
PHYSICAL REVIEW E 67, 061506 ~2003!
Asymmetric fluid criticality. I. Scaling with pressure mixing
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The thermodynamic behavior of a fluid near a vapor-liquid and, hence, asymmetric critical point is discussed
within a general ‘‘complete’’ scaling theory incorporating pressure mixing in the nonlinear scaling fields as
well as corrections to scaling. This theory allows for a Yang-Yang anomaly in whichms9 (T), the second
temperature derivative of the chemical potential along the phase boundary, diverges like the specific heat when
T→Tc ; it also generates a leading singular term,utu2b, in the coexistence curve diameter, where
t[(T2Tc)/Tc . The behavior of various special loci, such as the critical isochore, the critical isotherm, the
k-inflection loci, on whichx (k)[x(r,T)/rk ~with x5r2kBTKT) andCV

(k)[CV(r,T)/rk are maximal at fixed
T, is carefully elucidated. These results are useful for analyzing simulations and experiments, since particular,
nonuniversal values ofk specify loci that approach the critical density most rapidly and reflect the pressure-
mixing coefficient. Concrete illustrations are presented for the hard-core square-well fluid and for the restricted
primitive model electrolyte. For comparison, a discussion of the classical~or Landau! theory is presented
briefly and various interesting loci are determined explicitly and illustrated quantitatively for a van der Waals
fluid.

DOI: 10.1103/PhysRevE.67.061506 PACS number~s!: 64.70.Fx, 05.70.Jk, 64.60.Fr
c

,
ea
tio
th

n
a
o
e
e
e

an

un

an
e

a
-
data
led
sce-
-
re-
bly
, a
de-
e

ling

rful
ty

en-

-

es.
tua-
cal

ng
eby
e,
ly,
ed,
n,
es
I. INTRODUCTION AND OVERVIEW

In 1964 Yang and Yang@1# derived the thermodynami
relation

CV
tot~T,V!5VTS ]2p

]T2D 2NTS ]2m

]T2 D , ~1.1!

for a fluid at pressurep, chemical potentialm, and tempera-
tureT, whereV is the volume andN the number of particles
while CV

tot is the constant-volume specific heat or, better, h
capacity. This has since been called the Yang-Yang rela
@2#. When it is applied to the two-phase region beneath
critical temperatureTc , one hasp5ps(T) and m5ms(T)
~wheres denotes the phase boundary on which liquid a
vapor may coexist!, and the partial derivatives become tot
derivatives. Since the observations of Voronel’ and c
workers in 1962–63@3# it has been well established that th
heat capacityCV

tot(T) diverges weakly along the phas
boundary when the critical point is approached. The div
gence ofCV

tot then implies that one, the other,or both of the
second derivativesps9 (T) and ms9 (T) must diverge whenT
→Tc2 along the phase boundary. The lattice gas model
its standard variants predict thatms9 remains finite atTc

while ps9 diverges like the specific heat@4#. However, Yang
and Yang suggested that in real fluidsboth should diverge
@1#: clearly this is a basic issue for the description and
derstanding of criticality in fluids.

Recently, Fisher and co-workers@2# carefully analyzed
experimental two-phase heat-capacity data for prop
(C3H8) and CO2 and showed that the evidence rath
strongly indicates thatms9 doesindeeddiverge like the spe-

*Present address: Department of Chemical Engineering, Ren
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cific heat whenT→Tc2. They dubbed this phenomenon
Yang-Yang anomaly@2#. Even though impurities in the pro
pane system have definite effects on the heat-capacity
@5#, the existence of a Yang-Yang anomaly cannot be ru
out and, in our assessment, remains the most plausible
nario. In fact, Orkoulaset al. @6# have performed grand ca
nonical Monte Carlo simulations for the hard-core squa
well fluid and concluded that this model system proba
exhibits a negative but small Yang-Yang anomaly, i.e.
specific-heat-like divergence in the chemical potential
rivative, d2ms /dT2, of magnitude significantly less than th
divergence ofv(d2ps /dT2), wherev5V/N. How can one
then accommodate such a Yang-Yang anomaly in sca
theory?

The concept of asymptotic scaling has proved a powe
tool for gaining insight into critical phenomena in a varie
of systems including fluids@7–12#. Furthermore, a scaling
equation of state has been rather well confirmed experim
tally for many fluids @13,14#. The currently accepted
asymptotic scaling description of fluid criticality@15# re-

quires two scaling fields, namely, a thermal field,t̃ , and an

ordering field,h̃, that, in leading order, are both linear com
binations of t }T2Tc andh5m2mc , the deviations of the
temperature and chemical potential from their critical valu
This description has also been extended to describe fluc
tions in finite systems and applied to estimating the criti
points of model fluids@16#. However, within this scaling
description, the chemical potential is always analytic alo
the phase boundary and through the critical point, ther
having afinite value of the second temperature derivativ
ms9 . Hence, in order to account for a Yang-Yang anoma
the current scaling description must be modified. Inde
Fisher and Orkoulas@2# argued that the pressure deviatio
p2pc , must mix into the scaling fields, especially into th
ordering fieldh̃.

se-
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KIM, FISHER, AND ORKOULAS PHYSICAL REVIEW E67, 061506 ~2003!
In order to formulate a scaling theory in which the pre
sure is mixed into the scaling fields, let us consider afull
thermodynamic descriptionof a one-component fluid as pro
vided by a functional relation between the three thermo
namic fields, pressure,p, chemical potential,m, and tem-
perature,T, say

Y~p,m,T!50. ~1.2!

Extending the approach sketched in Ref.@2# to include the
full spectrum of correction exponents~see also@17,18#! one
may formulate a rather general scaling hypothesis by as
ing that near a typical critical point, (pc ,mc ,Tc), the thermo-
dynamics can be described, at least asymptotically, by

C~l22ap̃, l t̃ , lDh̃; l2u4u4 , l2u5u5 ,••• !50, ~1.3!

wherel is a free, positive scaling parameter. In this expr
sion p̃(p,m,T), t̃ (p,m,T), and h̃(p,m,T) are the three rel-
evant nonlinear scaling fields, while u4(p,m,T) and
u5(p,m,T) are the leading even and odd irrelevant scal
fields, respectively. Including the quadratic nonlinear term
we may write the basic nonlinear fields as

p̃5 p̌2k0t2 l 0m̌2r 0t22q0m̌22v0tm̌

2m0p̌22n0p̌t2n3p̌m̌1O3~ t,m̌,p̌!, ~1.4!

t̃ 5t2 l 1m̌2 j 1p̌2r 1t22q1m̌22v1tm̌

2m1p̌22n1p̌t2n4p̌m̌1O3~ t,m̌,p̌!, ~1.5!

h̃5m̌2k1t2 j 2p̌2r 2t22q2m̌22v2tm̌

2m2p̌22n2p̌t2n5p̌m̌1O3~ t,m̌,m̌ !, ~1.6!

where we have introduced the dimensionless critical de
tions @2#

t [
T2Tc

Tc
, m̌5

m2mc

kBTc
, p̌5

p2pc

rckBTc
, ~1.7!

in which rc is the critical~number! density andkB is Boltz-
mann’s constant, whileOm(x,y,z) denotes a formal expan
sion in powersxjykzl with j 1k1 l>m. In accepting these
expansions we are neglecting any scaling-exponent ‘‘re
nances’’ that might complicate the expressions by introd
ing logarithmic factors, etc., @19–22#. For
(d53)-dimensional systems, particularly real asymme
fluids—which are of especial interest—this should be qu
satisfactory. The irrelevant scaling fields,u4 , u5 ,•••, will,
in general, have similar expansions in powers of the v
ables,t, m̌ and p̌.

As usual,a in ~1.3! is the universal critical exponent o
the specific heat andD is the gap exponent that is related
a and the exponentsb ~for the spontaneous magnetization!,
g ~for the susceptibility!, andd ~for the critical isotherm! by
the scaling relations

D522a2b5b1g5bd, ~1.8!
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while u4[u and u5 are thepositive leading correction-to-
scaling exponents. In the case of the (d53)-dimensional
Ising universality class, which is believed to character
fluid criticality rather generally, we may accepta.0.109,
b.0.326, g.1.239, D.1.565, u.0.52, and u5.1.32
@17#. Finally, substitutingl51/u t̃ u into ~1.3! yields the ‘‘ther-
mal scaling’’ form

F6~ p̃/u t̃ u22a, h̃/u t̃ uD; u4u t̃ uu, u5u t̃ uu5,••• !50, ~1.9!

where F6(x, y;•••)5C(x,61,y;•••) in which 6 corre-
sponds tot̃ :0.

A further observation is worth mentioning at this poin
Specifically, if the critical point is drawn out into a lambd
line without changing the universality class, by, e.g., the i
position of a magnetic field,H, or the addition of a second
molecular component with chemical potential, saym II , etc.,
the only change needed in the formulation is the inclusion
a further,nonordering field g@}H or zII5exp(2mII /kBT),
etc.# in the expansions of the three nonlinear scaling fiel
likewise for any further fields that leave the universality cla
unaltered: see, e.g.,@17,18#.

Now the particle numberN, volumeV, and the entropyS
are related by the Gibbs-Duhem relation

Vdp2SdT2Ndm50. ~1.10!

Hence the number density and the entropy density are g
by

r[
N

V
5S ]p

]m D
T

, S[
S

V
5S ]p

]TD
m

. ~1.11!

Other thermodynamic quantities, such as the specific h
compressibility, etc., follow in the standard way.

The crucial point about the scaling formulation presen
here is that the three standard thermodynamic fields,p, m,
and T, enter in a fully symmetrical way with noa priori
assumptions as to which pair combination or thermodyna
potential, sayp(m,T) or m(p,T), is ‘‘more basic.’’ By con-
trast, previous formulations have typically concluded tha
was most appropriate to regardp(m,T) as the ‘‘basic’’ quan-
tity @15,17#. This is what one is led to by studying the sta
dard lattice gases and what arises most naturally from fi
theoretic and renormalization group approaches@20–22#.
However, one might note that the original Widom formul
tion @7# was based on integrating the equation of state
led, fairly naturally, to a scaling hypothesis for the Helmho
free energy densityf (r,T); on the other hand, the exactl
soluble cluster-interaction fluids of Fisher and Felderhof@23#
showed thatm(p,T) was the appropriate thermodynamic p
tential for describing critical-point scaling in these models

It is easily seen, however, that the previousp(m,T) for-
mulation @15,17# is recaptured here simply by suppressi
the p̌ dependence in the nonlinear scaling fieldsh̃ and t̃ : i.e.,
in linear order, by settingj 15 j 250 in ~1.5! and~1.6!, and in
quadratic order, by settingm05m15•••5n550. In that
6-2
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case the expansion ofp̃ in ~1.4! merely serves to represen
the usual ‘‘smooth background’’p0(m,T) that is always re-
quired.

The original discussion of scaling in fluids@7,8# had to

incorporate in the definition of theordering field h̃the mix-
ing coefficient k1 which, indeed, is then directly proportiona
to (dms /dT)c wherems(T) represents the phase bounda
below Tc ; but the coefficientsj 1 , j 2, and l 1 did not appear.
Studies of various models later revealed that the coeffic
l 1, which mixes the chemical potential into thethermal scal-

ing field, t̃ , should also be included: doing so yielded
unexpected singularity in the coexistence curve diame
r̄(T), proportional toutu12a. ~See, e.g., Ref.@15#.! Never-
theless, it was still argued~in Ref. @15#! that one could sup-
press the linear pressure mixing coefficientsj 1 and j 2 despite
the existence of soluble models in which scaling, in fa
required them@23#.

It is only the recent reconsideration of the possibility o
Yang-Yang anomaly in real fluids and nonsymmetric mod
@2,5# that has led to the realization thatpressure mixing, i.e.,
nonvanishing coefficientsj 1 and j 2 in ~1.5! and~1.6!, should
be reconsidered. Indeed, as shown in Ref.@2#, if a nonvan-
ishing Yang-Yang anomaly arises, so that (d2ms /dT2) di-
vergeswhen T→Tc2, then, within a scaling formulation
one must havej 2Þ0. In fact, that also leads, as we demo
strate below, to a singular term varying asutu2b in the coex-
istence curve diameter,r̄(T), which, in realistic situations
will actually dominate the previously discoveredutu12a term
@2,15#. Conversely, the absence of pressure mixing in
linear ordering field, i.e.,j 250, implies theabsenceof a
Yang-Yang anomaly as is the case for the standard la
gases. Granted thatj 2 may not vanish, it is clearly appropri
ate to allow j 1Þ0, i.e., to consider pressure mixing also
the thermal field,t̃ .

