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Asymmetric fluid criticality. I. Scaling with pressure mixing
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The thermodynamic behavior of a fluid near a vapor-liquid and, hence, asymmetric critical point is discussed
within a general “complete” scaling theory incorporating pressure mixing in the nonlinear scaling fields as
well as corrections to scaling. This theory allows for a Yang-Yang anomaly in whidT), the second
temperature derivative of the chemical potential along the phase boundary, diverges like the specific heat when
T—T,; it also generates a leading singular terfi|??, in the coexistence curve diameter, where
t=(T—Ty/T.. The behavior of various special loci, such as the critical isochore, the critical isotherm, the
k-inflection loci, on whichy®= x(p,T)/p* (with x=p?kgTK+) andC{¥=C(p,T)/p* are maximal at fixed
T, is carefully elucidated. These results are useful for analyzing simulations and experiments, since particular,
nonuniversal values df specify loci that approach the critical density most rapidly and reflect the pressure-
mixing coefficient. Concrete illustrations are presented for the hard-core square-well fluid and for the restricted
primitive model electrolyte. For comparison, a discussion of the clasgitalanday theory is presented
briefly and various interesting loci are determined explicitly and illustrated quantitatively for a van der Waals

fluid.
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. INTRODUCTION AND OVERVIEW cific heat whenT—T,—. They dubbed this phenomenon a

Yang-Yang anomall2]. Even though impurities in the pro-

In 1964 Yang and Yangl] derived the thermodynamic pane system have definite effects on the heat-capacity data
relation [5], the existence of a Yang-Yang anomaly cannot be ruled
5 out and, in our assessment, remains the most plausible sce-
(9_|0> _NT (1.1) nario. In fact, Orkoula%t al. [6] have performed grand ca-
IT? ' nonical Monte Carlo simulations for the hard-core square-

well fluid and concluded that this model system probably
for a fluid at pressure, chemical potential., and tempera- exhibits a negative but small Yang-Yang anomaly, i.e., a
tureT, whereV is the volume andN the number of particles, specific-heat-like divergence in the chemical potential de-
while C{"'is the constant-volume specific heat or, better, heativative, d?u,, /d T?, of magnitude significantly less than the
capacity. This has since been called the Yang-Yang relatiodivergence ofy (d?p,/dT?), wherev=V/N. How can one
[2]. When it is applied to the two-phase region beneath thehen accommodate such a Yang-Yang anomaly in scaling
critical temperaturel., one hasp=p,(T) and u=u,(T) theory?
(where o denotes the phase boundary on which liquid and The concept of asymptotic scaling has proved a powerful
vapor may coexigf and the partial derivatives become total tool for gaining insight into critical phenomena in a variety
derivatives. Since the observations of Voronel’ and co-of systems including fluid§7—12). Furthermore, a scaling
workers in 1962—683] it has been well established that the gquation of state has been rather well confirmed experimen-
heat capacityCy'(T) diverges weakly along the phase tajly for many fluids [13,14. The currently accepted

boundary when the critical point is approached. The diverasymptotic scaling description of fluid criticality15] re-
gence ofC\Y' then implies that one, the other both of the

second derivativep/,(T) and »/(T) must diverge whe™
—T.— along the phase boundary. The lattice gas model an
its standard variants predict that! remains finite atT.

while p’. diverges like the specific hepd]. However, Yang
and Yang suggested that in real fluidsth should diverge

&z,u

tot _
CO(T,V)=VT —

quires two scaling fields, namely, a thermal fielg,and an

grdering field h, that, in leading order, are both linear com-
inations of t«T—T. andh=u— u., the deviations of the
temperature and chemical potential from their critical values.
This description has also been extended to describe fluctua-
[1]: clearly this is a basic issue for the description and un-tionS in finite SYSterT‘S and applied to es_timating the c_ritical
derstanding of criticality in fluids. points qf model fIU|ds_[16]. Howgve_r, within this sqallng
Recently, Fisher and co-workef&] carefully analyzed description, the chemical potential is alvya_lys ane_llyuc along
experimental two-phase heat-capacity data for propanf'e phase boundary and through the critical point, thereby
(CsHg) and CQ and showed that the evidence ratherhaving afinite value of the second temperature derivative,

strongly indicates that”. doesindeeddiverge like the spe- M- Hence, in order to account for a Yang-Yang anomaly,
the current scaling description must be modified. Indeed,

Fisher and Orkoulaf2] argued that the pressure deviation,

*Present address: Department of Chemical Engineering, RenssB-~Pc, must mix into the scaling fields, especially into the
laer Polytechnic Institute, Troy, New York 12180. ordering fieldh.
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In order to formulate a scaling theory in which the pres-while 8,=6 and 65 are thepositive leading correction-to-
sure is mixed into the scaling fields, let us consideulh  scaling exponents. In the case of the=(3)-dimensional
thermodynamic descriptioof a one-component fluid as pro- Ising universality class, which is believed to characterize
vided by a functional relation between the three thermodyfluid criticality rather generally, we may accept=0.109,
namic fields, pressuregy, chemical potentialu, and tem- g=0.326, y=1.239, A=1.565, #=0.52, and 65=1.32

perature,T, say [17]. Finally, substituting\ = 1/t into (1.3) yields the “ther-
mal scaling” form
Y (p,u,T)=0. (1.2 9
Extending the approach sketched in Réf to include the O=(pI[T]2~ I[T|*; ugft]?, uglt]%,---)=0, (1.9

full spectrum of correction exponentsee alsd17,18) one

may formulate a rather general scaling hypothesis by assefivhere ®*(x, y;---)=¥(x,*1,y;---) in which = corre-

ing that near a typical critical pointp(,u.,To), the thermo- sponds td =0.

dynamics can be described, at least asymptotically, by A further observation is worth mentioning at this point.

e % AT+ —8 - B Specifically, if the critical point is drawn out into a lambda

W(N""p, At NThy AUy, AT Ug, -+ -) =0, (1.3 line without changing the universality class, by, e.g., the im-

. - . . position of a magnetic fieldH, or the addition of a second

wher~e>\ ISa frefz , positive scal~|ng parameter. In this EXPreS olecular component with chemical potential, ga¥, etc.,

sionp(p,«,T), t(p,x,T), andh(p,u,T) are the three rel-  tha only change needed in the formulation is the inclusion of

evant nonlinear scalln_g fields while u4(p,M,T) and _a further, nonordering field gl<H or z,=exp(—ux"/kgT),

us(p,u,T) are the leading even and odd irrelevant scalingetc] in the expansions of the three nonlinear scaling fields;

fields, respectively. Including the quadratic nonlinear termsjixewise for any further fields that leave the universality class

we may write the basic nonlinear fields as unaltered: see, e.d.17,18.
-~ ~ . ) vy . Now the particle numbeN, volumeV, and the entropy
P=p—kot—lop—Tot"—Qopu”—votu are related by the Gibbs-Duhem relation
—mop?—nopt—Ngpu+Og(t,i,p), (1.4 Vdp—SdT-Ndu=0 (1.10

T=t—lyu—jp—rit?—quu’—vitu . . .
L T Hence the number density and the entropy density are given

—myp?—nypt—ngpp+O0s(t,,p), (1.5 by

h=/1—Kkyt—jop—rat?—qom—votu pEE:<0_D> , SE§:(0_p (1.12)
<) . - . Vo), vV o \aT u
—Mmpp“—nypt—nspu+Os(t,u,u), (1.6)
where we have introduced the dimensionless critical devia®ther thermodynamic quantities, such as the specific heat,
tions [2] compressibility, etc., follow in the standard way.
The crucial point about the scaling formulation presented
T-T, . p—pc - P—Ppc here is that the three standard thermodynamic figddgs,
t= T, M= keTo ' p= pkaTe’ (1.7 and T, enter in a fully symmetrical way with na priori
C Cc C

assumptions as to which pair combination or thermodynamic

in which p, is the critical(numbej density anckg is Boltz-  potential, sayp(u, T) or u(p,T), is “more basic.” By con-
mann’s constant, whil®(x,y,z) denotes a formal expan- trast, previous formulations have typically concluded that it
sion in powersxly*z' with j+k-+I=m. In accepting these Was most appropriate to regapdu, T) as the “basic” quan-
expansions we are neglecting any scaling-exponent “resdity [15,17. This is what one is led to by studying the stan-
nances” that might complicate the expressions by introducdard lattice gases and what arises most naturally from field-
ing logarithmic factors, etc., [19-22. For theoretic and renormalization group approacligé—23.
(d=3)-dimensional systems, particularly real asymmetricHowever, one might note that the original Widom formula-
fluids—which are of especial interest—this should be quitelion [7] was based on integrating the equation of state and
satisfactory. The irrelevant scaling fields,, us,- - -, will, led, fairly naturally, to a scaling hypothesis for the Helmholtz
in general, have similar expansions in powers of the varifree energy density(p,T); on the other hand, the exactly
ables.t,  andp soluble cluster-interaction fluids of Fisher and Feldefft2&]

As usual,a in (1.3 is the universal critical exponent of SnoWed thak(p,T) was the appropriate thermodynamic po-

the specific heat and is the gap exponent that is related to tential for describing critical-point scaling in these models.

e It is easily seen, however, that the previqu,T) for-
a and the exponentg (for the spontaneous magnetization ; ; . :
v (for the susceptibility, and § (for the critical isothermby mulation [15,17] is recaptured here simply by suppressing

the scaling relations the p dependence in the nonlinear scaling fididand?: i.e.,
in linear order, by setting; =j,=0 in (1.5 and(1.6), and in
A=2—a—B=B+y=56, (1.8 quadratic order, by settingnp=m;=---=n5=0. In that
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case the expansion @ in (1.4) merely serves to represent thereby, the divergence of thal{u,/dT?) at the critical
the usual “smooth backgroundo(x,T) that is always re- Point: see Sec. Il A; in addition, a singulgtt®” term in the
quired. coexistence curve diameter appears and dominatégs|thé

The original discussion of scaling in fluidg,8] had to  term known previously15]: see Sec. Ill B. Furthermore, as
incorporate in the definition of therdering field hthe mix- ~ démonstrated in Sec. III C, pressure mixing induces a strong,

. - . . . ; . ~1t|B. si ity i i

ing coefficient k which, indeed, is then directly proportional ~|tl”; singularity in the asymmetry ratio that measures the

to (du,/dT), where u,(T) represents the phase boundaryrelat've difference  between the compressibilities/

below'(lz - but the coef(fricients'}l i,, andl, did not appear susceptibilities on the two sides of the co-existence curve.
(o] ) l .

