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Scaling behavior of diffusion and reaction processes in percolating porous media
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We investigate the diffusion-reaction behavior of two-dimensional pore networks at the critical percolation
point. Our results indicate the existence of three distinct regimes of reactivity, determined by parameter
£=D/(KI?), whereD is the molecular diffusivity of the reageri, is its chemical reaction coefficient, ahis
the length scale of the pore. First, when the diffusion transport is strongly limited by chemical refaetion
D<K), we recover the classical scaling behawiar L £*2, whered is the mass flux of reagent penetrating
the pore space and is the system size. Second, at an intermediate rangewvaflues, when the process is
influenced by the fractal morphology of the percolation cluster, we observe an anomalous diffusion scaling,
d~LY2¢8 with an exponenB~0.34. Third, in the absence of diffusional limitatioD$K), the flux of
reagent reaches a saturation lirdi, that scales with the system size &g,~L“, with an exponent
~1.89, corresponding to the fractal dimension of the sample-spanning cluster. We then show that the variation
of flux & calculated for different network sizes at the second and third regimes can be adequately described in
terms of the scaling relatiordp ~L“f(&/L?), where the crossover exponert2.69 is consistent with the
predicted scaling lawe=2pz.
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[. INTRODUCTION whereC is the concentration of reagem. is an effective
diffusion coefficient, andR represents the intrinsic kinetics
Due to its broad technological applications, heteroge-of the reaction mechanism, expressing the rate of creation or
neous catalysis has been the subject of extensive researchdnninilation per unit volume of the reacting species. Al-
many fields of chemistry, engineering, and phy$ts3]. In - though valid for most Euclidean geometries and homoge-
particular, the development of models for the description ofheous media, this classical diffusion formalism breaks down
diffusion and reaction in disordered media represents an IrTeS a macroscopic description for transport phenomena in dis-
portant Step for the deSign of real porous Catalysts. For inordered materials Wit[‘heterogeneous geome_trFor ex-
stance, the size of the catalyst pellet is frequently used as @mple, anomalies in the form of a subdiffusive regime of
design parameter for packed bed reactors when diffusionatansport through the complex structure of fractal materials
limitations to mass transport restrict the free access of rehave been observed in experiments and extensively investi-
agent species into the deepest regions of the porous sufjated through numerical simulatiorfg,5]. Few studies,
strate. This is a typical situation where diffusion appears asowever, have been dedicated to the investigation of diffu-
an undesirable mechanism since it can significantly reducgjon and reaction in fractal media, and its consequences on
the reactivity of the available catalytic surface area. Fromhe reactive properties of porous cataly@s-10.
this point of view, small pellets would be the preferred filling Extrapolating the descriptive features of the pseudohomo-
material for a fixed bed reactor, if the packings reSU'tinggeneous representation Hq), Capi”ary network models are
from their assemblage were not so “tight,” requiring a large pased on a detailed description of structure and phenomenol-
consumption of energy to pump the reacting species throughgy and so can provide a more realistic interpretation for the
the extra-particle void space. Certainly, this important tradegiffusion-reaction phenomenon in porous catalydts—14.
off between catalyst efficiency and energy consumption hag, a previous study15], this class of models has been used
to be Carefully investigated within the framework of realistic to investigate the pr0b|em of diffusion and reaction in porous
models for the diffusion-reaction system. catalysts subjected to percolation disorder. Just above the
There are two essential aspects for the comprehension efitical point, the incipient infinite percolation cluster is an
physical processes in porous catalysts: the structural anglkample of a random fractal that can be used as a conceptual
phenomenological aspects. The first is intimately associateghodel for real pore catalysts. The results from steady-state
with morphological characteristics of the interstitial pore simulations revealed the strong influence of the pore fracta-
space and the second makes reference to the transp@ify on the global effectiveness of the diffusion-reaction sys-
mechanisms and physico-chemical interactions taking placem. As a consequence of the scaling behavior observed
at the pore level. The traditional approach to this problem isyithin a specific range of diffusion-reaction conditions, it has
to assume the catalyst as a pseudohomogeneous medium akn shown that the effectiveness of the pore catalyst can be
mathematically model the diffusion-reaction phenomenonargely overestimated if the self-similar aspect of the void

