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Competition between crystallization and gelation: A local description

Narendra M. Dixit* and Charles F. Zukoski†
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We develop a model to describe the competition between gelation and crystallization in colloidal suspen-
sions where particle interactions are represented by square well attractions. The competition is discussed
locally in terms of the tendencies of individual particles to attain amorphous or crystalline configurations on
cluster surfaces. These tendencies are dictated by three independent processes, the aggregation of particles
onto, the dissociation of particles from, and the rearrangement of particles on the cluster surfaces. Models are
developed to determine the rates of each of these processes. The relative magnitudes of these rates determine
the probability that a particle arriving onto a cluster surface reaches a crystalline configuration, remains
arrested in an amorphous configuration, or dissociates back into the suspension. These probabilities are em-
ployed to determine whether stable crystalline or amorphous clusters nucleate, resulting in predictions of the
occurrence of crystallization or gelation as a function of solution conditions. Comparisons of model predictions
with recent experiments on globular protein suspensions show excellent agreement, suggesting that the model
captures much of the underlying physics of the competition between gelation and crystallization in attractive
colloidal suspensions.
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I. INTRODUCTION

Upon quenching a suspension of particles experienc
attractive interactions, crystallization can be preempted b
nonequilibrium gel transition@1,2#. The gel phase thus
formed has unique properties: it is solidlike in that it does
flow and can bear a nonzero shear stress, and is liquidlik
that it lacks a structure with long range order. Gels of
have self-similar structures that span space to form a pe
lated network at packing fractions significantly lower th
packing fractions in ordinary solids@3#. Accordingly, colloi-
dal gels are employed extensively in the paints, coatin
foods, drug, and cosmetics industries. On the other hand
gel phase can be a hindrance to crystal formation. Hig
ordered crystalline solids are indispensable in the identifi
tion of protein structures, the manufacture of photonic ba
gap materials, and controlled drug delivery@4–7#. In such
applications, the gel phase is undesirable. For systems
crystallize, little is known about how to control the comp
tition between gelation and crystallization@8–12#. Under-
standing how to control this competition is clearly an ar
that has widespread consequences.

Equilibrium thermodynamics predicts the occurrence
crystals as the stable thermodynamic phase upon crossin
solubility boundary @13#. The location of the solubility
boundary in a temperature-concentration phase diagram
pends on the details of the interactions between the partic
Gelation, on the other hand, is a purely kinetic transition a
is not predicted by thermodynamic approaches. Alterna
approaches have been developed wherein signatures o
gel phase are employed as the criteria to predict the oc
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rence of gelation. For example, the percolation thresho
which indicates the formation of a cluster large enough
span the expanse of the system, has been used to deli
conditions where gels may occur@14,15#. In the more recent
mode coupling approach, recognizing that gels are no
godic states, conditions yielding nontrivial solutions for t
nonergodicity parameters are used to suggest the forma
of gels @16#. While useful in predicting the location of non
ergodic transitions, these approaches cannot address
competition between gelation and crystallization. As a res
whether a gel or crystals will result under given soluti
conditions remains poorly understood.

Experimental studies on hard-sphere colloidal susp
sions where a depletion attraction is induced between
particles by adding nonadsorbing polymer demonstrate
prevalent competition between gelation and crystallizat
@8–11#. For short ranges of attraction~set by a small
polymer-to-colloid size ratio!, gelation preempts crystalliza
tion upon increasing either the colloid or the polymer co
centration. At a fixed polymer concentration, which det
mines the strength of the depletion attraction, increasing
polymer-to-colloid size ratio results in crystallization. I
more recent studies on globular protein suspensions@12#,
crystals were observed to nucleate directly from the fl
phase at higher strengths of attraction, whereas at lo
strengths of attraction, the suspensions gelled at short ti
with crystals nucleating from the gels at very long time
These studies point to the subtle and poorly understood
fects of changing the strength and the range of particle
tractions on the resulting gelation and crystallization tran
tions.

While gels and crystals have drastically different prop
ties, the processes that lead to their formation are identica
the molecular level: Both gels and crystals are formed
consequences of particle aggregation and dissociation
cesses. Particles aggregate via Brownian encounters.
pending on the strength of the attractions between the
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ticles relative to their thermal energy, the particles rearra
into ordered structures over varying time scales. Ther
fluctuations allow bound particles to dissociate into the s
pension. The relative rates of these processes deter
whether gels or crystals will eventually result: When re
rangement is rapid, and therefore complete, equilibri
structures, or crystals, result. When rearrangement is inc
plete, particles remain arrested in nonequilibrium configu
tions yielding amorphous aggregates and gels. Extant mo
fail to recognize this similarity in the underlying processe
while gelation is treated as a dynamic nonergodicity tran
tion @16#, crystallization is understood using the complete
independent framework of equilibrium thermodynam
@13#. As a result, difficulties arise in addressing the com
tition between gelation and crystallization. Here, recogniz
the similarity in the underlying processes, we develop
model that employs descriptions of these processes and
dicts the occurrence of gelation and crystallization as a fu
tion of solution conditions.

Particle aggregation and dissociation are central to
theories of crystal nucleation. In previous studies, a desc
tion of these processes in the context of crystallization
hard sphere@17,18# and attractive colloidal suspension
@19,20# has been developed. Here, we consider square
systems as the equilibrium thermodynamics of these syst
is well understood and independent predictions of perc
tion @22#, gelation@11#, and crystallization@23# in these sys-
tems have been reported. Further, square wells form an
cellent model to elucidate the effects of systematica
changing the strength and the range of attractions on
resulting phase behavior. To describe particle rearrangem
we assume that upon aggregation individual particles diff
independently to locations where their energies are m
mized. Cooperative rearrangement is neglected, and the
arrangement time of individual particles is determined us
a mean first passage time analysis. From the rates of par
aggregation, dissociation, and rearrangement, we are ab
calculate the probability that a particle diffuses to its loc
free energy minimum or remains trapped in amorphous lo
tions. Falling into the local free energy minimum is cons
ered to result in crystallization while being trapped is co
sidered to result in gelation. We compare our predictio
with recent experiments on globular protein suspensions
find excellent agreement. We conclude that the present
scription captures much of the underlying physics that d
tates the competition between gelation and crystallization
attractive colloidal suspensions.

The paper is organized as follows. We begin in Sec
with a brief description of the equilibrium thermodynami
of square well systems. In Sec. III, we present our model
calculating the probabilities of crystalline versus amorpho
cluster formation as functions of the time scales of parti
aggregation, dissociation, and rearrangement processes
culations of these time scales are described in Sec. IV
Sec. V, we present model predictions of the occurrence
gelation and crystallization as a function of solution con
tions and compare them with experiments on globular p
teins. We draw conclusions in Sec. VI.
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II. EQUILIBRIUM THERMODYNAMICS OF SQUARE
WELL SYSTEMS

Consider a suspension of spherical particles of radii ‘‘a’’
interacting with a dimensionless pair potential given by t
centrosymmetric square well

U~r !

kT
5H `, r<2a

2«/kT, 2a,r<2la

0, r .2la,

~1!

where r is the center-to-center separation of a pair of p
ticles,« is the strength of the attraction between the particl
l is the range of the attraction, andkT is the product of
Boltzmann constant and the absolute temperature. M
studies have been carried out detailing the equilibrium th
modynamics of such a suspension@23–26#. An equation of
state for the fluid phase has been proposed@23#:

Pa3

fkT
5

3

4p F 11
bf

S 12
f

fo
D 2 1

6

p

~«/kT!f f ~l!