Studies of various models later revealed that the coefficient N S€c- 1D thg linear mixing cogfflmentpl, 2, s ly .
|, which mixes the chemical potential into ttreermal scal- are related to various physical amplitudes, etc., which can, in

. . ~ . . . rincipl m red via experimen r simulations. Th
ing field t, should also be included: doing so yielded anp ciple, be measured via experiments or simulations ©

. o : . Yang-Yang anomaly, which was the main motivation for this
unexpected singularity in the coexistence curve diameter

- . . study, is discussed in Sec. Il E; it is shown that the strength
p(T), proportional to|t|*~*. (See, e.g., Ref[15].) Never-

hel ) i Ref 115D th d of the anomaly, namelR,,, which measures the contribu-
theless, it was st arguedn_ € -[15] .t .a.t Oneé could Sup- oy of the chemical potential to the heat capacity relative to
press the linear pressure mixing coefficientandj, despite

) . ; : ! that of the pressure in an asymptotic limit—sgel)—is
trzzu?r)gztfﬁgﬁ[g]_somble models in which scaling, in 1Eac'[’related solely to the pressure-mixing cogffici@agt _

It is only the recent reconsideration of the possibility of a. In Sec. IV. we study a number of special |O.CI, particularly
Yang-Yang anomaly in real fluids and nonsymmetric modeld” the density-temperaturep(T) plane, that intersect the
[2,5] that has led to the realization thaessure mixingi.e., critical point. These Iocyare of mtergst in thelr' own rlght. but
nonvanishing coefficients, andj, in (1.5 and(1.6), should they_prove to be espec!a_llly usefu! in attem_ptmg to estimate
be reconsidered. Indeed, as shown in R2f, if a nonvan-  Precise values of the critical densify,, both in the case of
ishing Yang-Yang anomaly arises, so thafg,/dT?) di-  real asymmetric fluids and in the simulation of various model
vergeswhen T—T.—, then, within a scaling formulation, SySteéms such as the hard-core square-well fiijénd, more
one must havé,+0. In fact, that also leads, as we demon-challengingly, primitive model electrolyte systenj&5].
strate below, to a singular term varying [a# in the coex- More concretely, we study the locys=pu, dubbed the

istence curve diametep(T), which, in realistic situations, S'ical isokyme the critical isobar p=pc), the critical iso-

will actually dominate the previously discoverkdf~ ¢ term the_rrm (r:_ITC)’ a[1|_d thte le'cal 'S?r%horep(:fa in the .
[2,15]. Conversely, the absence of pressure mixing in thdP: 1) (#.T), (p.T), etc., planes. The singular exponents
linear ordering field, i.e.j,=0, implies theabsenceof a characterizing these loci are obtained and the corresponding

tang-Yang anomaly 3 s h case for the standard TS % SXTESSEd 1 e o e g coetes
gases. Granted tha may not vanish, it is clearly appropri- P . 9 '

. . . > . thereby, related to one another. One discovers, however, that
ate to allowj,#0, i.e., to consider pressure mixing also in

e these characterizations of the various loci may not be helpful

the thermal field. _ _ in estimating the critical point in practical applications to

In Ilg.ht of this bapkground the aim of the an'alys_ls Pré- experiments or simulations, since various critical parameter
sented in this paper is to thoroughl_y explore f[he !mpllcatlongla|ues must be knowr priori; but, except for exactly
of the “complete scaling hypothesis” embodied in the rela- g4 ple models, the requisite values are not normally avail-
tions (1.3—(1.9). Hence in Sec. Il the “complete scaling” gpje.
theory is formulated with the incorporation of pressure mix- Hence, for direct applications to the analysis of simulation
ing as well as corrections to.scali.ng. For this purpose, W&ata, we also study in Sec. IV E, thé-inflection loci” in-
mostly follow the treatment given in Reff17]. The proper-  qquced by Orkoulast al. [6]. The “k-susceptibility loci”
ties of the scaling functions in the two limiting cases, 4e gefined by the points of isothermal maxima of the modi-
h/[t|*—0 or =, are set out as well as the consequences ofied susceptibilityy ¥ = y/p¥ above T in the (p,T) plane
thermodynamic convexity or the Second Law of Thermody-where y = p?kgTK7 is the standard isothermal susceptibility
namics[24]. For use in the subsequent calculations, generalwhile K+ is the compressibility. We find that these loci have
ized scaling densities and susceptibilities are defined and theading|t|?# terms followed by more slowly varying|*~®

relations between them and the actual physical quantities agnhdt contributions: however, the leading amplitucknishes

determined. _ _ _ when k takes some “optimal value'ky. Thus, whenk
Once the formulation of the scaling theory is completed,—k . the correspondins locus “points” most directly to
we examine, in Sec. lll, the standard singular thermody+he critical point. Furthermore, we find thig,, is directly

namic properties including the coexistence curve and thgjated to the strength of the Yang-Yang anomaly ki
specific heat. We explicitly determine the nature of the phase-3 . Wwith the aid of simulations we illustrate these loci
boundariesp,(T) and u,(T), of the coexistence curve di- quantitatively for the hard-core square-well fluid and the re-
ameter,p= %(p,iq+pvap) and of the half-jumpAp= %(p”q stricted primitive model electrolyte, and compare the results
—pvap), as well as of entropies at the coexistence curve. Asvith those for a van der Waals fluid: see Figs. 1-3, below.
mentioned above, the pressure-mixing coefficipngener- One may, similarly 26], define “k-heat-capacity loci” via
ates a singulajt|2~« term in the phase boundapy,(T) and  the points of isothermal maxima in the,{T) plane of the
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modified specific heaC{®=C, /p*. These loci have not ~ Now the thermodynamic potential for the fluigh this

been used in past simulations but may be useful in the futurezase the pressure—as a consequence of selegtagy the
We find, as for the susceptibility loci, that a leadiftd?? primary scaled variabjecan be written by formally solving
term appears in the near-critical expansions, followed by1.9 as

[t|*~« and t terms. Again, the leading amplitude vanishes - -

whenk is equal to a special value that is once more related P=Q[t|*> *W.(Y,Ya.Ys5, ), (2.3

directly to the Yang-Yang anomaly: see Sec. IVF. ) . ) . . .
In order to provide semiquantitative guides to the behayVhereQ is a positive amplitude whil#V.. is a scaling func-

ior of these loci in real systems, we study them in Sec. V,tion that, in the'case pf bulk fluids, 'embOQies the propert'ies
using classical theory for the gas-liquid phase transition o?f the (d=3)-dimensional Ising universality class. In this
the basis of a Landau order-parameter expansion of the fre@xpression the subscript refers tot=0. On choosing
energy. We obtain the vapor pressupg(T), and the satu- appropriate values forQ and U, the scaling function,
ration chemical potentialu,(T), up to second order i, ~ W.(y,---) becomes universal. Note that the usual analytic
while in the current literature they appear only up to firstbackground part of the potential, spy(t, ), is included in
order [13]. The coexistence curve diametgT), is also  the nonlinear scaling field: see(1.4) which may, clearly, be
found to ordert. These curves can be analytically continuedggjyed iteratively forp to yield an expansion fopo(t, ).
from T<T, to the one-phase region aboVe so providing
special loci that cannot, in general, be defined in nonclassical
cases. Using the van der Waals equation, these analytic ex-
tensions are illustrated quantitatively: see Figs. 5 and 6. In The scaling functionW..(y,ys,ys,---) should be both
addition to these critical loci, thé-susceptibility loci are universal and invariant under change of sign of the odd ar-
obtained and compared with those of the hard-core squargumentsy, ys, Y7, ---. Since the irrelevant scaling vari-
well [6] and the restricted primitive modf25]. In Sec. VD  ablesy,, ys, - - -, vanish as the critical point is approached,
the Yang-Yang relation1.1) is discussed in more detail We can also expand the scaling functdh. as[17]
within classical theorysee Fig. 7 and extended to general _Wo 4) wo
loci in the (o, T) plane. A Yang-Yang-type relation along the W=(¥:Ya:¥s, ) =Wz (y)+ysWE(y) +ysWer(y) + - -
critical isotherm is discussed briefly. 2\p/(4,4) (4,5) o
Section VI summarizes the paper and provides a key to TYAWLTY) +Yays Wy )+
the main results. Some further details are provided in the

A. Scaling functions

Appendix and others are available in the first author’s thesis =2K W (y)yl, (2.9
[26].
where for brevity we have used the multi-index, defined
Il. SCALING FORMULATION AND THERMODYNAMIC via
FUNCTIONS
. . L. . K:01(4)!(5)!"'!(4!4)!(4!5)!."!(4!414)1“'1 (2-5)
To explore the scaling descriptiqd.9), it is appropriate
to focus on the relevant scaling varialitr combination as a label and as an exponent via
y(p. e t)=UR/[T]3, 2.1 yo=1, yll-t=yy. oy, (2.6)
We considerx=(i,j,- - -,n) to be odd or even according to

where, without loss of generality may be taken as a posi-
tive constant. The basic reason for this choice, as again

P/[t]?7, is thatA is, in general, less than (2«) [since, see

hether the sunmi+j+---+nis odd or even. The symme-
ry of W.(y,Ya4,Ys,- - -) then require$17]

(1.8), B>0] so thaty diverges less rapidly when—0. Be- WX (—y)=(—) W~ (y). (2.7
yondy we need to account for the full set of irrelevant scaled - -
variables, namely, Recognizing this symmetry, one may write expansions for

s oL W% (y) for smally. Fort>0 we have
V(P e, ) =U(p, ) ] %,
WX (y) = WX o+ Yy WS, +y* W, +. .. for x even,
0k+l> 0k>05 k:41 51 ] (2'2)
=yWS +y3SWE L+ y WH+- - for « odd.
where U, =u, and we will assume, when needed, that the (2.9

associated irrelevant amplitudel are noncritical, meaning . . . .
- . ) By choosing appropriate values for the nonuniversal metric

thatUy(p, u.t) can be expanded in a formal power series ofyjitudes), U, etc., the expansion coefficients can be nor-

p, x andt (which may not necessarily convejgé&ince a  malized, in general, such thgt7,24]

fluid has, in general, no obvious symmetry, werddimpose

any restriction on thé&J,.: but see also the discussion in Ref. \/\/32=W';0=1 (, even or W5,=1 (« odd).

[17] Sec. Il (2.9
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Fort<O0, the existence of the first-order transition leads To find concrete expressions férand s, one may con-
to |y| factors in the expansions so that one fiEg| sider the differential relation,

WX (y) =[ W5 o+ |y WS+ y2 WS+ [y [PWE g+ - Jo(y), dp=pdh+3sdT, (2.16

(2.10  where it is appropriate to recall that all the scaling variables
yy in (2.3) are functiongonly) of p, &, andt and, hence, of

P, u, andt. Using(1.4—(1.6), this differential relation may
be written as

where the special signum function is defined by

oly)=1 for « even,
:sgr(y) for x odd. (21]_) (1_2mob_n0;'b_n3t+j2;+jlhs‘+'")db
Thermodynamic convexity(which embodies the Second =(lo+nop+20ou+vot+p—Ilsst---)du

Law) then requires that®® ; andW® , must both be positive:
see Ref[24].

