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Competition between crystallization and gelation: A local description
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We develop a model to describe the competition between gelation and crystallization in colloidal suspen-
sions where particle interactions are represented by square well attractions. The competition is discussed
locally in terms of the tendencies of individual particles to attain amorphous or crystalline configurations on
cluster surfaces. These tendencies are dictated by three independent processes, the aggregation of particles
onto, the dissociation of particles from, and the rearrangement of particles on the cluster surfaces. Models are
developed to determine the rates of each of these processes. The relative magnitudes of these rates determine
the probability that a particle arriving onto a cluster surface reaches a crystalline configuration, remains
arrested in an amorphous configuration, or dissociates back into the suspension. These probabilities are em-
ployed to determine whether stable crystalline or amorphous clusters nucleate, resulting in predictions of the
occurrence of crystallization or gelation as a function of solution conditions. Comparisons of model predictions
with recent experiments on globular protein suspensions show excellent agreement, suggesting that the model
captures much of the underlying physics of the competition between gelation and crystallization in attractive
colloidal suspensions.
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[. INTRODUCTION rence of gelation. For example, the percolation threshold,
which indicates the formation of a cluster large enough to
Upon quenching a suspension of particles experiencingpan the expanse of the system, has been used to delineate
attractive interactions, crystallization can be preempted by aonditions where gels may occli4,15. In the more recent
nonequilibrium gel transition[1,2]. The gel phase thus mode coupling approach, recognizing that gels are noner-
formed has unique properties: it is solidlike in that it does notgodic states, conditions yielding nontrivial solutions for the
flow and can bear a nonzero shear stress, and is liquidlike inonergodicity parameters are used to suggest the formation
that it lacks a structure with long range order. Gels oftenof gels[16]. While useful in predicting the location of non-
have self-similar structures that span space to form a percergodic transitions, these approaches cannot address the
lated network at packing fractions significantly lower thancompetition between gelation and crystallization. As a result,
packing fractions in ordinary solid8]. Accordingly, colloi-  whether a gel or crystals will result under given solution
dal gels are employed extensively in the paints, coatingszonditions remains poorly understood.
foods, drug, and cosmetics industries. On the other hand, the Experimental studies on hard-sphere colloidal suspen-
gel phase can be a hindrance to crystal formation. Highlsions where a depletion attraction is induced between the
ordered crystalline solids are indispensable in the identificaparticles by adding nonadsorbing polymer demonstrate the
tion of protein structures, the manufacture of photonic bangrevalent competition between gelation and crystallization
gap materials, and controlled drug delivdd/~7]. In such  [8-11]. For short ranges of attractiofset by a small
applications, the gel phase is undesirable. For systems thpblymer-to-colloid size ratip gelation preempts crystalliza-
crystallize, little is known about how to control the compe-tion upon increasing either the colloid or the polymer con-
tition between gelation and crystallizatid8—12. Under-  centration. At a fixed polymer concentration, which deter-
standing how to control this competition is clearly an areamines the strength of the depletion attraction, increasing the
that has widespread consequences. polymer-to-colloid size ratio results in crystallization. In
Equilibrium thermodynamics predicts the occurrence ofmore recent studies on globular protein suspens|di2s,
crystals as the stable thermodynamic phase upon crossing tbeystals were observed to nucleate directly from the fluid
solubility boundary[13]. The location of the solubility phase at higher strengths of attraction, whereas at lower
boundary in a temperature-concentration phase diagram detrengths of attraction, the suspensions gelled at short times
pends on the details of the interactions between the particlesiith crystals nucleating from the gels at very long times.
Gelation, on the other hand, is a purely kinetic transition andrhese studies point to the subtle and poorly understood ef-
is not predicted by thermodynamic approaches. Alternativéects of changing the strength and the range of particle at-
approaches have been developed wherein signatures of thections on the resulting gelation and crystallization transi-
gel phase are employed as the criteria to predict the occutions.
While gels and crystals have drastically different proper-
ties, the processes that lead to their formation are identical at
*Present address: Theoretical Division, Los Alamos Nationathe molecular level: Both gels and crystals are formed as
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ticles relative to their thermal energy, the particles rearrange Il. EQUILIBRIUM THERMODYNAMICS OF SQUARE
into ordered structures over varying time scales. Thermal WELL SYSTEMS

fluctuations allow bound particles to dissociate into the sus-
pension. The relative rates of these processes determingiq o cting with a dimensionless pair potential given by the
whether geI; or cr.ystals will eventually result: When_ réar-centrosymmetric square well

rangement is rapid, and therefore complete, equilibrium
structures, or crystals, result. When rearrangement is incom-

Consider a suspension of spherical particles of radfi “

o, r<2a
plete, particles remain arrested in nonequilibrium configura- u(r)
tions yielding amorphous aggregates and gels. Extant models T —elkT, 2a<r=<2\a (1)
fail to recognize this similarity in the underlying processes; 0, r>2\a,

while gelation is treated as a dynamic nonergodicity transi-

tion [16], crystallization is understood using the completelywherer is the center-to-center separation of a pair of par-
independent framework of equilibrium thermodynamicsticles, ¢ is the strength of the attraction between the particles,
[13]. As a result, difficulties arise in addressing the compe-\ is the range of the attraction, andl is the product of
tition between gelation and crystallization. Here, recognizingBoltzmann constant and the absolute temperature. Many
the similarity in the underlying processes, we develop &studies have been carried out detailing the equilibrium ther-
model that employs descriptions of these processes and pr&odynamics of such a suspensi®@8-2§. An equation of
dicts the occurrence of gelation and crystallization as a funcstate for the fluid phase has been propdszg]:

tion of solution conditions.

