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Dielectric shape dispersion and biaxial transitions in nematic liquid crystals
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Using two order tensors, we propose a mean-field model to describe the uniaxial and biaxial phases of
nematogenic molecules presenting a shape dispersion of their biaxial dielectric susceptibility. We recover the
classical isotropic-uniaxial-biaxial sequence of phases. The phase diagram exhibits a tricritical point, a feature
that cannot be retraced in the other mean-field models established for molecules without shape dispersion.
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[. INTRODUCTION axes. A more general theory, now a classic, was proposed by
Straley[8]. He introduced an additional second-rank order
Biaxial nematic liquid crystals are still fascinating objects tensorB to describe the macroscopic signs of th&insic,
from both experimental and theoretical points of view. Al- molecular biaxiality. We assume that in the absence of exter-
though stable biaxial phases have unmistakably been olmal anisotropic causes, bothandB have one and the same
served in lyotropic systems since the pioneering work of Yueigenframe. Under this assumptidhas precisely the same
and Saupd1l], the experimental evidence in favor of their form asQ in Eq. (1):
existence in thermotropic systems is still highly disputed
(see, for example, Ref2] for a recent overview of this long , 1
vexed question and Refk3,4] for a new approach to)it B=S (ez@ez_ 3!
Most nematogenic molecules are intrinsically biaxial.
Usually, they give rise to uniaxial phases as a consequence @fhoth these tensors are employed, a uniaxial phase occurs
the rotational disorder around the long molecular axis, whichyhenever bothQ andB are uniaxial, that is, whenever both
eventually results in the definition of a single macroscopicT and T’ vanish. A general biaxial state is described by all
director. However, this rotational disorder can be hamperegyyr scalar parametei T, S’, and T’. An extrinsic biaxi-
by interactions favoring the molecules to stick parallel to oneglity, which under appropriate external causes could also be
another: at low enough temperatures, these interactionsxhibited by cylindrically symmetric molecules, is repre-
should promote a biaxial nematic phase. In the past 30 yeargented by only two scalar order parameters, nanSsydT.
the description of such biaxial phases has posed many inter- The models of Freiser and Straley have been extensively
esting problems. At a macroscopic scale, the nematic order istydied, mostly in attempts to compare the predictions of
traditionally described by a symmetric, traceless te@@f  these with measurements of microscopic biaxiality. Distin-
rank two. A general representation Qfis given by guished examples of these studies are in the pders6].
The first comparison with Monte Carlo simulations was pre-
) sented by Luckhurst and Romafha0]; this was more re-
cently followed by Biscaringt al.[13] who explored an im-
pressively large range of molecular biaxialitisge also Ref.
wherel is the identity tensor an® and T are scalar order [15]). They found the expected sequence of phase transi-
parameters. In Eq1), {&,€,&,} is the eigenframe oQ: it  tions: one transition at a higher temperature, which generates
is thought of as a reference frame fixed in space. The firsa uniaxial state from the isotropic melt, with bathand S’
idea to assess the macroscopic effects of molecular biaxialitglifferent from zero, and another transition at a lower tem-
was of Freisef5,6]. Within a mean-field molecular theory, perature, where botff and T’ are nonzero. In the biaxial
he described a biaxial transition that follows at a lower tem-phase, they also measured valueSaihd T’ close to unity,
perature the uniaxial one, first explained on a molecular basialways accompanied by very small values of the other two
by Maier and Saupgr]; while this latter transition is of first parameters’ andT. The molecular pair potential employed
order and establishes a positive valuéSdéavingT=0, the in Ref. [13] is a special case of the one put forward by
new transition is of second order and also makeés). This  Straley[8]; it is based on a dispersion forces approximation
theory, however, was not general enough because it did ndirst applied in Ref.[9], where the molecular biaxiality is
distinguish the different origins of macroscopic biaxiality: frequency independent.
the one related to the distribution of the long molecular axis The objective of this paper is to discuss in some detail the
from the one related to the distribution of the short molecularexpression of Straley’s pair potential, which represents the

