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Isotropic-nematic phase equilibria in the Onsager theory of hard rods with length polydispersity
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We analyze the effect of a continuous spread of particle lengths on the phase behavior of rodlike particles,
using the Onsager theory of hard rods. Our aim is to establish whether “unusual” effects such as isotropic-
nematic-nematiclcN-N) phase separation can occur even for length distributions with a single peak. We focus
on the onset of-N coexistence. For a log-normal distribution, we find that a finite upper cutoff on rod lengths
is required to make this problem well posed. The cloud curve, which tracks the density at the ohdét of
coexistence as a function of the width of the length distribution, exhibits a kink; this demonstrates that the
phase diagram must contain a three-pHaBeN region. Theoretical analysis shows that in the limit of large
cutoff, the cloud point density actually converges to zero, so that phase separation results at any nonzero
density; this conclusion applies to all length distributions with fatter-than-exponentail tails. Finally, we con-
sider the case of a Schulz distribution, with its exponential tail. Surprisingly, even here the longanads
hence the cutoffcan dominate the phase behavior, and a kink in the cloud curvé-BiRN coexistence again
result. Theory establishes that there is a nonzero threshold for the width of the length distribution above which
these long-rod effects occur, and shows that the cloud and shadow curves approach nonzero limits for a large
cutoff, both in good agreement with the numerical results.
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[. INTRODUCTION Onsager used a simple one-parameter variational trial form
for P(Q). Using this method Onsag¢6] and, two years
Rodlike particles such as tobacco mosaic virus in dilutdater Isihara[9], were able to estimate the density at which
suspension are known to exhibit a phase transition with inthe I-N phase transition occurs for different particle shapes.
creasing density between an isotropic phésevith no ori- A Similar approach was used by Odijk0], with a Gaussian
entational or translational order and a nematic phade }Lrjlfil(ln:1urk]:z:atcljo%;O:rf)e(r?L'Irsgc\?;/e\geerérgh%l?t:mggcggyKegigé rsc;_n q
vyhere the rods p0|_nt, on an average, along a preferred d'reﬁavecﬁe[ll]. An alternative method, based on an expansion
tion [1-5]. The main theoretical approach formulated to pre

) i _ “of the angular part of the excluded volume in terms of Leg-
dict this phenomenon is the Ons_ager th_eory of hard [68s  gngre polynomialg11], was used by Lekkerkerkegt al.
Onsager assumed that the only interaction between the SO|L{(§2]_ All of these approaches gave similar results for the
particles is of hard core type. The particles are modeled agroperties of the coexisting isotropic and nematic phases.
perfectly rigid, long, thin rods; nonrigidity as well as pos-  While being able to solve explicitly only the monodis-
sible long-range attractive potentials are neglected. Cruciallyperse case, Onsagfd] already outlined the possible exten-
Onsager showed that the virial expansion truncated after thgion of the theory tgolydispersesystems, i.e., to mixtures
first nontrivial contribution becomes exact in the limit of Of rods of different lengths and/or different diameters. Poly-
long, thin rods(the “Onsager limit), i.e., for D/Ly—0, dlspe_rsny has |r_1deed been recognized as an important feature
affecting experimental resultgl3,14], and some attempts

have been made to include it in theoretical treatments. A

free energy then assumes a very simple form, because ﬂ@;%neric prediction is the pronounced broadening of the coex-
second virial coefficient is just the excluded volume of WO ctance region with increasing polydisperdits—18, which
rods. The Onsager limit does however constrain the theory 1 also observed experimentally4]. A second gene,ric effect
low densities of the ordes~O(1/DL5), and phases such as of polydispersity is fractionation, i.e., the presence of par-
smectic phases that occur at higher density cannot be precles of different sizes in the coexisting phases; for rodlike
dicted. particles, already Onsaggs] had predicted that the nematic
In order to express the distribution of the nonconserveghase would be enriched in the longer rods. Polydispersity

rod orientations, Onsager introduced the probabRif)) of  can also result in more drastic and qualitative changes to the
finding a rod pointing along the directioil. Minimization  phase behavior, however. In particular, in systems with
of the free energy with respect #©((2) results in a self- length polydispersity coexistence between two nematic
consistency equation fd?(€2). Solving this in principle re- phases(N-N) or one isotropic and two nematic phases
duces the free energy to a function of dengitgnly, so that  (1-N-N) can occur. This has been observed experimentally
phase coexistences can be found by a standard double tgi1-3] and predicted theoretically for bi-disperse and tridis-
gent construction. In order to avoid the complexity of theperse systems, i.e., mixtures of rods with two or three differ-
numerical solution[7,8] of the self-consistency equation, ent length§19—23. However, a detailed investigation of the

effects of full length polydispersity, i.e., of a continuous dis-

tribution of rod lengths, on the Onsager theory remains an

*Email address: peter.sollich@kcl.ac.uk open problem.

whereD is the diameter andl, the length of the rods. The
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Perturbative approachgs6,17| by their nature cannot access rod length is finite, the presence of a tail of long rods drives
gualitative changes to the phase diagram such as the occuhe system to phase separate at any nonzero density. Moti-
rence ofN-N or I-N-N coexistence. Our lead question for vated by these results, we finally revisit the case of rod
this paper is therefore: cad-N and|-N-N coexistences oc- length distributions with an exponential tail, using the Schulz
cur in length-polydisperse systems of thin hard rods? |rfjistribution as an example. Numerical results show, surpris-
cases where the length distribution has two or three prolngly; that even here a regime occurs where the cutoff length
nounced peaks, one expects a behavior similar to the bMmatters and the nematic shadow phase contains predomi
disperse or tridisperse case, so that the answer should B@ntly the longest rods; a kink in the cloud curve again re-
positive. Much less clear is what to expect for unimodalveals the presence of daN-N coexistence region(This is
length distributions, and this is the case that we will considerin stark contrast to our results for tig Onsager moddR7],

We concentrate on the onset of isotropic_nematic phas@/here the exponential tail of the distribution prOdUCES no
coexistence coming from low density, i.e., on the isotropicunusual effect$.By returning to our theoretical analysis, we
cloud point; this can be calculated numerically with somefind that the long-rod effects are weaker for the Schulz dis-
effort using an algorithm that solves directly the integraltribution than for the log-normal case: they only occur above
equation for the orientational distribution of the nematic@ certain threshold value for the width of the rod length dis-
phase. We choose to start our analysis from a fat-taltegt tribution, and the large-cutoff limits of the cloud and shadow
norma) length distribution with a finite upper cutoff on rod densities above this threshold remain nonzero.
length. This choice is inspired by the interesting results ob- The paper is structured as follows. In Sec. II, we outline
tained by ®lc [24,25 for polydisperse homopolymers, and the extension to cont_inuous length distr!butions of th(_a On-
by our recent investigatiof26] of length polydispersity ef- Sager theory and derive the phase coexistence equations for
fects within theP, Onsager model; the latter is obtained by athe isotropic cloud point. Section IlI Qescnbes_ the numerical
simplification of the angular dependence of the excluded volmethod used to locate the cloud point and gives our results
ume of the Onsager theory. We showed that within this simfor the phase behavior for log-normal length distributions
plified modell-N-N coexistence is indeed possible in a sys-With finite cutoff. In Sec. IV, we outline our theory for the
tem with a log-normal(and hence unimodgalrod length Igrge-cutoff limit and compare with numerical results at fi-
distribution. The cloud curve, which gives the density wherehite but large cutoff. Finally, in Sec. V we turn to systems
phase separation first occurs as a function of the width of th#ith a Schulz distribution of lengths, giving numerical re-
length distribution, exhibits a kink where the systemsSults and sketching an appropriately modified theoretical
switches between two different branches dff phase coex- analysis. Section VI contains a summary and a (_IIISCITISSIOH of
istence. The shadow curve, which similarly records the den@venues for future work. In Appendix A, we review in out-
sity of the incipient nematic “shadow” phase, has a corre-line the hlgh—densny scaling thgory for the monodlsperse
sponding discontinuity. Precisely at the kink in the cloud©Onsager theory, which we need in our analysis of the large-
curve a single isotropic coexists with two different nematics cutoff limit. In Appendix B, the main approximation under-
so that this kink forms the beginning of aAN-N coexist- Iyln_g our theory fqr the Iog_-_nor_mal distribution is Jus_tn‘le_d,
ence region. Both the cloud and the shadow curve Weré\lh”e the appropriate modlflpatlons for the Schulz distribu-
found to depend strongly on the rod cutoff length; in thetion are sketched in Appendix C.
limit of large cutoff, they approach the same limiting form,
which is universal for all length distributions with a fatter- Il. THE POLYDISPERSE ONSAGER THEORY
than-exponential tail. The nematic shadow phase has rather ] ) )
peculiar properties, being essentially identical to the coexist- "€ Onsager theory with length polydispersity models a
ing isotropic, except for an enrichment in the longest rodsSystem of hard spherocylinders with equal diamegrbut
long rods are also the only ones that have significant oriendifferent lengthd.. We introduce a reference length schie
tational order. and write L=1L,, wherel is a dimensionless normalized

The above results for th®, Onsager model suggest that length. The Onsager limit is then taken t_)y considering
also in the unapproximated Onsager theory a rod length did?/Lo—0 at constant values for the normalized lengths
tribution with a fat tail should have pronounced effects onFrom now on, we will refer td itself as the rod length,
the phase behavior. We will show numerically that the cloudUnless stated otherwise; it can, in principle, range over all the
curve indeed has a kink, and the shadow curve a corresponyalues between 0 ard. _ _
ing discontinuity, demonstrating that the phase diagram con- The thermodynamic state of the system is described by
tains a region of-N-N coexistence. In fact, the effects of the the density distributionp(l,€2). This is defined such that
fat-tailed length distribution are even stronger than forkge  P(1,(2) dI (dQ2/47r) is the number density of rods with
Onsager model, with the nematic shadow phase containin§gngths in the range. . .1+dl and pointing along a direc-
essentially only the very longest rods in the system. Thdion within the solid anglelQ) around(}. In terms of spheri-
numerical results leave open a number of questions, and weal coordinates, with the direction taken to be the nematic
therefore supplement them with a theoretical analysis. W@Xis, we havel()=sin #dfde and the density distribution is
show that the assumption of a nematic shadow phase domirdependent of the azimuthal angie p(l,Q)=p(l,6). It
nated by the longest rods is self-consistent, and are able &n thus be decomposed according to
predict that in the limit of large cutoff the density of the
cloud point actually tends to zero: even though the average p(1,0)=p(HP(6]l)=pP(1)P(4|l).
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Here,p(l) is the density distribution over lengths, _
¢(6)=—J di’de’ p(I")P(&'[I")I'K(6,0"). (3)
dQ