For large arguments]y|—, the scaling functions where in the brackets we have retained only terms up to

Wi (y) and W¥(y) must satisfy stringent matching condi- linear order. Using2.14), we then obtain the relations
tions to ensure the analyticity of the potential through the

+ (Kohsp+vom+ 2rgt+s—kyp+ - - -)dt, (2.1

planet=0 for all h+#0. By these conditions, the functions . o+ NoP+2Gou + vt +p—I4S+- - - (2.18
WZ(y) may be written as 1-2mep—nNom—Ngt+jop+js+---
W (y) ~ WE|y| - atel)/a 1+E (=)'wWry| "2 | o (), i Ko+ n3b+voﬁ+2r0t+§— kyp (2.19
B = = < = = = . .
! 2.12 1-2mop—nou—nNst+jp+jist+---
where the multiexponert] «] is defined by If the nonlinear mixing coefficients mn;, - - -, v;in (1.4)-

(1.6) are ignored, these expressions may be approximated by

o[0]=0, O[(i,j,---,n)]=6,+6;+---+6,, 2.1 ~ ~ ~ ~
[0] [ )]=6,+6, h (213 e kesiks
- - S~—

(2.20

with i,j,---,n=4. By virtue of the normalization&.9) the
numerical amplitudeW’jj , W’jj , WE , andw; should all be

universal. Beyond that, thermodynamic convexity dictates\ote thatp ands arenonlinearfunctions ofp and's owing
that WO andw$ must be positive while?)?/w3 must be o the pressure-mixing coefficienis, andj,. In the absence
bounded abov¢24]. The sign ofw? is not determined by of pressure mixingi.e., j;=j,=0), we recover the Bruce-
convexity alone but must, in general, be negative: see ReWilding linear relations[16]. We will see later that the ap-
[24]. This plays an important role in determining allowable proximation(2.20 is adequate to derive the most important
phase diagrams in a densityr composition space at critical ~ singularities in leading order.

end pointg17,24].

1+jop+iss 1+jp+iss

C. Generalized susceptibilities

B. Generalized density and entropy The second derivatives of the potential determine the

To extract explicit results fron(2.3) revealing the singu- usual response functions, e.g., susceptibilities, heat capaci-
larities of the various thermodynamic derivatives, criticalties, etc. We define the basic reduced susceptibilities
loci, etc., we first recall1.11) and define a dimensionless

reduced densityp, and entropys, by Xw=(?plap?);, xuu=(5?plat?);,,
. p [op .S (ab) (214 Ynu=(2plapat) = (I2platagw). (2.20)
p=—=|—<| , S= == - .
Pe \duf, peke | ot 2 These are related to the number and energy fluctuations most

~ directly accessible in grand canonical simulatig6% The
Similarly, the generalized number densipy, and entropy isothermal susceptibility is defined by
density;s, will be defined by

x=(9pldp)r=(%pldu®)r, (2.22
;E(a_f) , Ez(ﬂ_f) _ (2.15 and is related to the isothermal compressibilititr
dh/+ at )~ =p Yaplap)t, by x=p>K; and to the reduced suscepti-
bility xnn by
These quantities then obey the usual simple scaling rules,
namely,p~[t|? ands~[t|*~* whent—0. x=(pc/KeTe) XnN - (2.23
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~ Experimentally, the most important heat capacity for flu-The reduced specific heal, , is then related to the reduced
ids is the constant-volume heat capacity with a density desysceptibilities in(2.21) via [6]

fined by
T/aS Cv=xuu— Xnu/Xnn- (2.27)
A2 oo R
p o Finally, we define generalizdgcaling susceptibilities via
whereS is the entropy density defined {#&.11). It is conve- o7 % o
nient to introduce the dimensionless reduced specific heat, y, = T) , ')"(nz(T) ——- T) (2.28
2 2
namely, dh T o) dhat
Cy=(dsldt),, (229 From (2.3 one finds Ynn~[t]" Xne~[T1f7% and Yy
for which one has ~[t|~* whent—0. When the nonlinear mixing terms in the
5 scaling fields are ignored, as abo;@N can be expressed in
pCy/T=(kgp/T)Cy. (2.26  terms of the generalized densities and susceptibilities as
|
v (e1+€55)%Xnnt (€3+€2p) Xy — 2(€1+€;5) (€3+ €2p) Xt
XNN~ ————=3 : (2.29
(1+j2p+]19)
|
where the derived mixing coefficients are where one sees that various even and odd terms cancel. Solv-

_ o _ ing for y iteratively, one obtains
er=1—jolo, €=j1t+jol1, e3=lit+jilo.  (2.30
w®) WHWEG)

i ivati i i i -0 ~ -1YV-0 ~
The detailed derivation df2.29 is presented in Appendix F _ UsJT| %+ - U, UsdT]? %+ ... (3.3

of Ref. [26] henceforth to be denotel; there it is also y= \/\/91 (Ml)
shown how(2.29 [K(3.41)] captures the leading singular
correction terms. Note that in contrast to the symmetric caseg., the ferro-
magnetic Ising modelwhereUs=0, the scaling field does
IIl. THERMODYNAMIC PROPERTIES not vanish identically along the phase boundary. Using the

A Phase boundaries definition (2.1), we find the phase boundary is given by

The phase boundaries, say(T) and u,(T) [or E)U(t) R (D)= Ey[T, |2 05+ E,[T, |20 05+ . .. (3.4)
and ()], on which two phases may coexist, can be deter-
mined by equating the pressure and chemical potential on thgere the coefficients are

vapor and liquid sides beloi (i.e., fort<0). On using the

smally expansion ofp for T<0 with the aid of(2.10, we Us W) UadUs VWS

obtain (including higher order terms Ei=— Ermr
uwy)

uwl, ’
Po=Qt2 W2 o= W2 y+ WO y2 4 - - .

(3.5

- Now substitutingu= u,(T) and p=p,(T) in (1.5 and
+U,JT oW =Wy + Wiy ) (1.6) and using(3.4), we obtain an expansidiseeK (3.65]
~ of the chemical-potential deviation
+ U JT|%(WE = WOy + WEy2+ .. )+ ],
3. oM =[1o(T) = pcll KaTe, (3.6

where = now refers toh=0, while U,. and Us. are the
critical values of the irrelevant scaling amplitudés, and

Us, respectively. Equating.. andp_ then yields

in powers oft, of ,&U itself, and of

PoAT)=[Po(T)—pcl/pckeTe. 3.7

Wy == WEUsJT| = WU, ]ty _ o _
. - One can solve this equation iteratively far, as a function
~ WUty + - -, (32  of tandp, to obtain
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o(T)= 2P+ Kot + (Mo+ 502+ j 2No) P2+ (F o+ Kyla+ v oKe )12+ (Ns+ 2] oKy U+ KeNp+ 5 2) Pt

+E|(1—kel Dt—(j 1+ ]2l )Pl T 5+ Exl(1—Kql )t—(j1+ ol ) P20 5+ - - -

Substituting this result int¢1.4) yields

Po=(1—jalo)ps—(Ko+Kilg)t—E;p2—E,t>—Egp,t+ - - -,

where the coeﬁicientﬁj depend on thguadraticnonlinear-
field coefficientsrg, mg, --- in (1.4) to (1.6): seeK(3.68—

(3.70.
Similarly, from (1.5) and (3.8), one finds

to=(1-KDt=(j1+j2lD)pst---. (3.10

Substituting this intd3.1) with the aid of(2.1) and(3.4),
combining it with(3.9), and solving iteratively fof)(r finally
yields the result

ba’(T) = bo’,lt_l— bo’,Zt2+Ap|t|27(1[l+ ap|t| O+

+byJt]s Bt A+

+bp[t[?%5+ -] (3.1)
where the leading coefficients are given by
. kKotkilog -« ~ . ~ o~
Poa=7 7+ Po2™ Eip2 1+ Er+Egp,, (3.12
J2lo
A :QV\BO|T|2,Q a :U4C jl())|7_|0
P 1-jalo o wo, ’
|O(1_j2|0)El
bp=———5—— 717, (3.13
P QWl,
in which we have introduced the mixing factor
T=1-kil1=Poa(i1+]ialy), (3.14

while E; is given in(3.5 anda, andb;, can be derived from

K (3.74).

(3.9

(3.9

IZLO'(T):l\:l’U,lt+I(\:LU,2t2+A,u|t|2_a[1+a,u|t|0+ e

+bﬂ|t|95_5+a}’t|t|95‘ﬁ+0+ L. +b;|t|295+ ]

+e, (3.19

where the leading coefficients satisfy
Por=KitioPe1, A=Ay, a,=a,, (3.16
b,=E4l7**%/A,, a,=b,c, b,=by, (3.17

while 1, , is given inK(3.78.

As is to be expected, the spectrum of singular terms that
appears in the expansion far (T) is the same as that for
p.(T). Note, however, that the leading singular amplitude,
A, , for u,(T) is proportional to the pressure-mixing coef-
ficient j,. Thus, in contrast to the traditional scaling treat-
ment, pressure mixing in the scaling fields implies that the
second derivative ofi,(T) diverges at the critical point with
the same exponent as the specific heat. However, even in
the absence of pressure mixipgr sethe phase boundary
1(T) is not analytic: rather itshird derivative divergegin
contrast again to lattice-gas modelewing to the odd
correction-to-scaling term, since in the case of fluids one has
2<2—a—B+6;=A+65<3. [Note that the amplitude,
Ab,, of [t|2"* A*% in (3.15 doesnot vanish whenj,
=0.] The conclusion that!(T) exhibits a cusplike behav-
ior near the critical point was originally advanced by Ley-
Koo and Gree27] and enters into the analysis of the effects
of impurities on the detection of the Yang-Yang anomni&lj
see the discussion below in Sec. Il E.

B. Densities and entropies at coexistence

The generalized densities along the phase bounaary,
andNSU, can be obtained fron2.3) and (2.15 by using the

Note that the leading even correction-to-scaling term en¥esults(3.11) and(3.19 for p, andu,,. After some algebra,

ters the phase boundapy,(T) with an exponent (2 «)

+ 6, while the odd correction-to-scaling term has an expo-
nent (2—a)— B+ 5. In addition, it is not hard to see that
the subsequent terrhp|t|295 (and analogous terms belpw

must be preceded byower order terms such add,|t|?’,
ap|t| "1, e, |t]*?, ap|t]?*2, etc.
Now let us substitute the resu(8.11) back into (3.8).

With a little further effort, one obtains the desired result for

the chemical potential on the phase boundary, namely,

we find

(1)~ = QU 7t AW + U 4 W[ 7t| /= U5 {WE)
— (WOLWEYWE )Y 7t 5+ - - -], (3.18

Se(1)=—Q|7t|* [(2— a)W° o+ (2— a+ O)U , W 7t|°

+(A+ 05)Us WO 78| 55+ - - -], (3.19
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where *+ refers toh=0. Using (2.18 and (2.19 and ex-
panding in powers of, we finally obtain the number density

and entropy density on the two sides of the coexistence curve

as
P (T)=pl 1+ Agglt|PPH AL Jt1 T+ A+
+Ag|t|fT 0+ ... +B|t|#[1+Db,|t|’

+hoglt]2P 4+ 1, (3.20
S*(T)=pcke{ko+Soplt|?P+S;_Jt|1 *+Sit+ - - -

+Sg[t[AF 5+ ... £ By|t]A[1+dt]?

