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Model for dense granular flows down bumpy inclines

Michel Y. Louge*
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA

~Received 4 December 2002; published 13 June 2003!

We consider dense flows of spherical grains down an inclined plane on which spherical bumps have been
affixed. We propose a theory that models stresses as the superposition of a rate-dependent contribution arising
from collisional interactions and a rate-independent part related to enduring frictional contacts among the
grains. We show that dense flows consist of three regions. The first is a thin basal layer where grains progres-
sively gain fluctuation energy with increasing distance from the bottom boundary. The second is a core region
where the solid volume fraction is constant and the production and dissipation of fluctuation energy are nearly
balanced. The last is a thin collisional surface layer where the volume fraction abruptly vanishes as the free
surface is approached. We also distinguish basal flows with the smallest possible height, in which the core and
surface layers have disappeared. We derive simple closures of the governing equations for the three regions
with insight from the numerical simulations of Silbertet al. @Phys. Rev. E64, 051302~2001!# and the physical
experiments of Pouliquen@Phys. Fluids11, 542~1999!#. The theory captures the range of inclination angles at
which steady, fully developed flows are observed, the corresponding shape of the mean and fluctuation velocity
profiles, the dependence of the flow rate on inclination, flow height, interparticle friction, and normal restitution
coefficient, and the dependence of the height of basal flows on inclination.

DOI: 10.1103/PhysRevE.67.061303 PACS number~s!: 45.70.Mg, 45.70.Vn, 45.50.2j, 45.70.Ht
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I. INTRODUCTION

The flows of grains down rough inclined planes ha
served as a model for geophysical phenomena such as
slides, dunes, and avalanches, in which the base of the
is irregular on the small scale. Pouliquen and Chevoir@1#
wrote a review of past and current research on the subje

Two studies have shed recent insight on the phenome
In the first, Pouliquen@2# conducted a series of experimen
with monodisperse glass spheres in a wide chute roughe
by gluing similar beads on the base. In the second, Sil
et al. @3# ran numerical simulations, in which they record
profiles of solid volume fraction and of the mean and flu
tuation velocity of the grains for different angles of inclin
tion of a bumpy inclined surface.

From these studies, it is clear that steady, fully develo
~SFD! flows down a rough plane are generally dense. T
roughness of the base frustrates the motion of the grains,
leading to a vanishing granular velocity there. The mo
ment induced by the gravitational acceleration then she
the entire flow, leading to granular agitation through t
whole depth, except at the rough base, where granular a
tion is dissipated.

Pouliquen @2# made two principal observations. Firs
SFD flows only exist within a range of angles of inclinatio
a between the base and the horizontal,amin,a<amax.
These flows have a minimum height normal to the bash
>hstop(a), which decreases with increasinga. They stop if
h,hstop(a) or if a<amin . They acceleratead infinitum
with a.amax. Second, Pouliquen showed that the dep
average grain velocityū scales ash3/2. This result is in
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contrast with flows down a flat, frictional incline, whereū
scales ash1/2 @4#.

Silbert et al. @3# presented detailed profiles, from whic
one can distinguish three regions in the depth of the flo
Near the base, the fluctuation energy of the grains increa
to reach a maximum within a few grain diameters from t
rough bottom surface. We call this region the basal layer

Above this layer, the core of the flow is subject to a she
stress that gradually decreases toward the free surface a
weight of the granular overburden diminishes. In this co
region, granular agitation is produced from the working
the mean shear through the gradient of the mean velocity
turn, the agitation endows the grains with a rate-depend
shear stress that is driven by collisional interactions. Ho
ever, because of the high packing density of the grains,
latter do not only interact through impulsive collisions. Th
also experience enduring frictional contacts leading to a r
independent component of the stresses. Remarkably, Si
et al. @3# observed that the core region possesses a vol
fraction independent of depth.

The third region is located near the free surface. It
energized by the agitation conducted from the core and
the shearing. Its volume fraction abruptly reaches zero at
free surface. Its thickness is only a few grain diameters.
call it the surface layer.

In this paper, we present a model that captures the ob
vations of Pouliquen@2# and Silbertet al. @3#. Our principal
hypothesis follows Savage@5# and others in assuming tha
the stresses have two components. The first is rate de
dent. It is driven by collisional interactions and is given b
the dense kinetic theory of Jenkins@6# in terms of the granu-
lar agitation and the shear rate. The second is rate inde
dent and derives from long-lasting frictional contacts of t
grains. In these SFD flows, we further assume that the
responding enduring shear stress is proportional to the en
ing normal stress through a constant friction coefficientmE .
©2003 The American Physical Society03-1
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MICHEL Y. LOUGE PHYSICAL REVIEW E67, 061303 ~2003!
We begin by writing governing equations for this flo
that are consistent with the above hypothesis. We then
ploit insight from the numerical simulations of Silbertet al.
@3# to indicate how these equations can provide closed s
tions. Finally, we compare the predictions with the data
Pouliquen@2# and Silbertet al. @3#.