1 —
=] -— I,6=—fd 0 I,0=fd6 1,6), " S -
p() 4 p(l.6) 2 cost p(1.0) p(l.0) The conditions for phase equilibrium are that the coexisting

. phases must have equal chemical potentiél) for all rod
where we have introduced the shorthand lengthsl, as well as equal osmotic pressure. The chemical
potentials can be obtained by functional differentiation of the

To— Ed P free energy(1) with respect tgp(l). The orientational distri-
- pdcose. butionsP(4|1) do depend orp(l) but this dependence can
be ignored becausk having been minimized, is stationary
The overall rod number density is with respect to theP(g|l). Carrying out the differentiation
and inserting Eq(2) gives
o= [ atp)= [ 0T pi1.0), 5
= ——
() 30D

so thatP(l)=p(l)/p gives the normalized length distribu-

tion. From the definition op(l) it also follows that the ori- —Ino(l)+ f’d-é POl [| P —Inf‘aﬁ’e"”(‘gl)}
entational distributions(6|1) for rods of fixed length are p() (6ID|1(o)

normalized in the obvious way,d6P(6|l)=1. Notice that

the factor 4r in the definition ofp(l,Q) has been chosen so 4—J'dVH??ﬂ?p(V)P(BH)P(HWV)H’K(G,HU
that for an isotropic phase one has the simple expressions
P(A]1)=1 andp(l)=p(l,6). (4)

We can now state the free-energy density for the polydis-
perse Onsager theofgee, e.g., Refl17]). We use units such
thatkgT=1 and make all densities dimensionless by multi-
plying with the unit volume/y= (77/4)DL§. The free-energy
density is then The osmotic pressure can be obtained from the Gibbs-

Duhem relation, which for a polydisperse system reads

=mpuy4nfﬁbewwk (5

fzfdumnmmn—u+fdﬁmpmpwmmpwm
H=fmﬂumm—r

1 —_—
+§j di di*d6 do’ p(1)p(1")P(OIPCO"[I)IIK(8, 6"). Inserting Eqs(2) and(4) then yields

)

The first term gives the entropy of an ideal mixture, while
the second term represents the orientational entropy of the
rods. The third term is the appropriate average of the ex-
cluded volume (8#)V,ll'| siny| (with V, absorbed by our

1 —_
= _EJ di de Ip(1)P(O|l)y(6). (6)

A. Isotropic-nematic phase coexistence

density scaling of the two rods at an angle with each We now specialize the phase coexistence conditions to
other. The kerndl6,11] K(8,6') results from the average of !-N coexistence, and then eventually to the isotropic cloud
(8/1)|sin+| over the azimuthal angles,¢’ of the rods, point, i.e., the onset of-N coexistence coming from low
densities. The isotropic phase will have

8 (2nde’ do

K0,0’=—j —— =—|sin 1
0.09=2 ), 27 2751 PIOIN=1, pl(o)=p'=—cip}, T'=p'+Sciph)?
8 27Td(P (7)
- 2—\/1—(0050 cosf’ +sin@sin@’ cose)?.
0

where we have defined the first moment of the density

: . . . . distributionp(l,6),
As in the monodisperse case, the orientational distributions

P(6|l) are obtained by minimization of the free energy, Eq.
(1); inserting Lagrange multipliers to enforce the normaliza- plzf dl |p(|)=pf dlP(l)=p(l),
tion of P(4|l), one finds

which represents the scaled rod volume fractipn

14(0)
P(6|l)= e ) =(Lo/D)#. We have also used the fact that the average of
7 W/w,)’ the kernelK(#6,0') over one of its arguments is just an iso-
€ tropic average over (&)|siny|, giving
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81 (~ 8 B. Fat-tailed rod length distributions
J do'K(6,6 ):;EJO dyS|ny|Slny|=;Z=ZEC1. So far, everything is general and applies to any parent
length distributionP(®)(1). Let us now focus on the case of a

The equality of the chemical potentidB) gives for the den-  parent distribution with a fat, i.e., less than exponentially

sity distribution in the nematic phase, decaying tail for largé. At the cloud point we have from Eq.
(8) the density distributiop™(1)=pP©(1) fdé €'9(? in the
pN(|):p|(|)f'(ﬁ gla(d) (8) nematic shadow phase, or if we isolate the valug(@f) at
6=0
where
N()y= PO 19(0) | "gp e'la(®)—g(0)]
p (H=pP™(l)e dé e . (14
9(0)=yN(0)—'=yN(O) +cipy. 9)

The full density distribution over lengths and orientations is

therefore, using Eq2), In a nematic phase, one expectsd) <g(0) and therefore

the angular integral reduces to a less than exponentially vary-
pN(1,6)=pNHPN(a|)=p'(1)e'9® (10  ing function ofl. Moreover,g(0) is expected to be positive,
since the nematic phase should contain the longer rods. The
and the osmotic pressuié) of the nematic phase can be nematic density distributiop™(l) is therefore exponentially
rewritten as diverging for largel whenever the normalized parent distri-
. bution P(O(1) decays less than exponentially. In order to
N_ — | — | N ensure finite values for the density and volume fraction of
1 _j di'de p'(1)e" - Ef dirdel p'(1)e o). the nematic phase, we thus need to impose a finite chjoff
(11 on the length distribution; unless otherwise specified,| all
) ) ] ) integrals will therefore run over O . I, from now on. The
In the following, we will concentrate on the isotropic cloud presence of a cutoff is of course also physically reasonable,
point, where the isotropic “cloud” phase starts to coexistgince any real system contains a finite largest rod length.
with an infinitesimal amount of nematic “shadow” phase. At Nevertheless, we will later also consider the limit of infinite

lengths, p'(1), therefore coincides with the overall density (ods.

distribution of the systemp(®)(1), which we call theparent
distribution It can be written ap©(1)=pP©(l), where
p=Jdlp®(l) is the overall parent number density and |II. NUMERICAL RESULTS FOR THE ONSET OF |-N
PO)X(I) the normalized parent length distribution. Since all COEXISTENCE
properties of the isotropic cloud phase are determined by the
parent, we will drop the superscript™in the following. We
will also take the parent distribution to have an average A numerical determination of the isotropic cloud point
length{I)=1; any other choice could be absorbed into theinvolves the solution of the two coupled equatidag) and
reference lengthL,. This implies that the density and (13) for p andg(#). In an outer loop we vary the density
(scaled volume fraction of the isotropic phase are equal,until the smallesp that satisfies the pressure equality) is
p1=p. With this notation, the density distributiqfi0) of the  found; we use a false position methf@B]. The nontrivial
nematic shadow ip"N(l,8)=pP©(1)e'9?) and fully deter- part of the algorithm is the inner loop, i.e., the solution of the
mined byp andg(#). The functiong(#) must obey functional equation(12) for g(#) at givenp. An iterative
method inspired by the one used by Herzfetdl.[7] for the
monodisperse case turns out to converge too slowly in the
presence of polydispersity. We therefore choose to represent
(12 g(#) by its valuesg;=g(6,) at a set o discrete points, ;
N . the values ofj(#) for 6+ 6; are then assumed to be given by
Cloud port densiy & the smalles value pfor which n 3 CHbic spine fi(20] through the points ). This urns
addition the pressure equality is satisfied. Using &e.for the functional equatioiil2) into a set ofn nonlinear coupled

. ; equations which can be solved by, e.g., a Newton-Raphson
the pressure of'the |soFr.op|c, and E¢#.and(11) for that of algorithm[28]. To keepn manageably small while keeping
the nematic, this condition reads

the spline representation accurate, a judicious choia &
1 . important. We exploit the symmetrg(60)=g(=— 6) and
p+ Eclpzsz' di"de PO)([)e'9(d choose a nonlineggeometri¢ spacing of¢; over the range
0 ...w/2, with more points around the origin, whegé®) is
least smooth.

A. Numerical method

g(6)= —pf di'de’ PO(1)e'9EIK(6,6")+cip

—g f dI"de IP©)(1)e'9) [ g(6)—c,p]. While Egs.(12) and (13), in principle, involve double
integrals overd andl, one notices that only the twlointe-
(13 grals
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o | ) 0 | with a finite length cutoffl ,,. The quantityw, which tunes
h(X):f di PO(ex, (X):f di PO le™ the width of the distribution, is fixed by the normalized stan-
dard deviationo (in the following referred to as polydisper-

are needed. We therefore precompute these and store theﬁW)’

once and for all as cubic spline fits that can be evaluated very

efficiently. 2_<|2>_<|>2
As an alternative to the approach above, we also consid- T = (1)

ered calculatingg(#) by minimizing an appropriate func-

tional. If x'(1) andII' are the chemical potentials and os-

motic pressure of the isotropic parent phase, then one easi

sees that a local minimum of the functional

0 bew?=In(1+¢%). The second parametgr is determined
that the parent has average length=1, giving u=
—w/2. Notice that with these choices, the parent length dis-
tributiczm is norrznalized and has the desired momeéhis- 1
= — _ I [ and(l“)=1+¢“ only in the limit of infinite cutoffl,,. The
Ele(,0)]=1lp(.6)] fdl Ao w(Dpd,6)+11 devi;ti?)ns for finite cutoffs are small even for relatively
(19  modestl,,, however. For instance, at cutdff,=50 ando
_ _ =0.5, the integralj'omdl I"P©)(1) for n=0,1,2 differ from
corresponds to & phaggl,f) with the same chemical po- e respective values at infinite cutff, 1, and 1.25by
tentials as the parent. Inserting fp(l,6) the known form | -\ a5 of order 1017 10715 and 1013, Since we will not