In light of this background the aim of the analysis pr
sented in this paper is to thoroughly explore the implicatio
of the ‘‘complete scaling hypothesis’’ embodied in the re
tions ~1.3!–~1.9!. Hence in Sec. II the ‘‘complete scaling
theory is formulated with the incorporation of pressure m
ing as well as corrections to scaling. For this purpose,
mostly follow the treatment given in Ref.@17#. The proper-
ties of the scaling functions in the two limiting case
h̃/u t̃ uD→0 or `, are set out as well as the consequences
thermodynamic convexity or the Second Law of Thermod
namics@24#. For use in the subsequent calculations, gene
ized scaling densities and susceptibilities are defined and
relations between them and the actual physical quantities
determined.

Once the formulation of the scaling theory is complete
we examine, in Sec. III, the standard singular thermo
namic properties including the coexistence curve and
specific heat. We explicitly determine the nature of the ph
boundaries,ps(T) andms(T), of the coexistence curve di
ameter,r̄5 1

2 (r liq1rvap) and of the half-jump,Dr5 1
2 (r liq

2rvap), as well as of entropies at the coexistence curve.
mentioned above, the pressure-mixing coefficientj 2 gener-
ates a singularutu22a term in the phase boundaryms(T) and
06150
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thereby, the divergence of the (d2ms /dT2) at the critical
point: see Sec. III A; in addition, a singularutu2b term in the
coexistence curve diameter appears and dominates theutu12a

term known previously@15#: see Sec. III B. Furthermore, a
demonstrated in Sec. III C, pressure mixing induces a stro
;utub, singularity in the asymmetry ratio that measures
relative difference between the compressibilitie
susceptibilities on the two sides of the co-existence curv

In Sec. III D the linear mixing coefficientsj 1 , j 2 , •••, l 1

are related to various physical amplitudes, etc., which can
principle, be measured via experiments or simulations. T
Yang-Yang anomaly, which was the main motivation for th
study, is discussed in Sec. III E; it is shown that the stren
of the anomaly, namelyRm , which measures the contribu
tion of the chemical potential to the heat capacity relative
that of the pressure in an asymptotic limit—see~1.1!—is
related solely to the pressure-mixing coefficientj 2.

In Sec. IV we study a number of special loci, particular
in the density-temperature (r,T) plane, that intersect the
critical point. These loci are of interest in their own right b
they prove to be especially useful in attempting to estim
precise values of the critical density,rc , both in the case of
real asymmetric fluids and in the simulation of various mo
systems such as the hard-core square-well fluid@6# and, more
challengingly, primitive model electrolyte systems@25#.
More concretely, we study the locusm5mc , dubbed the
critical isokyme, the critical isobar (p5pc), the critical iso-
therm (T5Tc), and the critical isochore (r5rc) in the
(p,T), (m,T), (r,T), etc., planes. The singular exponen
characterizing these loci are obtained and the correspon
amplitudes are expressed in terms of the mixing coefficie
and the expansion coefficients of the scaling functions a
thereby, related to one another. One discovers, however,
these characterizations of the various loci may not be hel
in estimating the critical point in practical applications
experiments or simulations, since various critical parame
values must be knowna priori; but, except for exactly
soluble models, the requisite values are not normally av
able.

Hence, for direct applications to the analysis of simulati
data, we also study in Sec. IV E, the ‘‘k-inflection loci’’ in-
troduced by Orkoulaset al. @6#. The ‘‘k-susceptibility loci’’
are defined by the points of isothermal maxima of the mo
fied susceptibilityx (k)5x/rk aboveTc in the (r,T) plane
wherex5r2kBTKT is the standard isothermal susceptibili
while KT is the compressibility. We find that these loci ha
leadingutu2b terms followed by more slowly varyingutu12a

andt contributions: however, the leading amplitudevanishes
when k takes some ‘‘optimal value’’kopt. Thus, whenk
5kopt, the correspondingk locus ‘‘points’’ most directly to
the critical point. Furthermore, we find thatkopt is directly
related to the strength of the Yang-Yang anomaly viakopt
53Rm . With the aid of simulations we illustrate these lo
quantitatively for the hard-core square-well fluid and the
stricted primitive model electrolyte, and compare the resu
with those for a van der Waals fluid: see Figs. 1–3, belo

One may, similarly@26#, define ‘‘k-heat-capacity loci’’ via
the points of isothermal maxima in the (r,T) plane of the
6-3
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KIM, FISHER, AND ORKOULAS PHYSICAL REVIEW E67, 061506 ~2003!
modified specific heatCV
(k)[CV /rk. These loci have no

been used in past simulations but may be useful in the fut
We find, as for the susceptibility loci, that a leadingutu2b

term appears in the near-critical expansions, followed
utu12a and t terms. Again, the leading amplitude vanish
whenk is equal to a special value that is once more rela
directly to the Yang-Yang anomaly: see Sec. IV F.

In order to provide semiquantitative guides to the beh
ior of these loci in real systems, we study them in Sec.
using classical theory for the gas-liquid phase transition
the basis of a Landau order-parameter expansion of the
energy. We obtain the vapor pressure,ps(T), and the satu-
ration chemical potential,ms(T), up to second order int,
while in the current literature they appear only up to fi
order @13#. The coexistence curve diameter,r̄(T), is also
found to ordert. These curves can be analytically continu
from T<Tc to the one-phase region aboveTc so providing
special loci that cannot, in general, be defined in nonclass
cases. Using the van der Waals equation, these analytic
tensions are illustrated quantitatively: see Figs. 5 and 6
addition to these critical loci, thek-susceptibility loci are
obtained and compared with those of the hard-core squ
well @6# and the restricted primitive model@25#. In Sec. V D
the Yang-Yang relation~1.1! is discussed in more deta
within classical theory~see Fig. 7! and extended to genera
loci in the (r,T) plane. A Yang-Yang-type relation along th
critical isotherm is discussed briefly.

Section VI summarizes the paper and provides a key
the main results. Some further details are provided in
Appendix and others are available in the first author’s the
@26#.

II. SCALING FORMULATION AND THERMODYNAMIC
FUNCTIONS

To explore the scaling description~1.9!, it is appropriate
to focus on the relevant scaling variable~or combination!

y~ p̌,m̌,t !5Uh̃/u t̃ uD, ~2.1!

where, without loss of generality,U may be taken as a pos
tive constant. The basic reason for this choice, as aga
p̃/u t̃ u22a, is thatD is, in general, less than (22a) @since, see
~1.8!, b.0] so thaty diverges less rapidly whent→0. Be-
yondy we need to account for the full set of irrelevant sca
variables, namely,

yk~ p̌,m̌,t !5Uk~ p̌,m̌,t !u t̃ uuk,

uk11>uk.0, k54, 5,•••, ~2.2!

where Uk}uk and we will assume, when needed, that t
associated irrelevant amplitudesUk are noncritical, meaning
that Uk( p̌,m̌,t) can be expanded in a formal power series
p̌, m̌ and t ~which may not necessarily converge!. Since a
fluid has, in general, no obvious symmetry, we donot impose
any restriction on theUk : but see also the discussion in Re
@17# Sec. II.
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Now the thermodynamic potential for the fluid~in this
case the pressure—as a consequence of selectingy as the
primary scaled variable! can be written by formally solving
~1.9! as

p̃5Qu t̃ u22aW6~y,y4 ,y5 ,••• !, ~2.3!

whereQ is a positive amplitude whileW6 is a scaling func-
tion that, in the case of bulk fluids, embodies the proper
of the (d53)-dimensional Ising universality class. In th
expression the subscript6 refers to t̃:0. On choosing
appropriate values forQ and U, the scaling function,
W6(y,•••) becomes universal. Note that the usual analy
background part of the potential, sayp0(t,m̌), is included in
the nonlinear scaling fieldp̃: see~1.4! which may, clearly, be
solved iteratively forp̌ to yield an expansion forp0(t,m̌).

A. Scaling functions

The scaling functionW6(y,y4 ,y5 ,•••) should be both
universal and invariant under change of sign of the odd
gumentsy, y5 , y7 , •••. Since the irrelevant scaling vari
ables,y4 , y5 , •••, vanish as the critical point is approache
we can also expand the scaling functionW6 as @17#

W6~y,y4 ,y5 ,••• !5W6
0 ~y!1y4W6

(4)~y!1y5W6
(5)~y!1•••

1y4
2W6

(4,4)~y!1y4y5W6
(4,5)~y!1•••

5(
k

W6
k ~y!y[ k] , ~2.4!

where for brevity we have used the multi-index,k, defined
via

k 5 0,~4!,~5!,•••,~4,4!,~4,5!,•••,~4,4,4!,•••, ~2.5!

as a label and as an exponent via

y0[1, y[ i , j ,•••,n][yiyj•••yn . ~2.6!

We considerk5( i , j ,•••,n) to be odd or even according t
whether the sumi 1 j 1•••1n is odd or even. The symme
try of W6(y,y4 ,y5 ,•••) then requires@17#

W6
k ~2y!5~2 !kW6

k ~y!. ~2.7!

Recognizing this symmetry, one may write expansions
W6

k (y) for small y. For t̃ .0 we have

W1
k ~y!5W10

k 1y2W12
k 1y4W14

k 1••• for k even,

5yW11
k 1y3W13

k 1y5W15
k 1••• for k odd.

~2.8!

By choosing appropriate values for the nonuniversal me
amplitudesQ, U, etc., the expansion coefficients can be n
malized, in general, such that@17,24#

W12
0 5W10

k 51 ~k even! or W11
k 51 ~k odd!.

~2.9!
6-4
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ASYMMETRIC FLUID CRITICALITY. I. SCALING . . . PHYSICAL REVIEW E 67, 061506 ~2003!
For t̃ ,0, the existence of the first-order transition lea
to uyu factors in the expansions so that one has@17#

W2
k ~y!5@W20

k 1uyuW21
k 1y2W22

k 1uyu3W23
k 1•••#sk~y!,

~2.10!

where the special signum function is defined by

sk~y!51 for k even,

5sgn~y! for k odd. ~2.11!

Thermodynamic convexity~which embodies the Secon
Law! then requires thatW21

0 andW22
0 must both be positive

see Ref.@24#.
For large arguments,uyu→`, the scaling functions

W1
k (y) and W2

k (y) must satisfy stringent matching cond
tions to ensure the analyticity of the potential through
plane t̃ 50 for all h̃Þ0. By these conditions, the function
W6

k (y) may be written as

W6
k ~y!'W`

k uyu(22a1u[ k])/DF11(
l 51

`

~6 ! lwl
kuyu2 l /DGsk~y!,

~2.12!

where the multiexponentu@k# is defined by

u@0#[0, u@~ i , j ,•••,n!#5u i1u j1•••1un , ~2.13!

with i , j ,•••,n>4. By virtue of the normalizations~2.9! the
numerical amplitudesW2 j

k , W1 j
k , W`

k , andwl
k should all be

universal. Beyond that, thermodynamic convexity dicta
that W`

0 and w2
0 must be positive while (w1

0)2/w2
0 must be

bounded above@24#. The sign ofw1
0 is not determined by

convexity alone but must, in general, be negative: see R
@24#. This plays an important role in determining allowab
phase diagrams in a density~or composition! space at critical
end points@17,24#.

B. Generalized density and entropy

To extract explicit results from~2.3! revealing the singu-
larities of the various thermodynamic derivatives, critic
loci, etc., we first recall~1.11! and define a dimensionles
reduced density,ř, and entropy,š, by

ř[
r

rc
5S ] p̌

]m̌
D

t

, š[
S

rckB
5S ] p̌

]t
D

m̌

. ~2.14!

Similarly, the generalized number density,r̃, and entropy
density,s̃, will be defined by

r̃[S ] p̃

]h̃
D

t̃

, s̃[S ] p̃

] t̃
D

h̃

. ~2.15!