+dyplt| PP+ T (3.21)

where terms varying al|?*! and|t|*~**# have not been
displayed and higher order terms such as|t|f*4,
[t|f*27 e, etc. will also be present in general. Implicit in
these results is the conclusion
ko=5.=S:/pKks. (3.22

lo=pc=1 and

The leading coefficients for the density are then

B=(1-j)QUW’,|7%,  by=U,WH|AW°,, (3.23

bog=1i5B%1(1=]2)% Agp=—j.BY(1-],), (3.29
Ar=(2-a)(l;+j)QW A", (3.2
A1=vo+Ng+(200+ No) g1+ (No+ 2Mo)Pa,  (3.26

while the coefficients for the entropy satisfy
Bs/B=—(kyt+jsko)/(1—j,), dg=by, (3.2
dop=i5B3/ (ki +ioKo)2,  Spp=—],B(Kit]jske), (3.28

S1-a=(2=a)(j1ko= QW | 7[>,
Ss=BsAs/B, (3.29

andAg and S; follow from K (3.83),(3.84.

From (3.20 the coexistence curve diametep(T)
=3[pig(T) +puadT)], and the width, 2p(T)=pjo(T)
—pwagT), of the coexistence curve, follow immediately. As
anticipated, we see that the diameter contairjs| term
that is proportional to the pressure-mixing coefficigat
and, since B<1-— « for typical fluids, this actually domi-
nates the previously anticipatéd’~® term[15]. Likewise,
one may read off the entropy diametéT), and entropy
jump, AS(T), from (3.21). Again one observes that the
dominating|t|?# term in S(T) is proportional toj,.

The total entropy in the two-phase region is given by

du,
dT

dp
tot _ g
SU(T)—V—dT N (3.30

PHYSICAL REVIEW E67, 061506 (2003

On the critical isochorep=p., this yields the entropy den-
sity

So(T;pe) =Set pcka(1— ) Aplt]*+O(t) (3.3D

from which, as was to be anticipated, th¢?? terms have
canceled[Recall thatA, is defined in(3.13).]

In Fig. 1 grand canonical simulation data for the coexist-
ence curve of the hard-core square-well fluid are presented.
Adopting the critical point estimates[.~1.2179 andp.
=0.3067[6], and the Ising values for the critical exponents
yields the estimate8=1.2026, A,z=—0.000%, A;_,
=0.189, A;=-0.069L, b,=—-0.25%, and byz=
—0.085 for the amplitudes ir3.20 [6]. This fit is shown in
Fig. 1 as a solid line that connects the coexisting density
estimategcircles to the critical point. Similarly, coexistence
simulation data(in a /=5 fine discretization levelfor the
restricted primitive model electrolyte are presented in Fig. 2.
The solid line—the Ising fit to the coexistence data—is
drawn by adopting the critical point value$.~0.05069,
pc=0.079[25] and the amplitude estimateB=0.274,A,,
=0.0165, A; ,=0.919, A;=0.586, b,=1.464, andb,,
=2.254. However, one must note that the specific numbers
attached to these particular amplitude estimatmothave
a very significant meaning, unless the higher order correc-
tions are considered more carefully than is practicable with
the data currently available.

C. Susceptibilities at coexistence

The reduced susceptibilityy in (2.21), on the coexist-
ence boundary is also of particular interest as we point out

FIG. 1. Coexistence dat@pen circles, with closed circles for
the diameter for the hard-core square-well fluid obtained by Ork-
oulaset al.[6]. The solid lines connecting the data points represent
an Ising-type fit: see Eq3.20). The vertical and horizontal dashed
lines locate the critical isochore;* = p% =0.3067, and the critical
isotherm, T* =T% =1.2179[6]. The curves above criticality and in
the inset depict estimates for thkesusceptibility loci for the values
of k indicated; but note that the=0 locus curls back to lower
values of the density & rises.
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here. Using3.11) and(3.15 for p, andx,, the generalized
susceptibilities on the phase boundapyy, , and yp ., can

be obtained from2.3) and (2.28. After some algebra, we
find
Xnno~2QU?|7t| ™Y [WE 5+ U, W)  7t| /2 U { WS
= 3(W2WEYW )}t %5, (3.32

~Xnto= = BQUWL || rt|F~ 14, (3.33

where = refers toh=0, while y; , entersyyy only as a

higher order correction. On substituting these results and
(3.18 and(3.19 into (2.29, we obtain the reduced suscep-

tibility on the two sides of the coexistence curve as
XAn(T)=C7 [t L+ cft] "+ copft|?+cp ot
e LBt ) = AT
o]t (3.39

where the coefficients are

C =2e2QUAW°,|7| 77, cyp=U, W4 AW,

(3.39

Cop=6i3(QUWR )2 7|28, 1,=—3j,QUWP |7/%,
(3.3

= U (WHWP )+ (WMWY, (339
l,=BesW° /e;UW,, (3.39

ls=Usgc[ W) —3(WP,WE/WP HT/WP,,  (3.39

0.07

0.06

T*

0.05

0.04

FIG. 2. Plots of coexistence curvdssusceptibility loci, etc., as
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while ¢, _, has a more complicated form. Now note that the
leading asymmetric correction amplitutie given by(3.36),

is proportional toj, and via(3.23 may also be written sim-
ply as

= —3j,B/(1-]) (3.40

lj
in terms of the coexistence curve amplitude,In order to
highlight this feature, it is useful to define a normalized sus-
ceptibility difference orasymmetry factoby

vy v
AX(T)E—)f’fN A (3.41)
XnNT XN
From (3.34), we then obtain
AT =L+ (= Cplt] -1+ ]2
+1g|t] %+ (3.42

Evidently, the pressure mixing coefficiejp dominates the
susceptibility asymmetry near the critical point. This sug-
gests that it may be possible to det¢stexperimentally by
measuring the susceptibilities on the two sides of the coex-
istence boundary. Note that in cagevanishes, the leading
behavior is controlled by,o<(l;+j;) with exponentA—1
=0.56; for d=3 Ising-type systems.

D. Mixing coefficients

It is clearly of interest to express the linear mixing coef-
ficients entering the scaling fieldd.4)—(1.6) in terms of
various thermodynamic quantities which might, at least in
principle, be measured in experiments or simulations. As re-
gards the fieldp, we have already noted i{3.22 the simple
expressions fokg andl .

The pressure-mixing coefficienjt;, can be obtained most
simply via (3.16 from the singular amplitude&,, in u,(T)
andA, in p,(T), but it can also be found from the asymme-
try in the susceptibilities at coexistence: $8689—(3.41) in
Sec. llIC. Thus we have

j2=A,l1A=—1/(3B=1)), (3.43

whereB is the coexistence-curve amplitude defined3r20.

Then, from the observable limiting derivativeg, .
=(du,/dT). and p, =(dp,/dT)., which correspond to
Ko1andp,;, we may obtain

ki= (pCIu’(,TC_ j sz’rc)lpckB

:[pc/uz’rc_ p:rc(A,u/Ap)]/Pc Kg. (3.49

in Fig. 1, based on simulations for the restricted primitive model by ~ The remaining two linear mixing coefficients, and |,

Luijten etal. [25]. The critical parameters adopted afE
=0.05069 and p%=0.079 corresponding to a/=5 fine-
discretization leve[25].

can be obtained by using the amplitudas, , andS;_,, in
(3.25 and(3.29 which describe thét|1~* singularity in the
density and entropy diameters. Taking a ratio yields
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l1+], :Al—a
jiko—1 S’

(3.45

where we have useld=1, while k, is given in(3.22. On
the other hand, from the ratio &, , to A, we obtain via
(3.13 and(3.25 the distinct relation

|1+11: Ai-q
7| (2—a)(1-j)A,’

(3.46

where 7 is given in(3.14). Sincer is linear in the mixing

coefficientsj; andl; one can, in principle, solve these two
equations forj; andl,. In practice, however, lack of preci-

sion in measuring the amplitudes,, A;_,, andS;_, is
likely to produce large uncertainties.

E. Yang-Yang anomaly

The Yang-Yang relation(1.1) in the two-phase region

(T<T,) can be usefully rewritten d2]

Cu(T.p)=C¥'=(0/v)C(T+Cu(T),  (3.47
wherev =V/N=1/p and
Cp(T)=v.T(d?p,/dT?),
C(T)=—T(d%u,/dT?). (3.48
The resultg3.11) and(3.195 then yield
Co(M=A,Jt| *+B,+aplt|? +- -
+byft|% e B4t A O (3.49
CuM=Alt| *+B,+a,lt|’ «+. .-
+Cyft] %@ 4D [t % E 0 (3.50

where the various coefficients follow straightforwardly from

(3.12—(3.14), (3.16 and(3.17): see alsK (3.103. Follow-

PHYSICAL REVIEW E67, 061506 (2003

(less than L On the other hand, simulations of the hard-core
square-well fluid 6] indicate thatR, is small but negative,
close to zero: correspondingly; should be small but posi-
tive.

IV. SPECIAL CRITICAL LOCI

In this section we use the scaling formulation to obtain
asymptotic expressions for various interesting critical loci
that lie in the one-phase regions of the phase diagram. For
convenience, we introduce a superscript indedefined so
that: .=i for the locusu=pu., say, the criticalisokyme ¢
=ii for the critical isobar,p=p.; ¢=iii for the critical iso-
therm, T=T,; and.=iv for the critical isochorep=p..

A. Critical isokyme, pu=H

On the critical isokymeu= u. (or ,ZLZO) the scaling
fields (1.4—(1.6) reduce to

P=p—kot—mgp?—rot?—ngpt+-- -, 4.1
h=—j,p—kit—mp?—rt?—nept+---, (4.2
T=t—jlb—mlbz—rlt2—n4bt+'~~. (43)

Notice that the scaling variabley=Uh/[t|*~—(j,p
+k;t)/|t—j.p|* now diverges, in general, when the critical
point is approachedi.e., whenp, t—0) sinceA>1 for
fluids. Hence, we need the expansions of the scaling func-
tions W’ (y) for y—o. On using(2.3), (2.4), and(2.12, we
obtain

p= Kot +mop?+rot2+nspt+- -
+QWA(U[R)@ 8 1+ wiE(U[R[) A+ . ]
+QMO4)U4C(U|'ﬁ|)(2—a+0)/A[1+ o,

+ T QWU (U[R|)Eat /a1 4 ..., (4.4

ing Ref. [2] it is reasonable to define the strength of theWheéreon=sgn(). Now t andh can be expanded in terms

Yang-Yang anomaly via

C.(T)

_ A,
R,=lim ————=c—7. (3.51
By (3.32 this leads immediately to
Ru=—12/(1=]p). (3.52

Note thatR, depends only orj, (not onj;). Fisher and

Orkoulas[2] estimatedR, for propane from experimental

data on the two-phase heat-capacity and obtaified

=0.56: this suggest$,=—1.27. They also analyzed the

heat capacity data for COand estimatedR,=—0.4
(x0.3) which implies that, should be positive but small

of p andt using (4.2 and (4.3) and the resulting equation

may then be solved iteratively fqr as a function ot. After
some algebra, this yields the critical isokyme in theT)
plane as

P(=[P(T)—pcllpckaTe=Pit+ Pyt
+ ATV A L bl || AA =P[R
+by|t| A by|t| BT AL 4 pyt|fs /A
+bg|t|(ﬁ*‘95)’A+--~]+-~-, 4.5

where *= refers tot=0 while

pi=Ko, Ph=ro+kimo+Kkons,
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A= QWO (U [ky+joko|) ™)/, (4.6)

and the amplitudebi , - -+ of the correction terms are given

in K(3.112.
Note that the leading singular exponent is{(2)/A=1

+ 671, whered=A/g is the standard critical exponent char-
In the case of the

acterizing the critical isotherm.
(d=3)-dimensional Ising universality clasé=4.8 so that
1+ 8 '=1.21. This implies that the curvature pf(t), the
pressure on the critical isokyme, divergesTas T,. Also by
convexity—see Sec. Il A—the leading singular amplitwq,e
is positive regardless of the sign bfOn the other hand, it

transpires that the amplitudg, of the leading odd correction

contains the signum factar,, so that its sign depends dn

Later we will see that the sign d&f can be determined from
the mixing coefficienk;.
To obtain the critical isokyme in thep(T) plane, we first

substitute(4.5) into (4.2) and (4.3 and expres$ andt as
functions oft. Using these results in the definitiofi®.15

then yieldsp and's in terms oft. Finally, from (2.18), we
obtain the density on the critical isokyme= ., as

P! (T)=pc 1 BIt| 74+ Byt]22/4 + Ayt 472+
+ Bi4|t|(,8+9)/A+ et Bi5|t|(/3* )AL .Y, (4.7)
where * refers toh=0, while the leading coefficients are
B'=(1+8 1) (1~ o)Ay ket Ko,
By=—i2(2-a+B)(B)(2-a)(1-];), (48
and the further coefficients are presentedif3.113.