Particle aggregation and dissociation are central to the P&’ _ 3 1+ b 6 (elkT)g f(A) @
theories of crystal nucleation. In previous studies, a descrip-  ¢kT 4w o\ w o\ |
tion of these processes in the context of crystallization in - ¢To - ¢Tb

hard sphere[17,18 and attractive colloidal suspensions

[19,20 has been developed. Here, we consider square Weflhere p is the osmotic pressurey is the particle volume
systems as the equilibrium thermodynamics of these systeMg,ction,b=4 and¢,=0.84 are constants, angl, andf(\)
is well understood and independent predictions of percolagre hoth tabulated functions af[23]. From this, the chemi-

tion [22], gelation[11], and crystallizatio23] in these sys-  cal potential of a particle in the fluid phase is calculated as
tems have been reported. Further, square wells form an exig]

cellent model to elucidate the effects of systematically

changing the strength and the range of attractions on the o/ 47 Pad d¢’ 4w Pa®

resulting phase behavior. To describe particle rearrangement, MFJ (? ¢’kT_1) Py +? ¢k-|-+|n(¢)—1-
we assume that upon aggregation individual particles diffuse &)
independently to locations where their energies are mini-
mized. Cooperative rearrangement is neglected, and the r
arrangement time of individual particles is determined usin
a mean first passage time analysis. From the rates of partic nd Il correspond to the dilute and dense fluid phases in

aggregation, dissociation, and rearrangement, we are able o ) ! S
calculate the probability that a particle diffuses to its local®duiliPrium. The locus of points that satis#iP/d¢ =0 gives
free energy minimum or remains trapped in amorphous Iocat-he sp!nodal. Thg spinodal and the binodal meet at the criti-
tions. Falling into the local free energy minimum is consid- cal point. The fluid-crystal phase boundary or the solubility
ered to result in crystallization while being trapped is con-Poundary, is determined by the conditipn=us, whereus

sidered to result in gelation. We compare our predictionés the chemical potential of a particle in the crystalline phase,
with recent experiments on globular protein suspensions an

Balculated a$19]
find excellent agreement. We conclude that the present de-

0

The fluid-fluid phase separation boundary, or the binodal, is
etermined using the conditio®=P" andu|=p,', where

scription captures much of the underlying physics that dic- ps=—Cel2kT-3In(A—1), (4)
tates the competition between gelation and crystallization in
attractive colloidal suspensions. whereC=12 is the number of nearest neighbors of particles

The paper is organized as follows. We begin in Sec. llin the crystalline phase, and the solid is assumed to be in-
with a brief description of the equilibrium thermodynamics compressible. Fox <1.35, the fluid-fluid phase separation is
of square well systems. In Sec. Ill, we present our model fometastable with respect to the fluid-crystal phase separation,
calculating the probabilities of crystalline versus amorphousvhereas stable fluid-fluid phase separation conditions are
cluster formation as functions of the time scales of particlepredicted forn >1.35[19].
aggregation, dissociation, and rearrangement processes. Cal-Comparison of model predictions with experiments re-
culations of these time scales are described in Sec. IV. lguires linking the parameteesand \ to experimental mea-
Sec. V, we present model predictions of the occurrence o$ures of particle interactions. One method employed, espe-
gelation and crystallization as a function of solution condi-cially in studies of globular protein suspensions, is to link
tions and compare them with experiments on globular proparameters in the interaction energy to the measurable prop-
teins. We draw conclusions in Sec. VI. erty B,, the second virial coefficient of the osmotic pressure
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FIG. 1. Triangular lattice assumed to describe rearrangement of

I _ 1
particles on cluster surfaces. Triangle ABC marks a representative

lattice unit. The centroid O of the triangle is chosen as the origin of F!G. 2. A schematic of the possible events that a particle, par-
the polar coordinate system to describe particle motion. ticle 1, on a cluster surface may experience. The bold arrows rep-
resent the sequence of possible events. The thin arrows indicate

of the colloidal suspensidi27]. B, is an integral measure of actual motion of particles. The un-numbered particles represent a
c =2 lattice unit on the cluster surface.

particle interactions and is given for square well systems by

B, generality, we let the lattice to be triangular. Let a particle,
grs=1-(e"T=1)(\*~1) (5) i i

B ' say particle 1, arrive onto the cluster surface at a tim®.

We assume that the particle arrives at an arbitrary position on
whereB}S= 167 a%3 is the second virial coefficient for par- the surface, onto a representative lattice unit ABC. A zone

ticles interacting with a hard-sphere potential. Generalize@round the centroid of triangle ABC represents the nearest
phase diagrams have been developed fer(®—1)<1, free energy minimum location for the particle. The larger the
where B, is shown to be correlated with the equilibrium range of particle attractions, the bigger is this zone. Energeti-
solubility of a wide variety of globular protein and colloidal cally equivalent but distant locations exist around the cen-
suspensionf27,28. The above description captures the cor-troids of other similar lattice units. Consider now a suspen-
relation quite accurately indicating the ability of the squaresion above the perfect cluster surface. Brownian encounters
well model to describe protein solution thermodynamicswill result in cluster growth if the suspension is supersatu-
[23]. However, the model fails to capture the location of therated. A particle, particle 1, arriving at the surface will un-
metastable spinodll2,29. Here, we employ this descrip- dergo surface diffusion and have a biased path towards the
tion of square well systems to understand the competitiozone that minimizes its energy. Or, it may arrive inside the
between gelation and crystallization. zone and diffuse out due to thermal motion. During this dif-
fusion, it may get trapped in an amorphdostside the zone
or a crystalline(inside the zonk configuration due to the
ll. LOCAL DESCRIPTION OF CLUSTER FORMATION: arrival of additional particles, or may leave the cluster and
CRYSTALLINE VERSUS AMORPHOUS AGGREGATES dissociate back into the suspension via thermal motion. A
crystalline(amorphouscluster grows every time such a par-

In a supersaturated suspension, wherte ¢, the equi- ticle is arrested in a crystallineamorphoug location. Our
librium solubility at any givens/kT, particles aggregate to aim is to determine whether a particle arriving on the cluster
form growing clusters. When the attractions are short rangedsurface ends its excursion on the surface in a crystalline or an
Brownian encounters between particles in a dilute susperamorphous configuration. The result is a local description of
sion result in clusters with open, fractal-like particle configu-crystalline and amorphous cluster formation.
rations; at best, the particles are randomly close packed. Sub- We consider first the case when particle 1 arrives onto the
sequently, however, these particles tend to rearrange intduster surface at an amorphous location in the arbitrary unit
crystalline configurations in order to minimize their free en-ABC. To minimize its free energy, the particle diffuses to-
ergies. At the same time, particles on cluster surfaces corwards the crystalline zone in the center of ABC. This rear-
stantly undergo thermal motion, which allows them to disso+angement process of particle 1 has two constraints. First, it
ciate back into the suspension. Thus, three processes, partickquires that particle 1 does not dissociate back into the sus-
aggregation, dissociation, and rearrangement, continually ogension before the rearrangement is complete. The second
cur, and determine cluster growth. We argue that the formaeonstraint is introduced by the arrival of another particle, say
tion of crystalline configurations results in macroscopic crys-particle 2, onto the cluster surface at a location that allows
tals, whereas the formation of amorphous clusters, whebond formation between particles 1 and 2. When this hap-
space filling, eventually causes the suspension to gel. pens, the rearrangement of particle 1 is no longer indepen-

