by surface contributions in the elastic energy, which are
linear in the deformation tensor. The instability appears only if the surface anchoring energy strength is small
enough, and if the two surfaces are different. The wave vector of the stripe modulation is proportional to the
thickness of the nematic slab. The order of magnitude of the surface elastic constants relevant to the linear
elastic terms in the deformation tensor, and the critical value of the anchoring energy,&1026 J/m2, to observe
the instability are discussed.

DOI: 10.1103/PhysRevE.67.061710 PACS number~s!: 61.30.Hn
e
rip

th
th

uc
bu

et
a
d

-

a
o

es
s

ob

ur

st
od
s
e

ns
an
ns
gh
o
e
rn
e
tr
en
L

nce
es

the
ing
lay-

it
re-

thin

wo
ref-

-
rm

he
part

y

th
I. INTRODUCTION

Stripe physics is an example of a nontrivial ordering ph
nomenon in condensed-matter physics. In particular, st
patterns in achiral centrosymmetric materials have been
intense interest both for the underlying physics and for
possible connection to applications of these materials. In
case of samples in the form of thin films and of nanostr
tures, surfaces suppress the inversion symmetry of the
and modulated structures may appear.

Liquid crystals are anisotropic fluids formed by anisom
ric molecules. In the achiral nematic phase, molecules h
random positions but align themselves along an average
rection called nematic directorn (n251), thus nematics be
have as uniaxial crystals with positional isotropy@1#. In nem-
atic media, modulated structures have been predicted
observed either under the action of an external bulk field
in nematic slabs with antagonistic alignment conditions~me-
chanical field!. The possibility to observe periodic structur
induced by an external magnetic field has been discus
long ago by Londberg and Meyer@2#. In a different context,
e.g., instability induced by a mechanical field, the same pr
lem has been discussed by several authors@3–9#. Recently, it
has been analyzed under what conditions periodic struct
can appear spontaneously in nematic liquid crystals~NLC!,
and it has been shown that the saddle-splay elastic con
could be responsible for a ground state presenting peri
modulation @10#. The latter periodic deformation involve
splay-bend and twist deformations, i.e., it is a thre
dimensional~3D! deformation@11,12#.

Lately, an important effort in the LC technology concer
the realization of weak anchoring conditions in such a m
ner to have a low working voltage for display applicatio
@13#. However, as we will show in this paper, at low enou
anchoring energy, new effects can appear: the presence
surface field inducing Lifshitz-invariants-like terms, can d
stroy the homogeneous alignment. In the absence of exte
fields, these terms are identically zero in the bulk. Howev
close to a limiting surface, where the bulk nematic symme
is broken, these can exist. In particular, we predict a differ
mechanism of periodic spontaneous deformation, in a N
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slab confined by homeotropic surfaces, that acts in abse
of any external field or competing anchoring, and involv
only a splay-bend deformation:n is always parallel to a
plane~2D deformation, described by a tilt angle!. The peri-
odic structure can be induced by elastic terms linear in
deformation tensor, but only when a rather weak anchor
energy is available. The characteristics of the periodic sp
bend deformation as well as the conditions under which
can be observed are discussed. A similar structure has
cently been considered by another method, in the case of
ferromagnetic films@15#.

II. ELASTIC PROBLEM

In our analysis, we consider a nematic slab limited by t
substrates that induce homeotropic alignment. Cartesian
erence frame is chosen withz axis, of unit vectork, perpen-
dicular to the limiting surfaces atz56d/2. The total elastic
free-energy density of the nematic sample is given by

f 5 f s1 f l1 f q . ~1!

The surface tension termf s accounts for the nematic
substrate interactions, and as usually is given in the fo
@16#

f s5 f s02
1

2
V~z!~n•k!2, ~2!

where f s0 is the isotropic part of the surface tension and t
V(z) term describes the nematic orientation dependent
of the surface tension@17#. In the following, we will assume
that V(z)5V0U(z), where V0 is the maximum value of
V(z) andU(z) is a positive function different from zero onl
in the surface layers atz;6d/2. For homeotropic align-
ment, the anchoring energy strengthV0 is positive.