TT (26— ®e). 2

+T(g®e—g®8),

1
Q=S(ez®ez—§l
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The tensorq is uniaxial aroundm, while b is biaxial: the
former has two equal eigenvalues, while the latter has all
unequal eigenvalues. If we interprat as being the long
molecular axis, theu is the uniaxial tensor representing the
dominant geometric feature of the molecules, whileepre-
sents their secondary biaxiality. Clearly, this interpretation is
purely suggestive as such a simple geometric description of a
molecule is too naive. However, it becomes more meaningful
when g and b are employed to describe the uniaxial and
biaxial components of molecules in their pairwise interac-
~l el tion. Let two molecules be described by the pairs of tensors
e - "~ (g,b) and @’,b"). The most general orientational interac-
/ tion energyV between them, linear in each pair of tensors
and invariant under their exchange, takes the form

/ V=—Uo{Q‘Q'+7(Q'b’+b~q')+)\b‘b'}, (5)
I

whereU,>0 is a typical interaction energy andand\ are
dimensionless parameters. Whem=\=0, Eq. (5 repre-
sents the interaction energy put forward by Maier and Saupe
[7], which depends only on the uniaxial molecular compo-

| I . b lecul ._nhents. When eithey or A differs from 0, the biaxial com-
general nematogenic interaction between molecules Withy,onts ais0 contribute to the molecular interaction: for

frequency-dependent biaxiality. A systematic analysis doe:0 and\+0, the biaxial component of one molecule is

not exist for this general interaction; one wonders whether iEoupIed only with the biaxial component of the other, while
would bring some important novel feature. To make such an,, ¥+0, both uniaxial and biaxial components are coupled

analysis easer, it is natural to choose a nematogenic COr'ff(')gether. In our tensorial notation, the expressiorvar Eq.
pound with a simplified frequency-dependent biaxiality, for(s) is precisely the one proposed' by Stralé}

which, for instance, the low frequency part would be purely There are special cases of this interaction that deserve

uniaxial and the high frequency one would add the requiretijw,[ice First is the one where=y2. Equation(5) then re-
biaxiality. This search will indeed lead us to unveil a tricriti- éiuces.to '

cal point in the phase diagram, a feature that is not foun
within the dispersion forces approximation and that renders

m

FIG. 1. Schematic description of a biaxial molecule. The unit
vectorm represents the long molecular axis, whélande, repre-
sent the two minor axes.

our phase diagram very similar to the one discovered by V=—Uo(q+yb)-(a"+¥b'), 6)
McMillan [17] in his mean-field model for the nematic-to- . )
smecticA transition. as proposed by Luckhurst al.[9]. This formula can easily

The paper is organized as follows. In Sec. I, we review inb€ interpreted within London’s dispersion forces approxima-
a tensorial notation the classical Straley interaction potentidion. The anisotropic part of the dielectric polarizability ten-
and we propose criteria that would restrict the choice of itsSOr of a biaxial molecule is given by
free parameters. This analysis suggests a mean-field model
for the biaxial phase, which is studied in Sec. Ill. Finally, in €= €,9+ €pb, (7)
Sec. IV, we summarize the main conclusions of this paper

and comment on the avenues for further research that {iheree, and e, are the uniaxial and biaxial polarizabilities
opens. of the molecule, which depend on the frequencyf the
polarizing field. In the limit where the molecules possess a
Il. BIAXIAL INTERACTIONS si_ngle e_lbsorption frequen_oya1 (London approximatioh the _
dispersion forces interaction can be given by the expression
Biaxial molecules can schematically be described asn Eq.(6) with y a function ofv, (see, for example, Sec. 6.6
platelets(see Fig. 1 In every platelet, we distinguish the of Ref. [18]). However, when the molecules possess more
major axism from two minor axes ande, . These are the than one absorption frequency, London’s theory for disper-
eigenvectors of any molecular polarizability tensor. The ansion forces breaks down and must be replaced by that of
isotropic part of every molecular biaxial tensor has twoMcLachlan (see Refs[19,20 and Sec. 6.6 of Ref18]).
traceless, orthogonal components, which are defined as  Applying this theory, one would, in principle, find for the
interaction energy the general expression in E@) with y
1 and\ related to the molecular absorption frequencies. A spe-
g:=m®m-— §I, 3 cific attempt along these lines was made by Bergeetea.
[11], who viewed a biaxial molecule as consisting of three
orthogonal oscillators with different frequencies. The Lon-
b:=exe—e ®e,. 4 don approximation model can also be recovered in the pres-
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ence of dispersion, provided bo#) and €, remain propor-
tional over the whole frequency range, which is a rather
particular situation.