To determine order within a cluster, we consider the ag-dent. Particle 1 must either break its bond with particle 2 or
gregation of particles onto a perfectly crystalline cluster surthe two must rearrange cooperatively. While cooperative re-
face. Assuming the cluster to be large, we represent it by arrangement is possible, we assume that it occurs extremely
two-dimensional lattice as shown in Fig. 1. Without loss ofslowly so that particle 1 is essentially arrested in its position
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unless it breaks its bond with particle 2. We assume further p.=P(t,_,;<(ty_; and t,_5))
that the bond between particles 1 and 2 is broken by the

dissociation of the latter back into the suspension via thermal +Pta-2<(tg-yp and t,_1))P(ty_<ty_3)P,
motion. This process can continue recursively with particles e

_3, 4,5,... aggrega’_ung o_nto partu_:les 1 and 2. _For simplic- :f f J fo(ta)fa(ta)f(t,)dty dt, dt,
ity, we assume that if particle 3 arrives onto particles 1 and 2, t=0Jta=t, Jtg=1t;

it becomes extremely difficult for particle 2 to diffuse back

into the suspension, resulting in the arrest of the rearrange- +

ment process of particle 1. Particle 1 then remains caught in

an amorphous configuration. This description is shown sche-

matically in Fig. 2. Below, we determine the probability that %

particle 1, having arrived at an amorphous location, is able to

reach a crystalline configuration and the probability that it is

arrested in an amorphous location in terms of the time scales

of the aggregation, dissociation, and rearrangement pro-

cesses. where in the latter equality, the second subscript on the
Let the average dissociation time of particles fromtimes, which identifies the particle number, has been dropped

amorphous locations b,. Then, assuming that the disso- because all particles are assumed to follow the same statis-

ciation of every particle is an independent process, the proltics, given by Eqs(6)—(8) above, for the aggregation, disso-

ability that the dissociation time of particle 1 is withitt of  ciation, and rearrangement times. Upon simplification, Eq.

f f f fa<td>fﬁ<ta>fy<tr>dtddtadtr}
t,=0Jt,=t, Jtg=t,

Jld:Oftftdf“(td)fﬁ(ta)dta dtd} P,, ©

t equalsf ,(t)dt, where (9) yields
fo(t)=(11t,)exp(—t/t,) (6) 1
4
is the probability density of the dissociation process. Simi- 1 1 1
larly, o i, Y
- @ Y
P,= 1 1 . (10
f5(t)=(1kg)exp —t/tp) @) 1 tg la
1 N 1 N 1 1 N 1
and t, tg t, t, tg
f(t)=(1/t,)exp(—t/t,), (8) Similarly, the probabilityP, that particle 1 remains arrested

in an amorphous location is given liifig. 2): P,=P(t,_>
) . . ) <(td71 andtrfl))[P(ta73<td72) + P(td72<ta73) Pa]i SO
define the probability densities of the aggregation and rearhat
rangement processes, respectively, whgrés the average
aggregation time of particles to within a bond forming dis-

tance of an existing particle on a cluster surface anthe 1 1

average time for the rearrangement of aggregated particles T —

from amorphous to crystalline locations. We assume that the B B

three processes occur independently of each othert Let £+ £+ i £+ i

denote the time after arriving onto a cluster surface when ty tg t, ty tg

particle 1 dissociates back into the suspension tang the Pa= 1 1 ' 1D
time when particle 1 reaches a crystalline location. ti,et, T O

denote the time when particle 2 aggregates onto the cluster 1— B @

surface to within a bond forming distance of particle 1. Then, L |

particle 1 is able to reach a crystalline locationtf | is t, tg t, t, tg

smaller thanty_; andt,_,. A second way for particle 1 to

reach a crystalline location istf_, is smaller thariy_; and

t,—1, but particle 2 dissociates before particle 3 arrives, i.e.Jf particle 1 neither reaches a crystalline location nor gets
tq—» is less thart,_3. Once particle 2 dissociates, we resetarrested in an amorphous location, it leaves the surface from
the clock, so that particle 1 can reach a crystalline site agaian amorphous location and escapes into the suspension. The
if t,_, is smaller tharty_, andt,_,. Again, this description probability that this happens is given bP,=P(ty_,

is shown schematically in Fig. 2. Thus,Rf. is the probabil-  <(t,_, and t,_1))+P(t,_»<(tg_1 and t,_q1))P(tg_»

ity that particle 1 reaches the crystalline location, we have <t, 3)P,, or
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1 the particle to an amorphous location. Since a particle arriv-
t_ ing from the bulk suspension does not distinguish between a
1“ particle in a crystalline or an amorphous location, the aggre-

£+ i i gation time onto both remains the same, viz., Here, the
t, tg t, range of attraction is assumed to be sufficiently small so that
Pi= 1 1 (12 any steering of arriving particles into lower energy crystal-
T T line configurations can be neglected.
1— T 13 T T ”‘1 Our aim is to determine the likelihood of a particle arriv-

ing onto a cluster surface ending its excursion on the surface
in a crystalline or an amorphous location. lfdie the prob-
ability that a particle arrives onto the surface at a crystalline
It is easily verified that,+ P,+P,=1. site. LetP.; be the probability that such a particle ends its
Next, we consider the case where particle 1 arrives on thexcursion in a crystalline location. L%, be the probability
surface in a crystalline configuration, i.e., its diffusive trajec-that a particle arriving at an amorphous location ends its
tory in the suspension causes it to arrive near the centroid afxcursion in a crystalline location. Then, the probability that
Fig. 1. As depicted in Fig. 2, particle 1 may then dissociatea particle arriving at an arbitrary location—crystalline or
back into the suspension, diffuse on the cluster surface to afamorphous—ends its excursion in a crystalline location is
amorphous location, or remain arrested in the crystallingjiven by P, g,= fPc1+(1—f)Pc,. The probabilitiesP;
configuration. If the probabilities for these events &g, and P, are linked through the equations® =P,
P, and P,,, respectively, then following the above de- +pP, P, andP,=P,P.,. The first equation indicates that
scription, we can write a particle arriving onto a crystalline location is eventually
arrested in a crystalline location if it gets arrested there upon
i arrival (first term) or if it diffuses to an amorphous location
and is subsequently arrested in a crystalline locafs@tond