These quantities then obey the usual simple scaling ru
namely,r̃;u t̃ ub and s̃;u t̃ u12a when t̃→0.
06150
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To find concrete expressions forř and š, one may con-
sider the differential relation,

dp̃5 r̃dh̃1 s̃d t̃, ~2.16!

where it is appropriate to recall that all the scaling variab
yk in ~2.3! are functions~only! of p̌, m̌, andt and, hence, of
p̃, m̃, and t̃ . Using~1.4!–~1.6!, this differential relation may
be written as

~122m0p̌2n0m̌2n3t1 j 2r̃1 j 1s̃1••• !dp̌

5~ l 01n0p̌12q0m̌1v0t1 r̃2 l 1s̃1••• !dm̌

1~k0n3p̌1v0m̌12r 0t1 s̃2k1r̃1••• !dt, ~2.17!

where in the brackets we have retained only terms up
linear order. Using~2.14!, we then obtain the relations

ř5
l 01n0p̌12q0m̌1v0t1 r̃2 l 1s̃1•••

122m0p̌2n0m̌2n3t1 j 2r̃1 j 1s̃1•••

, ~2.18!

š5
k01n3p̌1v0m̌12r 0t1 s̃2k1r̃

122m0p̌2n0m̌2n3t1 j 2r̃1 j 1s̃1•••

. ~2.19!

If the nonlinear mixing coefficients mj , nj , •••, v j in ~1.4!–
~1.6! are ignored, these expressions may be approximate

ř'
l 01 r̃2 l 1s̃

11 j 2r̃1 j 1s̃
, š'

k01 s̃2k1r̃

11 j 2r̃1 j 1s̃
. ~2.20!

Note thatř and š arenonlinear functions ofr̃ and s̃ owing
to the pressure-mixing coefficients,j 1 and j 2. In the absence
of pressure mixing~i.e., j 15 j 250), we recover the Bruce
Wilding linear relations@16#. We will see later that the ap
proximation~2.20! is adequate to derive the most importa
singularities in leading order.

C. Generalized susceptibilities

The second derivatives of the potential determine
usual response functions, e.g., susceptibilities, heat cap
ties, etc. We define the basic reduced susceptibilities

x̌NN[~]2p̌/]m̌2! t , x̌UU[~]2p̌/]t2!m̌ ,

x̌NU[~]2p̌/]m̌]t !5~]2p̌/]t]m̌!. ~2.21!

These are related to the number and energy fluctuations m
directly accessible in grand canonical simulations@6#. The
isothermal susceptibilityx is defined by

x[~]r/]m!T5~]2p/]m2!T , ~2.22!

and is related to the isothermal compressibility,KT
5r21(]r/]p)T , by x5r2KT and to the reduced suscept
bility x̌NN by

x5~rc /kBTc!x̌NN . ~2.23!
6-5
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Experimentally, the most important heat capacity for fl
ids is the constant-volume heat capacity with a density
fined by

CV5
T

r S ]S
]TD

r

, ~2.24!

whereS is the entropy density defined in~1.11!. It is conve-
nient to introduce the dimensionless reduced specific h
namely,

ČV[~] š/]t !r , ~2.25!

for which one has

rCV /T5~kBrc /Tc!ČV . ~2.26!
r

e
t

06150
-
-

at,

The reduced specific heat,ČV , is then related to the reduce
susceptibilities in~2.21! via @6#

ČV5x̌UU2x̌NU
2 /x̌NN . ~2.27!

Finally, we define generalized~scaling! susceptibilities via

x̃hh[S ]2p̃

]h̃2D
t̃

, x̃ tt[S ]2p̃

] t̃ 2 D
h̃

, x̃ht[S ]2p̃

]h̃] t̃
D . ~2.28!

From ~2.3! one finds x̃hh;u t̃ u2g, x̃ht;u t̃ ub21, and x̃ tt

;u t̃ u2a when t̃→0. When the nonlinear mixing terms in th
scaling fields are ignored, as above,x̌NN can be expressed in
terms of the generalized densities and susceptibilities as
x̌NN'
~e11e2s̃!2x̃hh1~e31e2r̃ !2x̃ tt22~e11e2s̃!~e31e2r̃ !x̃ht

~11 j 2r̃1 j 1s̃!3
, ~2.29!
olv-

the
where the derived mixing coefficients are

e1512 j 2l 0 , e25 j 11 j 2l 1 , e35 l 11 j 1l 0 . ~2.30!

The detailed derivation of~2.29! is presented in Appendix F
of Ref. @26# henceforth to be denotedK ; there it is also
shown how~2.29! @K ~3.41!# captures the leading singula
correction terms.

III. THERMODYNAMIC PROPERTIES

A. Phase boundaries

The phase boundaries, sayps(T) and ms(T) @or p̌s(t)
andm̌s(t)], on which two phases may coexist, can be det
mined by equating the pressure and chemical potential on
vapor and liquid sides belowTc ~i.e., for t̃ ,0). On using the
small-y expansion ofp̃ for t̃ ,0 with the aid of~2.10!, we
obtain ~including higher order terms!

p̃65Qu t̃ u22a@W20
0 6W21

0 y1W22
0 y21•••

1U4cu t̃ uu~W20
(4)6W21

(4)y1W22
(4)y21••• !

6U5cu t̃ uu5~W20
(5)6W21

(5)y1W22
(5)y21••• !1•••#,

~3.1!

where 6 now refers toh̃:0, while U4c and U5c are the
critical values of the irrelevant scaling amplitudes,U4 and
U5, respectively. Equatingp̃1 and p̃2 then yields

W21
0 y52W20

(5)U5cu t̃ uu52W21
(4)U4cu t̃ uuy

2W22
(5)U5cu t̃ uu5y21•••, ~3.2!
r-
he

where one sees that various even and odd terms cancel. S
ing for y iteratively, one obtains

y52
W20

(5)

W21
0

U5cu t̃ uu51
W21

(4)W20
(5)

~W21
0 !2

U4cU5cu t̃ uu1u51•••. ~3.3!

Note that in contrast to the symmetric case~e.g., the ferro-
magnetic Ising model! whereU550, the scaling field does
not vanish identically along the phase boundary. Using
definition ~2.1!, we find the phase boundary is given by

h̃s~ t̃ !5E1u t̃ suD1u51E2u t̃ suD1u1u51•••, ~3.4!

where the coefficients are

E152
U5cW20

(5)

UW21
0

, E25
U4cU5cW21

(4)W20
(5)

U~W21
0 !2

. ~3.5!

Now substitutingm5ms(T) and p5ps(T) in ~1.5! and
~1.6! and using~3.4!, we obtain an expansion@seeK ~3.65!#
of the chemical-potential deviation

m̌s~T!5@ms~T!2mc#/kBTc, ~3.6!

in powers oft, of m̌s itself, and of

p̌s~T!5@ps~T!2pc#/rc kBTc . ~3.7!

One can solve this equation iteratively form̌s as a function
of t and p̌s to obtain
6-6
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m̌s~T!5 j 2p̌s1k1t1~m21 j 2
2q21 j 2n2! p̌s

21~r 21k1q21v2k1!t21~n512 j 2k1q21k1n21v2 j 2!p̌st

1E1u~12k1l 1!t2~ j 11 j 2l 1! p̌suD1u51E2u~12k1l 1!t2~ j 11 j 2l 1! p̌suD1u1u51•••. ~3.8!

Substituting this result into~1.4! yields

p̃s5~12 j 2l 0! p̌s2~k01k1l 0!t2Ẽ1p̌s
22Ẽ2t22Ẽ3p̌st1•••, ~3.9!
en

o
t

o

hat
r
e,
f-
t-

the

in

has
,

-
y-
ts

,

where the coefficientsẼj depend on thequadraticnonlinear-
field coefficientsr 0 , m0 , ••• in ~1.4! to ~1.6!: seeK ~3.68!–
~3.70!.

Similarly, from ~1.5! and ~3.8!, one finds

t̃ s5~12k1l 1!t2~ j 11 j 2l 1! p̌s1•••. ~3.10!

Substituting this into~3.1! with the aid of~2.1! and~3.4!,
combining it with~3.9!, and solving iteratively forp̌s finally
yields the result

p̌s~T!5 p̌s,1t1 p̌s,2t
21Aputu22a@11aputuu1•••

1bputuu52b1ap8utu
u52b1u1•••

1bp8utu
2u51•••#1•••, ~3.11!

where the leading coefficients are given by

p̌s,15
k01k1l 0

12 j 2l 0
, p̌s,25Ẽ1p̌s,1

2 1Ẽ21Ẽ3p̌s,1 , ~3.12!

Ap5
QW20

0

12 j 2l 0
utu22a, ap5

U4cW20
(4)

W20
0

utuu,

bp5
l 0~12 j 2l 0!E1

QW20
0

utuu52b, ~3.13!

in which we have introduced the mixing factor

t 512k1l 12 p̌s,1~ j 11 j 2l 1!, ~3.14!

while E1 is given in~3.5! andap8 andbp8 can be derived from
K ~3.74!.

Note that the leading even correction-to-scaling term
ters the phase boundaryps(T) with an exponent (22a)
1u, while the odd correction-to-scaling term has an exp
nent (22a)2b1u5. In addition, it is not hard to see tha
the subsequent termbputu2u5 ~and analogous terms below!
must be preceded bylower order terms such asdputu2u,
ap9utu

u11, eputu3u, ap-utuu12, etc.
Now let us substitute the result~3.11! back into ~3.8!.

With a little further effort, one obtains the desired result f
the chemical potential on the phase boundary, namely,
06150
-

-

r

m̌s~T!5m̌s,1t1m̌s,2t
21Amutu22a@11amutuu1•••

1bmutuu52b1am8 utuu52b1u1•••1bm8 utu2u51•••#

1•••, ~3.15!

where the leading coefficients satisfy

m̌s,15k11 j 2p̌s,1 , Am5 j 2Ap , am5ap , ~3.16!

bm5E1utuD1u5/Am , am8 5bmcp , bm8 5bp8 , ~3.17!

while m̌s,2 is given inK ~3.78!.
As is to be expected, the spectrum of singular terms t

appears in the expansion forms(T) is the same as that fo
ps(T). Note, however, that the leading singular amplitud
Am , for ms(T) is proportional to the pressure-mixing coe
ficient j 2. Thus, in contrast to the traditional scaling trea
ment, pressure mixing in the scaling fields implies that
second derivative ofms(T) diverges at the critical point with
the same exponenta as the specific heat. However, even
the absence of pressure mixingper se the phase boundary
ms(T) is not analytic: rather itsthird derivative diverges~in
contrast again to lattice-gas models! owing to the odd
correction-to-scaling term, since in the case of fluids one
2,22a2b1u55D1u5,3. @Note that the amplitude
Ambm , of utu22a2b1u5 in ~3.15! doesnot vanish whenj 2

50.# The conclusion thatms9 (T) exhibits a cusplike behav
ior near the critical point was originally advanced by Le
Koo and Green@27# and enters into the analysis of the effec
of impurities on the detection of the Yang-Yang anomaly@5#:
see the discussion below in Sec. III E.

B. Densities and entropies at coexistence

The generalized densities along the phase boundaryr̃s

and s̃s , can be obtained from~2.3! and ~2.15! by using the
results~3.11! and~3.15! for p̌s andm̌s . After some algebra,
we find

r̃s~ t !'6QUuttub@W21
0 1U4cW21

(4)uttuu6U5c$W21
(5)

2~W22
0 W20

(5)/W21
0 !%uttuu51•••#, ~3.18!

s̃s~ t !'2Quttu12a@~22a!W20
0 1~22a1u!U4cW20

(4)uttuu

6~D1u5!U5cW20
(5)uttuu51•••#, ~3.19!
6-7
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where 6 refers to h̃:0. Using ~2.18! and ~2.19! and ex-
panding in powers oft, we finally obtain the number densit
and entropy density on the two sides of the coexistence c
as

r6~T!5rc$11A2butu2b1A12autu12a1A1t1•••

1A5utub1u51•••6Butub@11buutuu

1b2butu2b1•••#%, ~3.20!

S 6~T!5rckB$k01S2butu2b1S12autu12a1S1t1•••

1S5utub1u51•••6Bsutub@11duutuu

1d2butu2b1•••#%, ~3.21!

where terms varying asutub11 and utu12a1b have not been
displayed and higher order terms such as6utub1D,
utub122a, etc. will also be present in general. Implicit i
these results is the conclusion

l 05 řc[1 and k05 šc[Sc /rckB . ~3.22!