Here, we do not further attempt to find special electro-
static models to justify the expression farin Eqg. (5); we
rather seek the conditions to be required on bptiind\ to
make this expression reflect some expected qualitative prop-
erties. Actually, it was already remarked in REL0] that
settingh =0 in Eq. (5) would never allow the molecules to
reach a stable equilibrium when they all lie parallel to one
another. More generally, consider two molecules represented
by the pairs ,b) and (@',b’), so nearly parallel to one
another that the rotatioR that takes the first into the second,

for which FIG. 2. Admissible values for the dimensionless parameters
_ T _ T andvy in Eqg. (5). The pair-interaction energy is positive definite in
q'=RqR" and b’=RbR (8) the fan-shaped region. The shaded triangle represents the calamitic
ground states. The broken line is the parabotay? corresponding
to the dispersion forces approximation; it is tangent to the boundary
of the fan-shaped region far=1.

can be represented as

1
R=I+aW+ 3 a’W?+o(a?), €)
small region in the §,\) plane is the one admissible in our

where is the rotation angle and/ is the skew-symmetric  Study: it is traversed by the parabola y* corresponding to
tensor associated with the unit vectaralong the axis of the dispersion forces approximation, the only one exten-
rotation. By use of Eqs(8) and (9) in Eq. (5), we arrive at sively studied so far, but it also contains numerous other
the following expression for the incremental enefy rela-  interaction potentials. In this paper, we explore thaxis of
tive to the state of complete alignment of the two moleculeghe admissible triangle. In the following, we set systemati-

(wherea=0): cally y=0 and take\ within the interval 0,3]: the only pair
1 potential V that this family has in common with that of the
SV=— —U~a2tr(W202) — tr(Wa )2+ 2 v tr(gbW?2 dispersion forces approximation is the Maier and Saupe one,
20 {tr(Wg") ~tr(Wa) rr(a ) which corresponds to the origin of the/,) plane. Physi-

cally, settingy=0 in Eq. (5) represents molecules with a
~(QWBW)]+ A[tr(W?b?) — tr(Wb)?]} + o(a?). special dispersion of the dielectric shape susceptibility: at
(10 low frequencies,e, is zero ande, would just create a
) ) uniaxial nematic phase; at high frequenciesijs zero ande
Recalling thatWv =wXxwv for all vectorsv, we can give a s purely biaxial. Since/ is a sum over frequencies of terms
more transparent form to Eq10) in terms of the compo- |ike that on the right-hand side of E¢6) (see, for instance,
nents (v1,W,,Ws) of win the eigenframge,e, ,m} of both  Ref [18)), this is a possible justification for our choice. This

g andb: choice is as peculiar as the one of the London approximation,
1 since it is possible, though admittedly rather extreme, to
SV=-Uoa®{(1+2y+ M)W+ (1—2y+N) Wi+ 4\w3} imagine a molecule with a purely biaxial that is, withe,
2 =0, at least in some frequency range; the dispersion forces
+0(a?) (11) interaction between real molecules should be described by

It follows from Eq.(11) that §V is positive-definite when- the general Straley interaction.

ever \>0 and|2vy|<1+\. These inequalities restrict the
admissible values ofy and \ to lie within the fan-shaped Ill. MEAN-FIELD MODEL
region depicted in Fig. 2. Further restrictions follow from

Eq. (12) if the ground biaxial state represented by the pair Ve consider a homogeneous nematic liquid crystal in the
potential V in Eq. (5) is calamitic that is, with the long absence of any external field. We assume the molecules to be

molecular axisn harder to be disoriented than the two minor Pi@xial and described by the pair of tensogsli) introduced

axese ande, . This physical property has its mathematical " EGS: (3) and (4). The two independent order tensors em-

counterpart in requiring that the least eigenvalue of the qual!oyed by Straley8], Q andB, are defined as the ensemble
dratic form for 8V in Eq. (11) be associated with the eigen- 2verages(d) and(b), respectively. Denoting bye¢, 9,4}
vectorw=m. This amounts to say that, for a given the the_ standard Euler qngles representing the rotat|qn of an in-
torque tending to restore the complete alignment between t vidual molecule with respect to the common eigenframe
two interacting molecules is larger when the two long axes &8 & 0f Q andB, which is fixed in space, one readily
are misaligned. Thus, requiring that both41—2y+)\  Sees that

and A<1+2y+\, we readily arrive at Ry|<1—3\,

which corresponds to the shaded triangle in Fig. 2. This M= cosg sinde+sine sinde, +cosde,, (12
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e=(cosy cose cosy —siny sing)e,+ (Ccosy sing cosd