S 12
f

fb
D 3 G , ~2!

where P is the osmotic pressure,f is the particle volume
fraction,b54 andfo50.84 are constants, andfb and f (l)
are both tabulated functions ofl @23#. From this, the chemi-
cal potential of a particle in the fluid phase is calculated
@19#

m l5E
0

fS 4p

3

Pa3

f8kT
21D df8

f8
1

4p

3

Pa3

fkT
1 ln~f!21.

~3!

The fluid-fluid phase separation boundary, or the binoda
determined using the conditionsPI5PII andm l

I5m l
II , where

I and II correspond to the dilute and dense fluid phases
equilibrium. The locus of points that satisfydP/df50 gives
the spinodal. The spinodal and the binodal meet at the c
cal point. The fluid-crystal phase boundary or the solubil
boundary, is determined by the conditionm l5ms , wherems
is the chemical potential of a particle in the crystalline pha
calculated as@19#

ms52C«/2kT23 ln~l21!, ~4!

whereC512 is the number of nearest neighbors of partic
in the crystalline phase, and the solid is assumed to be
compressible. Forl,1.35, the fluid-fluid phase separation
metastable with respect to the fluid-crystal phase separa
whereas stable fluid-fluid phase separation conditions
predicted forl.1.35 @19#.

Comparison of model predictions with experiments
quires linking the parameters« andl to experimental mea-
sures of particle interactions. One method employed, es
cially in studies of globular protein suspensions, is to li
parameters in the interaction energy to the measurable p
erty B2 , the second virial coefficient of the osmotic pressu
1-2
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of the colloidal suspension@27#. B2 is an integral measure o
particle interactions and is given for square well systems

B2

B2
HS512~e«/kT21!~l321!, ~5!

whereB2
HS516p a3/3 is the second virial coefficient for par

ticles interacting with a hard-sphere potential. Generali
phase diagrams have been developed for 0,(l21)!1,
where B2 is shown to be correlated with the equilibriu
solubility of a wide variety of globular protein and colloida
suspensions@27,28#. The above description captures the c
relation quite accurately indicating the ability of the squa
well model to describe protein solution thermodynam
@23#. However, the model fails to capture the location of t
metastable spinodal@12,29#. Here, we employ this descrip
tion of square well systems to understand the competi
between gelation and crystallization.

III. LOCAL DESCRIPTION OF CLUSTER FORMATION:
CRYSTALLINE VERSUS AMORPHOUS AGGREGATES

In a supersaturated suspension, wheref.fs , the equi-
librium solubility at any given«/kT, particles aggregate to
form growing clusters. When the attractions are short rang
Brownian encounters between particles in a dilute susp
sion result in clusters with open, fractal-like particle config
rations; at best, the particles are randomly close packed.
sequently, however, these particles tend to rearrange
crystalline configurations in order to minimize their free e
ergies. At the same time, particles on cluster surfaces c
stantly undergo thermal motion, which allows them to dis
ciate back into the suspension. Thus, three processes, pa
aggregation, dissociation, and rearrangement, continually
cur, and determine cluster growth. We argue that the for
tion of crystalline configurations results in macroscopic cr
tals, whereas the formation of amorphous clusters, w
space filling, eventually causes the suspension to gel.

To determine order within a cluster, we consider the
gregation of particles onto a perfectly crystalline cluster s
face. Assuming the cluster to be large, we represent it b
two-dimensional lattice as shown in Fig. 1. Without loss

FIG. 1. Triangular lattice assumed to describe rearrangemen
particles on cluster surfaces. Triangle ABC marks a representa
lattice unit. The centroid O of the triangle is chosen as the origin
the polar coordinate system to describe particle motion.
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generality, we let the lattice to be triangular. Let a partic
say particle 1, arrive onto the cluster surface at a timet50.
We assume that the particle arrives at an arbitrary position
the surface, onto a representative lattice unit ABC. A zo
around the centroid of triangle ABC represents the nea
free energy minimum location for the particle. The larger t
range of particle attractions, the bigger is this zone. Energ
cally equivalent but distant locations exist around the c
troids of other similar lattice units. Consider now a suspe
sion above the perfect cluster surface. Brownian encoun
will result in cluster growth if the suspension is supersa
rated. A particle, particle 1, arriving at the surface will u
dergo surface diffusion and have a biased path towards
zone that minimizes its energy. Or, it may arrive inside t
zone and diffuse out due to thermal motion. During this d
fusion, it may get trapped in an amorphous~outside the zone!
or a crystalline~inside the zone! configuration due to the
arrival of additional particles, or may leave the cluster a
dissociate back into the suspension via thermal motion
crystalline~amorphous! cluster grows every time such a pa
ticle is arrested in a crystalline~amorphous! location. Our
aim is to determine whether a particle arriving on the clus
surface ends its excursion on the surface in a crystalline o
amorphous configuration. The result is a local description
crystalline and amorphous cluster formation.

We consider first the case when particle 1 arrives onto
cluster surface at an amorphous location in the arbitrary
ABC. To minimize its free energy, the particle diffuses t
wards the crystalline zone in the center of ABC. This re
rangement process of particle 1 has two constraints. Firs
requires that particle 1 does not dissociate back into the
pension before the rearrangement is complete. The sec
constraint is introduced by the arrival of another particle, s
particle 2, onto the cluster surface at a location that allo
bond formation between particles 1 and 2. When this h
pens, the rearrangement of particle 1 is no longer indep
dent. Particle 1 must either break its bond with particle 2
the two must rearrange cooperatively. While cooperative
arrangement is possible, we assume that it occurs extrem
slowly so that particle 1 is essentially arrested in its posit

FIG. 2. A schematic of the possible events that a particle, p
ticle 1, on a cluster surface may experience. The bold arrows
resent the sequence of possible events. The thin arrows ind
actual motion of particles. The un-numbered particles represe
lattice unit on the cluster surface.
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unless it breaks its bond with particle 2. We assume furt
that the bond between particles 1 and 2 is broken by
dissociation of the latter back into the suspension via ther
motion. This process can continue recursively with partic
3, 4, 5, . . . aggregating onto particles 1 and 2. For simpl
ity, we assume that if particle 3 arrives onto particles 1 and
it becomes extremely difficult for particle 2 to diffuse ba
into the suspension, resulting in the arrest of the rearran
ment process of particle 1. Particle 1 then remains caugh
an amorphous configuration. This description is shown sc
matically in Fig. 2. Below, we determine the probability th
particle 1, having arrived at an amorphous location, is abl
reach a crystalline configuration and the probability that i
arrested in an amorphous location in terms of the time sc
of the aggregation, dissociation, and rearrangement
cesses.