The leading coefficients for the density are then

B5~12 j 2!QUW21
0 utub, bu5U4cW21

(4)utuu/W21
0 , ~3.23!

b2b5 j 2
2B2/~12 j 2!2, A2b52 j 2B2/~12 j 2!, ~3.24!

A12a5~22a!~ l 11 j 1!QW20
0 utu12a, ~3.25!

A15v01n31~2q01n0!m̌s,11~n012m0!p̌s,1 , ~3.26!

while the coefficients for the entropy satisfy

Bs /B52~k11 j 2k0!/~12 j 2!, du5bu , ~3.27!

d2b5 j 2
2Bs

2/~k11 j 2k0!2, S2b52 j 2Bs
2/~k11 j 2k0!, ~3.28!

S12a5~22a!~ j 1k021!QW20
0 utu12a,

S55BsA5 /B, ~3.29!

andA5 andS5 follow from K ~3.83!,~3.84!.
From ~3.20! the coexistence curve diameter,r̄(T)

5 1
2 @r liq(T)1rvap(T)#, and the width, 2Dr(T)5r liq(T)

2rvap(T), of the coexistence curve, follow immediately. A
anticipated, we see that the diameter contains autu2b term
that is proportional to the pressure-mixing coefficientj 2;
and, since 2b,12a for typical fluids, this actually domi-
nates the previously anticipatedutu12a term @15#. Likewise,
one may read off the entropy diameter,S̄(T), and entropy
jump, DS(T), from ~3.21!. Again one observes that th
dominatingutu2b term in S̄(T) is proportional toj 2.

The total entropy in the two-phase region is given by

Ss
tot~T!5V

dps

dT
2N

dms

dT
. ~3.30!
06150
ve

On the critical isochore,r5rc , this yields the entropy den
sity

Ss~T;rc!5Sc1rckB~12 j 2!Aputu12a1O~ t ! ~3.31!

from which, as was to be anticipated, theutu2b terms have
canceled.@Recall thatAp is defined in~3.13!.#

In Fig. 1 grand canonical simulation data for the coexi
ence curve of the hard-core square-well fluid are presen
Adopting the critical point estimates,Tc.1.2179 andrc
.0.3067@6#, and the Ising values for the critical exponen
yields the estimatesB51.20264 , A2b520.00073 , A12a
50.1897 , A1520.06914 , bu520.2576, and b2b5
20.0852 for the amplitudes in~3.20! @6#. This fit is shown in
Fig. 1 as a solid line that connects the coexisting den
estimates~circles! to the critical point. Similarly, coexistenc
simulation data~in a z55 fine discretization level! for the
restricted primitive model electrolyte are presented in Fig
The solid line—the Ising fit to the coexistence data—
drawn by adopting the critical point values,Tc.0.05069,
rc.0.079 @25# and the amplitude estimates,B50.274, A2b
50.0165, A12a50.919, A150.586, bu51.464, andb2b
52.254. However, one must note that the specific numb
attached to these particular amplitude estimatescannothave
a very significant meaning, unless the higher order corr
tions are considered more carefully than is practicable w
the data currently available.

C. Susceptibilities at coexistence

The reduced susceptibility,x̌NN in ~2.21!, on the coexist-
ence boundary is also of particular interest as we point

FIG. 1. Coexistence data~open circles, with closed circles fo
the diameter! for the hard-core square-well fluid obtained by Or
oulaset al. @6#. The solid lines connecting the data points repres
an Ising-type fit: see Eq.~3.20!. The vertical and horizontal dashe
lines locate the critical isochore,r* 5rc* .0.3067, and the critical
isotherm,T* 5Tc* .1.2179@6#. The curves above criticality and in
the inset depict estimates for thek-susceptibility loci for the values
of k indicated; but note that thek50 locus curls back to lower
values of the density asT rises.
6-8
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here. Using~3.11! and~3.15! for p̌s andm̌s, the generalized
susceptibilities on the phase boundary,x̃hh,s and x̃ht,s, can
be obtained from~2.3! and ~2.28!. After some algebra, we
find

x̃hh.s'2QU2uttu2g @W22
0 1U4cW22

~4! uttuu6U5c$W22
~5!

23~W23
0 W20

~5! /W21
0 !%uttuu51¯#, ~3.32!

2x̃ht,s'6bQUW21
0 uttub211¯, ~3.33!

where 6 refers to h̃:0, while x̃ tt,s entersx̃NN only as a
higher order correction. On substituting these results
~3.18! and ~3.19! into ~2.29!, we obtain the reduced susce
tibility on the two sides of the coexistence curve as

x̌NN
6 ~T!5C2utu2g$11cuutuu1c2butu2b1c12autu12a

1¯6I j utub~11 i uutuu1¯ !6I l utuD21

6¯6I 5utuu56¯%, ~3.34!

where the coefficients are

C252e1
2QU2W22

0 utu2g, cu5U4cW22
~4! utuu/W22

0 ,
~3.35!

c2b56 j 2
2~QUW21

0 !2utu2b, I j523 j 2QUW21
0 utub,

~3.36!

i u5U4c@~W21
~4! /W21

0 !1~W22
~4! /W22

0 !#, ~3.37!

I l5be3W21
0 /e1UW22

0 , ~3.38!

I 55U5c@W22
(5)23~W23

0 W20
~5! /W21

0 !#/W22
0 , ~3.39!

FIG. 2. Plots of coexistence curves,k-susceptibility loci, etc., as
in Fig. 1, based on simulations for the restricted primitive model
Luijten et al. @25#. The critical parameters adopted areTc*
.0.05069 and rc* .0.079 corresponding to az55 fine-
discretization level@25#.
06150
d

while c12a has a more complicated form. Now note that t
leading asymmetric correction amplitudeI j , given by~3.36!,
is proportional toj 2 and via~3.23! may also be written sim-
ply as

I j523 j 2B/~12 j 2! ~3.40!

in terms of the coexistence curve amplitude,B. In order to
highlight this feature, it is useful to define a normalized su
ceptibility difference orasymmetry factorby

Ax~T![
x̌NN

1 2x̌NN
2

x̌NN
2 1x̌NN

2
. ~3.41!

From ~3.34!, we then obtain

Ax~T!5I j utub@11~ i u2cu!utuu1¯#1I l utuD211¯

1I 5utuu51¯. ~3.42!

Evidently, the pressure mixing coefficientj 2 dominates the
susceptibility asymmetry near the critical point. This su
gests that it may be possible to detectj 2 experimentally by
measuring the susceptibilities on the two sides of the co
istence boundary. Note that in casej 2 vanishes, the leading
behavior is controlled byI l}( l 11 j 1) with exponentD21
.0.565 for d53 Ising-type systems.

D. Mixing coefficients

It is clearly of interest to express the linear mixing coe
ficients entering the scaling fields~1.4!–~1.6! in terms of
various thermodynamic quantities which might, at least
principle, be measured in experiments or simulations. As
gards the fieldp̃, we have already noted in~3.22! the simple
expressions fork0 and l 0.

The pressure-mixing coefficient,j 2, can be obtained mos
simply via ~3.16! from the singular amplitudesAm in ms(T)
andAp in ps(T), but it can also be found from the asymm
try in the susceptibilities at coexistence: see~3.39!–~3.41! in
Sec. III C. Thus we have

j 25Am /Ap52I j /~3B2I j ! , ~3.43!

whereB is the coexistence-curve amplitude defined in~3.20!.
Then, from the observable limiting derivativesmsc8

[(dms /dT)c and psc8 [(dps /dT)c , which correspond to

m̌s,1 and p̌s,1 , we may obtain

k15~rcmsc8 2 j 2psc8 !/rckB

5@rcmsc8 2psc8 ~Am /Ap!#/rc kB . ~3.44!

The remaining two linear mixing coefficients,j 1 and l 1,
can be obtained by using the amplitudes,A12a andS12a , in
~3.25! and~3.29! which describe theutu12a singularity in the
density and entropy diameters. Taking a ratio yields

y

6-9
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l 11 j 1

j 1k021
5

A12a

S12a
, ~3.45!

where we have usedl 051, while k0 is given in ~3.22!. On
the other hand, from the ratio ofA12a to Ap we obtain via
~3.13! and ~3.25! the distinct relation

l 11 j 1

ut u
5

A12a

~22a!~12 j 2!Ap
, ~3.46!

wheret is given in ~3.14!. Sincet is linear in the mixing
coefficientsj 1 and l 1 one can, in principle, solve these tw
equations forj 1 and l 1. In practice, however, lack of preci
sion in measuring the amplitudesAp , A12a , and S12a is
likely to produce large uncertainties.

E. Yang-Yang anomaly

The Yang-Yang relation~1.1! in the two-phase region
(T,Tc) can be usefully rewritten as@2#

CV~T,r![CV
tot5~v/vc!C̃p~T!1C̃m~T!, ~3.47!

wherev5V/N51/r and

C̃p~T![vcT~d2ps /dT2!,

C̃m~T![2T~d2ms /dT2!. ~3.48!

The results~3.11! and ~3.15! then yield

C̃p~T!5Ãputu2a1B̃p1ãputuu2a1•••

1b̃1utuu52a2b1b̃putuu52a2b1u1•••, ~3.49!

C̃m~T!5Ãmutu2a1B̃m1ãmutuu2a1•••

1 c̃1utuu52a2b1b̃mutuu52a2b2u1•••, ~3.50!

where the various coefficients follow straightforwardly fro
~3.12!–~3.14!, ~3.16! and ~3.17!: see alsoK ~3.103!. Follow-
ing Ref. @2# it is reasonable to define the strength of t
Yang-Yang anomaly via

Rm[ lim
t→02

C̃m~T!

C̃p1C̃m

5
Ãm

Ãp1Ãm

. ~3.51!

By ~3.32! this leads immediately to

Rm52 j 2 /~12 j 2!. ~3.52!

Note thatRm depends only onj 2 ~not on j 1). Fisher and
Orkoulas@2# estimatedRm for propane from experimenta
data on the two-phase heat-capacity and obtainedRm
.0.56: this suggestsj 2.21.27. They also analyzed th
heat capacity data for CO2 and estimatedRm.20.4
(60.3) which implies thatj 2 should be positive but sma
06150
~less than 1!. On the other hand, simulations of the hard-co
square-well fluid@6# indicate thatRm is small but negative,
close to zero: correspondingly,j 2 should be small but posi
tive.

IV. SPECIAL CRITICAL LOCI

In this section we use the scaling formulation to obta
asymptotic expressions for various interesting critical lo
that lie in the one-phase regions of the phase diagram.
convenience, we introduce a superscript indexi defined so
that: i5 i for the locusm5mc , say, the criticalisokyme; i
5 ii for the critical isobar,p5pc ; i5 iii for the critical iso-
therm,T5Tc ; and i5 iv for the critical isochore,r5rc .

A. Critical isokyme, mÄµ c

On the critical isokymem5mc ~or m̌50) the scaling
fields ~1.4!–~1.6! reduce to

p̃5 p̌2k0t2m0p̌22r 0t22n3p̌t1•••, ~4.1!

h̃52 j 2p̌2k1t2m2p̌22r 2t22n5p̌t1•••, ~4.2!

t̃ 5t2 j 1p̌2m1p̌22r 1t22n4p̌t1•••. ~4.3!

Notice that the scaling variabley5Uh̃/u t̃ uD;2( j 2p̌

1k1t)/ut2 j 1p̌uD now diverges, in general, when the critic
point is approached~i.e., when p̌, t→0) since D.1 for
fluids. Hence, we need the expansions of the scaling fu
tionsW6

k (y) for y→`. On using~2.3!, ~2.4!, and~2.12!, we
obtain

p̌5k0t1m0p̌21r 0t21n3p̌t1•••

1QW`
0 ~Uuh̃u!(22a)/D@11w1

0 t̃ ~Uuh̃u!21/D1•••#

1QW`
(4)U4c~Uuh̃u!(22a1u)/D@11•••#,

1s̃hQW`
(5)U5c~Uuh̃u!(22a1u5)/D@11•••#, ~4.4!

wheres̃h5sgn(h̃). Now t̃ and h̃ can be expanded in term
of p̌ and t using ~4.2! and ~4.3! and the resulting equation
may then be solved iteratively forp̌ as a function oft. After
some algebra, this yields the critical isokyme in the (p,T)
plane as

p̌i~ t ![@pi~T!2pc#/rckBTc5 p̌1
i t1 p̌2

i t2

1Ap
i utu(22a)/D@16b1

i utub/D6b2
i utu(D21)/D1•••

1b3
i utuu/D6b4

i utu(b1u)/D1•••1b5
i utuu5 /D

1b6
i utu(b1u5)/D1•••#1•••, ~4.5!

where6 refers tot:0 while

p̌1
i 5k0 , p̌2

i 5r 01k0
2m01k0n3 ,
6-10
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Ap
i 5QW`

0 ~Uuk11 j 2k0u!(22a)/D, ~4.6!

and the amplitudesb1
i , ••• of the correction terms are give

in K ~3.111!.
Note that the leading singular exponent is (22a)/D51

1d21, whered5D/b is the standard critical exponent cha
acterizing the critical isotherm. In the case of t
(d53)-dimensional Ising universality class,d.4.8 so that
11d21.1.21. This implies that the curvature ofp̌i(t), the
pressure on the critical isokyme, diverges asT→Tc . Also by
convexity—see Sec. II A—the leading singular amplitudeAp

i

is positive regardless of the sign oft. On the other hand, i
transpires that the amplitudeb5

i of the leading odd correction

contains the signum factors̃h so that its sign depends onh̃.
Later we will see that the sign ofh̃ can be determined from
the mixing coefficientk1.