Note that the leading singular exponent $A=45"1
which is less tharB so implying that the critical isokyme in

PHYSICAL REVIEW E 67, 061506 (2003

/2: _kot_qO,ZLZ—rotZ—vO’ZLt+ .
— QW2 (U[h) @A+ wit(ulhl) A+ . ]
_Q\Ngoll)UAc(U|'F]|)(27a+8)/A[1+ o]

—QWU(U[h|)EmattaA[1 4., (4.12

Solving this equation iteratively fq& in terms oft with the
aid of (4.10 and (4.11) expresses the critical isobar in the
(@, T) plane as

w0 =[p"(T) = pcllkgTe=—kot+ p5 t7+ - - -
+ ALt CTA[ 1 bl [t pf [t AT
+hL[t|7A bl [t|BHAL . 4 pl|t] %A

+hp[t|BroAL ., (4.13
where* again refers ta=0, while the leading coefficients
are

ph=—Tro+kovo—ksdo,
A= — QWL (UK, +ko|) ™),

b} = —(2—a)AL/A (ks +Ko), (4.14

and the further correction amplitudes are giverKi(8.179.

Note that the curvature of' (t) diverges at the critical
point with the same exponent as does the critical isokyme in
the (p,T) plane: seg4.5). The critical isobar also has the
same sign of curvaturaboveand below T, in the (u,T)
plane. By thermodynamic convexity, the leading singular
amplitudeA}, is negative. The amplitudes of the leading
odd correction term again changes its sign dependinfy.on

In the (p,T) plane the critical isobar can be obtained via

the (p,T) plane is significantly flatter than the coexistencethe same route used above for the critical isokyme. The re-

curve. Clearly, therefore, the critical isokynbelow T, lies

sult is

outside the coexistence boundary, i.e., entirely in the one-

phase region as is to be expected.

B. Critical isobar

At p=p. (or p=0), the scaling field§1.4—(1.6) with
(3.22 reduce to

Bz_kot_;l,_qo;bz_rotz_l)o/lt'i'"', (49)
h= =Kyt —Qou®—rot>—vout+- -, (4.10
~f=t—|l,ZL—ql,ZLz—r1t2—vl;Lt+---. (41])

As the critical point is approached along a general Iqces,
t,u—0), the scaling variable yoh/[t|*~(u—kqt)/
[t—1,.|* again diverges. Using the largeexpansion(2.12)
for p and rearranging4.9) yields

P! (T)=p 1+ B 1|77+ Bg[t|224+ Ag [t -8+ ..
(4.19

where=* here refers tqu= u. while the leading coefficients
are

+BU|t|(BFOAL Bt (BOAL .Y

B = — (145 1) (1—j) ALKy + ko,

Bl=—[(2—a)j,+B](BNHX(2—a)(1-]j,), (4.16

where the further coefficients are to be foundKif3.121).

Notice that the leading singular behavior matches that of
the density on the critical isokyme as given (#.7). For
smallj,(<1), the leading amplitudB" must, by convexity,
again be positive. The ratio betwe@& in (4.7) andB" is
simply

BI/B" :|(kl+J2ko)/(kl+ko)|BIA (417)
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C. Critical isotherm

WhenT=T, so thatt=0, the scaling fields again reduce
to yield, now,
P=p—p—Mop?—op®—Nopa+-- -, (4.18
and similarly forh andt. Once more, the scaling variabje
diverges, in general, on approach to criticality. Us{dglL8
and the larger expansion(2.12 for the scaling functions
yields an equation fop in powers ofx, h, T, andp which,

as before, can be solved iteratively with the aid of the re-

duced expansions fdr andt to obtainp as a function ofu.
The result for the pressure on the critical isotherm is

P" (1) =[p" (1) =Pl pkaTe=p+ Py p?+ -

Y P S P A R 1)

where = refers tou= u, while the coefficients are

p2 =Mg+0dot+Ng,

Ap =QWE(U[1— )@,

by = —j2(2— )AL IA(1-]y), (4.20

and the spectrum of higher order terms matches that in Y1=

(4.13: see alsK(3.127. The leading singular exponent is
again (2-a)/A=1+ 61, implying that the critical iso-

therm in the p,u) plane has a divergent curvature at the

critical point, and thermodynamic convexity ensur,eg
>0.
To obtain the critical isotherm in thep(p) plane, we first

invert (4.19 to obtain u~p—A} [p|@~ % and then use
this to express the generalized densitiegand's, as func-

tions offJ. Using(2.18 finally yields the critical isotherm in
the form

ol (p)=pe{ 1B pIF+ B |pIP4-+ A [p] /4 -
=Bl p| BBy .. +Bgi|b|(ﬁ+05)/A+ .
(4.2

where* again refers tqu= u . while

B =(1+ 5 H|(1-j)/(1-j)|FPAY . (4.22
andB « — (B')2: seeK (3.13]). As expected for the critical
isotherm the leading exponent is ag@i\ = 5~ 1. Assuming
that the pressure-mixing coefficienj is small (<1), we
find B" >0 owing to convexity. Now wheij,=0, the scal-
ing field h can be approximated hy which implies that the
critical isotherm in the 4,p) plane approaches the critical
point from higher density abovp., while from lower den-

sity below p.: this accords with the observed standard be-

havior.
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D. Critical isochore

Below T, in normal fluids the critical isochore in the
(m,T) and (p,T) planes coincides with the phase boundary,
no(T) and p,(T) (but see[23] for exceptions in certain
model3; however, the behavior abovig is of general inter-
est. Whenp=p., the result(2.18 for the density leads to

0=(1—j2)QUIT|AIWS (y) + U, dT| "W (y) + - -]
+i2(12= DQAUATPAWE (y) + -+ 12+ (I3 +]1)
X Q[T[*~[AyWE (y)— (2= a)Wo.(y) ]+ - -,
(4.23
where the primes denote differentiation with respeat. td/e

need to solve this equation fgrs a function of ; but on the

critical isochore we expecy—0 whent—0. Hence we
should now use themally expansiong2.8) for the scaling
functions W2 (y), W) (y), etc. The resulting equation in
powers ofy may be solved iteratively to obtain

y=Ya[t|1 A L+ y,[t] 0+ -], (4.24)
with coefficients
(2= a) (I, +j )W, . U W4 (425
. 2— .
2(1-j)W3,U wWo,

The scaling fieldp andh along the critical isochore can
now be found as follows: first, on combinirig.3), (2.4) and
(2.8) with (4.24), we find

P=Q[t|@ WO o+ W, YI[t[2727 2+ ... + U, W[T]
o U WY [T Pty (4.26

then, from the definitiori2.1) of the scaling variablg we get

h=(Y /O[T L4y, [T+ 1 (4.27)

finally, by expressing the scaling fields in termspofu, and
tvia (1.4)—(1.6), we can solve these two equations iteratively

for p andz as functions of. After some algebra, this yields
the critical isochore in thep,T) plane as

PY(1)=[p"(T) = Pcl/ pkeTe= Pt + P at>+ - - -
+ AN @1+ al ||+ aby [t
R L e = T [
X[1+by[t]%+ -], (4.28

where the leading amplitudes are

AY =QWl| 7127, By=Y,|7* @YU, (429
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while p,.1, P2, 7, and the correction amplitudes are give in y=UR/[T|*=eq(k) Y[T|F+ Y,[T|1 ¢ P+ - -, (4.39
(3.12, (3.14, andK(3.139. The amplitudeA'r‘)’ is positive
by convexity. which might be compared wittd.24) for the critical isoch-

In the (u,T) plane, the critical isochore is given by the ore. The coefficients are given by
closely analogous form

A (O =[1" (1)~ llksT VimEQUIWEPIWR,, Vo= ve oUW, (436

=gt frg A2+ - +j2Air\J/ |t|2‘“[1+a‘£’p|t|9 and we may note, for its future significance, that the leading

) . term in (4.35 vanishes identically for the speciklvalue
+a2’p|t|7*“+ - +ag’p|t|1*a*ﬁ+95+ -]

+(L+j)BY [t L0t %+ -], (4.30 Kopr=—3]2/(1~j2) =3R,. (4.37)
in which ,&0,1 and [LU‘z_are given in(3.16 and K(3.78), At this point the scaling fielg can be expanded in pow-
while the coefficientsAj , ay,, etc. are thesameas in  ers ofy and Tl vig (2.3 and (2.9) and then, via(4.35),
(4.28. wholly in terms of|t|. Finally, by using(1.4) and(1.5), and

When the pressure-mixing coefficiep vanishes, the
leading singulaft|?~“ term here vanishes; but in that case
the third derivative ofu" (T), the chemical potential on the
critical isochore abovd, diverges at criticality, since one . . .
typically has 2<1— a+ y<3. In view of these results one PO =Py st +py a2+ - - - +APLZ [ 1+aft]’
might also define a magnitude for a Yang-Yang-type of
anomaly by comparing the leading singularitiespimnd u

rewriting (4.35 as an expansion fdn one can solve fop
iteratively as a function of. After some algebra, we find

+afilt/?o+ - +alde]f ]

on the critical isochor@bove T;; but this naturally leads to + B(k)|t|1+ ymag ... (4.38
the identical ratio! One may thus Writ@;= —j2/(1—j2) P
=R, see(3.52.