1 1 1 term). The latter probability is determined by the second
- + - + - equation as the product of the probabilities of a particle in an
Poy= ax B X , (13) amorphous location reaching a crystalline location and sub-
1 1 sequently getting arrested there. Solving these simultaneous
- tg tox equations, it follows that
1 N 1 N 1 1 1
— t -t — — t - ax
tax  tg Ty tax g Pcrystal:[f+(1_f )Pr](FrPrJ (16)
i i Similarly, the probabilityP 4 that a particle arriving at an
tg ts arbitrary location on the surface ends its excursions at an
1 1 1 1 1 amorphous location is given by
SRRV | IR
. aX B YX aX B Pa
Pax 1 17 Poe=[ Pt (1= 1)l ;=55 (17)
J— JE— r rx
L Lax N . g
1- 1 1 1 1 1 Thus, the probability that a particle arriving onto a crys-
t—+ t—+ - t—+ T talline surface is eventually arrested in a crystalline or an
ax. °p tyx ax B amorphous configuration can be calculated given the time
and scales of the aggregation, dissociation, and rearrangement
processes, vizt,, tg, t,, t,y, andt,,, and the parameters
1 f, Cy, and{. Below, we present models to calculate these
— guantities as functions of solution conditions, vi%. /KT,
Lax andX.
1 1 1
tax tox IV. PARTICLE DISSOCIATION, AGGREGATION,
Pi= R (15)
Ix 1 1 ! AND REARRANGEMENT PROCESSES
1— Q Q A. Dissociation
R | Descriptions of the aggregation and dissociation processes
tox  tg tyx tox  1g for square well systems have been developed previously

[19]. A spherical cluster of radiuR is considered. To deter-
wheret,,, andt,, are the time scales for the dissociation andmine dissociation rates, particles on the cluster surface are
the rearrangement, respectively, of a particle in a crystallin@assumed to reside in potential energy wells because of their
location. Here, by rearrangement is meant the diffusion obonds with nearest neighbors. The motion of the particles in
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these potential wells is described by the Smoluchowski equacentration gradient. Assuming that the concentration of par-
tion. Solving the Smoluchowski equation, the average timdicles in the depletion zone is negligible, the diffusion equa-
required for the particles to diffuse out of their potentialtion is solved to give the steady state rate of particles
wells into the bulk suspension is determined. This dissociaaggregating onto the cluster surfdd®]:

tion time depends on the depth of the potential well holding

the particles,® = —Cge/kT, where Cq is the number of Bzﬁ
nearest neighbors of a particle on the cluster surfgice a’
number of nearest neighbors of a particle in a fluid is as-

sumed negligible Cs depends orR as well as on whether \where ¢ is the volume fraction of particles in the bulk sus-

the particle is in an amorphous or a crystalline location. Folhension and () is the gradient diffusivity of the particles,
a particle in a crystalline location, the following empirical given by[13,19

form has been suggestét7, 18

1—1—d
R

¢
fo D(¢')de’, 22

CsR)=1+(Cyoe— D[ 1—exp{{(Rmin— R)/2a}], D(¢)=D,K(¢) i[¢2(¢)], (23
(18) de

whereC,.. is the number of nearest neighbors of a particle inwhere Z(¢) =47Pa’/3¢kT is calculated via Eq(2), and
a crystalline configuration on the surface of an infinitely K(¢)=(1— ¢) K2, with

large crystalline clusterR,,,=a(2/0.74)"® is the radius of

the smallest possible cluster, i.e., containing two particles. A B,

particle in such a cluster has one nearest neighbor. The pa- Kz=—6.567+ 4-05% 1- B_HS> (24)
rameter{ characterizes ho, varies aRR increases beyond 2

Rmin and is related to the curvature dependence of the solid-

HS i i
fluid surface tensiori17,1§. Determination of the param- whereBz_/Bz is given by Eq.(5) [13,19. .
eters¢ andC,... is discussed below. Equations(22)—(24) thus allow the calculation oB, the

To determine the number of nearest neighbors of a parr_ate at which particles aggregate onto a cluster of raBius

ticle in an amorphous locatio@;, we note that wherR The_rate at which partic!es aggregate onto the su_rface_ to
=R,;,, Co=C,.=1, whereas on an infinitely large crystal- within a bond forming distance of an existing particle is
line cluster surfaceC,..— Cs. is either 1 or 2 for a triangular smal_ler _thar)B by a factzor egual to the ratio .Of relevant areas
lattice. Here, we let this difference be 1.5, and assuming thaqnd Is given byB(2ah)“/4R". The average time of the latter

C, increases witlR in a manner similar t&€g,, we write aggregation process is, therefore,

Co(R)=1+ (Cy— 1.5- 1)[ 1— exp{ {(Rmin— R)/2a}]. tg=R% B(a\)?. (25)
(19
With these assumptions, the Smoluchowski equation gives C. Rearrangement
the dissociation times g47-19 To calculate the average time of particle rearrangement,

R? exp{Cee/KT} (1+d/R)3—1 we employ a mean first passage time analysis similar to that
W= S . (20) employed for calculating particle dissociation rates described
3D,w (1+d/R) above. We again consider a surface where particles are ar-
ranged in a triangular lattice, as shown in Fig. 1. A particle is
assumed to arrive at a random location on a representative
R2 exp{Ce,e/KT} (1+d/R)3—1 lattice unitZ triang_le ABC, and diffuse on the surface tpwards
to= —, (21)  the centroid of triangle ABC or to that of a nearby triangle.
3Dow (1+d/R) To describe this surface diffusion, we use polar coordinates
with the centroid of triangle ABC as the origin. For simplic-
ity, we assume the potential energy landscape to be radially
symmetric, and writeb=®(r), where® is the potential

and

where d=2a(A—1) is the width of the well holding the

particles; D, is the Stokes-Einstein diffusivity of the par-
ticles; andw=0.2 is an approximate hydrodynamic correc- : . .
tion to D, on the cluster surfadel9]. The size dependencies energy made dimensionless by the thermal endrgys a

of the number of nearest neighbors ensure that particles dig—JnCtIon only ofr, the radial distance from origin. The rep-

sociate from small clusters faster than they dissociate frorr'i(:"s'er]t""t'.Ve 'atF'Ce .unlt and the energy I.andscape are shown
large clusters. schematically in Fig. 3® reaches a minimum at=r,=0,

which marks the crystalline zone around the centroid. We let
@ increase to a maximum at=r,, the edge of the potential
well. The particle arrives onto the cluster surface into this
As particles compact into clusters, a small zone aroungbotential well atr=r, (r,<ry,=r,). Subsequently, the par-
the clusters becomes depleted of monomers. This generatesiae either diffuses to the minimum at=r,, or diffuses out
gradient in the concentration of monomers from the bulkof the well atr =r, into one of the similar minima of adja-
suspension to the cluster surfaces. Particles are assumeddent wells. The diffusion in all wells being identical, we can
aggregate onto cluster surfaces by diffusing down this conassume that the particle is reflected back atrthe, bound-