+siny cose)e,—cosy sinde,, (13
€ = —(siny cose cosY + cosy sing)e,

—(sinysing cosd — cosy cose) e+ sinysinde,,

(14
and from Egs(1) and(2) one then arrives at
3 1
S= §< cogd— §> , (15
1
T= E<sin215}cos 20), (16)
3
S'= 3¢ Sir?d cos 2, 17

%((1+ coS ) Cos 2p Cos 24— 2 cosY sin 2¢ sin 244),
(18)

T/

which are essentially the same expressions used in[BEf.

To compute these ensemble averages, we need to build

probability distribution functionf=f (¢, 3, ).

There are two ways for the system to become biaxidl. If
is isotropic iny, but anisotropic inp, thenT'=0, whereas
T+0: this is thephasebiaxiality produced, for instance, by

an anisotropic distribution of cylinderlike molecules under
an external field, but which is unlikely to occur spontane-

ously. On the other hand, a functidnisotropic in ¢, but
anisotropic iny, would give T=0, butT'#0: this is the
intrinsic biaxiality that would correspond to the natural ten-
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f

1
= Zexid A(q-Q+Ab-B)], 21

where B:=Ug/kgt, kg being the Boltzmann constant and
the absolute temperature. In E&1), the partition functiorZ
is defined by

Z==fTeXFi,8(Q-Q+7\b-B)], (22

whereT is the toroidal manifold?x S* parametrized by the
Euler angles, with5" the unit sphere in tha-dimensional
Euclidean space. Specifically, in Eq21) and(22) g- Q and
b-B are expressed in terms of the Euler andlesd, ¢} and
the scalar order parameterS,T,S',T') as

q-Q=S cos?ﬁ—% + T sird cos 2p, (23

b-B=S' sirfd cos 24+ T'[(1+ coS9)cos 2 cOS 2

— 2 cosd sin 2¢ sin 2¢/]. (29

Moreover, the area measure Off is
sinddedddy.

Clearly, sincef depends on the averag@sandB, it must
ogey the following compatibility conditions:

in Eq. (22

Q=f fq, B=f fb. (25
T T
Following Refs.[5,6], we introduce the potential
F(Q,B):=U l(Q Q+\B-B) 1I £ (26)
y = — . . —_—— n_ ,
° 2 B 8#72

dency of biaxial molecules to orient parallel to one anotherWhich has the property of attaining its extrema precisely at
We expect a spontaneous transition to induce such an intrifh0se order tensor® and B that comply with the compat-

sic biaxiality. For allf, the following bounds follow from the
admissible ranges of the Euler angles:

—3=<S<1, —3(1-9=<T=<3(1-9),
(19

-(1-9=8=<(1-9), -1

We now build the distribution functiohby using a mean-
field approximation for a particular molecular interaction.
We sety=0 in Eq. (5) for the pair-interaction potentiaV
and we write the pseudopotentidl of a molecule in the
mean field described b andB as

U=—Uy(q-Q+\b-B). (20)

We start by takingh small enough to be interpreted as a

ibility conditions (25). At equilibrium, F can be interpreted

as the free energy per molecule of the system. As remarked
in Ref. [21], arriving at the free energy out of equilibrium
Fneq requires much more care; howeverandF . possess
precisely the same stationary points, which is what matters
here. When expressed in terms of the scalar order parameters
(S,T,5',T7"), the potential F will be denoted by
F*(S,T,8,T').

We first show that our model encompasses that of Maier
and Saupe. We sat=0 in Eq.(26): F* is now a function of
SandT only, which will more appropriately be denoted by
F& . By expandingZ up to the 12th order iff, we checked
that the minimizers of§ can only occur folT=0 at pre-
cisely the same values &obtained by Maier and Saupé].