where the leading amplitudes are
E. k-susceptibility loci _
o PIDIVIOCE A QU | P 1+ (k) (W2, BN WE ], (439
In this section we focus on the noveloci defined in the
one-phase region via the isothermal maxima/&t= y/p¥in

the (p,T) plane[6], wherexy=(dp/du)t: see alsq2.22). If BE,")=Y2|T|1+7‘“/U, (4.40
one considerg®¥ as a function ofu and T, the maxima of
XY at fixed T satisfy while p, 1, Ps2, 7, and the remaining coefficients are given
in (3.12. (3.14, andK (3.153.
ax® 1 (9)() X ap _o 43 The k-loci in the (u,T) plane can now be obtained by
op o <N Tplow) | (4.31 substituting this result into the scaling fields and usig9
once more. The result is
This leads to the condition
- pOW) =gt + pg o+ + AP [L+aflt]?
a—X> —k? or p| 2N Sk (432 (2 (W[|B+ 6
p Em T— X p (9;1 T— XNN) . +a2u|t| B+"'+a3u|t|ﬁ 54+ ... ]

, , +BWO ey (4.41)
see(2.14 and (2.21). By using(2.29, one can obtain the #
[L-derivative of;(NN and express thk-locus in terms of the
generalized susceptibilities introduced(128. After some

algebra, one finds

where ., and i, , are given in(3.16 andK(3.78 while
the principal amplitudes are

Xnnnt (14 2)pXnhn—€o(K) Xin— 3€aXhnet - - - =0, (4.33 Aﬁf):jzAék)ﬂLeo(k)VﬂT|2_a/U-

where, by convention, ynnn=(3°p/dh3); and ypnt BM=(14),)B®, (4.42)
=(4%p/dh24t), while # P
(K)— i _A(K)5(K) A K P —
eo(K)=3j,+k(1—jp) ande,=(I,+j)/(1—j,). (434 and& =iaAy"ap/A," fori=1.23.
(k) =3J2+k(1=]2) =)l =02) (439 Forﬂ practical purgoses the form of theloci in the

The condition may now be converted to scaling form bydensity-temperature plane is of most interest. To that end,
using(2.3) and(2.4); then by employing the smajl-expan-  note that the generalized densitigsand s, can be written
sions(2.8) one can solve to obtain using the above results as
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p/pc

FIG. 3. Selectedt-susceptibility loci for the van der Waals equa-
tion. The thick solid line represents the coexistence curve while th
thick dashed line is the diameter. Thie<{0) locus is the vertical

31

solid line, while thek=1,z,7 andk=—1 loci are portrayed by
long-dashed, short-dashed, dotted, and dot-dashed lines, resp
tively. Note that thekzg locus has the same slope at criticality as

the coexistence curve diameter.
=2QULeg(K) Y1 WS 5T %+ Y WS [t - .-
+o(K) YU s WEH[T[ 40+ - -

+L1U WO)[T]P 05 ..., (4.43

S=Q[t"“T(2— @)W? o= Y eo(K) Y1 WS [P+ -],
(4.49

wheret ~ 7t with 7 defined in(3.14). Thek-loci in the (0, T)
plane are given by

PR =1+(1=j)p+ialia—1)p>— (I3 +j1)5+ -,
(4.45

so that finally thek-locus varies as

pM(T)=pcf 1+ BRI L+ byft] "+ - T+ AL

+ AP+ BRI (4.46)
where the coefficients are
BY?=2e0(k) (1 2) Y1QUWS |7,
by=U,¢ f% T|6/\/\’321 (4.47)

1
A== (11 +])QI | (2= a)Wi g+ 5 ¥(WE )2 TWE

PHYSICAL REVIEW E67, 061506 (2003
(4.48

BY=(1-j2)QUUs WP %, (4.49
while the expression foA{ is rather complicated. What is
significant is that the leading amplitudg{ , varies linearly
with k and vanishes identically whektakes the “optimal
value” Kop=3R,, given in (4.37), while the other coeffi-
cients exhibited daot vary with k [despite the superscript
label (k)]. For k=kg, Wwe may say, loosely, that thelocus
points most directly to the critical densipy. Indeed, for this
reason examining th&loci may be of value in analyzing
both experimental and simulation data. Furthermore the re-
lation to the Yang-Yang anomaly ratio is again revealing and
suggestive.

Orkoulas, Fisher and Panagiotopoul@d examined the
k-loci for the hard-core square-well fluid using grand canoni-
cal Monte Carlo simulations. They observed that kHeci

éor different system sizes settle down and become indepen-

dent of size at high enough temperatures. Within the preci-
sion attainable these loci can be considered as thekitoe

%for the thermodynamic limjt However, whenT—T,, the

inite-size loci clearly deviate from the limiting behavior. For

the data in hand the finite-size effects become evident when
t=(T—Ty/T:<0.1.

To estimate thek-loci near the critical point, we have
fitted the data fort=0.1 with the formula(4.46), retaining
only the coefficientlB{?, Al , and A{¥, while adopting
Ising values for the exponents and takipg=0.3067 and
T.=1.2179[6]. Some of these estimates are presented in Fig.
1. Similarly, some of the estimatddsusceptibility loci for
the restricted primitive moddR5] are shown in Fig. 2. For
comparison, Fig. 3 presents thdoci for the van der Waals
fluid: see Sec. V. Note that for the van der Waals fluid all the
k-loci approach the critical point linearly, which, of course, is
consistent with the classical exponent equalitigs=21 — «
=1.

F. k-heat-capacity loci
It is also interesting to examine theheat-capacity loci or
C{-loci defined by points of maxima of the modified spe-
cific heat

C(T,p)=Cu(T,p)/p", (4.50

in the (p,T) plane, whereC,, is the constant-volume specific
heat. These are clearly quite analogous tokdsesceptibility
loci discussed in the previous section; but they have not, as
yet, been used in any simulations. T&&’-loci can, in prin-
ciple, be obtained in a way similar to that used for the
k-susceptibility loci by starting with the relatio2.27).
However, when one takes a derivative(@f27) with respect
to w at fixed T, the expression becomes complicated and
difficult to handle. Therefore we outline a different, canoni-
cal approach.

The required maximal points in the (T) plane at fixedl
satisfy
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1.3
T*
1.2

1.1

FIG. 4. Thek-heat-capacity loci for the hard-core square
fluid in a finite periodic cube of side derived from previous simu-
lation data[6]. The dotted curves are the loci fa*=L/oc=6,
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where 1V (t) and p" (t) represent the variation gf andp
on the critical isochore as obtained(#h28 and(4.30. Then
the relationu(T,p) = (df/dp)t yields

()= (ue/kTo) + m™(1). (4.57)
Finally, we have
f2(0)=3 (0l dp)il p=p = 2xNA(tip=po). (458

To obtain the reduced susceptibility,y, on the critical
isochore, we may us@.29 and the previous results in Sec.
IV D. After some algebra we obtain

)V(NN:2(1_J'2)2QUZW32|Tt|_y

X[14+U o WEWE ) |t %+ -], (4.59

wel wherer was defined in3.14). Note that the pressure-mixing

coefficientj, first enters in @'~ correction; but that is of
higher order than thé¢? term retained here. On taking the

whereo is the diameter of the hard spheres; the dashed lines are fdeciprocal and differentiating twice with respectttove fi-
L* =9, while the solid lines are for* =12. Note that since the Nnally have

systems are finite these lognd thek-susceptiblity loci extend
belowT,.

To find a convenient expression f@,(T,p), we consider
the Helmholtz free energy densityf(p,T)=pu(p,T)

—p(p,T). In terms of the reduced variablgs x andp one
has

f(p.t)=[f—fcl/pckaTc=(1c/KeT)Ap+pu—p

with  Ap=p—1. (4.52
The reduced specific hed®.25), is then
Culp)=(pTe/kepcT)Cy=—(#*F/3t?),, (4.53
while thek-locus equation(4.51), becomes
—(k+1)Cy+p(aCy1dp),=0. (4.54

To solve this forp as a function ot, we first expand,
about the critical density in powers dfp for t>0. If the

expansion coefficients aﬁ%(t), T‘l(t), .-+, We can rewrite
the locus equation as

—(k+D)fg+F+[(k— 1) F;+2F5]Ap+0O((Ap)?)=0.
(4.55

To expand the coefficienﬁs‘é(t), etc., in powers of, no-
tice first that, from(4.52 with p=1 or Ap=0, we have

fo()=p () —p" (1), (4.56

2f5(1)=Dt" [1—dyt’+ -], (4.60
where the coefficients are
_ vy=DlA”
2(1-j)2QUAW.,’
~ +0)(y+6—1)U, W)
d9=(y )(y YUy +2|7-|0. (4.61)

y(y—1)We,

We are now in a position to sol\d.55) iteratively forAp
as a function oft by using(4.28, (4.30 and (4.60. One
finally obtains thek-heat-capacity o€{’-locus in the form

(4.62

where, recalling4.29, (3.12 andK(3.689-(3.78), the ampli-
tudes are

p(ck)(T) =pd1— B(Ck)tzﬂ—Ag()t2£+a+ -,

BY=(2-a)(1-a)[1+k(1-]2)]A /D,

AL =[py 2+ K(Py2 142 ]ID. (4.63
Note first that the exponentsB2and 28+ « are numeri-
cally very close(since a=0.1), so the two terms derived
compete strongly near the critical point; furthermore, a
|t|*~* term also appears in the full expression. However, the
leading amplitudeBY does vanish when
k=kc=—-1(1-j,)=R,—1. (4.69
This value can be compared t&3 for thek-loci: see(4.37).
However, one must keep in mind that it will be more difficult
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to resolve the “optimal”k value here, compared to the w(T,p)=(dfldp)r, p(T,p)=pu—*. (5.5
k-susceptibility loci, since the term varying &€ * does not
vanish atk=kc. In the two-phase region, the liquid and vapor phases, with

In order to gain some impression of the behavior of theselensitiespq= pc(1+mjq) and pyap=p(1+my,y), respec-
CS,k)-Ioci, we present in Fig. 4, some of theheat-capacity tively, must have the same chemical potentjal,(T), and
loci obtained for the hard-core square-well fluidfimite sys-  pressurep,(T). Solving these two conditions fqgs;, and
tems. Note that since the exponenj8, 28+ a, 1—a, etc.,  py,, by using(5.3) and(5.4) yields the desired phase bound-
are closely spaced, it is not feasible to extract reliable estiaries. The detailed calculations are presentel if26]; the
mates of the thermodynamic limiting loci from such finite- results are
size data.