(10) for the nematic density distributiof turns into afunc-  ¢onsiger smaller cutoff values below, these small corrections
tional of g(6), and the condmgn for a local minimum be- -, safely be neglected.
comes equivalent to Eq12). Z[g(6)] always hasg(6) In our previous analysis of the, Onsager moddR6], we
=0 as a minimum, corresponding to the isotropic parenthserved that for log-normal length distributions, the cloud
itself; but close to the onset of phase coexistence an add,rve has a kink, and the shadow curve a corresponding
tional nematic solution witrg(¢)#0 appears. Notice that, giscontinuity; at the kink, the isotropic phase is in coexist-
geometrically,= is a tilted version of the free energy for ence with two distinct nematics, so that the phase diagram
wflch the tangen(hypet)_plane at_ the parent is horlz_ontal must contain a region df-N-N coexistence. In thé@, On-
==0). At phase coexistence, i.e., for a parent with thegager case, the simplicity of the model actually allowed us to
cloud point density, the tangent plane also touches the nemympute the complete phase diagram and locate the three-
atic phase and SO thf isotropic and the nematic mininia of phasel -N-N region explicitly. For the full Onsager theory
are both at *height’==0. . _ treated here, we can only find the cloud and shadow curves at
Numerically, one could minimiz& by again representing present, not the full phase diagram; nevertheless, a kink in
9(6) as a spline through a finite number of points  the cloud curve will again imply the presence of kai-N
=9g(6;) and then minimizing the resulting function of the.  region in the full phase diagram. In Fig. 1, we show the
In general, this turns out to be no easier than the solution ofjgud and shadow curves, i.e., the number density of the
the similarly discretized version of E412). However, the isotropic cloud(a) and nematic shadowb) plotted against
minimization approachis useful wheng(¢) assumes a polydispersity, for a log-normal parent with two different
simple parametric form. We will see later that this is indeedcytoffs. The presence of the kink in the cloud curves, and the
the case for a large cutolff,, with g(¢) being well approxi-  corresponding discontinuity in the shadow curves, is clear
mated by the two-parameter forg(#)=a—bsind. Insert-  evidence of the presence of 4AN-N coexistence region
ing this into  and minimizing overa andb then gives an  starting at the kink of the cloud curve. The positions of the
approximate solution fog(6); when used as a starting point kink and discontinuity, respectively, as well as the shapes of
for g(#0), this makes it significantly easier to converge thethe cloud and shadow curves above them, show a strong
numerical solution of the discretized equatid2) described  dependence on the cutoff length; both curves move to sig-
above. nificantly smaller densities dg, increases. For polydispersi-
ties o below the kink, on the other hand, the number of long
B. Results for log-normal length distribution rods is too small to have a significant effect on the phase
) . . . . separation and one has essentially cutoff-independent behav-
With the numerical method described in the precedingq yhat connects smoothly with the monodisperse limit
section, it is possible to solve for the onset of iSOWOPIC-_ ¢~ These ohservations are in qualitative accord with our
nematic phase coexistence for, in principle, arbitrary pareénf o resyits for the®, Onsager model with the same length
length distribution. We choose here a specific fat'ta”eddistribution[26]. 2

!etngth tQ|str|butl?tn, Fhe Iolg-normzl, thzt 'has already_ given Moving across the discontinuity from below, the shadow
interesting results in polymerg24] and in our previous curve jumps from a “normal” nematic branch to an unusual

analysis of theP, Onsager mode]26]. The log-normal dis- nematic phase which, as we will see below, is completely

tribution has the form dominated by the longest rods in the parent distribution. In
1 (Inl— )2 the rescaled volume fractionp{) representation of the
Texf{ - —;“ (16)  shadow curve shown in Fig. 2, the different characteristics of
2w

PO(I)=
the two nematic phases are clear. While at low polydisper-

1
J2mw?
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FIG. 3. Average length1)N=p)/pN in the nematic shadow
phase against polydispersity for cutoffs,=50 (solid) and I,
=100 (dashedl Above the discontinuity, fractionation becomes ex-
treme. In fact, at the discontinuity the nematic phase appears to be
composed only of rods with lengths of the order of the cutoff
length. At the top of the plot, for very large polydispersities where
the parent length distribution becomes somewhat more uniform,

some shorter rods are also included in the nematic phase and reduce
the average length.

cutoff length. Since the longer rods are generically expected
to be more strongly ordered, one should then also find that
the nematic shadow phase has a very strong orientational
order. This is indeed the case: the orientational order param-
eter S defined as an average in the nematic phase over the
polydispersityo on they axis. Notice the kinks in the two curves, second Legendre polynomidl,(cos6)=(3 cog §—1)/2,

which imply the presence of a three-phdsi-N coexistence re-

gion in the full phase diagram. The kinks correspond, as they

should, to discontinuities in the shadow curybs Both cloud and S= J' di de PN()PN(6]1)P,(cosh)
shadow curves are strongly cutoff dependent, moving towards

lower densities ak,, increases.

FIG. 1. (8 Number densityp of the cloud phase for length
cutoff 1,,=50 (solid) and |,,=100 (dashed plotted against the

is almost indistinguishable from 1 above the discontinuity in
sity, p) is of the order of unity, it jumps by two orders of the nematic shadow curve, implying that the typical angles
magnitude on crossing the discontinuity. This shows that théhat the rods make with the nematic axis are very small. This
fractionation effect that one normally encounters in polydis-also implies that the rods we consider must be rather thin for
perse systems, with the long rods found preferentially in thédnsager’s second virial approximation to be valid: for mono-

nematic phase, becomes extreme here. A plot of the averagigsperse rod§30], the criterion isD/L< 6. We return to this
rod length in the nematic shadow against polydispefsily.

3), in fact, shows that above the discontinuity, the nemati ointin Sec. IV C.
pﬁase contains almost exclusively rods of Ieng:[h close to the The results shown abpve for the finite cutoff regime leave
open a number of questions. For example, we observed that
both the isotropic cloud and nematic shadow curves move to
07 lower densities as the cutoff increases, but the mobgst
values used are too small to determine whether the curves
] will converge to a nonzero limit ds, grows large or instead
approach zero. One would also like to ascertain whether the
average rod length in the nematic shadow really tends, to
_ for large cutoffs, as suggested by Fig. 3, and what happens to
the rescaled nematic volume fractiplﬁ in this limit (Fig. 2
suggests that it might become lajgén the following sec-
tion, we therefore turn to a theoretical analysis of the limit

0 . ) . , ) . . . I »—, which will clarify all these points.
0 50 100 150 200 250 300 350 400 450

oy

0.6

0.5

0.4

0.3

0.2

0.1

IV. THEORY FOR FAT-TAILED DISTRIBUTIONS
FIG. 2. Scaled volume fractiopy of the nematic shadow phase WITH LARGE CUTOFF
atl,,=50 (solid) andl,,= 100 (dashedl Notice that the discontinu-

ity of the two curves is now much wider than in the number density Above we saw that, at the onset of isotropic-nematic
representation of the shadow curves in Fith)1 phase coexistence in systems with log-normal length distri-
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butions, the nematic shadow phase appears to be dominated ,__,
by the longest rods in the distribution, with lengthsl . In g(0)= _lef di PO(1)e'9®) | "de e (DK (0,0) +cqp.
this section, we will construct a self-consistent theory, based (22)
on this hypothesis, for the phase behavior in the limit of large
cutoffs|,,. From this we will be able to extract the limiting n EQ. (19) for h(#), the analogous approximation gives
dependence oh, of the cloud point density, the density
pN, and(scaled volume fractionp}' of the nematic shadow h(a)zplsz dl P©)(])e'9(®)
phase, and the functiog(#) determining the orientational
ordering of the nematic phase. At the end of this section, we . ,
will then compare these predictions with numerical results Xf de’e ""I[K(6,60')-K(0,6)]. (29
obtained for finite but large cutoff.
Finally, consider the expression on the right-hand sitig)
A. Dominance of long rods in the nematic phase of Eq. (13) for the osmotic pressuld" in the nematic. The
first term is the ideal contribution, i.e., the nematic density

Recall that, in principle, we need to solve E¢$2) and pN, while inserting definition(17) in the second term gives

(13) for g(6) andp to determine the isotropic cloud point
and the properties of the coexisting nematic shadow phase. It p |
will be useful to isolate, in Eq(12), the contributione'd(®) HN:PN—EJ di P©)(1)e'e)
that determines the divergence of the nematic density distri-
bution (14). Define the function

h(0)=1m[9(0)—g(6)] 17

with the sign chosen such thaf ) should be non-negative
for all §. Equation(12) evaluated a¥=0 then gives

— 1
xf dae‘('“m)h(a)[—I—h(0)+g(0)—c1p .
m
(24)

Replacingl by I, in the weakly varying terms then yields

P
— , IIN= N__j dl PO(])e'9(®
g(0)=—pf di PO)(1)e'e©) |"dg’e (MmN(K(0,0") P2 M)

+Cip, (18 xf’d"a e "D —h(e)+1,[g(0)—cipl}. (25
and subtracting from Eq12) yields We show in Appendix B thaa posteriorithe approximation
of dominance of the long rods can be justified in all cases
h(9)29|mf dl PO)])e'9(0) above, with the contributions to thkeintegrals from rod
lengthsl <I,,, becoming negligible fot,,—o°.