To obtain the critical isokyme in the (r,T) plane, we first
substitute~4.5! into ~4.2! and ~4.3! and expressh̃ and t̃ as
functions of t. Using these results in the definitions~2.15!
then yieldsr̃ and s̃ in terms of t. Finally, from ~2.18!, we
obtain the density on the critical isokyme,m5mc , as

r i ~T!5rc$16Bi utub/D1Bd
i utu2b/D1Ad

i utu(12a)/D1•••

6B4
i utu(b1u)/D1•••1B5

i utu(b1u5)/D1•••%, ~4.7!

where6 refers toh̃:0, while the leading coefficients are

Bi 5~11d21!~12 j 2!Ap
i /uk11 j 2k0u,

Bd
i 52 j 2~22a1b!~Bi !2/~22a!~12 j 2!, ~4.8!

and the further coefficients are presented inK ~3.113!.
Note that the leading singular exponent isb/D5d21

which is less thanb so implying that the critical isokyme in
the (r,T) plane is significantly flatter than the coexisten
curve. Clearly, therefore, the critical isokymebelow Tc lies
outside the coexistence boundary, i.e., entirely in the o
phase region as is to be expected.

B. Critical isobar

At p5pc ~or p̌50), the scaling fields~1.4!–~1.6! with
~3.22! reduce to

p̃52k0t2m̌2q0m̌22r 0t22v0m̌t1•••, ~4.9!

h̃5m̌2k1t2q2m̌22r 2t22v2m̌t1•••, ~4.10!

t̃ 5t2 l 1m̌2q1m̌22r 1t22v1m̌t1•••. ~4.11!

As the critical point is approached along a general locus~i.e.,
t,m̌→0), the scaling variable y}h̃/u t̃ uD;(m̌2k1t)/
ut2 l 1m̌uD again diverges. Using the large-y expansion~2.12!
for p̃ and rearranging~4.9! yields
06150
e-

m̌52k0t2q0m̌22r 0t22v0m̌t1•••

2QW`
0 ~Uuh̃u!(22a)/D@11w1

0 t̃ ~Uuh̃u!21/D1•••#

2QW`
(4)U4c~Uuh̃u!(22a1u)/D@11•••#

2QW`
(5)U5c~Uuh̃u!(22a1u5)/D@11•••#. ~4.12!

Solving this equation iteratively form̌ in terms oft with the
aid of ~4.10! and ~4.11! expresses the critical isobar in th
(m,T) plane as

m̌ ii ~ t !5@m ii~T!2mc#/kBTc52k0t1m̌2
ii t21•••

1Am
ii utu(22a)/D@16b1

ii utub/D6b2
ii utu(D21)/D1•••

1b3
ii utuu/D6b4

ii utu(b1u)/D1•••1b5
ii utuu5 /D

1b6
ii utu(b1u5)/D1•••#, ~4.13!

where6 again refers tot:0, while the leading coefficients
are

m̌2
ii 52r 01k0v02k0

2q0 ,

Am
ii 52QW`

0 ~Uuk11k0u!(22a)/D,

b1
ii 52~22a!Am

ii /D~k11k0!, ~4.14!

and the further correction amplitudes are given inK ~3.179!.
Note that the curvature ofm̌ ii (t) diverges at the critical

point with the same exponent as does the critical isokyme
the (p,T) plane: see~4.5!. The critical isobar also has th
same sign of curvatureaboveand below Tc in the (m,T)
plane. By thermodynamic convexity, the leading singu
amplitudeAm

ii is negative. The amplitudeb5
ii of the leading

odd correction term again changes its sign depending onh̃.
In the (r,T) plane the critical isobar can be obtained v

the same route used above for the critical isokyme. The
sult is

r ii ~T!5rc$16Bii utub/D1Bd
ii utu2b/D1Ad

ii utu(12a)/D1•••

6B4
ii utu(b1u)/D1•••1B5

ii utu(b1u5)/D1•••%, ~4.15!

where6 here refers tom:mc while the leading coefficients
are

Bii 52~11d21!~12 j 2!Am
ii /uk11k0u,

Bd
ii 52@~22a! j 21b#~Bii !2/~22a!~12 j 2!, ~4.16!

where the further coefficients are to be found inK ~3.121!.
Notice that the leading singular behavior matches tha

the density on the critical isokyme as given in~4.7!. For
small j 2(,1), the leading amplitudeBii must, by convexity,
again be positive. The ratio betweenBi in ~4.7! and Bii is
simply

Bi /Bii 5u~k11 j 2k0!/~k11k0!ub/D. ~4.17!
6-11
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C. Critical isotherm

WhenT5Tc so thatt50, the scaling fields again reduc
to yield, now,

p̃5 p̌2m̌2m0p̌22q0m̌22n0p̌m̌1•••, ~4.18!

and similarly forh̃ and t̃ . Once more, the scaling variabley
diverges, in general, on approach to criticality. Using~4.18!
and the large-y expansion~2.12! for the scaling functions
yields an equation forp̌ in powers ofm̌, h̃, t̃ , andp̌ which,
as before, can be solved iteratively with the aid of the
duced expansions forh̃ and t̃ to obtainp̌ as a function ofm̌.
The result for the pressure on the critical isotherm is

p̌iii ~m̌ !5@piii ~m!2pc#/rckBTc5m̌1 p̌2
iii m̌21•••

1Ap
iii um̌u(22a)/D@16b1

iii um̌ub/D6•••#, ~4.19!

where6 refers tom:mc , while the coefficients are

p̌2
iii 5m01q01n0 ,

Ap
iii 5QW`

0 ~Uu12 j 2u!(22a)/D,

b1
iii 52 j 2~22a!Ap

iii /D~12 j 2!, ~4.20!

and the spectrum of higher order terms matches tha
~4.13!: see alsoK ~3.127!. The leading singular exponent
again (22a)/D511d21, implying that the critical iso-
therm in the (p,m) plane has a divergent curvature at t
critical point, and thermodynamic convexity ensuresAp

iii

.0.
To obtain the critical isotherm in the (r,p) plane, we first

invert ~4.19! to obtain m̌' p̌2Ap
iii u p̌u(22a)/D and then use

this to express the generalized densities,r̃ and s̃, as func-
tions of p̌. Using~2.18! finally yields the critical isotherm in
the form

r iii ~p!5rc$16Biii u p̌ub/D1Bd
iii u p̌u2b/D1Ad

iii u p̌u(12a)/D1•••

6B4
iii u p̌u(b1u)/D1•••1B5

iii u p̌u(b1u5)/D1•••%,

~4.21!

where6 again refers tom:mc while

Biii 5~11d21!u~12 j 1!/~12 j 2!ub/DAp
iii , ~4.22!

andBd
iii }2(Biii )2: seeK ~3.131!. As expected for the critica

isotherm the leading exponent is againb/D5d21. Assuming
that the pressure-mixing coefficientj 2 is small (,1), we
find Biii .0 owing to convexity. Now whenj 2.0, the scal-
ing field h̃ can be approximated byp̌ which implies that the
critical isotherm in the (r,p) plane approaches the critica
point from higher density abovepc , while from lower den-
sity below pc : this accords with the observed standard b
havior.
06150
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D. Critical isochore

Below Tc in normal fluids the critical isochore in th
(m,T) and (p,T) planes coincides with the phase bounda
ms(T) and ps(T) ~but see@23# for exceptions in certain
models!; however, the behavior aboveTc is of general inter-
est. Whenr5rc , the result~2.18! for the density leads to

05~12 j 2!QUu t̃ ub@W1
08~y!1U4cu t̃ uuW1

(4)8~y!1•••#

1 j 2~ j 221!Q2U2u t̃ u2b@W1
08~y!1•••#21~ l 11 j 1!

3Qu t̃ u12a@DyW1
08~y!2~22a!W1

0 ~y!#1•••,

~4.23!

where the primes denote differentiation with respect toy. We
need to solve this equation fory as a function oft̃ ; but on the
critical isochore we expecty→0 when t̃→0. Hence we
should now use thesmall-y expansions~2.8! for the scaling
functions W1

0 (y), W1
(4)(y), etc. The resulting equation in

powers ofy may be solved iteratively to obtain

y5Y1u t̃ u12a2b@11y2u t̃ uu1•••#, ~4.24!

with coefficients

Y15
~22a!~ l 11 j 1!W10

0

2~12 j 2!W12
0 U

, y252
U4cW12

(4)

W12
0

. ~4.25!

The scaling fieldsp̃ and h̃ along the critical isochore can
now be found as follows: first, on combining~2.3!, ~2.4! and
~2.8! with ~4.24!, we find

p̃5Qu t̃ u(22a)@W10
0 1W12

0 Y1
2u t̃ u222a22b1•••1U4cW10

(4)u t̃ uu

1•••1U5cW11
(5)Y1u t̃ u12a2b1u51•••#; ~4.26!

then, from the definition~2.1! of the scaling variabley we get

h̃5~Y1 /U !u t̃ u12a1g@11y2u t̃ uu1•••#; ~4.27!

finally, by expressing the scaling fields in terms ofp̌, m̌, and
t via ~1.4!–~1.6!, we can solve these two equations iterative
for p̌ andm̌ as functions oft. After some algebra, this yield
the critical isochore in the (p,T) plane as

p̌iv~ t !5@piv~T!2pc#/rckBTc5 p̌s,1t1 p̌s,2t
21•••

1Ap
ivutu(22a)@11a1p

iv utuu1a2p
iv utug2a1•••

1a3p
iv utu12a2b1u51•••#1Bp

ivutu12a1g

3@11bp
ivutuu1•••#, ~4.28!

where the leading amplitudes are

Ap
iv 5QW10

0 utu22a, Bp
iv5Y1utu12a1g/U, ~4.29!
6-12



in

e

se
e
e
e
o

by

ing

-

n

y

nd,

ASYMMETRIC FLUID CRITICALITY. I. SCALING . . . PHYSICAL REVIEW E 67, 061506 ~2003!
while p̌s,1 , p̌s,2 , t, and the correction amplitudes are give
~3.12!, ~3.14!, andK ~3.139!. The amplitudeAp

iv is positive
by convexity.

In the (m,T) plane, the critical isochore is given by th
closely analogous form

m̌ iv ~ t !5@m iv ~T!2mc#/kBTc

5m̌s,1t1m̌s,2t
21•••1 j 2Ap

iv utu22a@11a1p
iv utuu

1a2p
iv utug2a1•••1a3p

iv utu12a2b1u51•••#

1~11 j 2!Bp
iv utu12a1g@11bp

iv utuu1•••#, ~4.30!

in which m̌s,1 and m̌s,2 are given in~3.16! and K ~3.78!,
while the coefficientsAp

iv , a1p
iv , etc. are thesameas in

~4.28!.
When the pressure-mixing coefficientj 2 vanishes, the

leading singularutu22a term here vanishes; but in that ca
the third derivative ofm iv (T), the chemical potential on th
critical isochore aboveTc , diverges at criticality, since on
typically has 2,12a1g,3. In view of these results on
might also define a magnitude for a Yang-Yang-type
anomaly by comparing the leading singularities inp and m
on the critical isochoreabove Tc ; but this naturally leads to
the identical ratio! One may thus writeR m

152 j 2 /(12 j 2)
5Rm : see~3.52!.