Terms f l and f q depend on the deformation tensor wi
elementsni , j5]ni /]xj , where

f l52R1~z!~n•k!~“•n!2R3~z!k•@n3~“3n!# ~3!
©2003 The American Physical Society10-1
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is linear in the deformation tensor. The surface elastic c
stantsR1(z) and R3(z) are different from zero only in the
surface layers where the nematic symmetry of the bulk
broken@18#. The functional dependence off l on ni , j is iden-
tical to the flexoelectric free energy term, which appe
when a NLC is submitted to a dc electric field@1#. Therefore,
the presence of a limiting surface is equivalent to a kind
surface field. In the case of a solid isotropic surface, t
surface field is of the formE(z)5E(z)k where z is the
distance from the solid surface. The coupling ofE(z) with
the polar properties induced by a mechanical deforma
gives rise tof l . Note that if the nematic sample is limited b
two identical substrates, the relevant surface field is an
function of z.

f q is the usual quadratic elastic free-energy density
NLCs, which can be written as the sum of the Frank fre
energy density@19#

f F5
1

2
@K11~“•n!21K22@n•~“3n!#21K33@n3~“3n!#2#

~4!

and of a surfacelike term

f SL52~K221K24!“•@n“•n1n3~“3n!#. ~5!

K11, K22, andK33 are the splay, twist, and bend bulk elas
constants, respectively, which favor homogeneous states
K24 is the saddle-splay elastic constant. The term associ
with K24, by means of Gauss theorem, gives rise only t
surface contribution@20#, but it has nothing to do with the
surface properties of the material.

Now we assume that the nematic director is everywh
parallel to thex-z plane:n5 i sinu1k cosu, where i is the
unit vector parallel to thex axis andu is the tilt angle thatn
forms with z axis. Sinceu5u(x,z) then n“•n1n3(“
3n)52 iu ,z1ku ,x , where u ,x5]u/]x and u ,z5]u/]z.
Consequently, the surfacelike contribution vanishes ide
cally: f SL50. The present analysis is restricted in the o
elastic constant approximation in the bulk (Kii 5K), and in
the interfacial layers:R1(z)5R3(z)5R(z). The general an-
isotropic approach will be given elsewhere. In this fram
work, the total free-energy density, beside a constant term
given by

f 52
1

2
V~z! cos2u2R~z!u ,x1

1

2
K~u ,x

2 1u ,z
2 !. ~6!

Since we look for a periodic deformation along thex axis,
the nematic tilt angleu has to be of the typeu(x1l,z)
5u(x,z)1p because of the apolar character of the nem
director, wherel is the period of the modulated structur
Finally, the total energy per period of the nematic slab is

F5E
2d/2

d/2 E
0

l

f dxdz. ~7!

By introducing the reduced coordinatesj5x/d and h
5z/d, and the nondimensional constant«5V0d2/K, F can
be rewritten in the form
06171
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G5F/K5E
21/2

1/2 E
0

L

gdjdh, ~8!

whereL5l/d is the nondimensional wavelength and

g5 f d2/K52
1

2
«U~h!cos2u2

R~h!d

K
u ,j1

1

2
~u ,j

2 1u ,h
2 !.

~9!

According to the variational calculus, for the functio
u(j,h) to minimize G, the relevant differential equation i
given by the conditiondG5dGb1dGh1dGj50 @21#,
where

dGb5E
21/2

1/2 E
0

L H ]g

]u
2S ]

]j

]g

]u ,j
1

]

]h

]g

]u ,h
D J

3du~j,h!djdh,

dGj5E
0

LH S ]g

]u ,h
D

h51/2

du~j,1/2!2S ]g

]u ,h
D

h521/2

3du~j,21/2!J dj,

dGh5E
21/2

1/2 H S ]g

]u ,j
D

j5L

du~L,h!

2S ]g

]u ,j
D

j50

du~0,h!J dh. ~10!

The conditionu(j1L,h)5u(j,h)1p implies that the
derivativeu ,j and the variationdu(j,h) have the same pe
riodicity, i.e., u ,j(j1L,h)5u ,j(j,h) and du(j1L,h)
5du(j,h). By taking into account these conditions,dGh is
rewritten as

dGh5E
21/2

1/2 H S ]g

]u ,j
D

j5L

2S ]g

]u ,j
D

j50
J du~0,h!dh.

~11!