X f'_d_ﬁ"e‘(”'m)hw/)[K(0,0’)—K(0,0’)]. (19 B. The large-cutoff scaling solution
We have now got four equations to be solved foY,
Together, Eqs(18) and (19) for g(0) and h(6) are, of 9(0), h(8) and p, appropriately simplified using the as-
course, equivalent to Eq412) for g(#6). sumption that the nematic phase is dominated by the longest
To formalize the assumption that the nematic phase i§0ods in the parent distribution. These are E@4)—(23) and
dominated by the longest rods, consider now the nematithe pressure equalitii™=p+(c,/2)p?, with IIN from Eq.
density distribution(14), which in our new notation reads  (25). Using Eq.(21), Eq. (23) can be written as

PN(1)=pPO(1)e'9® [qp e mh. (20 f?e"e‘““’)[K(e,aw—K(o,a’ﬂ
h(0) = pes . (26
f‘ag'refh(a’)

If the exponential factor exy(0)] is large enough for the
nematic phase indeed to be dominated by the longest rods, ]
we can replace the weakly varyirigt most as a power law in Here, we have defined
[) angular integral by its value &t=1,,, giving for the nem- — N2 27)
atic densitypN=fdI pN(I) Pet=P Tm
which is just thze dimensionless density of the nematic phase,
N 0 19(0) | == —h(e with the factorl;, arising from the fact that, since the nematic
P —pf di PO(1)elst )J doe ", @1 is effectively mrgnodisperse with=1,,, one should usg, L,
rather thanL, in the definition of the unit volum&/, [see
We can now make the same approximation in Bd): the  before Eq(1)]. In the form above, Eq26) is identical to Eq.
weakly varying factor in the integral isl times the angular (A4) in Appendix A for amonodisperseystem at dimension-
integral, and replacing this by its valuelat|, yields less densitypes. Anticipating thatp. will be large, an as-
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sumption to be checkea posteriorj we then deduce imme- o y [ - 8
diately thath() will be given by the high-density scaling IIN=pN+ Ef dl P(O)(I)e'g(o)—2[<h(t)>t+;<t)t}.
solution sketched in Appendix A( ) ="h(t), with the scal- Pef 33
ing variablet= pgsSing. The scaling function is determined (33
by Eq. (A8): In Appendix A, we showEq. (A15)] that the scaling prop-
_ _ 5 erties of the high-density limit imply that the constant in the
h(t)=(K(t,t")—K(Ot")), (28 square brackets has the value 4; using also(8@).we then
get the simple result
where the average ovér is over the normalized distribution
g IMN=3pN. (34)
ﬁ(t)zite‘ﬁ(‘), y:f dt te‘r‘(‘), (29) This is_ identical to E_q.(A12) qleriyed in Appendix A.for
v monodisperse nematics at higdimensionless densities,

and therefore consistent with our assumption that the nem-
andK(t,t') is the small-angle scaling forfA7) of the ker-  &tiC shadow phase behaves as an effectively monodisperse

nel K(6,6'). The range of all averages and integrals aver SyStem. ZThe isotropic parent phase has presdiie p
andt’ can be taken as O . (rather than O . . pgq) for +(c4/2)p®, so that the pressure equality takes the form

large pes, Since the large regime gives only a negligible 1 c
contribution. pN==|p+ —1p2). (35)
With the form ofh(6) determined up to the single param- 3 2

eter per=pNlZ,, just three unknowng, pN, andg(0) now We can now :

; . proceed to determine thedependence op,
remain to be determined from E@1), Eq. (22), and the N L Ny 2 . :
osmotic pressure equality. We now simplify these relations- andg(0). Multiplying Eq. (30) by (p7)" and inserting

further making use of the fact that in all angular integrals a. (35 gives

involving the factor exp—h(6)] ps c, |2 y

—exf —(peqSin6)] only small anglesg~ 1pey contribute 57| 1+ EP) =P|7f di P©)(1)e'9(,
m

significantly. Physically, this means that the rods in the nem-

atic shadow phase_, Whi(.:h is at high dimensionless denSit5I‘hel integral will again be dominated by the longest rods, so
pefi, have strong orientational order. For such smalle can that we can seP©(1)=P©)(I ) to leading ordefsee Ref.
set sing~ 6 and transform everywhere to the scaling variable[26]) to obtain m

t= pess SIN O~pgrf. Equation(21) then becomes, using defi-

nition (29) p_2 1+& 3:lp(0)(| )e|mg(0)
e - 27177 2P) Ta T mg(0)
pNpr dl P<°>(|)e'9<°>f —-e "0 | . . . .
Pai nserting Eq.(32) to eliminateg(0), wefinally get a nonlin-
ear equation relating andl,,

=27 f dI PO)(1)el9(®), 30 ETYIRNE 8 (1), e

Peft emcrr="—Z|1+ =p| [crp— — —| =,

27y 2 7 |y PO )

Equation (22) can be similarly transformed and, using . . . -
K(0,0) = (8/m)sin 6=(8/m)t/ peg, it reads To obtain the asymptotic solution for largjg, we anticipate

thatp will vary no stronger than a power law with, ; for all
fat-tailed parent distributions, except those with power-law

dtt - (8 t i i i
__ O©(yela© [ - g-hm| 2 | tails, the dominant,, dependence on the rhs will then be
9(0) pImJ diP™(le pgﬁe (77 par) | 1P through the factor B)(l ). Taking logarithms we have
(31

lCip=—INPO, )+0O(Inl,,). (36)

Comparing with Eq.(30), and usingp"l / per= 1y, this Specializing to log-normal parent distributions, with
can be written in a simpler form as an average over the, PO(1)=—(In?1)/(2w?) to leading order, we finally get
distribution (29),
In?| Inl
8 (t) p=—— +0(,m) (37)
9(0)=—_——+cup. (32 2c,W?l m

m

showing thatp indeed varies with,,, as a power lawwith
Finally, expressiori25) for the osmotic pressure in the nem- logarithmic corrections Our theory thus predicts that the
atic can also be simplified by using th@is small and trans- isotropic cloud point density converges to zero for large cut-
forming to the scaling variable Inserting Eq(32), one finds  offs; in the extreme limit of a log-normal parent distribution
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with an infinite cutoff, phase separation would occur at any

nonzero density. From Ed35), the density of the nematic
shadow phase likewise vanishes for large cutoff, with
=p/3 to leading order. Fog(0), we have from Eq.(32),

)

Im

In?1, 8 (t)
2w, ! ( AP 39

Im

9(0)=

and the last term oD(1/ ) is subdominant compared to
both the first term and the first-order correctoq(In 1,)/1).
We can also now write down the whole functig(#), using
g(0)=g(0)—h(a)/lng(O)—ﬁ(leﬁqsin0)/Im. From Ap-
pendix A we know that the scaling functidmis given by
h(t)=(8/7)t for larget, up to correction terms o0O(1);
once multiplied by 1j4,, these give only subleading correc-
tions tog(#). We thus find to leading order

i LE N2 e
g(6)=9(0) Imh(p I, sind)=a—bsiné, (39

where, using Eq.37) and the leading-order relatiop™
=pl3,

In?1,, (Inlm)
a=g(0)= +0o| —2 40
9(0) il I (40)
b= 21 N2 Il o(In| 41
= —lmp =3 201w2+ (Inlp). (41)
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FIG. 4. Parametric plot of§(0) againstp, for a log-normal
distribution with 0=0.5 and a range of cutoffs between 50 and
3000. At smallp (largel,,), the numerical resultsolid) are in very
good agreement with the theoretically predicted asymptotic relation
g(0)=cyp (dashed

D 1

I-Olm pN|ﬁ,|'

(42)

Now pN scales as (fi,)/l,,, so this becomes #h,~L,/D.
This shows that fairly large values of the aspect ratjdD

of the “reference rods” are necessary in order for the theory
to be valid for large cutoffs. For instance, one would need
Lo/D=50 for a cutoffl,,=1000. The longest rods are then
very thin indeed, with_gl,,/D=50 000.

A more physically intuitive interpretation of the above
condition is that it corresponds to the requirement of having
a rod volume fractiongp<1. For monodisperse rods, we
have(see Appendix Athat at large dimensionless density

The dominance of the long rods in the nematic phase thug~p~1~(L?DN/V) 1. The limit of validity of the Onsager

results in a very simple form fag( ), with a vanishing and
b slowly diverging in the limitl ,,— .

theory is therefore given byD/L~6~V/(L?DN) or 1
~(LD?N)/V~¢. The same is true for our calculation

Having obtained the desired predictions from our theoryabove: the volume fraction of the nematic phaseqi®
we can now also verify that the assumption of a large dimen= (D/L,) p)'=(D/L)I noN. Condition (42) thus again be-
sionless density.¢ for the nematic phase is self-consistent. comes oN~1, and we needpN<1 for the second virial

From Eq.(37) and the fact that to leading ordet = p/3, one
has pei=pNI2~ImIn?l, for a log-normal parent distribu-

tion, and this indeed becomes arbitrarily large as the cutoff

I, increases.

C. Validity of Onsager theory

Before comparing our theoretical predictions with nu-

theory to be valid.

D. Comparison with numerical results

We now compare the theoretical predictions obtained
above for the limitl ,,—c with numerical calculations for
finite but large cutoff. Our numerical results will be able to
confirm only the leading terms of the scaling solution, since

merical results at finite cutoff, we briefly assess the limit ofsubleading correctiori.g., to result39) for g(#)] can arise
validity of Onsager’s second virial approximation. For afrom the regime of very small angle&~ 1/p.s=1/(p"I2),
monodisperse system, an analysis of the scaling of the seeshich we cannot resolve numerically.

ond and third virial coefficientg30] shows that in the nem-
atic phase, typical rod angléswith the nematic axis have to
be>D/L, with D andL the diameter and length of the rods,

We begin by checking the predicted relations between the
cloud point densityp and the other quantities we have ana-
lyzed theoretically, namely, the parametarandb specify-

for the truncation after the second virial contribution to being the leading behaviof39) of g(#), and the nematic
justified. In our situation, the nematic phase is effectivelyshadow densitpN. In Fig. 4, we plotg(0)=a againstp for

monodisperse witljunnormalized rod lengthLyl,,, so the
condition become#®>D/(Lyl,,). We showed above that the
typical angles scale, for large cutoff,,, as 6~ 1l/pex

a range of cutoffg,, between 50 and 3000. At large cutoff,
i.e., at smallp, the numerical results are clearly seen to ap-
proach the theoretical predictiog(0)=c.p, while for

= 1/(le§1), so that the second virial approximation breakssmaller cutoffs deviations from the asymptotic theory appear

down when

as expected.
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FIG. 5. Parametric plot ob against the theoretically predicted FIG. 7. Plot of numerically calculated values@(0) againsi
value (8/3r)l ,p for a log-normal distribution witlr=0.5 and cut-  (solid) together with the leading asymptotic behavig(0)
off between 50 and 3000. The convergence of the numerical results (In?1,,)/(2w?l,) predicted theoreticallydashed for a log-normal
(solid) to the theoretical predictiofdashed for large cutoff, i.e.,  distribution withc=0.5. The agreement is satisfactory, though cor-
largel p, is clear. rections to the asymptotic theory are clearly still important in the

range ofl,, shown.