E. k-susceptibility loci

In this section we focus on the novelk-loci defined in the
one-phase region via the isothermal maxima ofx (k)[x/rk in
the (r,T) plane@6#, wherex5(]r/]m)T : see also~2.22!. If
one considersx (k) as a function ofm andT, the maxima of
x (k) at fixedT satisfy

S ]x (k)

]m D
T

5
1

rk F S ]x

]m D
T

2k
x

r S ]r

]m D
T
G50. ~4.31!

This leads to the condition

rS ]x

]m D
T

5kx2 or řS ]x̌NN

]m̌
D

T

5k~ x̌NN!2; ~4.32!

see~2.14! and ~2.21!. By using ~2.29!, one can obtain the
m̌-derivative ofx̌NN and express thek-locus in terms of the
generalized susceptibilities introduced in~2.28!. After some
algebra, one finds

x̃hhh1~11 j 2!r̃x̃hhh2e0~k!x̃hh
2 23e4x̃hht1•••50, ~4.33!

where, by convention, x̃hhh[(]3p̃/]h̃3) t̃ and x̃hht

[(]3p̃/]h̃2] t̃ ), while

e0~k!53 j 21k~12 j 2! ande45~ l 11 j 1!/~12 j 2!. ~4.34!

The condition may now be converted to scaling form
using~2.3! and~2.4!; then by employing the small-y expan-
sions~2.8! one can solve to obtain
06150
f

y[Uh̃/u t̃ uD5e0~k!Ȳ1u t̃ ub1Ȳ2u t̃ u12a2b1•••, ~4.35!

which might be compared with~4.24! for the critical isoch-
ore. The coefficients are given by

Ȳ15 1
6 QU~W12

0 !2/W14
0 , Ȳ25 1

4 ge4W12
0 /UW14

0 , ~4.36!

and we may note, for its future significance, that the lead
term in ~4.35! vanishes identically for the specialk value

kopt523 j 2 /~12 j 2!53Rm . ~4.37!

At this point the scaling fieldp̃ can be expanded in pow
ers of y and u t̃ u via ~2.3! and ~2.8! and then, via~4.35!,
wholly in terms ofu t̃ u. Finally, by using~1.4! and~1.5!, and
rewriting ~4.35! as an expansion forh̃ one can solve forp̌
iteratively as a function oft. After some algebra, we find

p̌(k)~ t !5 p̌s,1t1 p̌s,2t
21•••1Ap

(k)utu22a@11a1p
(k)utuu

1a2p
(k)utu2b1•••1a3p

(k)utub1u51•••#

1Bp
(k)utu11g2a1•••, ~4.38!

where the leading amplitudes are

Ap
(k)5QW10

0 utu22a@11e0~k!~W12
0 !2/6W10

0 W14
0 #, ~4.39!

Bp
(k)5Ȳ2utu11g2a/U, ~4.40!

while p̌s,1 , p̌s,2 , t, and the remaining coefficients are give
in ~3.12!, ~3.14!, andK ~3.153!.

The k-loci in the (m,T) plane can now be obtained b
substituting this result into the scaling fields and using~4.35!
once more. The result is

m̌ (k)~ t !5m̌s,1t1m̌s,2t
21•••1Am

(k)utu22a@11a1m
(k)utuu

1a2m
(k)utu2b1•••1a3m

(k)utub1u51•••#

1Bm
(k)utu11g2a1•••, ~4.41!

wherem̌s,1 and m̌s,2 are given in~3.16! and K ~3.78! while
the principal amplitudes are

Am
(k)5 j 2Ap

(k)1e0~k!Ȳ1utu22a/U,

Bm
(k)5~11 j 2!Bp

(k) , ~4.42!

andaim
(k)5 j 2Ap

(k)aip
(k)/Am

(k) for i 51,2,3.
For practical purposes the form of thek-loci in the

density-temperature plane is of most interest. To that e
note that the generalized densities,r̃ and s̃, can be written
using the above results as
6-13
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r̃52QU@e0~k!Ȳ1W12
0 u t̃ u2b1Ȳ2W12

0 u t̃ u12a1•••

1e0~k!Ȳ1U4cW12
(4)u t̃ u2b1u1•••

1 1
2 U5cW11

(5)u t̃ ub1u51•••#, ~4.43!

s̃5Qu t̃ u12a@~22a!W10
0 2g@e0~k!Ȳ1#2W12

0 u t̃ u2b1•••#,

~4.44!

where t̃'tt with t defined in~3.14!. Thek-loci in the (r,T)
plane are given by

ř (k)~ t !511~12 j 2!r̃1 j 2~ j 221!r̃22~ l 11 j 1!s̃1•••,
~4.45!

so that finally thek-locus varies as

r (k)~T!5rc$11Bd
(k)utu2b@11b4utuu1•••#1Ad

(k)utu12a

1A1
(k)t1•••1B5

(k)utub1u51•••%, ~4.46!

where the coefficients are

Bd
(k)52e0~k!~12 j 2!Ȳ1QUW12

0 utu2b,

b45U4cW12
(4)utuu/W12

0 , ~4.47!

Ad
(k)52~ l 11 j 1!Qutu12aF ~22a!W10

0 1
1

2
g~W12

0 !2/W14
0 G ,

FIG. 3. Selectedk-susceptibility loci for the van der Waals equ
tion. The thick solid line represents the coexistence curve while
thick dashed line is the diameter. The (k50) locus is the vertical

solid line, while thek51,3
5 , 1

4 and k521 loci are portrayed by
long-dashed, short-dashed, dotted, and dot-dashed lines, re
tively. Note that thek5

3
5 locus has the same slope at criticality

the coexistence curve diameter.
06150
~4.48!

B5
(k)5~12 j 2!QUU5cW11

(5)utub1u5, ~4.49!

while the expression forA1
(k) is rather complicated. What is

significant is that the leading amplitude,Bd
(k) , varies linearly

with k and vanishes identically whenk takes the ‘‘optimal
value’’ kopt53Rm given in ~4.37!, while the other coeffi-
cients exhibited donot vary with k @despite the superscrip
label (k)]. For k5kopt we may say, loosely, that thek-locus
points most directly to the critical densityrc . Indeed, for this
reason examining thek-loci may be of value in analyzing
both experimental and simulation data. Furthermore the
lation to the Yang-Yang anomaly ratio is again revealing a
suggestive.

Orkoulas, Fisher and Panagiotopoulos@6# examined the
k-loci for the hard-core square-well fluid using grand cano
cal Monte Carlo simulations. They observed that thek-loci
for different system sizes settle down and become indep
dent of size at high enough temperatures. Within the pre
sion attainable these loci can be considered as the truek-loci
~for the thermodynamic limit!. However, whenT→Tc , the
finite-size loci clearly deviate from the limiting behavior. Fo
the data in hand the finite-size effects become evident w
t5(T2Tc)/Tc,0.1.

To estimate thek-loci near the critical point, we have
fitted the data fort*0.1 with the formula~4.46!, retaining
only the coefficientsBd

(k) , Ad
(k) , and A1

(k) , while adopting
Ising values for the exponents and takingrc50.3067 and
Tc51.2179@6#. Some of these estimates are presented in
1. Similarly, some of the estimatedk-susceptibility loci for
the restricted primitive model@25# are shown in Fig. 2. For
comparison, Fig. 3 presents thek-loci for the van der Waals
fluid: see Sec. V. Note that for the van der Waals fluid all t
k-loci approach the critical point linearly, which, of course,
consistent with the classical exponent equalities 2b512a
51.

F. k-heat-capacity loci

It is also interesting to examine thek-heat-capacity loci or
CV

(k)-loci defined by points of maxima of the modified sp
cific heat

CV
(k)~T,r![CV~T,r!/rk, ~4.50!

in the (r,T) plane, whereCV is the constant-volume specifi
heat. These are clearly quite analogous to thek-susceptibility
loci discussed in the previous section; but they have not
yet, been used in any simulations. TheCV

(k)-loci can, in prin-
ciple, be obtained in a way similar to that used for t
k-susceptibility loci by starting with the relation~2.27!.
However, when one takes a derivative of~2.27! with respect
to m at fixed T, the expression becomes complicated a
difficult to handle. Therefore we outline a different, canon
cal approach.

The required maximal points in the (r,T) plane at fixedT
satisfy

e

ec-
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2kCV1r~]CV /]r!T50. ~4.51!

To find a convenient expression forCV(T,r), we consider
the Helmholtz free energy densityf (r,T)5rm(r,T)
2p(r,T). In terms of the reduced variablesř, m̌ and p̌ one
has

f̌ ~ ř,t ![@ f 2 f c#/rckBTc5~mc /kBTc!Dř1 řm̌2 p̌

with Dř[ř21. ~4.52!

The reduced specific heat,~2.25!, is then

ČV~ ř,t !5~rTc /kBrcT!CV52~]2 f̌ /]t2!r , ~4.53!

while thek-locus equation,~4.51!, becomes

2~k11!ČV1 ř~]ČV /]ř ! t50. ~4.54!

To solve this forř as a function oft, we first expandf̌ ,
about the critical density in powers ofDř for t.0. If the
expansion coefficients aref̌ 0(t), f̌ 1(t), •••, we can rewrite
the locus equation as

2~k11! f̌ 091 f̌ 191@~k21! f̌ 1912 f̌ 29#Dř1O„~Dř!2
…50.

~4.55!

To expand the coefficientsf̌ 09(t), etc., in powers oft, no-

tice first that, from~4.52! with ř51 or Dř50, we have

f̌ 0~ t !5m̌ iv ~ t !2 p̌iv ~ t !, ~4.56!

FIG. 4. Thek-heat-capacity loci for the hard-core square-w
fluid in a finite periodic cube of sideL derived from previous simu-
lation data@6#. The dotted curves are the loci forL* [L/s56,
wheres is the diameter of the hard spheres; the dashed lines ar
L* 59, while the solid lines are forL* 512. Note that since the
systems are finite these loci~and thek-susceptiblity loci! extend
below Tc .
06150
wherem̌ iv (t) and p̌iv (t) represent the variation ofm andp
on the critical isochore as obtained in~4.28! and~4.30!. Then
the relationm(T,r)5(] f /]r)T yields

f̌ 1~ t !5~mc /kBTc!1m̌ iv~ t !. ~4.57!

Finally, we have

f̌ 2~ t !5 1
2 ~]m̌/]ř ! tur5rc

5 1
2 x̌NN

21~ t;r5rc!. ~4.58!

To obtain the reduced susceptibility,x̌NN , on the critical
isochore, we may use~2.29! and the previous results in Se
IV D. After some algebra we obtain

x̌NN52~12 j 2!2QU2W12
0 uttu2g

3@11U4c~W12
(4)/W12

0 !uttuu1•••#, ~4.59!

wheret was defined in~3.14!. Note that the pressure-mixin
coefficient j 2 first enters in at12a correction; but that is of
higher order than thetu term retained here. On taking th
reciprocal and differentiating twice with respect tot, we fi-
nally have

2 f̌ 29~ t !5Dtg22@12d̃utu1•••#, ~4.60!

where the coefficients are

D5
g~g21!utug

2~12 j 2!2QU2W12
0

,

d̃u5
~g1u!~g1u21!U4cW12

(4)

g~g21!W12
0

utuu. ~4.61!

We are now in a position to solve~4.55! iteratively forDř
as a function oft by using ~4.28!, ~4.30! and ~4.60!. One
finally obtains thek-heat-capacity orCV

(k)-locus in the form

rC
(k)~T!5rc@12BC

(k)t2b2AC
(k)t2b1a1•••#, ~4.62!

where, recalling~4.29!, ~3.12! andK ~3.68!-~3.78!, the ampli-
tudes are

BC
(k)5~22a!~12a!@11k~12 j 2!#Ap

iv /D,

AC
(k)5@ p̌s,21k~ p̌s,22m̌s,2!#/D. ~4.63!

Note first that the exponents 2b and 2b1a are numeri-
cally very close~since a.0.1), so the two terms derive
compete strongly near the critical point; furthermore,
utu12a term also appears in the full expression. However,
leading amplitudeBC

(k) does vanish when

k5kC521/~12 j 2!5Rm21. ~4.64!

This value can be compared to 3Rm for thek-loci: see~4.37!.
However, one must keep in mind that it will be more difficu

l

for
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to resolve the ‘‘optimal’’ k value here, compared to th
k-susceptibility loci, since the term varying ast2b1a does not
vanish atk5kC .