Let the average dissociation time of particles fro
amorphous locations beta . Then, assuming that the diss
ciation of every particle is an independent process, the p
ability that the dissociation time of particle 1 is withindt of
t equalsf a(t)dt, where

f a~ t !5~1/ta!exp~2t/ta! ~6!

is the probability density of the dissociation process. Sim
larly,

f b~ t !5~1/tb!exp~2t/tb! ~7!

and

f g~ t !5~1/tg!exp~2t/tg!, ~8!

define the probability densities of the aggregation and re
rangement processes, respectively, wheretb is the average
aggregation time of particles to within a bond forming d
tance of an existing particle on a cluster surface andtg the
average time for the rearrangement of aggregated part
from amorphous to crystalline locations. We assume that
three processes occur independently of each other. Lettd21
denote the time after arriving onto a cluster surface wh
particle 1 dissociates back into the suspension andt r 21 the
time when particle 1 reaches a crystalline location. Letta22
denote the time when particle 2 aggregates onto the clu
surface to within a bond forming distance of particle 1. Th
particle 1 is able to reach a crystalline location ift r 21 is
smaller thantd21 and ta22 . A second way for particle 1 to
reach a crystalline location is ifta22 is smaller thantd21 and
t r 21 , but particle 2 dissociates before particle 3 arrives, i
td22 is less thanta23 . Once particle 2 dissociates, we res
the clock, so that particle 1 can reach a crystalline site ag
if t r 21 is smaller thantd21 andta22 . Again, this description
is shown schematically in Fig. 2. Thus, ifPr is the probabil-
ity that particle 1 reaches the crystalline location, we hav
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Pr5P„t r 21,~ td21 and ta22!…

1P„ta22,~ td21 and t r 21!…P~ td22,ta23!Pr

5E
tr50

` E
ta5tr

` E
td5tr

`

f a~ td! f b~ ta! f g~ t r !dtd dta dtr

1F E
ta50

` E
tr5ta

` E
td5ta

`

f a~ td! f b~ ta! f g~ t r !dtd dta dtr G
3F E

td50

` E
ta5td

`

f a~ td! f b~ ta!dta dtdGPr , ~9!

where in the latter equality, the second subscript on
times, which identifies the particle number, has been drop
because all particles are assumed to follow the same st
tics, given by Eqs.~6!–~8! above, for the aggregation, disso
ciation, and rearrangement times. Upon simplification, E
~9! yields

Pr5

1

tg

1

ta
1

1

tb
1

1

tg

12F 1

tb

1

ta
1

1

tb
1

1

tg

GF 1

ta

1

ta
1

1

tb

G . ~10!

Similarly, the probabilityPa that particle 1 remains arreste
in an amorphous location is given by~Fig. 2!: Pa5P„ta22
,(td21 and t r 21)…@P(ta23,td22)1P(td22,ta23)Pa#, so
that

Pa5

F 1

tb

1

ta
1

1

tb
1

1

tg

GF 1

tb

1

ta
1

1

tb

G
12F 1

tb

1

ta
1

1

tb
1

1

tg

GF 1

ta

1

ta
1

1

tb

G . ~11!

If particle 1 neither reaches a crystalline location nor g
arrested in an amorphous location, it leaves the surface f
an amorphous location and escapes into the suspension
probability that this happens is given byPl5P„td21
,(ta22 and t r 21)…1P„ta22,(td21 and t r 21)…P(td22
,ta23)Pl , or
1-4
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Pl5

1

ta

1

ta
1

1

tb
1

1

tg

12F 1

tb

1

ta
1

1

tb
1

1

tg

GF 1

ta

1

ta
1

1

tb

G . ~12!

It is easily verified thatPr1Pa1Pl51.
Next, we consider the case where particle 1 arrives on

surface in a crystalline configuration, i.e., its diffusive traje
tory in the suspension causes it to arrive near the centroi
Fig. 1. As depicted in Fig. 2, particle 1 may then dissoci
back into the suspension, diffuse on the cluster surface t
amorphous location, or remain arrested in the crystal
configuration. If the probabilities for these events arePlx ,
Prx , and Pax , respectively, then following the above d
scription, we can write

Prx5

1

tgx

1

tax
1

1

tb
1

1

tgx

12F 1

tb

1

tax
1

1

tb
1

1

tgx

GF 1

tax

1

tax
1

1

tb

G , ~13!

Pax5

F 1

tb

1

tax
1

1

tb
1

1

tgx

GF 1

tb

1

tax
1

1

tb

G
12F 1

tb

1

tax
1

1

tb
1

1

tgx

GF 1

tax

1

tax
1

1

tb

G , ~14!

and

Plx5

1

tax

1

tax
1

1

tb
1

1

tgx

12F 1

tb

1

tax
1

1

tb
1

1

tgx

GF 1

tax

1

tax
1

1

tb

G , ~15!

wheretax andtgx are the time scales for the dissociation a
the rearrangement, respectively, of a particle in a crystal
location. Here, by rearrangement is meant the diffusion
06150
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the particle to an amorphous location. Since a particle ar
ing from the bulk suspension does not distinguish betwee
particle in a crystalline or an amorphous location, the agg
gation time onto both remains the same, viz.,tb . Here, the
range of attraction is assumed to be sufficiently small so
any steering of arriving particles into lower energy cryst
line configurations can be neglected.

Our aim is to determine the likelihood of a particle arri
ing onto a cluster surface ending its excursion on the surf
in a crystalline or an amorphous location. Letf be the prob-
ability that a particle arrives onto the surface at a crystall
site. Let Pc1 be the probability that such a particle ends
excursion in a crystalline location. LetPc2 be the probability
that a particle arriving at an amorphous location ends
excursion in a crystalline location. Then, the probability th
a particle arriving at an arbitrary location—crystalline
amorphous—ends its excursion in a crystalline location
given by Pcrystal5 f Pc11(12 f )Pc2 . The probabilitiesPc1
and Pc2 are linked through the equations:Pc15Pax
1PrxPc2 and Pc25Pr Pc1 . The first equation indicates tha
a particle arriving onto a crystalline location is eventua
arrested in a crystalline location if it gets arrested there u
arrival ~first term! or if it diffuses to an amorphous locatio
and is subsequently arrested in a crystalline location~second
term!. The latter probability is determined by the seco
equation as the product of the probabilities of a particle in
amorphous location reaching a crystalline location and s
sequently getting arrested there. Solving these simultane
equations, it follows that

Pcrystal5@ f 1~12 f !Pr #S Pax

12Pr Prx
D . ~16!

Similarly, the probabilityPgel that a particle arriving at an
arbitrary location on the surface ends its excursions at
amorphous location is given by

Pgel5@ f Prx1~12 f !#S Pa

12Pr Prx
D . ~17!

Thus, the probability that a particle arriving onto a cry
talline surface is eventually arrested in a crystalline or
amorphous configuration can be calculated given the t
scales of the aggregation, dissociation, and rearrangem
processes, viz.,ta , tb , tg , tax , andtgx , and the parameter
f, Cx` , andz. Below, we present models to calculate the
quantities as functions of solution conditions, viz.f, «/kT,
andl.