For the parameteb, our theory predicted= (8/3m)!,p )
in the limit of largel,,. In Fig. 5, we plot the numerically @lmost entirely of rods of the order ¢f;, but the rods are
obtainedb against this theoretical prediction, for a range of@lso sufficiently strongly ordered to make our scaling solu-
cutoffs between 50 and 3000. At largigo the convergence tion a good approximation.
to the theoretical solution is clear, while at finite cutoff Having confirmed the relations between b, p, and
(smalll,,p) the value ofb lies rather below the theoretical  » the last prediction to verify is the variation of one of
expectation. This is not surprising, sinteis expected to these quantities with, . We choose=g(0), for which our
diverge with |, like In?l,, and therefore rather slowly; at theory predicts the leading asymptotic behavig(0)
finite cutoff, then, the correction terms will be rather impor- = (I’ [)/(2wl). In Fig. 7, we plot the numerically calcu-
tant. lated values of(0) versusl,, and compare with the theo-

Based on the fact that the nematic pressure obeys thi€tical prediction. The overall shape of the dependence is
simple relationlIN=3p" in the large-cutoff limit, our theory ~Well captured by the theory, although subleading corrections,
also predicts thap™ should be related tgp by pN=[p  Which from Eq.(38) are of relative ordeiO(1/Inl,), are
+(c1/2)p?1/3=(p+p?)/3. A plot of pN againstp for the clearly not yet negligible in the range of, considered. In
same range of cutoffs as abowig. 6) clearly shows that Summary, then,'alll numen’cal results are consistent with the
this relation is satisfied in the limit of lardg,, i.e., smallp. ~ theoretical predictions derived above.
In fact, deviations from the predicted scaling are rather
small, already at modesdt, (here, in the range 59l V. THE SCHULZ DISTRIBUTION
=<3000). This shows that the dominance of the long rods,

ggmgtr;itpr)it;;jeaiuss\?e?z ;Toeséal‘t;(; (Egt ;?ea?)\;/)?a;ar%eqluei?egstahaﬁ; ﬂ}%e long rods at theT onset of iso_tro.pic—.nematic coe_xistence in
. A systems with fat-tailed length distributions, an obvious ques-

on. Even al,=50, not only is the nematic phase Composed‘[ion is whether similar phenomena are possible even for

more strongly decaying length distributions. We therefore

now analyze, using the same numerical and theoretical meth-

ods as above, the case of a Schulz distribution of lengths. For

this distribution, our previous studies of the Zwanfi$]

and P, Onsager modelf27] did not show any signs of the

phase behavior being driven by the long rods. However,

comparing our above results for the log-normal case with

those obtained for th®, Onsager moddI26], it is clear that

in the full Onsager theory the effect of the long rods is much

more pronounced than in the approximate models. Long-rod

effects might therefore also appear, in the full Onsager

theory, for the more strongly decaying Schulz distribution,

but would then be expected to be weaker than for the log-

FIG. 6. Parametric plot of the nematic shadow dengity =~ normal case.

againstp for the same parent distribution and cutoff range as in  The Schulz length distribution can be written as

Figs. 4 and 5. A very good agreement is observed between the S+l

numerical resultg(solid) and the theoretically predicted relation PO)(|) = (z+1)

(dashed I'(z+1)

Having observed the rather surprising effects caused by

0.35 T T T T T

0.3

0.25

0.2

0.15

0.1

0.05

[Zexd —(z+1)1], (43
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FIG. 8. The parameteg(0) of the nematic shadow phase plot- 1
ted against for a Schulz distribution with cutoff,,,=100. See text 0.9}
for discussion. 0.8r
0.7}
where we have again imposed an average length @éorl 0.6
infinite cutoffl,;,). The polydispersityr, defined as before as o05r
the relative standard deviation of the distribution, is related 041
to z by 031
0.2}
0.1}
L_m? 1 " oL

(1)? z+1°

From Egs.(14) and (43) it is clear that ifg(0)=z+1 the o _
nematic density distribution is again exponentially diverging FIG. 9. (&) Cloud curves for Schulz distributions with cutoff
for largel. Assuming initially that this is not the case, how- 'm=50 (solid) andl,=100(dashed plotted as cloud point density
ever, one can solve numerically Eq42) and (13) for the P versus polydispersity on they axis. The system is again domi-
onset of isotropic-nematic phase coexistence. The results @Sttgg izynt:;irio|:i;%?§r:g[1Lirgg’tﬁsa ?g:vat:]:gdrfgr?;ﬁ:iztﬁn dtizsri
gi(t)(:)aaie( 1S :]_oz\;vp 1}2 '22'38&;:53( grgi:'_el" (Sdrgguep dOI?i/g;asﬁﬁr_ bution (Fig. 1). The cloud curves also exhibit a kink, more clearly

this regime. the nematic density distribution decavs expone visible only on a magnified scalgnsej. The dotted line shows the
9 ! y y P heoretically predicted limiting formp= 1/(c, o) of the cloud point

tially for large |, an.d the reSl.Jlts are essentially_in_d(_ependen[:urve above the kinksee textin the limit|,,—o°. (b) Correspond-
of the cutoffl,, which could in fact be ta](en t(,) infinity. For ing shadow curves. The discontinuity corresponding to the kink in
smallerz, on the other handy(0)>z+1, implying that the e cloud curves is much narrower than in the log-normal @ige
nematic density distribution is exponentially increasing and &, and is visible clearly only in the inset. The dotted line again

finite cutoff I, is necessary. In this regime, the situation re-gives the theoretical prediction for the shadow curve above the
sembles the case of the fat-tailed length distributions disdiscontinuity in the limitl ,—, pN=(1/o2+ 1/26*)/(3c;).

cussed earlier, where for a large enough cutoff and polydis-

persity, the less than exponentially decaying length 1 . ' ‘
distribution was not able to balance the divergence of the | b =50 —— |
factor explg(0)] in Eq. (14). With a Schulz distribution, the o8k I =100 ===~ |
only difference is that now the comparison is between two o7k N el i
exponential terms exp-(z+1)I] and explg(0)]. Given this o6k N e i
analogy, it is not surprising that the cloud and shadow curves ¢ o5l i
(Fig. 9 show a behavior qualitatively similar to that found o4k i
for the log-normal distribution: a kink in the cloud curve and A i
a discontinuity in the shadow curve again indicate the pres- o2l i
ence of a three-phageN-N coexistence region in the phase 1k i
diagram. Quantitatively, however, the kink in the cloud curve 0 X . . : . ‘

[Fig. 9@] is now much less pronounced, and the cutoff- 0 20 40 60 80 100 120 140

dependence of the cloud curve above the kink is also rather &

weaker. Similar comments apply to the shadow cUivig.

9(b)]: the discontinuity is still present but very small, with  FiG. 10. Scaled volume fraction representation of the shadow
the nematic phases on the two different branches having verurve for Schulz distributions with cutoff,,=50 (solid) and I,
similar densitiegFig. 9b), insef. As for the log-normal dis- =100 (dashedl Notice that, although the discontinuity is much
tribution, for small polydispersitie§i.e., below the kink or  more visible here than in the density representafiéig. Ab)], the
discontinuity, respectivelythe cloud and shadow curves are maximum value of) is not reached at the discontinuity.
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1

in Sec. IV. The same equation foi(#) follows, and if we

0.9 i assume thap.s=p"l?2 is large we get back the scaling so-
g'j , - lution h(8)=h(pexsind). Angular integrals can then again
v 0'6 / | be simplified because only small values®¥f 1/p. are rel-
os | evant, leading to Eq:30), to the simple resullIN=23pN for
0'4 ) the osmotic pressure in the nematic phase, and to expression
0'3_ | (32 for g(0)=cyp—(8/m){t);/l . At this point the differ-
0'2 ) ent shape of the Schulz distribution enters: for lakgeve
0.1 ) now expect thatg(0)—z+1, rather thang(0)—0. This
) L then implies that the cloud point densijtyhas afinite limit
00 10 20 30 40 50 60 70 80 90 100 for |arge cutoff, given by
0
z+1 1
FIG. 11. Average rod length in the nematic shadow phase for == > (45
Schulz distributions with cutoffl ,=50 (solid and |,=100 1 Co

(dashedg, plotted against polydispersity on they axis. Above the ) )
discontinuity, the average length jumps to a large value but remain§om Eq. (44). From the osmotic pressure equality"3=p
below! ,, implying that the nematic phase is not yet entirely domi- + (¢1/2)p?, the nematic shadow density then also has a finite

nated by the longest rods. limit,
essentially independent of the cutoff and connect smoothly
: ! L 1/1 1
with the monodisperse limit at=0. pN=—| —+ —1. (46)
The discontinuity in the shadow curves is much more ap- 3C1\o? 20°

parent in the scaled volume fraction representatféig. 10.