B. Aggregation
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(a)
AX=2a, AX1ABC
X
v / : I\I -
. . D
[1 I N T
0 Z B
AX=BX=CX=2a
(st'CS)g/kT
C
FIG. 3. An expanded view of a typical lattice unit showing the
crystalline zone around the centrdiddiusr,) and the edge of the
amorphous zongadiusr,), and the corresponding potential energy
landscapébottom).
ary. Here, we calculate the time required for the particle to AX=2q, BX=CX=2\a

first reach the minimum at; .

Let w(r,t|ro,0) be the probability that the particle dif-  pg 4. schematic representation of particle configurations to

fuses to a radial distanceat a timet, beginning fromr, at  getermine the sizes of the crystalline and amorphous zones on clus-
timet=0. Our aim is to determine the evolution of this prob- ter surfaces. See text for description.

ability with respect to the initial position, for the fixed final
positionr =r,. This evolution is governed by the backward

i i 1 (roe®® [r5—r2
Smoluchowski equatiofil9,21,3Q: T(r ):_f ° 2 dr (28)
“ Dy r 2 '
aw(r,t|r0,0)_D 1 9 [ryow(r,t|r,,0)
at ~ g arg ar,

Again, because of the sharply peaked natureépfmost of
AD\ [ aw(r,t|r,,0) the contribution to the above integral comes from the inte-
_((970)<T” (26) grand near =r,. Therefore, nondimensionalizing the inte-
grand and evaluating it atr,=1, we get

Solving this equation assuming an absorbing boundary at s o @
=r, and a reflecting boundary at=r, yields the average T=(r;—ry)e"/2D. (29
rearrangement tim&(r,) as[21,3Q

To determiner; andr,, we consider a particlecenter X
1 (roe®® rr, , arriving directly onto one of the particles, say A, on the
T(ro)= Sj J e ®r'dr'dr. (29 representative lattice unit ABC such that A% @a) is per-
' ' pendicular to the plane ABC. The resulting arrangement is
shown in Fig. 4a). Since AB=2a, we have BX=CX
To simplify this expression, we make the approximation=(2v2)a. Let D be the midpoint of BC. Then, from geom-
that®=®, atr=r, and rises sharply t&@=0 for r>r,. etry, DX=/7a. Since the particle is driven equally by its
Then, expt-®)~1 in the inner integral in Eq(27). This  attractions to the particles centered at B and C, we let it
yields diffuse to a minimum energy location along the line DX. The

, T
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particle is closest to the plane ABC when ABCX forms a

tetrahedron of side 2 as shown in Fig. é). Then, DX
=v3a. This yields

r=(\7-v3)a. (30)

Diffusing along DX, the particle first forms bonds with the

particles B and C when BXCX=2\a, as shown in Fig.
4(c). Then, DX=a+/(4\?—1), so that

ri=[V(4\?—1)—v3]a.
Substituting forr; andr, and noting thalf=t,,, we get

o a?(4—2\2— 21+ J1222=3)exp{ — (Cys— Co)e/KT}

Y

(31)

Dyw

(32

where we have written®,=—(C,;—Cy)e/kT and D
=D,w, with ®=0.2 again an approximate correctiondq
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To determineC,.,, we note that at the solubility bound-
ary, = ¢<(e/kT,\), only infinitely large clusters are stable,
i.e., neither grow nor shrink. The stability of a cluster is
determined by a balance between the rates of particle aggre-
gation onto and dissociation from the cluster surface. The
rate of particle aggregation onto a spherical cluster of radius
Ris given by 3=R%a’\’,, wheret is determined using
Eq. (25). The number of particles on a cluster surfacglig

R
a

3[1-(1-a/R)?]

[1-a/2R] ' (35

Ns= 2¢cp

where ¢, is the packing fraction of particles on the cluster
surface. Here, assuming the surface is densely packed, we let
¢cp=0.64. A fractionP ysial (Perystar Pge) Of the particles

on the surface may be assumed to reside in crystalline
locations so that they dissociate with the time se¢gle The
remaining fraction dissociate with the time scatg.

Thus, the total dissociation rate i&=[Pyswal(Perysta

accounting for the near field hydrodynamic interactions oft+ Pged J(Ns/tax) +[Pgei/ (Perystart Pged I(Ns/t,,). At any ¢

the particle diffusing on the cluster surface.

> ¢, the critical cluster siz&* is defined as that value &

Finally, to calculatet., the time for a particle in a crys- at whicha=g, and is obtained by solving

talline location to diffuse to an amorphous location, the same

backward Smoluchowski equatidiq. (26)] is solved, ex-
cept with a reflecting boundary condition a0 and an
absorbing boundary condition at=r; [30]. Using similar
simplifications as in deriving Eq32), we get

_a¥(2\’+1- VI2A2=3)exp{(Cys— Cy)e/kT}

e Dow

(33

V. MODEL PREDICTIONS OF GELATION
AND CRYSTALLIZATION

B (R*)Z
tg(an)?’