under steady-state conditions as space is not properly taken into consideration.
In the present study, we investigate the scaling properties
DefV2C+R=0, (1) of the catalytic effectiveness of two-dimensional percolating
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pore networks at criticality. We show through extensive nu- s

merical simulations that the finite-size scaling analysis of the E Ji;=0, (6)
percolating system is compatible with a scalimgsatzthat =1

accounts for the dependence of the effectiveness on the sys-

tem size and diffusion-reaction conditions. This paper is or\VNere the sum runs over thignodesj =1, ... . ,6 connected

ganized as follows. In Sec. II, we present the mathematicd N°dei in the capillary network. A fixed concentratid®y
model to simulate diffusion and reaction in percolating po-&t the entrance of the inlet pores is imposed along with pe-

rous media. We show the results in Sec. Il and Sec. |\/iodic boundary conditions in the transverse direction of the
comprises discussion and summary. lattice and gradientless boundary conditions at the exit of the

outlet pores. The solution of the system of linear algebraic
equations(6) subjected to these constraints is calculated in
Il. MODEL FORMULATION terms of the node concentration field by means of a standard

We first describe the geometry of the disordered Systen§ubroutine fo_r sparse matrices. Finally, we compute the total
studied here. Our basic model of a porous catalyst has itiUX Penetrating the system as
origins on a two-dimensional square lattice, from which a s
bond percolation cluster is extracted at criticalify16]. We b= wrz(KD)l/ZE Co B Cj
assume that the inner surface of every open pore of constant =1 [tanh(I/\)  sinh(I/\)]’
lengthl and radiusr has a homogeneous distribution of ac-
tive sites, where a first-order reactioA<{-B) takes place. where the sum is over the nodes connected to the existing

Also, if the reactant and product molecules are considerablgores that constitute the inlet face of the network with con-
smaller than the capillary radius a continuum description stant concentratiof,.

for diffusion and reaction is representative of the catalytic
phenomenon at the pore level. The concentration profig

of the reactive traceA diffusing inside a typical open pore
joining adjacent nodeisand]j satisfies the mass conservation  We performed simulations with 3200, 1600, 800, 400,

)

Ill. RESULTS

equation and 200 realizations of networks of site=32, 64, 128,
256, and 512, respectively, generated at the critical point,
d?c p=p., and for a wide range of values of parameter
D&ZKC, (2 =DI/(KI?)=(N1)2. For each realization, we compute flux

® and average it over all samples. Figure 1 is a logarithmic
plot showing the dependence @rof the average mass flux

wherex is the axial coordinate in the porB,is the molecular o, different network sizes. For comparison, we also show
diffusion coefficient, ank is the intrinsic reaction rate con- ine reactive behavior of a fully occupied latticp<1) of

stant. The following boundary conditions are employed:  gj;e | =512 for the same range &f values. Three distinct
regimes of diffusion reaction can be clearly identified in the

c(0)=c; and c(l)=c;, (3 case of networks at criticality. First, a typical scaling region
and the molar flux of the tracer into a pore is given by 6 . . : : :
,[dc 51
Jij=—mrD| g |x=0/ 4
1) 4 |
From the solution of Eq$2) and(3), J;; can be expressed as sl
a linear function of the two concentrations at neighbor nodes, es
g o
C Ci
) 1/2 i _ i
Y= (KD) ki sy D oL ]
wherex=(D/K)Y2 The molecular diffusion approximation ot 1
used here can only be locally valid if the mean free path of
the diffusing reactant is sufficiently smaller than the pore -1 = 5 - . ' : 20

. . 2 4
radius. The molecular mean free path constitutes a lower log, &
cutoff for the validity of our description. If the pore surface 10
presents smaller geometrical features, it results in an equiva- FiG. 1. Log-log plot of the reagent mass fldx penetrating the
lent intrinsic reactivity determined by the Knudsen regime ofpore network versus the diffusion-reaction paraméteErom the
diffusion[9,17]. Considering the nodes to be perfect mixing bottom to the top, the solid lines correspond to critical percolation
points with no reaction or tracer accumulation, mass conseletworks with sizes =32, 64, 128, 256, and 512. For comparison,
vation gives the dashed line is the result for a fully occupied netwagok=(l).
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at low values of¢ crosses over to another power-law zone, 6 - - -
but with a smaller exponent. The second scaling region ex-
tending over an intermediate range §fvalues eventually
saturates to reach a maximum mass flux that strongly de-
pends on the system size. In the case of the first scaling
region, two equivalent situations can be representative of the
diffusion-reaction phenomenon: either the reactant diffuses 5 J

very slowly into the catalyst pore space, or it is rapidly con- © 4 1.89 .
sumed at the active surface area of the access capillaries. In g5
one case or the other, since the reagent mass flux remains=
confined to the inlet pores of the lattice, we recover the clas-
sical scaling behavior for diffusion and reaction in a single
smooth pore,