Notice that now the discontinuity does not coincide with theThese theoretical predictions for the limiting form of the
point wherep? reaches its maximum value, as was the case&loud and shadow curves in the cutoff-dominated regime are
for the log-normal distributioriFig. 2). This is also reflected shown by the dotted lines in Fig. 9, and are certainly plau-
in a plot of the average rod length in the nematic shadowsible, given the numerical results for finite cutoffs.

against polydispersit{Fig. 11), which at the discontinuity in To obtain the leading terms in the approachp@indp™ to

the shadow curve jumps to a large value, but one that is stillheir limiting values, and to establish the threshold value of
some way below,. In this region, the nematic phase thus polydispersityoc above which the onset N coexistence is
contains many long rods, but is not yet entirely dominated byaffected by the presence of the long rods, let us define
only the longest rods. This can also be understood by looking=g(0)—(z+1). As pointed out above, E¢30) still holds
back at Fig. 8: for values of just below the discontinuity for the Schulz distribution case, but now yields to leading
(corresponding to the values of just abovethe discontinu-  order

ity in Figs. 10 and 1} g(0) is very close t@+ 1 and so the

overall exponential factor ef@(0)—(z+1)]I} is almost con- N C 5
stant over the rangé=0...l,,, giving a broad nematic p =|7f dli%e”,
length distribution(14) dominated by the nonexponential m

factors|Zfd@ e'l9()~9(0)],

(47)

where we have use®©(1)x=12e~ @ D and ¢ collects all
numerical constants as well as the facpd(p™)? that ap-
proaches a constant foy,—o from Egs.(45) and(46). If §
From the numerical results obtained above, it appears thafonverges to zero slowly enough with— c for the product
the case of the Schulz distribution is actually rather similar togs| m to diverge, then the exponential factor is dominant in the

the log-normal case. In both cases, the presence of the longtegral in Eq.(47) and we can replacé by IZ (see Appen-
rods strongly affects the phase behavior above a certaigix C) to get

value of polydispersityr; the threshold value of tends to
zero asl,, increases for the log-normal case, but appears e%m
5

Theory for Schulz distributions with large cutoff

essentially independent df, for the Schulz distribution. pN=cly

Above the threshold, the nematic phase is dominated by the

long rods present in the system, although for the Schulz dis- . . . .
tribution the average length seems to remain rather belos\??rﬁ?gr?;%'r&glgg%? \,(,V'th a new constaitthat contains the
l,. Given these similarities, we now investigate whether the P

theory that we developed for the log-normal case can be sl
extended to the case of the Schulz distribution. As we will e —c'3°2.
see, the central assumption of dominance of the long rods in Ol m m

the nematic phase can still be made self-consistent.
If the long rods again dominate the density distribution inThe inverse of the function ofl,, on the left-hand side is
the nematic phase, we can repeat all the steps up t¢2Bp. asymptotically just a logarithm, yielding
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Inlpy, found, however, that this always leads to contradictions. Our
6~(B3-2)7—. (48)  conclusion is therefore that far>3, i.e.,c<1/2, the nem-

m atic phase is dominated by “short” rods with lengths not
increasing withl,,. The theoretically predicted threshold
value of o below which the cutoffl, is irrelevant and the
presence of long rods in the system does not significantly
affect the phase behavior is therefere-1/2.

Our numerical resultgFig. 9) show the kink in the cloud
curve, and the corresponding discontinuity in the shadow
curve ato~0.48, i.e., close to but slightly below the theo-
etically predicted threshold value. Comparing with Fig. 8,
this corresponds to the fact that, coming from lamyehe

finite I,,. The exponential factor exfl) dominates the nem- dlscontlnuogs Jump ig(0) oceurs be.fore the extrapolla.tlon
of the solution in the large-regime intersects the critical

atic density distribution and so rods in a rangeQ(1/s) line g(0)=z+1; consistent with our theory, and extrapolat-

belowl ,, should contribute to the average length, giving the. T .
m g gth, gving ing by eye, this intersection occurs closezte3. It therefore

For z<3, corresponding te>1/2, this result is consistent
with our assumptions: we haw@—0 and thusg(0)—z+1
as expected, and als#l ,,— as assumed above. From the
convergence ob to zero one can then also obtain the ap-
proach ofp and p" to their limit values: e.g.c,p=g(0)
+(8/lm){t) /1 y=2z+1+5+0(1/,,), giving p—(z+1)/c,
~ ¢ to leading order.

From the above results, we can furthermore estimate th
average rod length in the nematic shadow phase<d and

estimate appears that for finite,, the shadow curve jumps to a cutoff-
dependent branch, i.e., a nematic containing many long rods,
1 1 . )
(ON=1|1-0| =—||=Im 1-O| —|. already slightly below the asymptotic threshold valae
Slm Inlm =1/2. The value ofo- where this jump occurs should then

. o ) increase towards 1/2 dg, increases.
This shows that there are strong logarithmic corrections, con-

sistent with the fact that in Fig. 11 the average nematic rod
lengths(I)N are still significantly below,. By contrast, in V1. CONCLUSION

the log-normal case, where 'She role &fs played byggO), We have studied the effect of length polydispersity on the
the relative corrections t¢l)™ are ~1/(g(0)Im)~1/In"lm; gnset ofi-N phase coexistence in the Onsager theory of hard
even though still logarithmic, these correction terms are sigzo4s To assess the possible effects of long rods, two different
nificantly smaller. ) _ o _length distributions were considered, one with a slowly de-
Overall, the behavior of “wide” Schulz distributions with caying, fat tail (log-norma) and another with an exponen-
o>1/2, i.e.,z<3, is therefore rather similar to that of log- tially decaying tail(Schula.
normal distributions. We again ha¥@)"—1,, for large!, We showed that a length cutdff, needs to be introduced
although now the corrections are rather more important thafy, fat-tajled distributions such as the log-normal to avoid
in the previous case, and the r0(2:is n the nematic phase agergences in the equations for the onset of phase separa-
strongly ordered(since peg=p"In~I7, diverges for I, tion: the presence of such a cutoff is, of course, also physi-
—). The main difference is the fact that the cloud andcally reasonable. The most striking result from our numerical
shadow densitiesp and p", now tend to distinct nonzero solytion for the properties of the isotropic cloud and nematic
limits for |,— oo rather than to zero: the smaller number of shadow phases is that the cloud curves show a kink and the
long rods in the Schulz distribution is not sufficient to induceshadow curves corresponding discontinuities: this establishes
phase separation at arbitrarily small densities. that for fat-tailedunimodallength distributions, three-phase
So far, we have only covered the regime 3. The case |-N-N coexistence occurs. The cloud and shadow curves
z=3 requires a more careful treatment; here the leading corshow a strong dependence on the cutoff length, with both
tribution to 6 calculated in Eq(48) vanishes, and it turns out moving rapidly to lower densities as the cutoff increases. A
that & scales as 14, with &1, approaching a finite limit plot of the average rod length suggested that the nematic
rather than diverging. Rods in the rangel/6~1,, now con-  shadow phase consists almost entirely of the longest rods in
tribute to the nematic density distribution, which therefore isthe system, i.e., those of length; as a result, it also exhib-
no longer dominated by the longest rods alone ever for its very strong orientational ordering.
—oo; instead, one finds that the distribution approaches a A theoretical analysis of the limiting behavior fdr,
scaling function ofl/I,, with the ratio(I)"/I,, tending to @ o confirmed and extended these numerical results. For
nontrivial limit value<1. large cutoffs, the nematic indeed comprises only the longest
In the casez>3, finally, we cannot construct a self- rods in the parent length distribution, and is very strongly
consistent theory based on the assumption that the nematigdered. Beyond this, the theory also predicts that the densi-
phase is dominated by long rods. Looking at E4j7), one ties of the isotropic cloud and nematic shadow phases in fact
sees that foz>3 negativevalues ofé would be required to  vanish(with constant ratigp/pN=23) in the limit of infinite
make the rhs of the equatiofand thusp") finite for I,  cutoff. This rather surprising result means that even though
—oo; with such negative values of, the assumption of theaveragerod length in the parent distribution is finite, the
dominance of the long rods in the nematic phase is no longefat tail of the distribution ensures that enough arbitrarily long
self-consistent. One might try the milder assumption that theods are present to induce phase separation at any nonzero
nematic is dominated by rods that are long but still shortdensity. Even though the nematic shadow density converges
compared td,,, assuming, e.g{l)N~1%, with «<1. We  to zero for increasing,,, it does so slowly enoughp
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~(In?1,)/1,] for the rescaled rodolume fractiorof the nem-  differed only through a larger fraction of long rods contained
atic to divergelogarithmically withl,, (pg‘~ln2|m). For any in the nematic, and the shorter rods show only a negligible
given aspect ratio of rodS’ the Onsager second virial approxprder in the nematiC, W|th the OVera” Orientational Order pa—
mation thus eventually breaks down lasincreases, at the rameter vanishing in the limit. o

point where the true volume fractiorD(Lo)pT of the nem- The above differences between the predictions offthe

atic shadow becomes non-negligible compared to unity. Onsager model and the full Onsager theory can be under-

We then studied numerically the case of a Schulz distri-StOOd as follows. In the Onsager theory, the excluded volume

bution of rod lengths, for which our previous studies of theof two rods vanishes as the angle between the rods decreases

N . to zero; this favors strongly ordered nematics such as the
simplified Zwanzig [1.8] and P, Onsager modeIg[Z?] nematic shadow phase dominated by long rods that we found
showed nd-N-N coexistence and no unusual behavior in the

- S at the onset of phase coexistence. In #eOnsager model,
limit of infinite rod length cutoff. The full Onsager theory p, the gther hand, and indeed in any similar truncation of the
studied here revealed, however, that such e-ffects.do 'ndee&pansion of the kernek(6,6’) in Legendre polynomials
occur: above a threshold value of the polydispersitythe  [27] the excluded volume remains nonzero even for two
numerical results show that the nematic density distributiorggs fully aligned with the nematic axis. This disfavors nem-
becomes exponentially divergent for large rod lengths; a fiatic phases containing a substantial number of long and
nite cutoffl,, again needs to be imposed to get meaningfulstrongly ordered rods. It thus makes sense that the nematic
results. Above the threshold, the cloud and shadow curveshadow phase even for the fat log-normal distribution is pre-
then depend oh,,, although much more weakly than in the dicted to contain only a smalthough enhanced as compared
log-normal case. The dominance of the long rods in the nemto the isotropic phagedraction of long rods.

atic shadow phase above the threshold is also weaker than Looking back over our results for the effects of length
for the log-normal, with average rod lengths that are larggolydispersity in the full Onsager theory, it is clear that all
but significantly below ,,. At the threshold itself, a kink in  the effects of long rods that we observe arise from the expo-
the cloud curve and a discontinuity in the shadow curve ocnential factor exfdg(0)] [(see Eq(14)] which dominates the
cur, indicating that even for the “well-behaved” Schulz dis- enhancement of the nematic shadow phase density distribu-
tribution the Onsager theory predicts a three-phad&N  tion over that of the isotropic parent phase. Any parent length
phase coexistence region in the phase diagram. distribution with a less than exponentially decaying fat tail