IV. PARTICLE DISSOCIATION, AGGREGATION,
AND REARRANGEMENT PROCESSES

A. Dissociation

Descriptions of the aggregation and dissociation proces
for square well systems have been developed previo
@19#. A spherical cluster of radiusR is considered. To deter
mine dissociation rates, particles on the cluster surface
assumed to reside in potential energy wells because of t
bonds with nearest neighbors. The motion of the particle
1-5
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these potential wells is described by the Smoluchowski eq
tion. Solving the Smoluchowski equation, the average ti
required for the particles to diffuse out of their potent
wells into the bulk suspension is determined. This disso
tion time depends on the depth of the potential well hold
the particles,F52Cs«/kT, where Cs is the number of
nearest neighbors of a particle on the cluster surface~the
number of nearest neighbors of a particle in a fluid is
sumed negligible!. Cs depends onR as well as on whethe
the particle is in an amorphous or a crystalline location. F
a particle in a crystalline location, the following empiric
form has been suggested@17,18#

Csx~R!511~Cx`21!@12exp$z~Rmin2R!/2a%#,
~18!

whereCx` is the number of nearest neighbors of a particle
a crystalline configuration on the surface of an infinite
large crystalline cluster.Rmin5a(2/0.74)1/3 is the radius of
the smallest possible cluster, i.e., containing two particles
particle in such a cluster has one nearest neighbor. The
rameterz characterizes howCsx varies asR increases beyond
Rmin and is related to the curvature dependence of the so
fluid surface tension@17,18#. Determination of the param
etersz andCx` is discussed below.

To determine the number of nearest neighbors of a p
ticle in an amorphous locationCs , we note that whenR
5Rmin , Cs5Csx51, whereas on an infinitely large crysta
line cluster surface,Cx`2Cs` is either 1 or 2 for a triangula
lattice. Here, we let this difference be 1.5, and assuming
Cs increases withR in a manner similar toCsx , we write

Cs~R!511~Cx`21.521!@12exp$z~Rmin2R!/2a%#.

~19!

With these assumptions, the Smoluchowski equation g
the dissociation times as@17–19#

ta5
R2 exp$Cs«/kT%

3Dov

~11d/R!321

~11d/R!2 ~20!

and

tax5
R2 exp$Csx«/kT%

3Dov

~11d/R!321

~11d/R!2 , ~21!

where d52a(l21) is the width of the well holding the
particles;Do is the Stokes-Einstein diffusivity of the pa
ticles; andv50.2 is an approximate hydrodynamic corre
tion to Do on the cluster surface@19#. The size dependencie
of the number of nearest neighbors ensure that particles
sociate from small clusters faster than they dissociate f
large clusters.

B. Aggregation

As particles compact into clusters, a small zone arou
the clusters becomes depleted of monomers. This genera
gradient in the concentration of monomers from the b
suspension to the cluster surfaces. Particles are assum
aggregate onto cluster surfaces by diffusing down this c
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centration gradient. Assuming that the concentration of p
ticles in the depletion zone is negligible, the diffusion equ
tion is solved to give the steady state rate of partic
aggregating onto the cluster surface@19#:

b5
3R

a3 S 11
d

RD E
0

f

D~f8!df8, ~22!

wheref is the volume fraction of particles in the bulk su
pension andD(f) is the gradient diffusivity of the particles
given by @13,19#

D~f!5DoK~f!
d

df
@fZ~f!#, ~23!

where Z(f)54pPa3/3fkT is calculated via Eq.~2!, and
K(f)5(12f)2K2, with

K2526.56714.056S 12
B2

B2
HSD , ~24!

whereB2 /B2
HS is given by Eq.~5! @13,19#.

Equations~22!–~24! thus allow the calculation ofb, the
rate at which particles aggregate onto a cluster of radiusR.
The rate at which particles aggregate onto the surface
within a bond forming distance of an existing particle
smaller thanb by a factor equal to the ratio of relevant are
and is given byb(2al)2/4R2. The average time of the latte
aggregation process is, therefore,

tb5R2/b~al!2. ~25!

C. Rearrangement

To calculate the average time of particle rearrangem
we employ a mean first passage time analysis similar to
employed for calculating particle dissociation rates descri
above. We again consider a surface where particles are
ranged in a triangular lattice, as shown in Fig. 1. A particle
assumed to arrive at a random location on a representa
lattice unit, triangle ABC, and diffuse on the surface towar
the centroid of triangle ABC or to that of a nearby triang
To describe this surface diffusion, we use polar coordina
with the centroid of triangle ABC as the origin. For simplic
ity, we assume the potential energy landscape to be rad
symmetric, and writeF5F(r ), where F is the potential
energy made dimensionless by the thermal energykT is a
function only of r, the radial distance from origin. The rep
resentative lattice unit and the energy landscape are sh
schematically in Fig. 3.F reaches a minimum atr 5r 1>0,
which marks the crystalline zone around the centroid. We
F increase to a maximum atr 5r 2 , the edge of the potentia
well. The particle arrives onto the cluster surface into t
potential well atr 5r o (r 1<r o<r 2). Subsequently, the par
ticle either diffuses to the minimum atr 5r 1 , or diffuses out
of the well atr 5r 2 into one of the similar minima of adja
cent wells. The diffusion in all wells being identical, we ca
assume that the particle is reflected back at ther 5r 2 bound-
1-6
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ary. Here, we calculate the time required for the particle
first reach the minimum atr 1 .

Let w(r ,tur o,0) be the probability that the particle dif
fuses to a radial distancer at a timet, beginning fromr o at
time t50. Our aim is to determine the evolution of this pro
ability with respect to the initial positionr o for the fixed final
position r 5r 1 . This evolution is governed by the backwa
Smoluchowski equation@19,21,30#:

]w~r ,tur o,0!

]t
5DF 1

r o

]

]r o
S r o]w~r ,tur o,0!

]r o
D

2S ]F

]r o
D S ]w~r ,tur o,0!

]r o
D G . ~26!

Solving this equation assuming an absorbing boundaryr
5r 1 and a reflecting boundary atr 5r 2 yields the average
rearrangement timeT(r o) as @21,30#

T~r o!5
1

D E
r 1

r o eF~r !

r E
r

r 2
e2F~r 8!r 8 dr8 dr. ~27!

To simplify this expression, we make the approximati
that F5Fo at r 5r 1 and rises sharply toF50 for r .r 1 .
Then, exp(2F);1 in the inner integral in Eq.~27!. This
yields

FIG. 3. An expanded view of a typical lattice unit showing t
crystalline zone around the centroid~radiusr 1) and the edge of the
amorphous zone~radiusr 2), and the corresponding potential ener
landscape~bottom!.
06150
o

T~r o!5
1

D E
r 1

r o eF~r !

r S r 2
22r 2

2 Ddr. ~28!

Again, because of the sharply peaked nature ofF, most of
the contribution to the above integral comes from the in
grand nearr 5r 1 . Therefore, nondimensionalizing the inte
grand and evaluating it atr /r 151, we get

T5~r 2
22r 1

2!eFo/2D. ~29!