S=0 for B=<pB.~6.81, while at =8, a first-order
isotropic-to-nematic transition takes place which establishes

perturbation parameter. The asymptotic analysis that we pef=S;~0.43. We do not study in any further detail this clas-

form below aims at showing quantitatively how this model sical model for uniaxial nematics; we only heed tti&}
departs from the classical Maier-Saupe model. The probabittains its minimum as= Sy(8) andT=0, with Sy a func-
ity densityf for a molecular orientation described by the pairtion increasing fromS, to unity as B ranges fromp. to
(q,b) is given by the Boltzmann distribution infinity, which satisfies the inequality
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_ 1
So(B)=7

14341 2
38

for all

B=Be-

(27)
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This estimate is easily obtained by requiring that the second

0.6

derivative of F§ with respect toS at T=0, which on all
stationary points of§ is quadratic inS, be positive atS
=S,. Here, the obvious conclusion is that for purely uniaxial
interactions, no transition to a phase biaxiality is possible.

We now sefx >0 to enforce a biaxial interaction between
molecules. We taka small enough, so as to justify an ex-
pansion ofF* in \ on a firmer ground than the expansion of

5 in T. From Eq.(26), we arrive at the following expres-
sion for F* near the critical point $,,0) of Fj :

F*($,05,T")
1

1 A ) 12
§+Z—€(1_SO)B)\ S

)le

It is apparent from Eq(28) that the origin of the §',T")
plane would become unstable towards perturbation$s’of
andT’ as soon as

=F5(Sp,0) +Ugh

1

A
+ 1+§—1—2(5+7SO),8)\ +O(\Y). (29

4
)\>)\57 ::Wi
(29
24
MM B TS B3

respectively. By use of inequalit{27), it is easily checked
that A\ <\g for all =8, and so in Eq(28) T'? grows
systematically befor&’? upon increasing.. Moreover, for a
given \, a good estimate of the critical valyg, of g at

which this secondary transition takes place can be obtaine

from the inequality

16

o
9+7 1—£ B—2

where \q is a strictly decreasing function that decays like
1/B8 at infinity. When\ is sufficiently small, the biaxial state
that is established fop> g; is characterized by having
=Sy(B), T=0, S'=0, andT’'#0. Within this limit, only

(30

A=No(B) = >Ny,

two parameters are thus necessary to describe the transitions

leading the system to this stat8:for the first (isotropic to
uniaxia) and T’ for the seconduniaxial to biaxia). It is

shown below by numerical computations that for larger val-

ues of A, both T and S’ are not exactly zero: they grow

04 r

Scalar Order

02 r

18

14
B
FIG. 3. Order parameteSandT’ versus inverse temperatyse

for A\=1/6. The second-order transition from uniaxial to biaxial
nematic occurs gB= B.~7.72.

So far in our analysisy has been regarded as a perturba-
tion parameter. By solving numerically the compatibility
conditions(25), we now extend the validity of our model to

values of\ in the range[0,5]. Choosing, for instancey

=%, we plot in Fig. 3 the temperature evolution of the two
dominant order parameteSand T'. For 8=p., we ob-
serve the first-order isotropic-to-uniaxial transition, followed
at lower temperatures by a saturation $towards 1. For
B=B¢> B, we observe the second-order uniaxial-to-biaxial
transition, followed at lower temperatures by a saturation of
T’ towards 1. We do not reproduce in this plot the graphs for
S’ andT, which arise from 0 ag= B, because their maxi-
mum values remain five orders of magnitude smaller tBan
andT’. The behavior shown by Fig. 3 is indeed typical for
all values of\ up to\;~0.20, above which the second-order
transition becomes a first-order one. Figure 4 shows in the
plane (\,1/8) the phase diagram predicted by our model.
Following Griffiths’s notation[22], we represent the first-
order transitions with a solid line and the second-order tran-
%itions with a broken line: the point where they meet is the
tricritical point (\,1/8;), with B=7.07. The same se-

0.2
isotropic
.///
///"(
g 0.1 [ uniaxial /,/
yd biaxial
¢'/l
.‘/
c"‘/
0 1 1 1
0 0.1 0.2 0.3
A

FIG. 4. Phase diagram showing the reduced temperat@e 1/

wheneverT" does, though remaining some orders of magni-versus the biaxiality parameter The solid line represents the first-
tude smaller. Yet the biaxial phase is primarily described byorder transitions, while the broken line represents the second-order

the two prevailing order parameteSsand T', pertaining to
the two different tensor® andB.