I:)crys:tal
Pcrystal+ Pgel

tax Pcrystal+ Pgel ta

For ¢=¢s, R*—». When R>a, Ng=6¢.,(R/a)?
t,,=Rde ®/D,w, where ®=-C,.e/kT, and t,
=Rde */D,w, where®=—(C,.,,—1.5)e/kT. The aggre-
gation rate for R>a and ¢=¢s<1 simplifies to B

=3RD,¢s/a®.  Further, t,=a%e “**T[4-2)\%— 21
+J(122?=3)]/Dyw and t,x=a%et* kT2 2+1

—J(A22?-3)]/D,w, where we have substituted,.,
—Cs.=15. Sincet, andt,, are independent oR for R

To employ the above time scales for calculating the prob>a, wheread,, t,,, andt increase wittR, it follows that
abilities of gelation and crystallization, the parametérs t,<t,,tz andt,<t, tz;. Equations(10)—(17) then sim-

Cy», and ¢ must be determined. The distancesandr,
above allow the determination of the probabilify,that a

plify to yield P,=P, =1 andPystal Pge= Pax/Pa, Where
Pax=Uxtax/tg(taxt1g) andP =t t, /tg(t, +15). Equation

particle arrives onto a cluster surface at a crystalline location(36) then becomes

Assuming that particles arrive onto the surface at perfectly

random locationgno steering f is simply the ratio of the

area of the crystalline zone to the total area of a lattice unit.

Thus, f=(r,/r,)?, or

f—( m_‘@)z.

T e

—CyooelKT — 1

e

(37)

1 @éep §+e1.5e/kT
1+ P /Py \(N=21)ds) | P,

where

Pax_( 222+1-1222-3
Pa 4—2>\2—J2—1+m)
w+B(N—1)\2pe(Cx-" 19T (4 5
o+ B(N— 1)\ 2heCr=eTkT )exr‘( kT )
(39)

Note thatf decreases a& decreases, indicating that for
shorter ranges of attraction particles are more likely to arrive
into amorphous configurations. Whar=1, all particles ar-
rive in amorphous configurations &s-0. On the other hand,
f=1 for A\=v2, at which point all arriving configurations
are energetically equivalent and are considered crystalline.
Rearrangement is then driven by entropic effects. Here, w&olving these equations allows the determinatiolCgf .
considern<1.35 to avoid the intervening stable fluid-fluid  The parametet, which characterizes the variation of the
phase separation at higherUnder these circumstances, we number of nearest neighbors with the cluster radRigs
assume that rearrangement is primarily enthalpic and neglectlated to the curvature dependence of the solid-fluid surface
entropic effects. tension. Thus, from knowledge of either the particle packing
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FIG. 5. Particle aggregation, dissociation, and rearrangement FIG. 6. Probabilities of crystalline and amorphous cluster for-
times calculated as described in the text at the interaction paranfnation at the conditions shown, plotted as a function of cluster size
eters shown for three volume fractions=0.08(short dashed line ~ made dimensionless by the critical cluster size.
0.10(solid line), and 0.12(long dashed ling plotted as a function
of cluster size made dimensionless by the critical cluster &ee

rangement processes. We present these time scales for the
text) at eache.

square well parameteks= 1.1 ande/kT=2.15 for three dif-

profile or the curvature dependence of the surface tension,ferent particle volume fractions$=0.08, 0.10, and 0.12.

can be determined. Such information, however, is not avail-(':?r A=11, hp= 1.'422’ aggf(h&:d_ l£58’ the girameter
able for square well systems. For hard-sphere suspensio aiues necessary In () [23]) Under these conditions, we

_ 73 _ . .
£=0.9 results in good comparisons of model predictions o iNd ¢s=2.53<10"" and Cy,,=3.02.(We note that this is a

several measures of crystal nucleation kinetics with experi?'m"’III solubility but in line with those seen in protein crys-

mental estimateE18]. Here, we assumé=0.9 to hold for tallization experimentg.For the three volume fractions, we
square well systems. as well and employ it for our calculafind that enough monomers are associated with clusters that
tions the monomer volume fraction has been reducedpip,

We note finally that the aggregation rate determined in_ 0.052, 0.062, "?md 0.071, respectively. The time Scales _cal-
Eqg. (22) assumes the background monomer volume fractiorﬁ:mated as described in Sec_. v abovg are presented_ n Fig. 5
to be fixed até. In a suspension withs> g, however as functions of the cluster siZ2normalized with the critical

. S L]

multiple clusters can form and reduce the background mongsluster sizeR* for each case. For the three volume fractions

H H * —

mer volume fraction belowp. Indeed, detailed solutions of qonls,lds\;ed, we an@f/a—2.671,h2.5_10, and|2.3f75”, resp;]ec—
population balance equations to determine the time evolutioH\’g y. We note that for gaclzb, the tlmz scafesh ollow the
of cluster size distributions during crystallization show thatOr9e" tax.la:lp, Ly t, In decreasing order of their magni-
¢ quickly reduces to a steady valdeyy, at which much of tudes. At a fixeds, the time scales increase with increasing

at» . - . . . .
crystal nucleation occur§l8]. Further, since the number R, except _forty, W*h'Ch decreases with increasiy S'.m"
densities of bigger clusters are small, an excellent estimate of"1¥: at a fixedR/R*, the time scales decrease upon increas-
byt is Obtained by assuming that the suspension at thi§'9 ¢, except fort, that follows the opposite trend. _
steady state consists of monomers and dimers alone and that 1hese time scales determine the probabilities of crystalli-

equilibrium is established between the two spefied. Fol-  2ation and gelation which we present in Fig. 6. The prob-
lowing this description, we determing,.; by solving abilities are calculated using Eq4.6) and(17) for the same
pa conditions as in Fig. 5. For all values af considered,

& Perysta< Pgel fOr small R. As R increasesP .y, increases
T S30a , (39 whereange| decreases so th@ysiar Pgel for some suffi-
1+ B(a, dpiar (1_ i) ciently largeR.
a(Rmin) dep Of interest is the point of this crossover, i.e., the value of

R at which Py Pgel» relative to the critical cluster size
wherea (R, =Ns/t, evaluated aR= R, since at this size R*. The critical cluster size determines the stability of clus-
the distinction between crystalline and amorphous configuters, clusters bigger thaR* grow, whereas clusters smaller
rations ceases. The time scale for particle aggregation and dhanR* shrink. When the crossover occurs at a valudrof
the quantities that follow are then determineddy,, rather <R*, stable clusters¥ R*) tend to be crystalline as for the
than ¢. case whereb=0.08 in Fig. 6. When the crossover occurs for

We present model calculations beginning in Fig. 5 withR>R*, stable clusters tend to be amorphous. This occurs for
the time scales of the aggregation, dissociation, and reaw=0.12 shown in Fig. 6. We note that for this latter case,
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leBgs, at a fixedg, first results in crystals upon crossing
the solubility boundary and then in amorphous aggregates
upon crossing the gel-crystal line. Whether proceeding fur-
ther into the spinodal results in gels or fluid-fluid phase sepa-
ration remains to be understood. Further, the gel-crystal
boundary shifts to lower volume fractions asdecreases
from 1.1 to 1.05. Thus, at a fixed average attraction or
B,/BYS, decreasing the range of attraction leads to an in-
creased tendency to form gels.