To determiner 1 andr 2 , we consider a particle~center X!
arriving directly onto one of the particles, say A, on th
representative lattice unit ABC such that AX (52a) is per-
pendicular to the plane ABC. The resulting arrangemen
shown in Fig. 4~a!. Since AB52a, we have BX5CX
5(2&)a. Let D be the midpoint of BC. Then, from geom
etry, DX5A7a. Since the particle is driven equally by it
attractions to the particles centered at B and C, we le
diffuse to a minimum energy location along the line DX. Th

FIG. 4. Schematic representation of particle configurations
determine the sizes of the crystalline and amorphous zones on
ter surfaces. See text for description.
1-7
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N. M. DIXIT AND C. F. ZUKOSKI PHYSICAL REVIEW E 67, 061501 ~2003!
particle is closest to the plane ABC when ABCX forms
tetrahedron of side 2a as shown in Fig. 4~b!. Then, DX
5)a. This yields

r 25~A72) !a. ~30!

Diffusing along DX, the particle first forms bonds with th
particles B and C when BX5CX52la, as shown in Fig.
4~c!. Then, DX5aA(4l221), so that

r 15@A~4l221!2)#a. ~31!

Substituting forr 1 and r 2 and noting thatT5tg , we get

tg5
a2~422l22A211A12l223!exp$2~Cxs2Cs!«/kT%

Dov
,

~32!

where we have writtenFo52(Cxs2Cs)«/kT and D
5Dov, with v50.2 again an approximate correction toDo
accounting for the near field hydrodynamic interactions
the particle diffusing on the cluster surface.

Finally, to calculatetgx the time for a particle in a crys
talline location to diffuse to an amorphous location, the sa
backward Smoluchowski equation@Eq. ~26!# is solved, ex-
cept with a reflecting boundary condition atr 50 and an
absorbing boundary condition atr 5r 1 @30#. Using similar
simplifications as in deriving Eq.~32!, we get

tgx5
a2~2l2112A12l223!exp$~Cxs2Cs!«/kT%

Dov
.

~33!

V. MODEL PREDICTIONS OF GELATION
AND CRYSTALLIZATION

To employ the above time scales for calculating the pr
abilities of gelation and crystallization, the parametersf,
Cx` , and z must be determined. The distancesr 1 and r 2
above allow the determination of the probability,f, that a
particle arrives onto a cluster surface at a crystalline locat
Assuming that particles arrive onto the surface at perfe
random locations~no steering!, f is simply the ratio of the
area of the crystalline zone to the total area of a lattice u
Thus, f 5(r 1 /r 2)2, or

f 5S A4l2212)

A72)
D 2

. ~34!

Note that f decreases asl decreases, indicating that fo
shorter ranges of attraction particles are more likely to arr
into amorphous configurations. Whenl51, all particles ar-
rive in amorphous configurations asf 50. On the other hand
f 51 for l5&, at which point all arriving configurations
are energetically equivalent and are considered crystal
Rearrangement is then driven by entropic effects. Here,
considerl,1.35 to avoid the intervening stable fluid-flui
phase separation at higherl. Under these circumstances, w
assume that rearrangement is primarily enthalpic and neg
entropic effects.
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To determineCx` , we note that at the solubility bound
ary,f5fs(«/kT,l), only infinitely large clusters are stable
i.e., neither grow nor shrink. The stability of a cluster
determined by a balance between the rates of particle ag
gation onto and dissociation from the cluster surface. T
rate of particle aggregation onto a spherical cluster of rad
R is given byb5R2/a2l2tb , wheretb is determined using
Eq. ~25!. The number of particles on a cluster surface is@19#

Ns52fcpS R

a D 3 @12~12a/R!3#

@12a/2R#
, ~35!

wherefcp is the packing fraction of particles on the clust
surface. Here, assuming the surface is densely packed, w
fcp50.64. A fractionPcrystal/(Pcrystal1Pgel) of the particles
on the surface may be assumed to reside in crystal
locations so that they dissociate with the time scaletax . The
remaining fraction dissociate with the time scaleta .
Thus, the total dissociation rate isa5@Pcrystal/(Pcrystal
1Pgel)#(Ns /tax)1@Pgel/(Pcrystal1Pgel)#(Ns /ta). At any f
.fs , the critical cluster sizeR* is defined as that value ofR
at whicha5b, and is obtained by solving

Pcrystal

Pcrystal1Pgel
S Ns

tax
D1

Pgel

Pcrystal1Pgel
S Ns

ta
D5

~R* !2

tb~al!2 .

~36!

For f5fs , R* →`. When R@a, Ns56fcp(R/a)2,
tax5Rde2F/Dov, where F52Cx`«/kT, and ta
5Rde2F/Dov, whereF52(Cx`21.5)«/kT. The aggre-
gation rate for R@a and f5fs!1 simplifies to b
53RDofs /a3. Further, tg5a2e21.5«/kT@422l22A21
1A(12l223)#/Dov and tgx5a2e1.5«/kT@2l211
2A(12l223)#/Dov, where we have substitutedCx`

2Cs`51.5. Sincetg and tgx are independent ofR for R
@a, whereasta , tax , andtb increase withR, it follows that
tg!ta ,tb and tgx!tax ,tb . Equations~10!–~17! then sim-
plify to yield Pr5Prx51 andPcrystal/Pgel5Pax /Pa , where
Pax5tgxtax /tb(tax1tb) andPa5tgta /tb(ta1tb). Equation
~36! then becomes

S 1

11Pax /Pa
D S vfcp

~l21!fs
D FPax

Pa
1e1.5«/kTGe2Cx`«/kT51,

~37!

where

Pax

Pa
5S 2l2112A12l223

422l22A211A12l223
D

3S v16~l21!l2fse
~Cx`21.5!«/kT

v16~l21!l2fse
Cx`«/kT DexpS 4.5«

kT D .

~38!

Solving these equations allows the determination ofCx` .
The parameterz, which characterizes the variation of th

number of nearest neighbors with the cluster radiusR, is
related to the curvature dependence of the solid-fluid surf
tension. Thus, from knowledge of either the particle pack
1-8
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COMPETITION BETWEEN CRYSTALLIZATION AND . . . PHYSICAL REVIEW E67, 061501 ~2003!
profile or the curvature dependence of the surface tensioz
can be determined. Such information, however, is not av
able for square well systems. For hard-sphere suspens
z50.9 results in good comparisons of model predictions
several measures of crystal nucleation kinetics with exp
mental estimates@18#. Here, we assumez50.9 to hold for
square well systems as well and employ it for our calcu
tions.