Substitutingg from Eq. ~9! into Eqs. ~10! and ~11!, we
obtain fordGb , dGj , anddGh the expressions

dGb5E
21/2

1/2 E
0

L H «

2
U~h!sin~2u!2~u ,jj1u ,hh!J

3du~j,h!djdh,

dGj5E
0

L

$u ,h~j,1/2!du~j,1/2!2u ,h~j,21/2!

3du~j,21/2!%dj,

dGh5E
21/2

1/2

$u ,j~L,h!2u ,j~0,h!%du~0,h!dh. ~12!
0-2
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The periodicityu ,j(j1L,h)5u ,j(j,h) yieldsdGh50. The
conditiondG50, for all du(j,h) belonging to theC1 class,
such that du(j1L,h)5du(j,h), gives the differential
equation

u ,jj1u ,hh2
«

2
U~h!sin~2u!50 ~13!

with the boundary conditionsu ,h(j,61/2)50.

III. PERTURBATION ANALYSIS

In what follows, we assume that«5V0d2/K!1. We ex-
pandu as a power series in the small parameter«: u(j,h)
5u0(j,h)1«u1(j,h)1«2u2(j,h)1••• . Then we substi-
tute it in Eq. ~13! and in the relevant boundary condition
and equate corresponding powers of«. At the zeroth order in
«, Eq. ~13! becomes

u0,jj~j,h!1u0,hh~j,h!50, ~14!

andu0,h(j,61/2)50. While the first-order terms in« give

u1,jj1u1,hh5
1

2
U~h!sin~2u0!, ~15!

andu1,h(j,61/2)50.
Further, since the functionu(j,h) belongs to the class

u(j1L,h)5u(j,h)1p, the perturbation expansion ofu
yields u0(j1L,h)5u0(j,h)1p and u i(j1L,h)
5u i(j,h), for i>1. The general solution of Eq.~14! is then

u0~j,h!5qj1ph1 (
n51

` H AncoshS n
2p

L
h D

1BnsinhS n
2p

L
h D J sinS n

2p

L
j D . ~16!

The relevant boundary conditions yieldp50 and
Bncosh(np/L)6Ansinh(np/L)50, for n>1. The latter equa-
tion implies An5Bn50. Thus, the solution, at the zerot
order in «, is u0(j,h)5qj. The wave vectorq is then de-
termined by imposing that the total free energy has a m
mum. Substituting the perturbation expansion ofu into Eq.
~9! and using the solutionu0(j,h)5qj, we obtain, to the
first order in«, g5g01«g1, where

g052
R~h!d

K
q1

1

2
q2,

g152
1

2
U~h!cos2~qj!2

R~h!d

K
u1,j1qu1,j . ~17!

Sinceu1(j1L,h)5u1(j,h), the total energyG per period
is

G5G01«G15S 2
rd

K
q1

1

2
q2DL2

1

4
uL«, ~18!

where the parametersr andu are given by
06171
i-

r 5E
21/2

1/2

R~h!dh and u5E
21/2

1/2

U~h!dh. ~19!

At the zeroth order in«, the wave vector minimizingf
5G/L5G0 /L @22# is q5rd/K. The corresponding value
of G0 is G0(min)52(1/2)(rd/K)2L. At the first order in«,
we have

G5G01«G152H 1

2 S rd

K D 2

1
1

4
«uJ L. ~20!

The modulated structure is stable if the relevant energy
period,G, is smaller than the energyGH for homogeneous
homeotropic alignment (u50). From Eqs.~8! and ~9!, and
~19!, we obtainGH52(«/2)uL. Then, at the zeroth order in
«, the modulated structure is always stable with respec
the homeotropic one. To the first order in«, it is stable only
if G01«G1<GH , from which we deriveu«<2(rd/K)2.
This inequality gives the upper limit ofu to observe the
periodic deformation. Instead of the quantitiesr andu, it is
more convenient to introduce the parameters

b5E
2d/2

d/2

R~z!dz5rd and w5E
2d/2

d/2

V0U~z!dz5u«
K

d
.

~21!

In terms ofb andw, the condition on the anchoring energy
written w<2b2/Kd, and the wavelength of the modulate
structure is

l5Ld5~p/q!d5p~K/b!d, ~22!

i.e., it is proportional to the thickness of the sample. Us
the latter expression forl, the critical condition on the an
choring energy can be rewritten as

w<wcr52b2/Kd52p2Kd/l2. ~23!

To the lowest approximation in«, the above described
modulated structure isz independent.