Figure 7 summarizes model predictions of the effects of
changing the particle concentration and the strength and the
range of particle attractions on the resulting gelation and
crystallization transitions. At this point, several comments
0.5 about the predictions are in place. We emphasize that the

gel-crystal boundary is different from the other phase bound-
¢ aries in Fig. 7 in that traversing across the gel-crystal bound-
ary does not produce a reversible crystal-gel transition. What
the gel-crystal boundary tells is whether the transition that
results upon quenching a suspension rapidly to a particular
region in the phase diagram is crystallization or gelation.

P.reui> P for sufficiently largeR. Thus, stable clusters More prem;ely, it tells whether the stable clusters that form
Y g are crystalline or amorphous.

that are amorphous when small can become crystalline, whe .
sufficiently Iane. However, multiple clusters g¥ow in solu- We hote next that at af'XdﬂZ/B;S! although the volume
tion simultaneously and if the crossover point occurs at Suffractlon atthe ggl-cry;tal boundary, e, , decregses as the
ficiently largeR, these clusters can touch to form a gel before'@N9€ Of attractions is decreaset}, always remains higher
they can become crystalline. Identifying the precise voluméhan the equilibrium solubilitygs at thatB,/B;~. In the
fraction at which such a gel forms is difficult as it requires Present descriptionR* diverges at the solubility boundary
knowledge of the packing profiles of the amorphous cluster§© that no stable clusters can nucleatedst ¢s. Thus, ¢,
and the time evolution of the cluster size distribution. Here Which determines where stable amorphous clusters nucleate,
we assume that if stable clusters are amorphous when smal, bounded below byps. We note further thatps is deter-
the crossover coincides witR* marks the transition be- @s the volume fraction above which the lowest free energy
tween where stable crystalline and amorphous clusters forn$tate of the system is a solid, in the interior of which particles
In Fig. 6, this occurs fokp=0.10 and sets the gelation vol- haveC nearest neighborig. (4)]. In calculatingR*, how-
ume fractiong, for A=1.1 ande/kT=2.15. ever, only a description of the _surfac_e_of su_ch a so_l|d is
Following this procedure, we calculate the gel-crystaiconsideredEq. (36)]. Therefore, implicit in lettingR* di-
boundary for a given range of attractianas that value of, ~ Verge ates [Egs.(37) and (38)] is the assumption that the

HS
B,/B,

FIG. 7. Phase diagram far=1.05(solid lineg and 1.1(dashed
lines) with the solubility boundary, the gel-crystal boundary, and the
spinodal in that order upon going from left to right in the graph.

called ¢, at eache/KT at which interiors of nucleating clusters have the same properties as
¢ the stable solid dictated by equilibrium thermodynamics. The
Pgel R*) =Perysial R*), (40)  description of the solid chosen is usually based on observa-

tions of the resulting crystal structures, e.g., the standard
whereR* is a function ofe/KT and ¢. In Fig. 7, we present choice ofC=12 is motivated by the fcc or hcp structure.
the gel-crystal boundary for=1.05 and 1.1(For A =1.05, Often, however, such a description cannot be identified
¢p=1.370, and (\) = —1.118[23].) Also included in Fig. 7  uniquely. For instance, in suspensions where the particles
are the solubility boundaries and the spinodalsXetr1.05 have a significant size polydispersity, the crystalline free en-
and 1.1 calculated as described in Sec. Il. The phase boundfgy minimum is suppressed for the sof@il]. This makes
aries are presented By, — ¢ space by converting/kT to B, identifying ¢s ambiguous. Under these circumstances,
via Eq.(5). For both the values of, the gel-crystal boundary identified by assuming a particular solid structure does not
is located between the corresponding solubility boundary andule out the occurrence of stable clusters corresponding to
the spinodal, the latter being metastale<(1.35). Thus, at other structures fop<<¢s. In particular, amorphous struc-
a fixed value ofB,/BY®, increasinge above ¢ first pro-  tures leading to gels may occur fgr<¢s, suggesting that
duces crystals until the gel-crystal boundary is reachedunder some conditiongy<¢s. Indeed, in recent experi-
Crossing the gel-crystal boundary, i.e., increasih@bove ments on colloid-polymer mixtures, gels have been observed
¢g. results in the formation of stable amorphous clusters. Ito preempt crystallization for small polymer-to-colloid size
these clusters grow to span space, they lead to the formatigatios or small ranges of attracti¢f,10]. Whether this im-
of macroscopic gels. In this sense, the gel-crystal boundary iglies that¢y< ¢¢ or whether gels are observed upon cross-
a lower limit on the volume fraction for gelation. Similarly, ing the gel-crystal boundary fap,> ¢ due to slow crystal
increasing the strength of particle attractions, i.e., loweringiucleation kinetics folp< ¢4 remains to be verified. That
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crystal nucleation can be slow f@f<¢, is seen in experi- 0
ments on globular protein suspensions where crystals are not
observed at low strengths of attraction, where the supersatu-
rations are low, until the gel boundary, but are observed at
higher strengths of attraction, where much higher supersatu-
rations are attained, before gel formatidi?]. At the same
time, simulations of hard-sphere suspensions have suggested
that size polydispersity can lower crystal nucleation rates by
several orders of magnituddz2].