In order to gain some impression of the behavior of th
CV

(k)-loci, we present in Fig. 4, some of thek-heat-capacity
loci obtained for the hard-core square-well fluid infinite sys-
tems. Note that since the exponents 2b, 2b1a, 12a, etc.,
are closely spaced, it is not feasible to extract reliable e
mates of the thermodynamic limiting loci from such finit
size data.

V. CRITICAL LOCI IN CLASSICAL THEORY

In this section, as concrete, albeit rather special, exam
of the various critical loci discussed above, we consider
classical theory of a liquid-gas critical point. In particula
the van der Waals equation will be used to provide quant
tive illustrations: it reads

p5rkBT/~12br!2Ar2, ~5.1!

whereb and A are constants which measure the molecu
size and the strength of the attractive interactions, resp
tively. As well known, one has

kBTc58A/27b, rc51/3b, pc5A/27b2. ~5.2!

Less well known is the behavior whenT→0 of the liquid
and vapor densities and of the phase boundaryms(T)→
2A/b: seeK ~Appendix D!.

A. Phase boundaries

The Helmholtz free energy~or its appropriate analog! in a
classical or Landau theory may be taken as analytic throu
out the critical region. Accordingly, to formulate the theo
we expand the free energy density around the critical poin
terms of the order parameter

m[~r2rc!/rc ~5.3!

and the temperature deviationt5(T2Tc)/Tc , as

f ~T,r!5(
j 50

`

(
k50

`

ajkmj tk with a205a3050,

a40.0, ~5.4!

where the conditions stated serve merely to ensure no
critical behavior. The explicit values of the leading coef
cientsajk for the van der Waals equation~5.1! are derived in
K ~Appendix C! where it is seen that a special feature is th
all the cubic coefficients, a3,k (k50,1,2,•••), vanish identi-
cally, as do many higher order coefficients such asaj 2 , aj 3,
etc., for all j >2. Of course, these features should not
expected to hold in real systems or in more realistic mod
even when a classical description of criticality may be w
ranted. The leading nonvanishing van der Waals coefficie
are reproduced in the Appendix here.

From ~5.4!, the chemical potential and the pressure can
expanded using
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m~T,r!5~] f /]r!T , p~T,r!5rm2 f . ~5.5!

In the two-phase region, the liquid and vapor phases, w
densitiesr liq5rc(11mliq) and rvap5rc(11mvap), respec-
tively, must have the same chemical potential,ms(T), and
pressure,ps(T). Solving these two conditions forr liq and
rvap by using~5.3! and~5.4! yields the desired phase boun
aries. The detailed calculations are presented inK @26#; the
results are

m̄~T![ 1
2 ~mliq1mvap!5Ā1t1Ā2t21O~ t3!, ~5.6!

m0~T![ 1
2 ~mliq2mvap!5Butu1/2@11C1t1O~ t2!#, ~5.7!

ms~T!5mc1m1t1m2t21m3t31O~ t4!, ~5.8!

ps~T!5pc1p1t1p2t21p3t31O~ t4!, ~5.9!

where the amplitudesĀ1 , Ā2 , B, etc. are expressed in term
of the coefficientsajk in the Appendix. The results agre
with those of Sengers and Sengers@13# who, however, give
them only to one order lower int.

B. Critical isochore and analytically continued loci

In addition to examining~i! thecritical isochoreaboveTc
one may, for critical points describable by classical theo
always consider theanalytical continuationto T.Tc of vari-
ous loci otherwise defined only forT<Tc . Specifically, we
will study: ~ii ! the continued coexistence curve diamete,
r̄(T); ~iii ! the continued saturation chemical potentia,
ms(T); and ~iv! the continued vapor pressure line, ps(T).
For nonclassical critical behavior, the analysis of the pre
ous section demonstrates that, in general, these last t
continuations cannot be uniquely defined since all carry s
gularities atTc .

We address first the appearance of these loci in the (r,T)
plane: see Fig. 5. The critical isochore,~i!, is trivial; the
continued diameter, sayr ii (T)@[r̄(T)#, follows directly
from ~5.7! and has a critical slope

~dr ii /dt!c5Ā1rc , ~5.10!

which is negativefor the van der Waals equation: see Fig.
for which the quadratic terms int were also computed.

To determiner iii (T), the density locus on which the
chemical potential is the analytic continuation of the pha
boundary,ms(T), we may substitute~5.8! in the full expan-
sion form(T,r) that follows from~5.4! and~5.5!. This gives
an equation connectingm and t which is easily solved form
in powers oft although them2t2 term in ~5.8! is needed even
in linear order. One finds

~dr iii /dt!c5rc~a21a5022a31a40!/8a40
2 . ~5.11!

The locusr iii (T) can be regarded as aneffective line of
symmetryalong which the chemical potential is analyti
However, as seen in Fig. 5, this locus differs from the a
6-16
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lytic continuation of the coexistence curve diamet
r ii (T)—another natural candidate—even in the lowest or
in t.

The locusr iv (T), along which the pressure is the co
tinuation of the vapor pressure curve,ps(T), can be found in
an analogous way. Substituting~5.9! into the expansion ofp
following from ~5.5! leads to

~dr iv /dt!c5rc~a21a401a21a5022a31a40!/8a40
2 , ~5.12!

which, in fact, differs from both~5.10! and~5.11!: see Fig. 5.
In the (m,T) plane one can find results for the same fo

loci by using~5.4! and the expressions found for the loci
the (r,T) plane. In all cases the initial slopes are the sam
that is (dmi /dT)c5m1 for i5 i2 iv: see Fig. 6. However, the
initial curvatures differ, being given byrcm i,c9 52a12 and

rcm ii,c9 52a122a21~2a31a4022a21a50!/2a40
2 , ~5.13!

rcm iii,c9 52a122a21~2a31a402a21a50!/2a40
2 , ~5.14!

rcm iv,c9 52a122a21~2a31a402a21a502a21a40!/2a40
2 , ~5.15!

where the primes denote differentiation with respect tot.
Notice that in Fig. 6 the critical value and a convenien
chosen term linear int have been subtracted. Thus one c
clearly resolve the differences in curvature and observe
the sequence of loci, from top to bottom, is the same a
Fig. 5.

Similarly, the loci in the (p,T) plane can be obtained
Again, all have the same initial slopes while the curvatu
are distinct as follows from

pi,c9 52a1222a02, ~5.16!

pii,c9 52a1222a022a21~2a31a4022a21a50!/2a40
2 , ~5.17!

piii,c9 52a1222a022a21~2a31a402a21a50!/2a40
2 , ~5.18!

piv,c9 52a1222a022a21~2a31a402a21a402a21a50!/2a40
2 .

~5.19!

In the van der Waals case the curvaturepi,c9 , for the critical
isochore, vanishes whilepiv,c9 , for the analytic continuation
of ps(T), is positive so that this locus lies above the critic
isochore; the remaining curvatures are all negative and
sequence of loci is again the same as in Fig. 5.

C. k-susceptibility loci

Since the density increases monotonically withm at fixed
T, the maximal condition ~4.31! specifying the
k-susceptibility loci can be rewritten as

S ]x (k)

]r D
T

5
1

rk F S ]x

]r D
T

2k
x

r G50, ~5.20!

and, thence, in terms of the free energy densityf (T,r), in
the simpler form
06150
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k~]2f /]r2!T1r~]3f /]r3!T50. ~5.21!

Substituting the expansion~5.4! and solving form iteratively
yields thek-loci in the (r,T) plane generally as

r (k)~T!5rc@11m1~k!t1m2~k!t21O~ t3!#, ~5.22!

with coefficients polynomial ink, namely,

m1~k!52~ka2113a31!/12a40, ~5.23!

FIG. 5. Various critical loci for the van der Waals equation
state in the (r,T) plane, wherem5(r2rc)/rc . The coexistence
curve is drawn with a thick solid line.~i! Critical isochore;~ii !
coexistence curve diameter and its analytic continuation into
one-phase region;~iii ! analytic continuation ofms(T); ~iv! analytic
continuation ofps(T); ~v! (k51)-susceptibility locus.

FIG. 6. Critical loci for the van der Waals equation in the (m,T)
plane: rcDm/pc is plotted with, for illustrative purposes,Dm5

m2mc2(m11
3
2 )t @see~A5! and~A13! for mc andm1]. The graphs

include only the second and third order terms int. The phase bound-
ary, ms(T), is drawn with a thick line. The labeling~i!–~v! is the
same as in Fig. 5.
6-17
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m2~k!52 1
12 $ka2213a3213@~k11!a3114a41#m1~k!

16@~k12!a4015a50#@m1~k!#2%/a40. ~5.24!

For the van der Waals equation these results yield

m1~k!52 2
3 k, m2~k!52 2

9 k~k21k23! ~5.25!

~see the Appendix!. Note that whenk50, the coefficientsm1
andm2 both vanish; furthermore, an exact calculation sho
that all the expansion coefficients vanish identically atk
50 so that one hasr (0)(T)[rc : see Fig. 3. We also find tha
the slope of thek-locus at criticality becomes equal to that
the coexistence curve diameter whenk5 3

5 . In Fig. 3 the
k-loci for the van der Waals fluid at several values ofk have
already been presented. Comparison with Figs. 1 and 2
veals that the behavior of these loci is closer to those for
hard-core square-well fluid than for the restricted primiti
model. Figures 5 and 6 show how the (k51)-susceptibility
locus appears in the (r,T) and (m,T) planes and relates t
the other van der Waals loci: see the plots labeled v.

D. Yang-Yang relation and some extensions

It is natural to ask how, if at all, a Yang-Yang anoma
might appear in a classical theory. To that end we discus
this section, the Yang-Yang relation~1.1! on general linear
loci in the (r,T) plane and also derive an analogous relat
for isotherms.

1. On the critical isochore

On the critical isochorer5rc , in the two-phase region
below Tc , it is convenient here to define the functions

FIG. 7. The specific heatCV(T,rc) ~solid curve! on the critical
isochore of a van der Waals fluid~times 1

2 in units ofkB), compared

with the corresponding contributions,C̃p(T) and C̃m(T) ~dot-
dashed and dashed plots!, arising from the isochoric variation o
pressure and chemical potential: see~3.48! and~5.26!. Note that the
standard kinetic contribution to the total specific heat, namely,1

2 dkB

~in d dimensions!, arisesentirely from C̃m52Tm9. The plots be-
neath Tc are correct only to leading order int5
(T2Tc)/Tc .
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C 2~T![rcTc
2 CV

T
, P 2~T![Tc

2 d2p

dT2
,

M 2~T![2rcTc
2 d2m

dT2
, ~5.26!

where the factorsTc
2 have been introduced simply for dimen

sional convenience.@Compare with~3.47!–~3.48!.# AboveTc
the functionsC 1(T), P 1(T), andM 1(T) may be defined
on the critical isochore in precisely the same way. The Ya
Yang relation then impliesC 65P 61M 6. In classical
theory we may expand in powers oft for t:0 to obtain

C 6~T!5Cc
61C 1

6t1O~ t2!, ~5.27!

and likewise forP 6(T) and M 6(T). The leading ampli-
tudes aboveTc are simply

Cc
1522a02, Pc

152~a122a02!, Mc
1522a12, ~5.28!

while the amplitudes of the terms linear int are

C 1
256~p32rcm3!, C 1

1526a03,

P 1
256p3 , P 1

156~a132a03!,

M 1
2526rcm3 , M 1

1526a13, ~5.29!

wherem3 andp3 are given in the Appendix from which on
readily sees that the slopes are discontinuous acrossTc .

Indeed, it is well known that the specific heatCV(T) on
the critical isochore exhibits a finite jump at a classical cr
cal point which, in fact, is of magnitude given by

rcTcDCV5DC[Cc
22Cc

15 1
2 a21

2 /a40. ~5.30!