D~LgY (8) ) . . .
1 15 2 25 3
where £ is a local measure of the diffusive penetration log,, L
extent limited by chemical reaction. Factbraccounts for
the fact that an average numbermif capillaries are acces- FIG. 2. Log-log plot of the saturation fluk g, versus the system

sible for diffusion and reaction at the network entrance, al-SizeL for critical percolation networkeircles. The straight line is
though some of these tubes might not belong to the Sampléhe least-square fit to the data, with the number indicating stope
spanning cluster. To ensure the validity of our continuum™ 1.89£0.03.

approach at the pore level in terms of the molecular diffusion

description Eq(2), here we assume that the minimum value D~ LR, (10
used for\ in all simulations,\ min=(£min)¥4~0.03, is

very large compared to the mean free path of the reagerWhere:B is a scali'ng exponent. From the least-squares fit to
species. the L=512 data in the scaling region, we obtg#+ 0.34

By gradually increasing, the reagent species can pen- = 0-02. This value is consistent with the anomalous diffusion

etrate deeper into the percolation porous media before beirfgPonent, 1, ~0.348, observed for a random walk process
depleted at the surface of the pores. At very large valugs of N the two-dimensional sample-spanning clugté Such a
(ie., in the absence of diffusional limitatiopghe reagent Ccorrespondence can be explained by means of the following
species have free access to the active surface of all pores §$aling argumerit15]. If we consider tlr/“f‘t the penetration

the percolating cluster. The mass flux reaches a saturatidh this regime should scale as~(Dt)™®, wheredg is the
value @, that is strictly reactive and therefore proportional €fitical exponent for diffusion reaction, and make use of re-
to the total accessible volume of the pore network. In par-

ticular, for a first-order reaction taking place in a percolation 3 ' ' ' ' '
network at criticality, it follows that

DL, 9 2r

where «~1.89 is the fractal dimension of the sample-
spanning clustef5,16]. In Fig. 2 we show a log-log plot of
the variation of® ¢, on the system size. The best linear fit
to the data is quite consistent with the power-law behavior
Eqg. (9) and the resulting exponent=1.89+0.03 is in ex-
cellent agreement with the expected value. ’7
At intermediate values of, all curves in Fig. 1 corre- L
sponding to networks at criticalitysolid lineg display a -1t /
crossover to a second scaling zone that start§~at and 2
persists for more than four orders of magnitude. As shownin s : s s s
Fig. 3, this change is better visualized if we simply rescale -4 2 0 % 4 6 8 10
flux @ by factorpL. Apart from the collapse of the profiles 0g10‘t°
at t_he in?tigl sc.aling region, this transformatic_m also reveals.a FIG. 3. Log-log plot of the rescaled flusb/(pL) versus the
typl(}&] finite-size effect at_ the SeCO”O! scaling zong that Ijliffusion-reaction parametés for critical percolation networks and
reminiscent of the dynamical ro-ugher?lng observed in SOM@ —3» 64 128 256, 512. The straight lines are the least-square fits
surface growth modelgL8]. In this region ofé values, the  tg the data in the traditional and anomalous regions of diffusion
reagent species experiences the fractal structure of th@action, with the numbers indicating slopes 0.5 e 0.34
sample-spanning cluster. As a consequence, we can identify0.02, respectively. For comparison, the inset shows the results for
a well-defined region where the penetrating flux follows thecritical (solid line) and noncritical(dashed ling pore networks of
scaling form sizeL=>512.