We note finally that the aggregation rate determined
Eq. ~22! assumes the background monomer volume frac
to be fixed atf. In a suspension withf.fs , however,
multiple clusters can form and reduce the background mo
mer volume fraction belowf. Indeed, detailed solutions o
population balance equations to determine the time evolu
of cluster size distributions during crystallization show th
f quickly reduces to a steady valuefplat, at which much of
crystal nucleation occurs@18#. Further, since the numbe
densities of bigger clusters are small, an excellent estima
fplat is obtained by assuming that the suspension at
steady state consists of monomers and dimers alone and
equilibrium is established between the two species@18#. Fol-
lowing this description, we determinefplat by solving

fplat5
f

11
2b~a,fplat!

a~Rmin!
S 12

f

fcp
D , ~39!

wherea(Rmin)5Ns/ta evaluated atR5Rmin since at this size
the distinction between crystalline and amorphous confi
rations ceases. The time scale for particle aggregation an
the quantities that follow are then determined byfplat rather
thanf.

We present model calculations beginning in Fig. 5 w
the time scales of the aggregation, dissociation, and r

FIG. 5. Particle aggregation, dissociation, and rearrangem
times calculated as described in the text at the interaction pa
eters shown for three volume fractions:f50.08~short dashed line!,
0.10 ~solid line!, and 0.12~long dashed line!, plotted as a function
of cluster size made dimensionless by the critical cluster size~see
text! at eachf.
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rangement processes. We present these time scales fo
square well parametersl51.1 and«/kT52.15 for three dif-
ferent particle volume fractions,f50.08, 0.10, and 0.12
„For l51.1, fb51.482, andf (l)521.558, the paramete
values necessary in Eq.~2! @23#.… Under these conditions, we
find fs52.5331023 andCx`53.02. ~We note that this is a
small solubility but in line with those seen in protein cry
tallization experiments.! For the three volume fractions, w
find that enough monomers are associated with clusters
the monomer volume fraction has been reduced tofplat
50.052, 0.062, and 0.071, respectively. The time scales
culated as described in Sec. IV above are presented in F
as functions of the cluster sizeR normalized with the critical
cluster sizeR* for each case. For the three volume fractio
considered, we findR* /a52.671, 2.510, and 2.375, respe
tively. We note that for eachf, the time scales follow the
order tax,ta,tb,tgx,tg in decreasing order of their magn
tudes. At a fixedf, the time scales increase with increasi
R, except fortg , which decreases with increasingR. Simi-
larly, at a fixedR/R* , the time scales decrease upon incre
ing f, except fortg that follows the opposite trend.

These time scales determine the probabilities of crysta
zation and gelation which we present in Fig. 6. The pro
abilities are calculated using Eqs.~16! and~17! for the same
conditions as in Fig. 5. For all values off considered,
Pcrystal,Pgel for small R. As R increases,Pcrystal increases
whereasPgel decreases so thatPcrystal.Pgel for some suffi-
ciently largeR.

Of interest is the point of this crossover, i.e., the value
R at which Pcrystal5Pgel, relative to the critical cluster size
R* . The critical cluster size determines the stability of clu
ters, clusters bigger thanR* grow, whereas clusters smalle
thanR* shrink. When the crossover occurs at a value ofR
,R* , stable clusters (.R* ) tend to be crystalline as for th
case wheref50.08 in Fig. 6. When the crossover occurs f
R.R* , stable clusters tend to be amorphous. This occurs
f50.12 shown in Fig. 6. We note that for this latter cas

nt
m-

FIG. 6. Probabilities of crystalline and amorphous cluster f
mation at the conditions shown, plotted as a function of cluster s
made dimensionless by the critical cluster size.
1-9
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N. M. DIXIT AND C. F. ZUKOSKI PHYSICAL REVIEW E 67, 061501 ~2003!
Pcrystal.Pgel for sufficiently largeR. Thus, stable cluster
that are amorphous when small can become crystalline, w
sufficiently large. However, multiple clusters grow in sol
tion simultaneously and if the crossover point occurs at s
ficiently largeR, these clusters can touch to form a gel befo
they can become crystalline. Identifying the precise volu
fraction at which such a gel forms is difficult as it requir
knowledge of the packing profiles of the amorphous clus
and the time evolution of the cluster size distribution. He
we assume that if stable clusters are amorphous when s
they remain amorphous when large. Thus, the point wh
the crossover coincides withR* marks the transition be
tween where stable crystalline and amorphous clusters fo
In Fig. 6, this occurs forf50.10 and sets the gelation vo
ume fractionfg for l51.1 and«/kT52.15.

Following this procedure, we calculate the gel-crys
boundary for a given range of attractionl, as that value off,
calledfg , at each«/kT at which

Pgel~R* !5Pcrystal~R* !, ~40!

whereR* is a function of«/kT andf. In Fig. 7, we present
the gel-crystal boundary forl51.05 and 1.1.„For l51.05,
fb51.370, andf (l)521.118@23#.… Also included in Fig. 7
are the solubility boundaries and the spinodals forl51.05
and 1.1 calculated as described in Sec. II. The phase bo
aries are presented inB22f space by converting«/kT to B2
via Eq.~5!. For both the values ofl, the gel-crystal boundary
is located between the corresponding solubility boundary
the spinodal, the latter being metastable (l,1.35). Thus, at
a fixed value ofB2 /B2

HS , increasingf abovefs first pro-
duces crystals until the gel-crystal boundary is reach
Crossing the gel-crystal boundary, i.e., increasingf above
fg , results in the formation of stable amorphous clusters
these clusters grow to span space, they lead to the forma
of macroscopic gels. In this sense, the gel-crystal bounda
a lower limit on the volume fraction for gelation. Similarly
increasing the strength of particle attractions, i.e., lower

FIG. 7. Phase diagram forl51.05~solid lines! and 1.1~dashed
lines! with the solubility boundary, the gel-crystal boundary, and
spinodal in that order upon going from left to right in the graph
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B2 /B2
HS , at a fixedf, first results in crystals upon crossin

the solubility boundary and then in amorphous aggrega
upon crossing the gel-crystal line. Whether proceeding
ther into the spinodal results in gels or fluid-fluid phase se
ration remains to be understood. Further, the gel-cry
boundary shifts to lower volume fractions asl decreases
from 1.1 to 1.05. Thus, at a fixed average attraction
B2 /B2

HS , decreasing the range of attraction leads to an
creased tendency to form gels.

Figure 7 summarizes model predictions of the effects
changing the particle concentration and the strength and
range of particle attractions on the resulting gelation a
crystallization transitions. At this point, several commen
about the predictions are in place. We emphasize that
gel-crystal boundary is different from the other phase bou
aries in Fig. 7 in that traversing across the gel-crystal bou
ary does not produce a reversible crystal-gel transition. W
the gel-crystal boundary tells is whether the transition t
results upon quenching a suspension rapidly to a partic
region in the phase diagram is crystallization or gelatio
More precisely, it tells whether the stable clusters that fo
are crystalline or amorphous.