IV. DISCUSSION

As discussed above, if the nematic sample is limited
two identical substrates, the surface field is an odd funct
of the z coordinate:R(z)52R(2z), and thereforeb50,
which leads tol→`, i.e., no-periodic deformation. In this
situation, the linear terms in the deformation tensor co
induce a deformation along thez coordinate, but cannot in
duce a periodic deformation along thex coordinate. Experi-
mentally, the splay-bend instability could be obtained, e
with a nematic slab confined between two plates that ind
homeotropic alignment, but treated with different kinds
surfactants. In practice, if not special care is taken, the
surfaces of a nematic cell are not identical even if the s
factant treatment is the same. Therefore, the latter condit
in order to observe the instability, can be easily fulfilled.

In the case that the linear elastic constantsR1(z) and
R3(z) have a flexoelectric origin, these are of the for
Ri(z)5eii E(z), where E(z) is a surface field originating
0-3
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e.g., from selective ionic adsorption@23#. E(z) decreases in
an exponential manner with the distance from the substr
over a typical length of the order of the Debye screen
length LD . The amplitude of the surface field isES5s/e,
wheres is the surface density of adsorbed charges ande is
the average dielectric constant of the nematic medium
this framework, for a compensated nematic liquid crys
with eii ;10211 C/m @24#, s;1025 C/m2, e;5e0, andLD
;0.6 mm @25#, b;eii LDs/e is of the order of 10211 N. For
a nematic cell with thicknessd;10 mm, and takingK
;10211 N, we calculate the critical anchoring energy:wcr
;1026 J/m2. This value of anchoring energy is rather lo
and therefore the conditionw<wcr is not satisfied by con-
ventional homeotropic anchoring treatments. In homeotro
nematic cells, anchoring energy of the order of 1025 J/m2

has been reported@26#. A further reduction of the anchoring
energy with the temperature is obtained especially in the
cinity of the clearing point@27#, but in this case the growth
of an isotropic wetting film@28# should prevent the observa
tion of the above predicted texture instability. Neverthele
surface treatments giving rise to very weak anchoring be
to be reported@13,14# and the predicted instability could b
soon tested.

As discussed above, at the lowest order in«, the periodic
instability is characterized by a tilt angle which isz indepen-
dent. Of course, this property does not exist any longer ifu is
expanded to the first order in«. In this case, the solution o
Eq. ~15! with boundary conditionsu1,h(j61/2)50, and
such asu1(j1L,h)5u1(j,h), is

u1~j,h!5@a sinh~2qh!1b cosh~2qh!1H~h!#sin~2qj!,
~24!

whereH(h) is the particular solution of the ordinary differ
ential equation

H ,hh~h!2~2q!2H~h!5~1/2!U~h!, ~25!

and the constantsa andb are given by

a52
H ,h~1/2!1H ,h~21/2!

4q coshq
,

l.

. E

et
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b52
H ,h~1/2!2H ,h~21/2!

4q sinhq
. ~26!

According to theory of the potential~Poisson’s equation!
@29#, the functionH(h) is given by

H~h!5
1

4pE21/2

1/2 E
0

`

cos~2qz!U~h8!

3 ln@z21~h82h!2#dzdh8, ~27!

which can be easily determined onceU(h) is defined.
At the first order in «, the tilt angle u(j,h)5u0(j)

1«u1(j,h) is nowh dependent. By operating as before, it
possible to determine the new critical anchoring energy
observe the modulated structure.

V. CONCLUSION

We have shown that the presence of surface fields
destroy the homogeneous nematic alignment when the
choring energy is weak enough. The instability should ca
a periodic 2D splay-bend deformation in a nematic slab w
homeotropic boundary conditions. The instability is activat
only if ~a! the anchoring energy becomes lower than a cr
cal anchoring energy evaluated of the order of 1026 J/m2,
and ~b! the two substrates are not identical. Note that
anchoring critical value is rather low suggesting special s
face treatment in order to observe such an instability. T
instability mechanism acts, in absence of any external b
field ~magnetic or electric! or mechanical field, and gives ris
to a stripe modulation. We obtained the nematic director
angle profile by means of a perturbation method, in wh
the expansion parameter is proportional to the anchoring
ergy strength. At the lowest order, the tilt angle isz indepen-
dent. The wavelength of the modulated structure is prop
tional to the thickness of the nematic slab.
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