It transpires, however, that in general both the second der
tive of the pressureand of the chemical potential have
finite discontinuity on the critical isochore. This arises fro
the presence of the odd coefficientsa31 anda50 ~even though
a31 vanishes ‘‘by accident’’ for the van der Waals equatio!
as follows from

DM[Mc
22Mc

15 1
2 a21~2a31a402a21a50!/a40

2 , ~5.31!

with, of course,DP5DC2DM.
These results are illustrated for a van der Waals fluid

Fig. 7. Clearly, the variation of both the pressure and
chemical potential contribute to the discontinuity in the sp
cific heat on the critical isochore. The relative degree of
two contributions may be gauged by evaluating the ratio

Ṙm[
DM
DC 52

a31

a21
2

a50

a40
, ~5.32!

which, as the notation suggests, might be regarded as
effective Yang-Yang ratio for classical systems. Indeed
Ṙm vanishes, as in the case of simple lattice-gas mean-fi
models, the isochoric second temperature derivative of
6-18
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chemical potential becomes continuous through the crit
point: then, the only contribution to the discontinuity in th
specific heat on the critical isochore arises from the varia
of the pressure.

2. On linear density loci

In light of the various critical loci that approach the crit
cal point linearly in the (r,T) plane of classical systems~see
Fig. 5!, it is rather natural to extend the Yang-Yang relati
to the general linear locus

r5rc~11rt !. ~5.33!

To that end consider, first, the second temperature deriva
of the pressure and the chemical potential near critica
along this locus. ForT,Tc , there is no dependence onr
because, since the exponentb is less than unity, the linea
locus ~5.33! always lies in the two-phase region whenT
→Tc2. Hence the results~5.29!–~5.31! still apply. In the
single-phase region aboveTc , the previous definitions may
naturally be extended by taking

P r
6~T![Tc

2S ]2p

]T2D r
, M r

6~T![2rTc
2S ]2m

]T2 D r
. ~5.34!

From ~5.4! and ~5.5! these functions may be expande
straightforwardly to yield the limiting values

Pr ,c
1 52~2a12r 1a122a02!,

Mr ,c
1 522~a1212a21r !. ~5.35!

In an obvious notation, we then obtain

DPr5a21~a21a4022a31a401a21a50!/2a40
2 24a21r , ~5.36!

DMr54a21r 1a21~2a31a402a21a50!/2a40
2 . ~5.37!

When r 50, i.e., along the critical isochore, these results
course agree with~5.31!.

It is now interesting to definer P as specifying that locus
along which the pressure has a continuous second deriv
at criticality and similarly forr M . From ~5.36! and ~5.37!,
we thus find

r M5~a21a5022a31a40!/8a40
2 5r P2 1

8 a21/a40. ~5.38!

For the van der Waals equation these expressions yieldr P
50.8 andr M520.2. On the other hand, from~5.10!, the
locus of the analytically continued coexistence diamete
specified by

r̄ 5~a21a502a31a40!/4a40
2 , ~5.39!

which takes the valuer̄ 520.4 for the van der Waals equa
tion. Evidently, all three loci are distinct! Note especial
however, thatr M is equal to the slope of the effective line o
symmetry at the critical point: see~5.11!. Hence, as already
shown by Mulholland@28#, this putative line of symmetry
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for the van der Waals equation differs from the analytic co
tinuation of the coexistence curve diameter; but it is, rath
the locus on which the effective Yang-Yang ratio,Ṙm , van-
ishes!

Now, extending the Yang-Yang relation to the general
cus ~5.33! leads to

rCV

T
1

rc
2r 2

Tc
2r2KT

5Tc
22@P r

6~T!1M r
6~T!#, ~5.40!

where r5rc(11rt ) is understood and, as before,KT de-
notes the isothermal compressibility: seeK ~Appendix F!.

In classical theory, this relationship may be verifie
straightforwardly using~5.4!, and subsequently derived ex
pressions forrCV /T and 1/r2KT , on ~5.33!. Explicitly, one
finds the initial derivatives ofP r

1(T) andM r
1(T) at criti-

cality to be cubic polynomials, namely,

Pr ,1
1 56@a132a0312a22r 1~a2113a31!r

214a40r
3#, ~5.41!

Mr ,1
1 52@6a13112~a1216a22!r 1~4a21118a31!r

2

124a40r
3#, ~5.42!

which, of course, satisfy the generalized relation~5.40! with

rc
2/r2KT52a21t1O~ t2!. ~5.43!

3. Yang-Yang-type relation on the critical isotherm

An important locus in the (r,T) plane is the critical iso-
therm,T5Tc . In analogy to the Yang-Yang relation for iso
choric variations one can derive a correspondingisothermal
relation, namely,

1

r2KT

5S ]2p

]r2D
T

2rS ]2m

]r2 D
T

: ~5.44!

seeK ~2.97!.
To apply this to the critical isotherm, recall that the ge

erally expected critical behavior is

1/rc
2KT'D6uDrud21 for Dr[r2rc→06. ~5.45!

In classical theory one hasd53 and finds D15D2

512a40/rc
4 . More generally one might define the pressu

and chemical potential contributions in~5.44! via

Pr~r!5~]2p/]r2!T , Mr~r!52~]2m/]r2!T

at T5Tc . ~5.46!

It is then natural to ask, as on the critical isochore, h
the two contributions—one fromp, and one from
m—contribute to the overall singularity in~5.45! and
whether that might throw any further light on the pressu
mixing coefficientsj 1 or j 2. It turns out, however, that mat
ters are very different! In fact, by appropriate integration
~5.45!, one can obtain the leading singular behavior ofboth p
andm on the critical isotherm. Then one finds that the lea
6-19
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KIM, FISHER, AND ORKOULAS PHYSICAL REVIEW E67, 061506 ~2003!
ing singularities ofPr(r) andMr(r) both vary asuDrud22

and are, thus,more singularthan is their sum! Indeed, thes
leading terms must cancel exactly in~5.44! so that the be-
havior ~5.45! for 1/KT appears only as a net correction ter
Needless to say, the classical theory fits in with this desc
tion although, sinced is an odd integer, there is ambiguity i
defining appropriate ‘‘singular contributions.’’ More gene
ally, while there may well be effective ways in which a
estimate of the degree of pressure mixing can be found f
isothermal observations, we have not identified a good c
didate.

VI. SUMMARY

We have carefully formulated a full or ‘‘complete scalin
theory’’ for asymmetric fluid criticality that, in particular
incorporates pressure mixing in the basic linear and non
ear scaling fields. The theory can then describe a Yang-Y
anomaly@2# in which the second temperature derivative
the chemical potential along the phase boundary, nam
d2ms /dT2, divergesat the critical point with the specific
heat exponenta. This is shown to entail, also, a leadingutu2b

term in the coexistence curve diameter that dominates o
the previously knownutu12a term @15# and a dominantutub
singularity in the normalized susceptibility asymmetry acro
the coexistence curve. The strength of the Yang-Ya
anomaly, Rm , is directly related to the linear pressur
mixing coefficient in the ordering fieldh̃ that we have la-
beled j 2.

For convenience of reference, we identify here the m
definitions introduced and the explicit results derived. T
coefficientsj 1 , j 2 , k0 , •••, n5 , v1 , v2 entering thenonlin-
ear scaling fieldsto quadratic order are defined via~1.4!–
~1.7!, in terms of reduced pressure,p̌, chemical potential,m̌,
and reduced temperature deviationt5(T2Tc)/Tc : see~1.7!.
The scaling ansatz, in the form developed is presented
~2.1!–~2.3! and the basic properties of the overall scali
functionW6(y,y4 ,y5 ,•••) are set out in~2.4! together with
~2.8! and~2.10! for small argument,uyu→0, and in~2.12! for
uyu→`. Explicit expansions in powers oft for the phase
boundaries,ps(T) and ms(T), are reported in~3.11! and
~3.15!. The corresponding expressions for thecoexistence
curve ~and its diameter!, and for the entropies of coexistin
gas and liquid are~3.20! and ~3.21!; Eq. ~3.31! gives the
entropy on the critical isochore,r5rc , while the suscepti-
bilities on the coexistence curve are presented in~3.34!. The
linear mixing coefficients themselves are related to mea
able critical amplitudes, etc., in~3.22! and ~3.43!–~3.46!.

Section IV addresses the behavior of various critical l
in them, p, andr vs T planes. Thecritical isokyme, defined
by m5mc , is described in~4.5! and~4.7!; thecritical isobar,
in ~4.13! and ~4.15!; the isotherm, in ~4.19! and ~4.21!; and
the critical isochore in ~4.28! and ~4.30!. The family of
k-susceptibility lociis defined via~4.31! while ~4.38!, ~4.41!
and ~4.46!, with ~4.34! elucidate their behavior in thep, m,
and density vsT planes, respectively: see Figs. 1–3. T
analogousk-heat-capacity loci are defined in~4.50! while
~4.62! describes their appearance in the (r,T) plane: see Fig.
06150
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4. For both thek-susceptibility andk-heat-capacity loci there
are ‘‘optimal’’ values ofk, depending only on the pressure
mixing coefficient j 2, for which the dominant singularity a
criticality vanishes. Thus these particular loci approach
critical point in the (r,T) plane almost linearly: see~4.37!
and ~4.64!.

The magnitudes and inter-relations of the various criti
loci, including analytically continued loci, in the (r,T) and
(m,T) planes are illustrated in Figs. 5 and 6, respectively,
the van der Waals fluid. Corresponding analytic results fo
general classical fluid, defined via the Landau expans
~5.4!, are given in~5.6!–~5.9! and~5.10!–~5.19! and, for the
k-loci, in ~5.22!. The Yang-Yang relation and its generaliz
tion to a linear density locus@in ~5.34! and ~5.40!# are dis-
cussed for classical systems—for which there is no uniqu
defined ‘‘anomaly’’—in Sec. V D. Figure 7 illustrates tha
both pressure and chemical potential variation contribute
the specific-heat jump in a van der Waals fluid.

Finally, in part II of this article@29#, the present scaling
formulation with pressure mixing will be extended tofinite-
size systems~with periodic boundary conditions!. The re-
sults, which include the definition and analysis of ‘‘Q-loci
are of practical importance in the analysis of simulation d
for near-critical asymmetric systems@6,25# as will be further
demonstrated@29#.
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APPENDIX: PHASE BOUNDARIES IN CLASSICAL
THEORY

The amplitudes for the coexistence curve introduced
~5.6! and ~5.7! are found to be

Ā15~a21a502a31a40!/4a40
2 , ~A1!

Ā25@a31~4a40
3 a4124a31a40

2 a50110a21a40a50
2 26a21a40

2 a60!

24a32a40
4 1a50~4a22a40

3 28a21a40
2 a4126a21

2 a50
2

19a21
2 a40a60!14a21a40

3 a5123a21
2 a40

2 a70#/16a40
5 , ~A2!

B5@a21/2a40#
1/2, ~A3!

C15~8a22a40
3 28a21a40

2 a4116a21
2 a40a6023a31

2 a40
2

110a21a31a40a5027a21
2 a50

2 !/16a21a40
3 . ~A4!

The coefficients introduced in~5.8! and ~5.9! for the phase
boundaries,ms(T) andps(T), turn out to be

rcmc5a10, rcm15a11, ~A5!

rcm25a121a21~a21a5022a31a40!/4a40
2 , ~A6!
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rcm35a131@a31~a31
2 a40

3 24a21a31a40
2 a5024a40

4 a22

14a21a40
3 a4115a21

2 a40a50
2 23a21

2 a40
2 a60!

24a32a21a40
4 1a50~24a21a22a40

3 14a21
2 a40

2 a41

12a21
3 a50

2 23a21
3 a40a60!22a51a21

2 a40
3

1a70a21
3 a40

2 #/8a40
5 . ~A7!

pc5rcm02a00, p15rcm12a01, ~A8!

p25rcm22a021a21
2 /4a40, ~A9!

p35rcm32a031a21~4a22a40
3 22a21a40

2 a411a21
2 a40a60

2a31
2 a40

2 12a21a31a40a502a21
2 a50

2 !/8a40
4 . ~A10!

To specify the corresponding coefficientsai j for the van
-

ys

n-

H.
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der Waals equation@seeK ~Appendix C!# we takeLc to be
the thermal de Broglie wavelength atT5Tc in a
d-dimensional system and define

l5 ln~Lc
d/2b!21. ~A11!

The leading nonvanishing coefficients are then

a005~ 8
3 l23!pc , a015a002pc , 2a0253a0352pc ,

~A12!

a105a001pc , a115
8
3 lpc , 2a1253a1352pc ,

~A13!

a2050, a2153pc , a405a415
3
8 pc , ~A14!

a5052 3
40 pc , a605

9
80 pc , a7052 3

56 pc . ~A15!
s.

ys.
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