We note next that at a fixedB2 /B2
HS , although the volume

fraction at the gel-crystal boundary, i.e.,fg , decreases as th
range of attractions is decreased,fg always remains highe
than the equilibrium solubilityfs at that B2 /B2

HS . In the
present description,R* diverges at the solubility boundar
so that no stable clusters can nucleate forf,fs . Thus,fg ,
which determines where stable amorphous clusters nucle
is bounded below byfs . We note further thatfs is deter-
mined in this description using equilibrium thermodynam
as the volume fraction above which the lowest free ene
state of the system is a solid, in the interior of which partic
haveC nearest neighbors@Eq. ~4!#. In calculatingR* , how-
ever, only a description of the surface of such a solid
considered@Eq. ~36!#. Therefore, implicit in lettingR* di-
verge atfs @Eqs. ~37! and ~38!# is the assumption that th
interiors of nucleating clusters have the same propertie
the stable solid dictated by equilibrium thermodynamics. T
description of the solid chosen is usually based on obse
tions of the resulting crystal structures, e.g., the stand
choice ofC512 is motivated by the fcc or hcp structure.

Often, however, such a description cannot be identifi
uniquely. For instance, in suspensions where the parti
have a significant size polydispersity, the crystalline free
ergy minimum is suppressed for the solid@31#. This makes
identifying fs ambiguous. Under these circumstances,fs
identified by assuming a particular solid structure does
rule out the occurrence of stable clusters corresponding
other structures forf,fs . In particular, amorphous struc
tures leading to gels may occur forf,fs , suggesting that
under some conditionsfg,fs . Indeed, in recent experi
ments on colloid-polymer mixtures, gels have been obser
to preempt crystallization for small polymer-to-colloid siz
ratios or small ranges of attraction@9,10#. Whether this im-
plies thatfg,fs or whether gels are observed upon cro
ing the gel-crystal boundary forfg.fs due to slow crystal
nucleation kinetics forf,fg remains to be verified. Tha
1-10
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COMPETITION BETWEEN CRYSTALLIZATION AND . . . PHYSICAL REVIEW E67, 061501 ~2003!
crystal nucleation can be slow forf,fg is seen in experi-
ments on globular protein suspensions where crystals are
observed at low strengths of attraction, where the supers
rations are low, until the gel boundary, but are observed
higher strengths of attraction, where much higher supers
rations are attained, before gel formation@12#. At the same
time, simulations of hard-sphere suspensions have sugge
that size polydispersity can lower crystal nucleation rates
several orders of magnitude@32#.

We remark next that the local description leading to
arrest of particles on cluster surfaces employed in the pre
model is somewhat similar to the description of cages e
ployed in recent mode-coupling approaches@16#. In the latter
approaches, particularly applicable to dense suspens
particles are assumed to be trapped in cages formed by o
similar particles. The diffusion of particles therefore requir
the breakup of these cages. In analogy, we assume that
ticle motion on cluster surfaces is possible only when
additional particles peg it on the surface. Mode-coupl
theory assumes, however, that structural relaxation oc
via cooperative motion of the particles, whereas such re
ation mechanisms are neglected in the present approach

Finally, we mention two approximations that introdu
uncertainties in model predictions. First, the rearrangem
time of individual particles is calculated assuming diffusi
on a perfectly crystalline surface. A cluster surface, howe
has both crystalline and amorphous regions. Rearrangem
on amorphous regions must necessarily be cooperative a
therefore expected to be slower than on crystalline regio
As a result, the model overestimates the tendency for c
tallization. Second, any steering of arriving particles into e
ergetically favorable configurations is assumed to be abs
Steering would enhance the tendency to form crystals
yond what is predicted in Fig. 7 as the range of attractio
increases. Despite these limitations, model predictions ar
qualitative agreement with experiments@8–11#. To test the
predictions quantitatively, we turn next to comparisons w
experiments.

The competition between gelation and crystallization h
been best studied with colloid-polymer mixtures@8–11#.
However, comparisons with these experiments require
nificantly different descriptions of the fluid and solid phas
in particular, incorporating polymer partitioning in the tw
phases. Explicit two-component descriptions have been
veloped that capture the equilibrium phase behavior
colloid-polymer mixtures@9,10,33#, but the kinetics of the
phase transitions remains poorly understood. In the pre
description, colloidal suspensions are treated as o
component systems with the particles interacting via an
fective interaction potential. Such descriptions have pro
successful in describing the phase behavior of inherently
tractive systems~as opposed to colloid-polymer mixture
where the attraction between the particles is induced by a
ing polymer! such as globular proteins@27,28#. Here, we
compare model predictions with recent experiments
globular proteins@12#.

In Fig. 8, we present the experimental phase beha
recently reported for lysozyme in phosphate buffer solut
@12#. The solubility boundary is shown by triangles and t
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fluid-fluid phase boundary by squares. That the fluid-flu
phase boundary is metastable with respect to the solub
boundary indicates that the proteins experience short-ra
attractions. The dynamics of structural relaxation of susp
sions spanning a wide range of conditions between th
boundaries was studied. Where density fluctuations rela
within experimental time scales, the suspensions were c
sidered fluidlike. Fluidlike conditions are shown in Fig. 8
open circles. Where density fluctuations failed to relax co
pletely, the suspensions were considered nonergodic, ind
ing the onset of gelation. Such conditions are shown as s
circles in Fig. 8. Finally, visual inspection allowed the dete
tion of crystals. Suspensions where crystals were seen
shown in Fig. 8 as crosses.

To make comparisons with this data, we present in Fig
calculations of the solubility boundary, the spinodal, and
gel-crystal boundary as outlined above forl51.15 „for
which fb51.580 andf (l)521.957 @23#…. Quite remark-
ably, both the solubility boundary and the gel-crystal boun
ary are in excellent agreement with experiments. Here,
assume that at lower strengths of attraction where crys
are not seen, the gel-crystal boundary is given by the tra
tion between the open and solid circles, as crystals are
pected to nucleate in supersaturated suspensions upon
ing sufficiently long.l51.15 is chosen to give the best fi
The poor agreement between the predicted spinodal and
experimental fluid-fluid phase boundary has been attribu
to the anisotropic nature of protein interactions@29,34#.

The remarkable agreement between model predicti
and experiments gives us confidence that the model capt
the underlying physics of the competition between gelat
and crystallization in attractive colloidal suspensions. Ho
ever, more rigorous tests of the model are necessary for v
fying this description, particularly, since square well intera
tions are known to be oversimplified representations
protein interactions. Not only the location of the spinod
but the kinetics of crystallization in proteins is also not ca
tured via square well attractions@19,35#. More detailed de-

FIG. 8. Model predictions of the phase diagram forl51.15
compared with the experiments reported in Ref.@12#. The symbols
are described in the text.
1-11
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scriptions of the aggregation and dissociation processes
particles interacting with anisotropic attractions have be
developed and have been shown to capture the kinetic
protein crystallization better@20#. Descriptions of the rear
rangement processes for such interactions must be devel
and the present model adapted accordingly.

A limitation of the present comparison is its inability t
capture the competition between crystallization and gl
formation observed in hard-sphere suspensions: Hard-sp
suspensions crystallize abovef;0.495 and form glasse
abovef;0.58 @13#. In the present description, hard-sphe
interactions occur in the limit«/kT50. Extrapolation of the
above calculations to this limit does not result in the o
served behavior for hard-sphere suspensions for two reas
First, the equation of state for square well particles emplo
here@Eq. ~2!# is an empirical fit to simulation data and fai
to predict the hard-sphere solubility boundary in the lim
«/kT50 @23#. Second, particle dissociation kinetics in th
hard-sphere limit are governed by the potential of mean fo
@17,18#, which is neglected in the present description sinc
is small compared to inherent particle attractions, especi
in the low volume fraction limit where the competition b
tween gelation and crystallization in globular protein susp
sions is observed.