06170

transitions. The tricritical and triple points occur fay~0.20 and
B~7.07, and\;~0.22 andB.~6.81, respectively.
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quence of phases exhibited in Fig. 3 occurs untt\, one obtained in Ref[26] for Maier and Saupe’s model.
~0.22; forn>\ ., there is a direct first-order transition from Equation(31) is accordingly exposed to the same criticism
the isotropic to the nematic biaxial phase, without any intersuffered by Ref[26] in Ref. [21], where a systematic ap-
mediate uniaxial phase. The three phases coexist at the trippfoximation to the nonequilibrium free enery,eq in the
point (\¢,1/8.). The phase diagram reproduces the expectedicinity of the equilibrium points correctly predicted by
behavior: upon increasing, the biaxial phase becomes Was proposed. Though the expression in B4) could be
more and more favored. quantitatively inaccurate, it retains some qualitative features
The resemblance between this phase diagram and the ofR&Fneq WOrth mentioning, as we learn from the simpler ana-
obtained by McMillan[17] within his mean-field model for 109 in Ref.[26]. It predicts that when is sufficiently small
smecticA is remarkable. McMillan’s diagram exhibits a tri- @nd/3 is not too large, the free energyattains its minimum
critical point where the phase transition between the uniaxial’ agun|a>§|a| phagse witlQ#0 33”d B=0. The terms tQB,
and the smectic phase ceases to be of second order and 63", trQ°B, trQ”B, and trQB°, which would be allowed
comes first order upon increasing the parameter that in th® Ed. (31) by the mere requirement of invariance under
pseudopotential promotes the formation of smectic layers. Tétations, are indeed missing because they would fail to be
make this comparison more quantitative, we note that at thEvariant under the symmetry transformation for the pseudo-
tricritical point in our diagram, the temperatutgg of the ~ Potential defined by d,b)—(q,—b) and Q.B)—(Q,
uniaxial-to-biaxial transition is related to the temperatyge ~ — B)- The explicit temperature dependence of the coeffi-
of the isotropic-to-nematic transition throughyg/t;y cients in E_q.(31) §hou|d not be taken literally, but t_h_ew signs
— 3./B,~0.96, while at the tricritical point in McMillan’s &€ meaningful: in a theorg la Landau, the cqefﬁments of
diagram the temperatutg , of the nematic-to-smectic tran- Ed- (31) are to be replaced by phenomenological parameters
sition is given byty/t;y=0.87. The existence of a tricritical "€t&ining the same sign. The purely phenomenological theory
point in the phase diagram for biaxial nematics is a distincoutiined in Refs.[27,28, once restricted up to the fourth
tive feature predicted by our model. To our knowledge, allorder in the scalar order paramet&sS’, T, andT’, pro-
other microscopic models, mainly based on the dispersioR©S€d only four invariants in the free energy out of the at

forces approximation, predict a Landau critical pojgee, €St €ight possible. o
for example, Refs[8,23-29), where, in Alben’s terminol- We close the analysis of our model by comparing it with

ogy, an “accidental” second-order phase transition occurst® mean-field model for biaxial phases put forward by Frei-
This is the single point where the second-order lines separaf®[2,6]: Assuming that the anisotropic part of the molecular
ing the biaxial phase from the prolate and oblate uniaxiaPolarizability e be represented by E@), Freiser writes the
phases, respectively, meet the first-order line, separating boftfir potential as/=—Vge- €', with V>0, but he take®
uniaxial phases from the isotropic one: a direct transitior?S{€) instead of(q), and so the internal energy turns out to
from the isotropic to the biaxial phase occurs there. Thiéf)e quadratic irQ only. Freiser's model has been fully solved
point, which in our phrasing of the dispersion forces approxiin Refs.[24,23. The phase diagrams found there are very
mation appears fok =1, is not present in our diagram be- similar to the one shown by Styal@] for a special relation
cause the model we employ is an extension of Maier andetween the parameteysand\ in Eq. (5); they all present a
Saupe’s model witt8>0, and so oblate uniaxial phases are Landau point, but no tricritical point. Mathematically, Freis-
excluded from the start. er's model can be recovered as a special case of ours by
Positing a complete macroscopic theory for biaxial nem-enforcing the constrain@=B and by setting\ = ¢, /e, in
atics that would describe both phase and intrinsic biaxialitie§d- (20). This actually forcesT and T" to coincide. The
first requires writing the free energy in terms of both order@pparent S|m_pI|f|cat|on coming ffOf_n mergifig andSin the
tensorsQ andB. This would indeed be the central feature of Same tensor is eventually misleading because they do belong
the Landau theory near equilibrium. An approximate exprest0 two tensors with different physical origins.
sion for the Landau potential can be obtained by expanding
in powers ofg the free energy in Eq26). To within terms in
B*, F reads as All microscopic models describing the onset of biaxial
nematic phases are based on intermolecular dispersion