We were again able to clarify these results by theoreticaWill therefore exhibit divergences in the nematic distribution,
analysis of the limitl ,—«~. We found that the limiting leading to a phase behavior similar to that for the log-normal
threshold value of the polydispersity is=1/2, correspond- case. In fact, our theory in Sec. IV applies to all such fat-
ing to an exponent=3 in the Schulz distribution, in good tailed distributions. The Schulz distribution with its exponen-
agreement with the numerically calculated thresholds atial tail is the borderline case, where one cannot predict
small cutoffs. Above the threshold value, the theory predictgriori whether the presence of long rods will have significant
that the average nematic rod length approadheas in the effects. We found that it does, above a threshold value of the
log-normal case, but now with larger logarithmic correctionspolydispersity. To our knowledge, this is the first time that
that explain the smaller average lengths observed numersuch a threshold effect has been observed in polydisperse
cally. In contrast to the log-normal distribution, the cloud andphase equilibria(in the Flory-Huggins theory for homopoly-
shadow curves above the threshold approfimite limiting ~ mers with chain length polydispersity, for example, where
values forl,,—«. The physical interpretation is that the the enhancement factor is also a linear exponential—in chain
smaller number of long rods in the Schulz distribution is notlength—no long-rod effects are found for Schulz distribu-
sufficient to induce a phase separation at arbitrarily smaltions[24,25].) Finally, for parent rod length distributions de-
densities. caying more than exponentially, e.g., aexp(—1%) with «

It is appropriate at this stage to compare the above results 1, no cutoff dependences are expected since the nematic
with our earlier analysis of th®, Onsager modd26]. For  density distribution will always be well behaved for large
the Schulz distribution we have mentioned already that théengths. Of course, this does not mean thatltheN phase
P, Onsager model, in contrast to the full Onsager theorycoexistence is excluded for such distributions. Consider, for
predicts no unusual effectd-N-N coexistence and cutoff example, a log-normal length distribution modulated by a
dependencedue to the presence of long rods. For the log-Gaussian factor e;KpIZI(ZIﬁQ] with large |,. As we just
normal distribution, theP, Onsager model does exhibit a saw, there is then no need for an explicit cutoff. On the other
three-phasé-N-N coexistence, with cloud curves showing a hand, the Gaussian factor will act as an effective “soft” cut-
kink and shadow curves showing a corresponding discontieff (hence the notatioh,,). For large enough,,, one thus
nuity. As in the full Onsager theory, above the kink the cloudexpects a phase behavior qualitatively similar to that dis-
curves are also strongly dependent on the cutoff value. Howeussed above for a “hard” cutoff, including tieN-N phase
ever, the limiting behavior of cloud and shadow curves iscoexistence signaled by a kink in the cloud curve.
rather different: both the densities and the rescaled rod vol- Above, we have focused exclusively on the onset of the
ume fractions of the isotropic cloud and nematic shadowphase coexistence; both numerically and theoretically the
phases converge to finite, and in fact identical, limiting val-analysis of the phase behavior inside the coexistence region
ues for a large cutoff. The nematic was also not dominatedvould be far more challenging. One question one would like
by the longest rods. In fact, the isotropic and nematic phase® answer concerns the overall phase diagram topology. On
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the one hand, the three-phals&-N region could be con-
fined to a narrow density range inside th&l coexistence
region, as is the case for tl7®, Onsager model with a log-
normal length distributiof26]. The alternative would be for
the I-N-N region to extend all the way across thé&\ coex-

istence region, connecting to the nematic cloud curve and
being bordered by a region &f-N coexistence; this is pre-

dicted by the Onsager theory for bidisperse systE20s23.

PHYSICAL REVIEW E 67, 061702 (2003
e~ h(o)

P(6)=
f'a*a',e—h(e’)

: (A3)

h(9)=pf’d79' P(6")[K(6,6')—K(0,6))]. (A4)

Apart from a direct numerical attack on the phase coexistNow consider the regime of high densitigs> 1. From Eq.
ence region, which for now seems out of reach, clues to afA4), it is clear that for large densith)(#) becomes large.
answer could be provided by an approach based on the Flofj(#) then becomes strongly peaked aroui0 so that the
lattice model of hard rodE31]. For the scenarios studied in Only nonvanishing contribution to the angular integral in Eq.
the past this has yielded results qualitatively similar to the(A4) comes from the rangé’<1. [Here and in the follow-
Onsager theory19,32,33, in spite of the rather crude treat- ing we use the symmetry dP(¢) and h(6) under 6—
ment of the orientational entropy. Preliminary work shows— @ to restrict all integrations to the range=0 ... /2]
that, in the limit of thin rods, Flory's excess free energy For 6~0O(1)>#6’, we can then approximaté&(6,6")
corresponds to an excluded volume term that correctly tends: K(6,0)=(8/m)sin 6, so that

to zero for small rod angles. Together with the full expres-

sion for the ideal part of the free energy, this can be shown to

give a scaling behavior in the limit of strong orderifige.,

high density very similar to that of the full Onsager theory.

h(a)z%p siné (A5)

This version of the Flory lattice model may therefore pro-to the leading order ip. This expression will not be valid
duce predictions that are more in qualitative accord with theor small 9, but suggests that in this regime a scaling solu-
Onsager theory than, e.g., t® Onsager model. It shares tjon in terms of the scaling variable=p siné could exist,

with the latter the desirable feature of being “truncatable,”; o h(6)=h(t)
having an excess free energy that depends only on two mo- A :
ments of the density distribution. This will allow the efficient
calculation of phase equilibria using the moment free-energfzhe

For consistency with Eq(A5) for 6
~0(1) (and largep), the scaling function should then have

leading asymptotic behavidr(t) = (8/7)t for large t.

method[18,27,34—3F work in this direction is in progress. Now, written in terms of(t), Eq. (A4) reads

APPENDIX A: HIGH-DENSITY SCALING
FOR THE MONODISPERSE ONSAGER THEORY

We summarize here the arguments leading to the scaling
solution for the angular distribution in nematic phases at high

density for the case of monodisperse rp88]. The relevant
free energy is obtained from the polydisperse versiorby
dropping alll integrations and setting=1, giving

fzp(lnp—1)+pf’oT’a P(6)InP(6)

+ pzf'ab'aﬁp(a)P(a')K(a,a'). (A1)

N| =

This expression needs to be minimized with respe€(t@),

subject to the normalization conditigfdé P(6)=1 in our
usual notation. One obtains

e¥(0)

P(6)=
f'az/ewwv

w<0>=—pf'd‘?9"P(0')K<0,e'),

(A2)

which is the obvious monodisperse version of E2). De-
fining the functionh( )= ¢(0)— (6#), which obeysh(0)
=0, this can be written as

dt’ t’

e N)p[K(6,6')—K(0,6')]
~ V1—(t'1p)?
Rt = (t'7p) - ,
dt' t Fen

\/1—(t'/p)2€

(AB)

where the integrals are over the range Op.and ¢
=arcsinf/p), 8’ =arcsin{’'/p). The key property that allows
one to get a density-independent equation fi¢t) is the
scaling behavior of the kernel. For finiteandt’ and largep,
one hasf~t/p, 8’~t'lp, and for such smalfand compa-
rable angles the kernel scaldéimearly with the angles. The
product pK(6,6")=pK(t/p,t/p") thus approaches a finite
limit for p— oo, given by
2tt’
t?+1'2)

8 (2=d
F(z)= ;L %\/1—2003(,0.

K(t,t")=t?+t'?F

(A7)

In the same limit we can replace the factofd
—(t'/p)?]1¥2in Eq. (A6) by 1, and obtain the scaling equa-
tion

h(t)=(K(t,t")—K(0t")y, (A8)
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30 T - ' ' nematic shadow phase at the onset of the phase separation in
a system with a fat-tailed length distribution with a large
cutoff. The excess free energy is the last term in &d.1),

thus

25
20
15

1 .
EP(K('[,V)%,V:ZP- (A13)

From Eq.(A8) andK(0t')=(8/m)t’, we also have

- - - 8 - 8
(R0 =R =ROL )+ —(the =R+ (1)

FIG. 12. Numerical solution of EqA8) for the scaling function (A14)

h(t) (solid) together with the asymptotic linear behavior at latge Inserting into Eq.(A13) we then obtain the desired identity
(dashed

~ 8

where the average ovér is over the normalized probability (h(t))+ ;<t>t=4- (A15)
distribution

1 Notice that arguments very similar to those above apply also

B(t)= Zte o y:f dtte ho (A9) to polydispersenematics: one again has a scaling solution

Y h(#)=h(t) for high density, in terms of the same scaling
of the scaling variable now running over the range 0 .,  Variable, and this again leadsltb=3p andf=2p. van Roij
since we have takep— . A plot of the numerical solution and Mulder[22] showed this explicitly for the bidisperse

of Eq. (A8) is shown in Fig. 12 and has the expected leadind"2S€:

linear behavior at larget. In the high-density limit,
by the same arguments as above, the normalizationAPPENDIX B: THE APPROXIMATION OF DOMINANCE

factor for the orientational distribution(A3) becomes OF THE LONG RODS
Jd6 ex{ —h(psin 6)]=vlp?, with y the normalization factor  Qur theory in Sec. IV for the onset of phase separation in
defined in Eq(A9). Thus, systems with fat-tailed length distributions was based on the
5 assumption that the nematic shadow phase is dominated by
P(g)= p_e—h(p sin6). (A10) the longest rods in the system. This aIIowed. us to replace
Y terms that depended weakly on rod lengty their values at

_ o ) the cutoffl ,,. We now verify that this assumption is justified
Inserting this into expressiofAl) for the free energy and i the four cases where we have used it, namely, in Egs.
transforming everywhere frorm to t, one has (21)—(23) and (25). Let us start from the simplest of these,

- Eq. (21). Define the angular integral
f=p(Inp—1)+2pInp—p[(h(t));—Iny]

1 _ A(I):f’d@ e~ (ITm)h(0),
+ EP(K(t,t’»t,t'- (A11)

The density distributior§20) in the nematic shadow phase is

From this, it follows that the osmotic pressure for large denthen pN(1)=pP(1)e'9(VA(l). The normalized nematic
sities is simply length distribution PN(1)=pN(l)/pN can be written as

ot PN =Q(HA(I)/A(l,,), if we define

[I=p——f=3p. (A12)
P P 50)/1\ala(0
Q)= —;PO(1)e'*A(l,).