Another limitation of the above comparison is that t
data is insufficient to test the effect of the range of parti
attractions on the location of the gel-crystal boundary. Suc
test requires experiments where the range of the attractio
carefully tuned as possible in the case of colloid-polym
mixtures. However, the need to account for polymer pa
tioning in order to compare with these experiments nece
tates a significant modification to the present description
the thermodynamics of solid and fluid phases and is bey
the scope of the present paper.

VI. CONCLUSIONS

We have presented a model for predicting the occurre
of gelation and crystallization in attractive square well s
s

ys

ls

s

06150
or
n
of

ed

s
ere

-
ns.
d

t

e
it
ly
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e
a
is

r
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i-
f
d

e
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tems as a competition between particle aggregation, disso
tion, and rearrangement processes. The model is based
kinetic model of crystal nucleation that accounts for the a
erage times of aggregation and dissociation processe
mean first passage time analysis has been developed to
culate the time require for particle rearrangement. Based
the relative magnitudes of these time scales, the probab
that a particle aggregating onto a cluster surface rearran
to a crystalline location or remains trapped in an amorph
configuration is determined. Depending on which of the
events is the most probable, the occurrence of crystals
amorphous clusters, which act as precursors to gels, is
dicted.

From these calculations, we locate the crystal-gel bou
ary by identifying at each«/kT, the minimum value off,
called fg , at which the probability of forming amorphou
clusters is higher than that of forming crystalline clusters.fg

thus provides a lower bound on the volume fraction for g
lation. At any«/kT, crystals result forfs,f,fg , whereas
gels result forf.fg . The predictions are compared wit
recent experiments on globular protein suspensions.
model predictions for the range of attraction,l51.15, are in
excellent agreement with the gel-crystal line observed
perimentally. This gives us confidence that the model c
tures much of the underlying physics of the competition b
tween gelation and crystallization. Further studies
necessary to test the ability of the model to predict the eff
of the range of particle interactions on the resulting gelat
and crystallization transitions.

ACKNOWLEDGMENTS

The authors acknowledge support from the U.S. DOE
the University of Illinois at Urbana-Champaign, Frederi
Seitz Materials Research Laboratory, Grant N
DEFG0296ER45439. N.M.D. thanks Shivashankar Che
for insightful discussions.
ko-

, J.

ys.

-

on-
@1# C. J. Brinker and G. W. Scherer,Sol-Gel Science: The Physic
and Chemistry of Sol-Gel Processing~Academic, Boston,
1990!.

@2# W. C. K. Poon, P. N. Pusey, and H. N. W. Lekkerkerker, Ph
World April, 27 ~1996!.

@3# V. Trappe and D. A. Weitz, Phys. Rev. Lett.85, 449 ~2000!.
@4# M. Muschol and F. Rosenberger, J. Chem. Phys.107, 1953

~1997!.
@5# D. F. Rosenbaum and C. F. Zukoski, J. Cryst. Growth169, 752

~1996!.
@6# A. McPherson,Preparation and Analysis of Protein Crysta

~Kreiger, Melbourne, FL, 1982!.
@7# J. Aizenberg, P. V. Braun, and P. Wiltzius, Phys. Rev. Lett.84,

2997 ~2000!.
@8# S. M. Ilett, A. Orrock, W. C. K. Poon, and P. N. Pusey, Phy

Rev. E51, 1344~1995!.
.

.

@9# S. Ramakrishnan, M. Fuchs, K. S. Schweizer, and C. F. Zu
ski, J. Chem. Phys.116, 2201~2002!.

@10# S. A. Shah, Y.-L. Chen, K. S. Schweizer, and C. F. Zukoski
Chem. Phys.118, 3350~2003!.

@11# P. N. Segre, V. Prasad, A. B. Schofield, and D. A. Weitz, Ph
Rev. Lett.86, 6042~2001!.

@12# A. M. Kulkarni, N. M. Dixit, and C. F. Zukoski, Faraday Dis
cus.123, 37 ~2003!.

@13# W. B. Russel, D. A. Saville, and W. R. Schowalter,Colloidal
Dispersions~Cambridge University Press, Cambridge, 1989!.

@14# M. C. Grant and W. B. Russel, Phys. Rev. E47, 2606~1993!.
@15# M. G. Noro, N. Kern, and D. Frenkel, Europhys. Lett.48, 332

~1999!.
@16# J. Bergenholtz, M. Fuchs, and T. Voigtmann, J. Phys.: C

dens. Matter12, 6575~2000!.
@17# N. M. Dixit and C. F. Zukoski, Phys. Rev. E64, 041604
1-12



c

tt

ys

ev.

.

COMPETITION BETWEEN CRYSTALLIZATION AND . . . PHYSICAL REVIEW E67, 061501 ~2003!
~2001!.
@18# N. M. Dixit and C. F. Zukoski, Phys. Rev. E66, 051602

~2002!.
@19# N. M. Dixit and C. F. Zukoski, J. Colloid Interface Sci.228,

359 ~2000!.
@20# N. M. Dixit and C. F. Zukoski, J. Chem. Phys.117, 8540

~2002!.
@21# G. Narasimhan and E. Ruckenstein, J. Colloid Interface S

128, 549 ~1989!.
@22# Y. C. Chiew and E. D. Glandt, J. Phys. A16, 2599~1983!.
@23# S. Ramakrishnan and C. F. Zukoski, J. Chem. Phys.113, 1237

~2000!.
@24# D. M. Heyes and P. J. Aston, J. Chem. Phys.97, 5738~1992!.
@25# N. Asherie, A. Lomakin, and G. B. Benedek, Phys. Rev. Le

77, 4832~1996!.
@26# A. Lomakin, N. Asherie, and G. B. Benedek, J. Chem. Ph
06150
i.

.

.

104, 1646~1996!.
@27# D. F. Rosenbaum and C. F. Zukoski, J. Cryst. Growth169, 752

~1996!.
@28# D. F. Rosenbaum, P. C. Zamora, and C. F. Zukoski, Phys. R

Lett. 76, 150 ~1996!.
@29# A. M. Kulkarni, Ph.D. thesis, University of Illinois, 2001.
@30# C. W. Gardiner,Handbook of Stochastic Methods~Springer-

Verlag, New York, 1983!.
@31# P. Sollich, J. Phys.: Condens. Matter14, R79 ~2002!.
@32# S. Auer and D. Frenkel, Nature~London! 409, 1020~2001!.
@33# H. N. W. Lekkerkerker, W. C. K. Poon, P. N. Pusey, A

Stroobants, and P. B. Warren, Europhys. Lett.20, 559
~1992!.

@34# R. P. Sear, J. Chem. Phys.111, 4800~1999!.
@35# N. M. Dixit, A. M. Kulkarni, and C. F. Zukoski, Colloids Surf.,

A 190, 47 ~2001!.
1-13