We remark next that the local description leading to the
arrest of particles on cluster surfaces employed in the present
model is somewhat similar to the description of cages em-
ployed in recent mode-coupling approach&g]. In the latter
approaches, particularly applicable to dense suspensions,
particles are assumed to be trapped in cages formed by other -3.5 Lo
similar particles. The diffusion of particles therefore requires 0.001 0.01 o 0.1 L
the breakup of these cages. In analogy, we assume that par-
ticle motion on cluster surfaces is possible only when no FiG. 8. Model predictions of the phase diagram for1.15
additional particles peg it on the surface. Mode-couplingcompared with the experiments reported in R&g]. The symbols
theory assumes, however, that structural relaxation occurge described in the text.
via cooperative motion of the particles, whereas such relax-
ation mechanisms are neglected in the present approach. fluid-fluid phase boundary by squares. That the fluid-fluid

Finally, we mention two approximations that introduce phase boundary is metastable with respect to the solubility
uncertainties in model predictions. First, the rearrangemertoundary indicates that the proteins experience short-range
time of individual particles is calculated assuming diffusionattractions. The dynamics of structural relaxation of suspen-
on a perfectly crystalline surface. A cluster surface, howeversions spanning a wide range of conditions between these
has both crystalline and amorphous regions. Rearrangemeboundaries was studied. Where density fluctuations relaxed
on amorphous regions must necessarily be cooperative andwgthin experimental time scales, the suspensions were con-
therefore expected to be slower than on crystalline regionsidered fluidlike. Fluidlike conditions are shown in Fig. 8 as
As a result, the model overestimates the tendency for crysspen circles. Where density fluctuations failed to relax com-
tallization. Second, any steering of arriving particles into en-pletely, the suspensions were considered nonergodic, indicat-
ergetically favorable configurations is assumed to be absening the onset of gelation. Such conditions are shown as solid
Steering would enhance the tendency to form crystals becircles in Fig. 8. Finally, visual inspection allowed the detec-
yond what is predicted in Fig. 7 as the range of attractiongion of crystals. Suspensions where crystals were seen are
increases. Despite these limitations, model predictions are ishown in Fig. 8 as crosses.

HS
B,/B,

gualitative agreement with experimen&-11]. To test the To make comparisons with this data, we present in Fig. 8,
predictions quantitatively, we turn next to comparisons withcalculations of the solubility boundary, the spinodal, and the
experiments. gel-crystal boundary as outlined above far=1.15 (for

The competition between gelation and crystallization hasvhich ¢,=1.580 andf(\)=—1.957[23]). Quite remark-
been best studied with colloid-polymer mixturg8—11]. ably, both the solubility boundary and the gel-crystal bound-
However, comparisons with these experiments require sigary are in excellent agreement with experiments. Here, we
nificantly different descriptions of the fluid and solid phases,assume that at lower strengths of attraction where crystals
in particular, incorporating polymer partitioning in the two are not seen, the gel-crystal boundary is given by the transi-
phases. Explicit two-component descriptions have been deion between the open and solid circles, as crystals are ex-
veloped that capture the equilibrium phase behavior opected to nucleate in supersaturated suspensions upon wait-
colloid-polymer mixtureq9,10,33, but the kinetics of the ing sufficiently long.\=1.15 is chosen to give the best fit.
phase transitions remains poorly understood. In the presefihe poor agreement between the predicted spinodal and the
description, colloidal suspensions are treated as oneexperimental fluid-fluid phase boundary has been attributed
component systems with the particles interacting via an efto the anisotropic nature of protein interactid29,34.
fective interaction potential. Such descriptions have proven The remarkable agreement between model predictions
successful in describing the phase behavior of inherently atand experiments gives us confidence that the model captures
tractive systemgas opposed to colloid-polymer mixtures the underlying physics of the competition between gelation
where the attraction between the particles is induced by addind crystallization in attractive colloidal suspensions. How-
ing polymey such as globular proteing27,28. Here, we  ever, more rigorous tests of the model are necessary for veri-
compare model predictions with recent experiments orfying this description, particularly, since square well interac-
globular proteing12]. tions are known to be oversimplified representations of

In Fig. 8, we present the experimental phase behavioprotein interactions. Not only the location of the spinodal,
recently reported for lysozyme in phosphate buffer solutiorbut the kinetics of crystallization in proteins is also not cap-
[12]. The solubility boundary is shown by triangles and thetured via square well attractiori49,35. More detailed de-
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scriptions of the aggregation and dissociation processes faems as a competition between particle aggregation, dissocia-
particles interacting with anisotropic attractions have beerion, and rearrangement processes. The model is based on a
developed and have been shown to capture the kinetics &inetic model of crystal nucleation that accounts for the av-
protein crystallization bettef20]. Descriptions of the rear- erage times of aggregation and dissociation processes. A
rangement processes for such interactions must be developgfkan first passage time analysis has been developed to cal-
and the present model adapted accordingly. culate the time require for particle rearrangement. Based on
A limitation of the present comparison is its inability t0 the relative magnitudes of these time scales, the probability
capture the competition between crystallization and glasgat 4 particle aggregating onto a cluster surface rearranges
formation observed in hard-sphere suspensions: Hard-sphefg 5 ¢rystaliine location or remains trapped in an amorphous
suspensions crystallize abov#~0.495 and form glasses .nfiqiration is determined. Depending on which of these
above¢~0.58[13]. In the present description, hard—sphereevems is the most probable, the occurrence of crystals or

interactions occur in the limé/kT=0. Extrapolation of the amorphous clusters, which act as precursors to gels, is pre-
above calculations to this limit does not result in the Ob'dicted

served behavior for hard-sphere suspensions for two reasons. From these calculations. we locate the crvstal-ael bound-

First, the equation of state for square well particles employed . e ' L ystal-gel boun

here[Eq. (2)] is an empirical fit to simulation data and fails ary by 'de”“fy'”g at eacte/kT, f(he minimum value ofp,

to predict the hard-sphere solubility boundary in the limit €@/léd ¢g, at which the probability of forming amorphous

e/kT=0 [23]. Second, particle dissociation kinetics in the clusters is higher than that of forming crystalline clustefs.

hard-sphere limit are governed by the potential of mean forc&us provides a lower bound on the volume fraction for ge-

[17,18, which is neglected in the present description since ifation. At anys/kT, crystals result foeps< < ¢4, whereas

is small compared to inherent particle attractions, especiallgels result for¢>¢y. The predictions are compared with

in the low volume fraction limit where the competition be- recent experiments on globular protein suspensions. The

tween gelation and crystallization in globular protein suspenmodel predictions for the range of attractions 1.15, are in

sions is observed. excellent agreement with the gel-crystal line observed ex-
Another limitation of the above comparison is that theperimentally. This gives us confidence that the model cap-

data is insufficient to test the effect of the range of particletures much of the underlying physics of the competition be-

attractions on the location of the gel-crystal boundary. Such éween gelation and crystallization. Further studies are

test requires experiments where the range of the attractions igcessary to test the ability of the model to predict the effect

carefully tuned as possible in the case of colloid-polymerof the range of particle interactions on the resulting gelation

mixtures. However, the need to account for polymer parti-and crystallization transitions.

tioning in order to compare with these experiments necessi-

tates a significant modification to the present description of
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