M(T)= 3 (Miig+ Myap =Ast+At2+0(t%), (5.6
V. CRITICAL LOCI IN CLASSICAL THEORY

In this section, as concrete, albeit rather special, examples Mo(T)= 3 (Mjg— M) =B[t|"{1+Cit+0(t3)], (5.7
of the various critical loci discussed above, we consider the

classical theory of a liquid-gas critical point. In particular, o(T)= et ot + pot?+ uat3+O(t4), (5.9

the van der Waals equation will be used to provide quantita-

tive illustrations: it reads P, (T)=pct pit+pot?+ pstd+O(th), (5.9
p=pksT/(1—bp)—Ap?, (5.0

where the amplitudegl, KZ, B, etc. are expressed in terms

whereb and A are constants which measure the molecula©f the coefficientsay, in the Appendix. The results agree
size and the strength of the attractive interactions, respedVith those of Sengers and Senggt8] who, however, give

tively. As well known, one has them only to one order lower inh
kgTc=8A2Tb, p.=1/30, p=AlT0* (5.2 B. Critical isochore and analytically continued loci
Less well known is the behavior wheh—0 of the liquid In addition to examinindi) the critical isochoreaboveT,
and vapor densities and of the phase boundagyT)— one may, for critical points describable by classical theory,
—A/b: seeK (Appendix D. always consider thanalytical continuatiorto T> T, of vari-
ous loci otherwise defined only far<T.. Specifically, we
A. Phase boundaries will study: (ii) the continued coexistence curve diameter

The Helmholtz free energfor its appropriate analggn a p(T); (i) the continugd saturation chemica} potential
|assi . +(T); and (iv) the continued vapor pressure ling (T).
classical or Landau theory may be taken as analytic througtﬁ ; o X . -
" ; ; or nonclassical critical behavior, the analysis of the previ
out the critical region. Accordmgly, to formulate_t_he the_ory_ ous section demonstrates that, in general, these last three
we expand the free energy density around the critical point iy _~ .. . S 4 y .
continuations cannot be uniquely defined since all carry sin
terms of the order parameter

gularities atT...

m=(p—po)!pe (5.3 We address first the appearance of these loci in ph&)(
plane: see Fig. 5. The critical isochorg), is trivial; the
and the temperature deviatior (T—T¢)/T, as continued diameter, sayp; (T)[=p(T)], follows directly
o w from (5.7) and has a critical slope
= S mitk i - _
f(Top)= 2y 2 anmt with az=ax=0, (dpy 1A= Aype, (5.10
a,>0, (5.4  Wwhich isnegativefor the van der Waals equation: see Fig. 5

for which the quadratic terms inwere also computed.

where the conditions stated serve merely to ensure normal To determinep;; (T), the density locus on which the
critical behavior. The explicit values of the leading coeffi- chemical potential is the analytic continuation of the phase
cientsa;y for the van der Waals equatidh.1) are derived in  boundary,u,(T), we may substitute5.8) in the full expan-
K (Appendix Q where it is seen that a special feature is thatsion for u(T,p) that follows from(5.4) and(5.5). This gives
all the cubic coefficientsazy (k=0,1,2; - -), vanish identi- an equation connecting andt which is easily solved fom
cally, as do many higher order coefficients suchags a;s, in powers oft although theu,t? term in(5.8) is needed even
etc., for allj=2. Of course, these features should not bein linear order. One finds
expected to hold in real systems or in more realistic models
even when a classical description of criticality may be war- (dpji 1dt)=paziaso— 2a31a40)/8aﬁ0. (5.1)
ranted. The leading nonvanishing van der Waals coefficients
are reproduced in the Appendix here. The locusp;; (T) can be regarded as affective line of

From(5.4), the chemical potential and the pressure can besymmetryalong which the chemical potential is analytic.
expanded using However, as seen in Fig. 5, this locus differs from the ana-
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lytic continuation of the coexistence curve diameter, 2.5
pii (T)—another natural candidate—even in the lowest order

in t. P
The locusp,, (T), along which the pressure is the con- pe 2 [
tinuation of the vapor pressure curye,(T), can be found in
an analogous way. Substitutiri§.9) into the expansion gb

following from (5.5) leads to 151

(dpiy /dt)c= pl @p1a40+ Ap1850— 2831840)/885,  (5.12

(iif)

[
(i)

05 F 4

which, in fact, differs from both5.10 and(5.11): see Fig. 5.

In the (u,T) plane one can find results for the same four
loci by using(5.4) and the expressions found for the loci in
the (p,T) plane. In all cases the initial slopes are the same,
thatis w,/dT).= u, for c.=i—iv: see Fig. 6. However, the : L . . L .
initial curvatures differ, being given by.ui .= 2a,, and -0.5 -0.25 0 0.25 0.5

t

Pt o= 2815~ 8z1( 2831840~ 2821850 /2859, (5.13 _ N _ _
FIG. 5. Various critical loci for the van der Waals equation of
[ _ _ 2 state in the f,T) plane, wherem=(p—p.)/p.. The coexistence
Pottiic= 2812~ Az 285800~ 80850 /28%0, - (519 L R With a thick solid Iinediy Critical isochores i
coexistence curve diameter and its analytic continuation into the
one-phase regiortiii ) analytic continuation of,(T); (iv) analytic
continuation ofp,(T); (v) (k=1)-susceptibility locus.

2
pcﬂi,\,/,c: 2a,,— ay( 2831840~ 8850 Apds0)/287,, (5.19

where the primes denote differentiation with respectt.to
Notice that in Fig. 6 the critical value and a conveniently
chosen term linear ih have been subtracted. Thus one can

clearly resolve the differences in curvature and observe th _— . . . .
the sequence of loci, from top to bottom, is the same as i ubstituting the expansidis.4) and solving form iteratively
Fig. 5 ' ' yields thek-loci in the (p,T) plane generally as

k(9%t19p?) 1+ p(33F19p3)+=0. (5.21)

Similarly, the loci in the p,T) plane can be obtained.
Again, all have the same initial slopes while the curvatures
are distinct as follows from

pN(T)=p 1+my(K)t+my(K)t2+0(t)], (5.22

with coefficients polynomial irk, namely,

! .=2a3,— 22, 5.1
P/ =21~ 28, (5.16 my(K) = — (Kag+ 3a3))/12a,, (5.23

pi,i,,c: 2245~ 220, Ay1( 2831240~ 2821350)/ 234210, (5.17

0.5 ————T—————

Pliic= 2815~ 280y~ 821(2831840~ 3213502850, (5.18) i\
0F

"o 2
Piv,c= 2@12— 280, Ap1( 2831840~ A21840— A21850)/2a70 -

(5.19 [
N -0.5 |
In the van der Waals case the curvatpfg, for the critical [ peAp
isochore, vanishes whilgj ., for the analytic continuation [ Pc

of p,(T), is positive so that this locus lies above the critical -1
isochore; the remaining curvatures are all negative and the
sequence of loci is again the same as in Fig. 5.

15 F

] (i)
C. k-susceptibility loci ] (i)
1 (11
Since the density increases monotonically wittat fixed 22— P
T, the maximal condition (4.3) specifying the -0.25 0 0.25 0.5
k-susceptibility loci can be rewritten as t
&X(k) 1[/ay ¥ FIG. 6. Critical loci for the van der Waals equation in the,T)
( ) =— (_> —k=|=0, (5.20 plane: pc.Au/p. is plotted with, for illustrative purposes\u=
ap | p*l\dp); P w—pe— (g + 3)t [see(A5) and(A13) for u. andu,]. The graphs

include only the second and third order terms.ifhe phase bound-
and, thence, in terms of the free energy den${fy.p), in  ary, u,(T), is drawn with a thick line. The labeling)—(v) is the
the simpler form same as in Fig. 5.
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4 T v 2
[ C d°p
- _ 2=V - T2
: C (T):pCTc?r P (T):Tcﬁa
3 -
_ d’u
) ] MEM==pele (5.26

where the factor§'§ have been introduced simply for dimen-

;Cv . sional convenienc¢Compare with(3.47—(3.48.] Above T,
[ i the functionsC *(T), P*(T), and M "(T) may be defined
or C,(T) - on the critical isochore in precisely the same way. The Yang-

Yang relation then impliesC*=P=+ M ~. In classical
theory we may expand in powers bfor t=0 to obtain

_1 1 L
-0.25 -0.125 0 0.125 0.25
t

FIG. 7. The specific healy(T,p,) (solid curve on the critical ~ and likewise forP*(T) and M “(T). The leading ampli-
isochore of a van der Waals flu(dmes% in units ofkg), compared tudes abovd . are simply
with the corresponding contribution&,(T) and C,(T) (dot-
dashed and dashed plptsrising from the isochoric variation of
pressure and chemical potential: $8e48 and(5.26). Note that the
standard kinetic contribution to the total specific heat, nan%ein

CH(T)=C; +Cit+0(1?), (5.27)

C;r =— 2302, ,P;r = 2(312_ a02)1 M; = _2a12! (528)

while the amplitudes of the terms linear tirare

(in d dimensiong arisesentirely from f:#: —Tw". The plots be- C1{=6(P3—peits), CI = —6aps,
neath T, are correct only to leading order int= ¢
(T-TI/Te. P =6ps, P;=6(az—ap),
m2( k) = % {ka22+ 3332+ 3[(k+ 1)a31+ 4a4]J ml(k) M I = - 6pC/“L31 M JJ_F = 6a13, (529)
+6[(k+2)asot Sasllmy(k) 1%} /asp. (524 whereus andp; are given in the Appendix from which one

readily sees that the slopes are discontinuous adross
Indeed, it is well known that the specific hea{(T) on

o, o, the critical isochore exhibits a finite jump at a classical criti-

my(k)=—3k = ma(k)=—35k(k™+tk=3) (529 ¢4l point which, in fact, is of magnitude given by

For the van der Waals equation these results yield

(see the Appendjx Note that wherk=0, the coefficientsn; pTACy=AC=C, —C; =}a5/ay. (5.30
andm, both vanish; furthermore, an exact calculation shows

that all the expansion coefficients vanish identically kat It transpires, however, that in general both the second deriva-
=0 so that one has'®)(T)=p.: see Fig. 3. We also find that tive of the pressurand of the chemical potential have a
the slope of thé-locus at criticality becomes equal to that of finite discontinuity on the critical isochore. This arises from
the coexistence curve diameter whies 2. In Fig. 3 the the presence of the odd coefficients andas, (even though
k-loci for the van der Waals fluid at several valueskdfave  aj; vanishes “by accident” for the van der Waals equation
already been presented. Comparison with Figs. 1 and 2 res follows from

veals that the behavior of these loci is closer to those for the

hard-core square-well fluid than for the restricted primitve AM=M; — M =3 ax(2az240— az1as0)/agy, (5.31
model. Figures 5 and 6 show how thie<{1)-susceptibility

locus appears in thep(T) and («,T) planes and relates to With, of course AP=AC—AM. o
the other van der Waals loci: see the plots labeled v. These results are illustrated for a van der Waals fluid in

Fig. 7. Clearly, the variation of both the pressure and the
chemical potential contribute to the discontinuity in the spe-
cific heat on the critical isochore. The relative degree of the

It is natural to ask how, if at all, a Yang-Yang anomaly two contributions may be gauged by evaluating the ratio

might appear in a classical theory. To that end we discuss, in
this section, the Yang-Yang relatiqd.1) on general linear . AM a3 as

loci in the (p,T) plane and also derive an analogous relation Ru= AC Ay  Ag’ (5.32
for isotherms.