log, |®/(pL)]
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FIG. 5. Data collapse obtained by rescalifigand ¢ with L
FIG. 4. Log-log plot of the crossove, versus the system size andL?, respectively.
L for critical percolation networkscircles. The straight line is the
least-square fit to the data, with the number indicating slepe Sypstituting into Eq(13) the values found foB andz, gives
=2.69+0.03. a~1.83, a value that is consistent with the calculated fractal
dimension for the sample-spanning clustes 1.89+0.03.
lations ®~L%2A and K~t~!, we obtain the time-

independent relatiorb ~L “/?¢/=. Accordingly, the critical V. CONCLUSIONS
exponentdy should be equal to the two-dimensional random _ _ _
walk exponent on the incipient clustet,~2.87. Indeed, The percolation theory certainly provides a useful model

this is consistent with the exponent obtained from our simuframework to study a large variety of systems displaying
lations, dr=1/8~2.94. The inset of Fig. 3 reinforces the both structural disorder and statistical self-similarity. In par-
fact that the behavior of the system at criticality is markedlyticular, the percolation geometry has been frequently used as
different from the diffusion-reaction response of the homo-a& conceptual paradigm for transport phenomena in poorly
geneous networkpg=1) for £>1. connected porous media. As mentioned in the Introduction,
The valueé, at which the fluxd® crosses over from the the present study has special relevance to the field of hetero-
power-law behavior Eq(10) to the saturation regime of Eq. geneous catalysis. For example, due to coke deposition, the
(9) provides another scaling signature for the diffusion-gradual loss of connectivity in the active space of porous
reaction process. Indeed, the logarithmic plot shown in Fig. #atalysts can impose severe drawbacks to the overall effi-

clearly indicates that, depends on the system size as ciency of the desired chemical reaction process. The situa-
tion can become even worse if the conversion of reagent at

the pore level is limited by diffusive mechanisms of mass
transfer. It is therefore important to elucidate the effect on
the catalyst activity of the porous geometry in a marginal
with an exponentz=2.69+0.03. At this point, we sug- state of critical connectivity(e.g., at the percolation

gXNin (11)

gest that fluxd follows the scaling relatiof19] threshold.
In summary, we addressed the problem of diffusion and
reaction processes occurring in two-dimensional pore net-
@~Lﬂf(£> , (12)  Works at criticality. Our results show that, at an intermediate
L? range of the parametef, where the competition between

diffusion and chemical reaction is relevant, the reactivity of
the catalytic media is rather sensitive to the structural details
of its pore space. Precisely, in this region, the reagent mass
flux @ penetrating the system displays scaling behador
~L2¢B with an exponenB~0.34 that can be identified as
gwe inverse of the random walk exponent for the sample-
Spanning cluster, d{,. Moreover, the finite-size scaling
analysis of our simulation data, in the anomalous scaling and
saturation regimes of diffusion reaction, reveals that it is pos-
sible to describe the behavior d&f at moderate and large
values ofé¢ in terms of scaling relation.

The implications of our results are manifold. An impor-
a=2pBz. (13)  tantone is related to the large discrepancy found between the

wheref(u) is a scaling functiof18]. As shown in Fig. 5, the
data collapse obtained by rescalifgand ¢ by L* andL?,
respectively, confirms the validity of the scaling foifR).
Furthermore, a direct relation among exponemis3 and z
can be obtained. If we approach the crossover point from th
left, we find ®(&,)~L*2£8 | while if we do it from the
right, it follows that®d (£,) ~L“. Comparing these relations,
we obtain thaL“’2§§~L“ and, from Eq.(11), it is possible

to write the following scaling law:
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diffusion-reaction behaviors of criticap& p;) and noncriti-  has a deleterious effect on the catalyst performance. How-
cal (p=1) pore networks, specially in the limited rangeéof ever, other situations can arise where this type of morphol-
values where the fractal geometry of the critical percolatingogy and a particular diffusion-reaction mechanism may com-
structure has a marked influence on its diffusive characterissine to enhance the yield of a desired chemical species. This
tics. Our results give unambiguous evidence that the detailsould be the case, for example, wrgrape selectivitgffects
of the pore space morphology can have a dramatic influencassociated with hindered diffusion mechanisms are capable
on the effectiveness of the porous catalyst. For instance, if influencing a given reaction sequence taking place at the
the self-similar aspect of the material is not duly considerectatalytic pore spac¢€20—-22. Finally, we expect that this
in the geometrical representation of the pore space, the costudy can provide useful insight into the interpretation of the
sumption of reagent can be largely overestimated by anpehavior of real catalysts.
modeling approach to the diffusion-reaction phenomenon.
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