IV. CONCLUSIONS

5 4 forces. The interaction potential is taken to be proportional to
F(Q’B):UO(E[(f_’B)U Q- 2—1,82tr Q? the inner product of the two tensors representing the aniso-
tropic dielectric susceptibilities. In the presence of frequency

N i,Be’(tr 2|+ E)\,B(i—)\>tr B2 dispersion, the interaction is the sum of each frequency com-

105 5 2B ponent. For real molecules, the interaction potential has then

the complicated form put forward by Straley on the basis of

+i)\zﬁztrQBZJri)\z/ﬁ{l—l(trQB)z pure symmetry arguments. The first idealization of this
35 175 3 model, based on the London approximation, has been exten-
sively discussed in the past. This case corresponds to the

— 6trQ2B2+ A (tr 82)2“. (31) maximum coupling between uniaxial and biaxial molecular
susceptibilities, assumed to remain proportional over the

whole frequency range. In this work, we have chosen an-

For\=0, the expression fdf in Eq.(31) coincides with the other, or-
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thogonal avenue, the one that presents the least possildéon forces approximation, which predicts a Landau point at
coupling between uniaxial and biaxial susceptibilities. Real\ = §, a sensible conjecture is that there is a path of tricritical
molecules are expected to present an intermediate behavigbints projected on they\) plane that joins the point
between these two idealizations. Along this line of thought,o\,) to the two symmetric points at=% on the parabola
we have presented a simple mean-field model for the =42 These issues will be addressed in near future.
uniaxial-to-biaxial transition in nematic liquid crystals, \We are aware of the fact that arguments different from
which identifies two dominant scalar order parameters. It eXmere|y resorting to the dispersion forces approximation
plains why the single-order tensor description first employedould justify a choice of dominant order parameters, which is
by Freiser is of a limited use, despite its apparent success. gonsistent with setting = y? in the molecular pair potential,
suggests an approximate expression for the macroscopic fregen without ever considering the latteree, for example,
energy in terms of the relevant invariants of the two orderRef. [31]). However, thescenariounveiled by the study of
tensors actually needed to describe the behavior of biaxigdyr limiting model withy=0 and\ #0, which is also likely
nematics. The structure of this pOtential is the theoretica{O persist for\ =~ '}/2, makes somewhat Singu'ar all analyses
premise for a complete macroscopic theory able to describgased on, or equivalent to, setting precisely y2. Further

the interplay between phase and intrinsic biaxialities. studies are needed to explore properly how the phase dia-
~ Our model has revealed the existence of a tricritical poinigram evolves when two extreme situations compatible with
in the phase diagram, which, to our knowledge, cannot bghe model molecular interaction of Straley are bridged to-
retraced in any other molecular model for biaxial liquid crys-gether, that is, the London approximation, where the two
tals, though it is fully compatible with the Landau theory pjaxjal order parameters show maximum coupling, and the

[29]. This result raises a number of questions. First, it sSugapproximation studied in this paper, where the order param-
gests a bifurcation analysis to classify all Landau potentialgters show minimum coupling.

compatible with this feature, whenever only two scalar order
parameters are dominant, in the spirit of the theory devel-
oped in Ref[30]. Moreover, since in our model the tricritical
point is projected on thea axis of the admissible triangle in
Fig. 2, the question arises whether fgr: 0 the tricritical We acknowledge enlightening discussions with L. Longa,
point still exists and how its projection wanders in theX) G.R. Luckhurst, S. Romano, H. Yokoyama, and C. Zannoni
plane. Since no tricritical point is associated with the disperduring various stages of this work.
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