It then also follows that the excess free enefgfthe last p

term in Eq.(A11)] is just 2p. This can be seen by comparing | oking back at Eq(21), the assumption of long-rod domi-
result (A12) with that obtained via a different route. Since nance amounted to replacing the weakly varying factor
P(ﬁ) is determined by mlnlmlzmg t_he_ free energy, one CanA(|)/A(|m) by A('m)/A(|m):1, eﬁectively Substituting
evaluatell =p df/dp—f by differentiating Eq.(A1), while () for PN(1). To check that this is justified, we need to
holding P(#) constant. Because the excess free~energy i8onsider the unapproximated Equati@), which after in-
quadratic inp for constantP(#), this givesll=p+f and tegration over and division byp" reads
thereforef =2p by comparison with Eq(A12), as claimed.

The resultf=2p is also useful for deriving an identity J dl Q(|)ﬂ:1_ (B1)
that we use in the main text to show th&t=3p holds in the Allm)
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10 T T AN T T T buton to Eq. (B1) is thus of the order
1 ~A(INZSdIPO(1)~2 or, if we extend the integral up to
01f I =00, A(I)12(172) with the average taken over the parent
0.01F distribution. Now A(l,,)~ps? [more precisely, A(l )
0.001 £ = ypot ; see before EQA10)], so this contribution scales as
0.0001 | (Im/peit) >~ (I1mpN) 2. For the log-normal length distribu-
10°5E tion, pN~(In?l)/1,, and so the short-rod contribution
10°5L ~1/In*l,, to Eq. (B1) does indeed become negligible for
107k largel,, when compared to the long-rod contribution of 1.
10 Next, consider the approximated osmotic pressure equa-

10700001 0.001 ©0.01 01 1 10 100 tion (25). We need to show that the contribution of the short
! rods to thd integral in Eq.(24) is negligible compared to the
. .. . N
FIG. 13. Plot of A(l) agamstl for 1,=500 and py; 'Ong-rod part, which we evaluated to bp"2 Dividing by p
=6500 (=1, In21,;). Notice theypgZ(Im/1)? scaling at intermedi-  t© have a quantity to which the long rods contribute a value

ate values ofl and the quasiconstant behavior at smalAt | of the order of unity, and discarding factors that are constant
~I ., corrections to thel(,/I)? behavior are visible. for largel,,, we have to consider the integral

We effectively approximated this bydl Q(I)=1, so we f dIQ(I)l— Al [9(0)—cyp]

need to show that the contribution from the short rods to Eq. I Al | ™ 1P

(B1) is negligible compared to unity. We will need the

dependence oAA(l) to do this. Restricting the integration 1 dpe(m )h(o)h(a)]

range to O .. z7/2 by symmetry, using the scaling form of A

h(6)=h(t), and transforming to the scaling variabte

= poySing gives The first term in the curly brackets is easy: thimtegral is
— Peff

proportional to [dI Q() (/I )[A()/A(l,,)]. Comparing
with the integral fdl Q(I)[A(I)/A(l,,)] treated above, the

I)=p’2Jpeﬁdt t e—(l/lm)ﬁ(t) (B2) short-rod contribution here is suppressed by an additional
ef V1= (t/pegr)? ' factor ofl/l,,, and so definitely negligible. The second term,

on the other hand, is of the form

Al) A () d
A A deQ(I)I—( giinA).

In the limit1—0 one hasA(l)=1, andA(l) will remain of
this order while the exponential exp(l/l,)h(t)] is close to f dlQ(I
unity even fort=pgs. Sincepey is large andh(t) linear int

rorlla;ge argumenths_, th|s| g|veﬂs the criteridl f,) p eff~;‘ Ior As we saw aboveA(l) varies at most as a power law with
~Im/perr- Up to this value off, we can iipprommat Q) so that @/dl)In A(l)~1/1 and we are again led back to the
~1. For largerl, the factor exp—(l/lnh(per)] is small  jntegral fdI Q(I)[A(I)/A(l,,)] for which we showed the
enough for the integral to be dominated by valti€per, SO dominance of the long rods abov@his argument applies
that we can sef1—(t/pe)°]¥*~1 and extend the upper even in the small-rangel <l /pes, whereA(l) is approxi-
limit of the t integral to infinity. The bulk of the integral still - mately constant andd(d1)In A(l) therefore even smallér.
comes from values ofs1, however, wherd(t) is linear, In Eqg. (18), which we approximated by E¢22), we have
and carrying out integra(BZ) with this approximation gives a similar | integral that turned out to scale asl1/[see
the scalingA(l) ~ pesf 2(1,/1)2. As | increases, the range of Eq. (32)]. Multiplying then byl ,, to again have a long-rod
values contrlbutlng to the integral reduces, and eventuallgontribution of the order of unity, and usingll,
the quadratic behavior 6f(t) neart=0 leads to corrections = (p/p")(1/1m) peri~ (1/1m) per, We need to consider the in-
to this scaling. Even at=I,, however, these effects are tegral
relatively small, sinceh(t) is approximately linear even | (1) F(peg sin 6)
down tot~1 (see Fig. 12 we therefore neglect them to a f Q(I) f do — ~p smee

first approximation. In summary, we thus have the scaling A(Im) ef A(l)

A()~1 for I<ly/pes, and A()~pg(Im/1)? for | (B3)
>1n/perr. A sample plot ofA(l evaluated numerically, to- . . . ,
getﬂeﬁ;\f/ith our a?)prcl)aximatio(n,) is given in Fig. 13. It fgllows As bef_ore, the angular integral will be demlnatadlth the
from the above results that the fact(l)/A(l,,) in Eq.(B1)  €xception of very small lengthis<l;/per; see below by
is no larger than-(I,,/1)2, even for very small. The con- the range wherd=pesing is large. In this rangeh(t)

tribution to thel integral from rod lengths of the order of =~ (8/m)t is linear to a good approximation, so that the angu-
unity is therefore bounded by-[dl 12]2Q(l). For |  larintegral can be written as

=0(1), we can set théactor explg(0)] in Q(I) to 1, since (S pr s 6)

g(0) is small(for largel,); the factorp/p" is also asymp- JH@F( sin 0)9 mnrer>t  m

totically just an unimportant constant. The short-rod contri- Pett A(l) A(l)’
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The overall integral  (B3) thus becomes distribution has already decayed-tdl/l3 (up to logarithmic
Sal QHITA(N/A(Iy)1(d/dl)In A(l) for which the long-rod  terms of its value até’=0, i.e., far in the tails of they’
dominance has been shown already. The contribution frondistribution. We can now also justify neglecting thdepen-
very smalll values,| <I,/pes Needs to be treated separately. dence of the term exp-(I/I,)h(#')]: at the onset of correc-
Here, we use the fact that the angular integral in([B@) can  tions from the short rods one h&§6’)~Inl,,. Up to this
be viewed as an average of §jpe Sin 6 over a normalized point, i.e., in the bulk of the distribution, the ratig{6’)/1,
distribution, giving a result of at most-pes. Using also is at most~(Inl)/l,. In the overall exponential factor in
that A(l)=1 in this regime, one needs to integrate Eq. (B4), exgl[g(0)—h(#' )]}, this term is therefore still
perQ(D) (/1 )[1/A(l)] over the rangd =0 ... (I/per); negligible compared tg(0)~ (In? ,)/I,,, and the resulting
the integrand is bounded there BY1)/A(l,,)~P©(1) and dependence can be ignored.
gives a vanishing integral, since the upper limit of the inte-
gration range),/pes=1/(p"l )~ 1/In?l,,, vanishes in the APPENDIX C: THE DOMINANCE OF LONG RODS
limit | ,—c°. FOR THE SCHULZ DISTRIBUTION

Finally, we need to analyze EL9), which we approxi-

mated by Eq(23). Let us rewrite the ths of Eq19) as In this appendix we outline briefly how, for the Schulz

distribution(43), one can establish that the assumption of the
Poit [—— | , long rods being dominant in the nematic shadow phase is

Wf de’[K(ﬁ,e’)—K(O,e’)]J dl Q(I)l—e*("'m)h(" ). again justified(for z<3). As an example we discuss Eq.
(Tm) m (21), which is obtained from Eq20) if the long rods domi-

One can view this as an average of the term in square brackate-

ets over gunnormalized distribution overe’. We thus need As we saw irijppelr;ldif] E’ the scﬂing szthe angular
to show that the short-rod contribution to integral A(l)=/do e” /"W is p 2(1,/1)? for |
>/ pes, andA(l)~1 for smallerl. Inserting this into the
| ' nematic density distribution  (20) NI
__a—(1mh(e") ) p
f drQ) Ime ; (B4) =pPO(1)e'9OA(I), usingpes=p"I2 and exploiting thap

. o o and pN approach constant limits fdg,—2, one hasp"(l)
is negligible compared to the long-rod contribution, at IeasL|;12| 2209 for |>1,/pes~1Ny, and pN(I)~1%? for

for the values off’ that are in the bulk of this distribution gmaiierl. We want to show again that the integral @¥(1)
(rather than the tgil When evaluating the long-rod contribu- ver the short rodgwith lengths! of order unity is negli-
tion it is nota priori clear that one can treat the exponentialgib|e compared to the long-rod contributiwhich, since

factor exp—(I/l)h(6')] as weakly varying with. We will  ;N_ (1) 'is of theorder of unity. In the short rods regime
see below that this can nevertheless be justified, so that the, -4n approximate®=1. The integration ofp"(I) over

long-rod contribution is simphe™ ") as used in Eq(23).  the range Q.. 14, then gives just~O(I,>~ 1) which is
The short-rod contribution to EqB4) can be estimated negligible compared to unity foz=0. The contribution
by again approximating ekig(0)]~1 and bounding from the rangel>1/,, can be bounded by extending the
exd —(/lyh(¢')]<1. This yields a contribution of at most jntegration not just over the short rods, but in fact up {0

fdl POMAN)AI D <(DA(IWD/, with the average giving ~1.2(12" 2= 11" =(1%3~1_7"1) which is again
again taken °_Verp(o)(|) and thus giving unity. This is  pegligible compared to unity as long 2s 3. (Forz=1, the
comparable with the long-rod term exph(6')] only for  integral has a logarithmic correction, givingl -2In 1, but
values of ¢ such that e "")~A(l)/ln~1Nwp% s still negligible) As in the log-normal case, the integral
~O(I,;3 In~*1,). This means that the corrections due to theover the nematic density distribution is therefore dominated
short-rod integral become important only where the angulaby the longest rods, justifying Eq21).
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