D. Yang-Yang relation and some extensions

o which, as the notation suggests, might be regarded as an
1. On the critical isochore effective Yang-Yang ratio for classical systems. Indeed, if

On the critical isochore = p, in the two-phase region R, vanishes, as in the case of simple lattice-gas mean-field
below T, it is convenient here to define the functions models, the isochoric second temperature derivative of the
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chemical potential becomes continuous through the criticalor the van der Waals equation differs from the analytic con-
point: then, the only contribution to the discontinuity in the tinuation of the coexistence curve diameter; but it is, rather,

specific heat on the critical isochore arises from the variatioRhe locus on which the effective Yang-Yang rat’iéw van-

of the pressure ishes!
) ) _ Now, extending the Yang-Yang relation to the general lo-
2. On linear density loci cus(5.33 leads to
In light of the various critical loci that approach the criti- -
cal point linearly in the §,T) plane of classical systentisee pCv pcr™ s +
Fig. 5), it is rather natural to extend the Yang-Yang relation T 2%, =T APr(M+M (D], (540
C

to the general linear locus

_ (1 53 where p=p(1+rt) is understood and, as befor€; de-
p=pdl+rt). (533 notes the isothermal compressibility: s€¢éAppendix B.
To that end consider, first, the second temperature derivative% In hctlfassmacljl theqr)&stz)ls re(;atlotr;smp mt«'ity dbe_ vzrn‘led
of the pressure and the chemical potential near criticalityQ‘ raig! or\:cvarcy/l_Jrsm di ’an su(;qu;Jeg yl' _(:Irlve ex-
along this locus. FoT<T,, there is no dependence on pressions fopCy /T and 1p°Ky, on(5.33. Explicitly, one

because, since the exponehtis less than unity, the linear finds the initial _derivatives_ of/ (T) and M, (T) at criti-
locus (5.33 always lies in the two-phase region whan Cality to be cubic polynomials, namely,

—T.—. Hence the result$5.29—(5.31 still apply. In the
single-phase region abovie,, the previous definitions may
naturally be extended by taking

P:lz 6[a13_ a03+ 2a22r + (a21+ 3a31) r 2 + 4a40r 3] , (541)

::1: - [6a131+ 2(a12+ 6a22)r + (4321+ l8a31)r2

. 7°p . P + 242,03, 5.4
Po(T)=T2 ﬁ) , M (T)y=—pT? e (5.34 ] (542
' ' which, of course, satisfy the generalized relatir0 with
From (5.4) and (5.5 these functions may be expanded p2l p?K =28t +O(t?). (5.43
straightforwardly to yield the limiting values
77r+,c: 2(2ay,f + a1y Agy), 3. Yang-Yang-type relation on the critical isotherm
An important locus in thed, T) plane is the critical iso-
M, = —2(ay,+2a,r). (5.35 therm,T=T,. In analogy to the Yang-Yang relation for iso-
’ choric variations one can derive a correspondsajhermal
In an obvious notation, we then obtain relation, namely,
AP, = ay(@pi840— 2831840+ 8p1850)/2a5,— 4ayr, (5.36 1 azp) P (5.44
= —_— —p —_— .
p?Kr \ap?/ . "\ ap?)

AMr = 4aer + 321(2a31a40_ 321350)/234210 . (537)

eK(2.97.
To apply this to the critical isotherm, recall that the gen-
erally expected critical behavior is

Whenr =0, i.e., along the critical isochore, these results of°®
course agree witl5.31).

It is now interesting to define, as specifying that locus
along which the pressure has a continuous second derivative 1/p2KT~Dt|Ap|5_1 for Ap=p—p.—0=. (5.45
at criticality and similarly forr ,,. From (5.36) and (5.37), ¢ ¢
we thus find In classical theory one ha$=3 and findsD*=D"
=123.40/p§. More generally one might define the pressure

_ _ 2 _, 1
F = (81850~ 2831840)/8250=Tp~ 5 821/8s0.  (5.39 and chemical potential contributions (6.44) via

For the van der Waals equation these expressions yield P ()= (%0l 90> M = (Pl >

=0.8 andr ,,=—0.2. On the other hand, frort5.10, the A A
locus of the analytically continued coexistence diameter is at T=T.. (5.46
specified by

. It is then natural to ask, as on the critical isochore, how
I =(ap850— Ag1840)/4a%, (5.39 the two contributions—one fromp, and one from
. pu—contribute to the overall singularity in5.45 and
which takes the value= —0.4 for the van der Waals equa- whether that might throw any further light on the pressure-
tion. Evidently, all three loci are distinct! Note especially, mixing coefficientsj, or j,. It turns out, however, that mat-
however, that ,, is equal to the slope of the effective line of ters are very different! In fact, by appropriate integration of
symmetry at the critical point: sg&.11). Hence, as already (5.45, one can obtain the leading singular behaviobaoth p
shown by Mulholland[28], this putative line of symmetry andw on the critical isotherm. Then one finds that the lead-
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ing singularities ofP,(p) and M, (p) both vary agApl®? 4. For both thek-susceptibility andk-heat-capacity loci there
and are, thusmore singularthan is their sum! Indeed, these are “optimal” values ofk, depending only on the pressure-
leading terms must cancel exactly (.44 so that the be- mixing coefficientj,, for which the dominant singularity at
havior (5.45 for 1/K; appears only as a net correction term. criticality vanishes. Thus these particular loci approach the
Needless to say, the classical theory fits in with this descripcritical point in the p,T) plane almost linearly: seg.37)
tion although, since is an odd integer, there is ambiguity in and(4.64.
defining appropriate “singular contributions.” More gener- The magnitudes and inter-relations of the various critical
ally, while there may well be effective ways in which an loci, including analytically continued logiin the (p,T) and
estimate of the degree of pressure mixing can be found frorfiw, T) planes are illustrated in Figs. 5 and 6, respectively, for
isothermal observations, we have not identified a good carthe van der Waals fluid. Corresponding analytic results for a
didate. general classical fluid, defined via the Landau expansion
(5.4), are given in(5.6)—(5.9) and(5.10—(5.19 and, for the
k-loci, in (5.22. The Yang-Yang relation and its generaliza-
VI. SUMMARY tion to a linear density locugn (5.34 and(5.40] are dis-
. . cussed for classical systems—for which there is no uniquely
We have carefully formulated a full or “complete scaling gefined “anomaly”—in Sec. VD. Figure 7 illustrates that
theory” for asymmetric fluid criticality that, in particular, pow pressure and chemical potential variation contribute to
mcorpor_ates_ pressure mixing in the basic Im_ear and nonlm.the specific-heat jump in a van der Waals fluid.
ear scaling f_|elds._The theory can then describe a_Yan_g-Yang Finally, in part Il of this article[29], the present scaling
anomaly[2] in which the second temperature derivative of ¢,y ation with pressure mixing will be extended ftoite-
thze chen’zncal_ potential along the phase boundary, namely e systemswith periodic boundary conditions The re-
d°p,/dT", divergesat the critical point with the s_pec;ﬂc sults, which include the definition and analysis of “Q-loci,”
heat exponeni. This is shown to entail, also, a leadiftf? are of practical importance in the analysis of simulation data

term in t_he coexistencel_curve diameter that dor_ninates OV&hr near-critical asymmetric systerf,25] as will be further
the previously knownjt|*~* term[15] and a dominanit|? demonstrategi29].

singularity in the normalized susceptibility asymmetry across

the coexistence curve. The strength of the Yang-Yang ACKNOWLEDGMENTS

anomaly, R, , is directly related to the linear pressure-
mixing coefficient in the ordering fielth that we have la- Erik Luijten collaborated in producing the coexistence
beledj,. curve estimates for the restricted primitive model electrolyte

For convenience of reference, we identify here the mairpresented in Fig. 2. Support from the National Science Foun-
definitions introduced and the explicit results derived. Thedation (through Grant No. CHE 99-81772s gratefully ac-

coefficientsj,, j,, Kg, - -+, Ns, v1, v, entering thenonlin-  knowledged.

ear scaling fieldso quadratic order are defined via.4)—

(1.7), in terms of reduced pressure, chemical potentialy, APPENDIX: PHASE BOUNDARIES IN CLASSICAL
and reduced temperature deviation(T—T)/T,: see(1.7). THEORY

The scaling ansatzin the form developed is presented in
(2.1)—(2.3 and the basic properties of the overall scaling
functionW..(y,y4,Ys, - ) are set out in2.4) together with
(2.8) and(2.10 for small argument,y| —0, and in(2.12 for
|y|—c0. Explicit expansions in powers df for the phase
boundaries,p,(T) and u,(T), are reported in3.11) and 3 5 5 5
(3.15. The corresponding expressions for theexistence A2~ [8s1(4a30841~ 483185850+ 10821840850~ 621830860
curve (and its diameter and for the entropies of coexisting _ 4 3 _ 2, a2 .2

gas and liquid arg3.20 and (3.21); Eq. (3.31) gives the 42380 sol 4822850~ BaAz A1~ 632150

The amplitudes for the coexistence curve introduced in
(5.6) and(5.7) are found to be

Ay = (azas0— aza40)/4a5,, (A1)

entropy on the critical isochorey=p., while the suscepti- +9a§1a40a60)+4a21a§0a51— 3a§1a§0a70]/16a20, (A2)
bilities on the coexistence curve are presente(BiB4). The
linear mixing coefficients themselves are related to measur- B=[ay/2a,0]*2 (A3)
able critical amplitudes, etc., i{8.22 and(3.43—(3.46).

Section IV addresses the behavior of various critical loci ¢, = (8aya3,— 8a,1a28,1+ 682,60~ 382,82
in the w, p, andp vs T planes. Theeritical isokyme defined
by u= e, is described irf4.5) and(4.7); thecritical isobar, +10a,,a5,840850— 785,82,)/16a,:85. (A4)

in (4.13 and(4.19; theisotherm in (4.19 and(4.21); and

the critical isochore in (4.28 and (4.30. The family of  The coefficients introduced if6.8) and (5.9 for the phase
k-susceptibility lociis defined via(4.31) while (4.39), (4.41  boundariesu,(T) andp,(T), turn out to be

and (4.46, with (4.34) elucidate their behavior in the, u,

and density vsT planes, respectively: see Figs. 1-3. The Peic=2a10, PcH1= 811, (A5)
analogousk-heat-capacity loci are defined i@#.50 while )
(4.62 describes their appearance in theT) plane: see Fig. Poia= 81T 8p1( 81850~ 2831840) 4850, (A6)
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_ 2.3 2 4
pcis= A1zt [az1(@3,850— 4221831850850~ 4840922
3 2 2 2.2
+4a518,03411F 5851240350~ 3251240860)
4 3 2.2
—4az@r18,0t s — 41800801 485850241

3.2 3 2.3
+ 2a3,a50— 3a31240860) — 2851351349

+a7085,3501/8a5,. (A7)
Pc=pcto—Agos  P1=pPcM1— o1, (A8)
P2=poits— oyt a5y4a40, (A9)

_ 3 2 2
P3= pcitz— Aozt 1440~ 282185034171 821240260
2.2 2.2 4
—a3;8301 2821831840250~ 851850)/8ay0.- (A10)

To specify the corresponding coefficiertg for the van

PHYSICAL REVIEW E 67, 061506 (2003

der Waals equatiofiseeK (Appendix Q] we takeA . to be

the thermal de Broglie wavelength at=T. in a
d-dimensional system and define
A=In(A%/2b)—1. (A11)

The leading nonvanishing coefficients are then
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