II. GOVERNING EQUATIONS

We consider flows of monodisperse spherical grains
material densityrs . The local state of flow is characterize
by the solid volume fractionn, and by the granular mean an
fluctuation velocities, which are made dimensionless w
the square root of the grain diameterd and the gravitationa
accelerationg. The square of the fluctuation velocity is th
‘‘granular temperature’’ T[(1/3)^ui8ui8&, where ui8[uĩ

2ui , uĩ is the instantaneous velocity,ui is its average over
time, and the indexi 5x,y,z denotes three orthogonal Cart
sian directions pointing, respectively, downward along
flow, across its width and up perpendicularly from the b
tom surface~Fig. 1!. The granular temperature is a measu
of the agitation of the grains.

In SFD flows, the mean velocity is parallel to the ba
uy5uz50 and ux[u. Simple force balances on an infin
tesimal slice of thicknessdz yield differential equations for
the shear stressSand normal stressN on surfaces parallel to
the base

dS

dz
52rsng sina, ~1!

and

dN

dz
52rsng cosa. ~2!

In a dense flow, these equations can be integrated to y
approximately,

FIG. 1. Sketch of a SFD flow down a bumpy incline showi
notation used in the text and the three regions considered in
model.
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S'rsn̄g sina~h2z! ~3!

and

N'rsn̄g cosa~h2z!, ~4!

in which the depth-averaged volume fractionn̄ was substi-
tuted for its local value. The ratio of shear to normal stre
represents the effective friction exerted by the grains on
jacent layers parallel to the base. In SFD flows, it is const
and equal to the tangent of the angle of inclination,

S

N
5tana. ~5!

Our approach is to distinguish two components of t
stresses

S5SI1SE ~6!

and

N5NI1NE , ~7!

where the subscriptI refers to impulsive interactions leadin
to rate-dependent stresses and the subscriptE denotes endur-
ing contacts associated with rate-independent stresses.
cent simulations by Campbell@7# indicate that rate-
dependent and rate-independent stresses generally co
We model the latter by postulating the existence of an in
nal friction mE such that

SE

NE
5mE . ~8!

For convenience, we define the fractionh of the total shear
stress that is rate independent,

h[
SE

S
. ~9!

Thus, a purely collisional flow like that studied by Jenki
@6# has a stress fractionh50. A static granular heap that i
not flowing hash51. In SFD flows, we then combine Eqs
~5!–~9! and express the ratio of any two stresses amongS, N,
SI , NI , SE , and NE in terms of h, tana, and mE . For
example, the effective collisional friction is

J[
SI

NI
5

~12h!tana

~12h tana/mE!
. ~10!

To model the rate-dependent stresses, we invoke the th
of Jenkins@6#, who assumed that velocity fluctuations an
normal stresses are isotropic, and who provided express
in the limit wheren is large,

SI5a1rsn
2g12~n!dAT

du

dz
, ~11!

he
3-2
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MODEL FOR DENSE GRANULAR FLOWS DOWN BUMPY . . . PHYSICAL REVIEW E 67, 061303 ~2003!
whereg12 is the sphere pair distribution function at conta
anda158(11p/12)/5Ap. For such dense flows, we ado
the correction of Torquato@8# to the pair distribution function
of Carnahan and Starling@9#,

g12~n!5
22n

2~12n!3
for 0<n<n f ~12!

and

g12~n!5
~22n f !

2~12n f !
3

~nc2n f !

~nc2n!
for n f,n,nc , ~13!

where n f50.49 andnc50.64 is the random close packin
fraction. In this dense limit, the normal collisional stress

NI54rsn
2g12~n!T. ~14!

From Eqs.~11! and ~14!, it is clear that the rate-depende
stresses are governed by the magnitude of the fluctua
energy. To determine the latter, we write a SFD fluctuat
energy balance in an infinitesimal slice of thicknessdz,

2
dq

dz
1~SI1SE!

du

dz
2g50. ~15!

The balance involves a flux of fluctuation energy provid
by Jenkins@6# in the dense limit

q52a2rsn
2g12~n!dAT

dT

dz
, ~16!

with a254(119p/32)/Ap, and a volumetric rate of energ
dissipation

g5a3rsn
2g12~n!T3/2/d, ~17!

where

a3524~12ee f f!/Ap , ~18!

and ee f f is an effective coefficient of restitution combinin
the collisional energy dissipation associated with inela
and frictional impacts@10#. To derive Eqs.~11!, ~14!, ~16!,
and~17!, Jenkins@6# assumed that the collisional fluctuatio
energy dissipation is small or, equivalently, thatee f f is nearly
unity.

In Eq. ~15!, we follow Louge and Keast@4# in allowing
both the enduring and impulsive stresses to produce fluc
tion energy by their working through gradients of the me
velocity. For flows down a flat, frictional surface, Louge a
Keast @4# showed that ignoring the production associa
with enduring stresses would lead to restrictions prohibit
the existence of SFD flows for most situations of practi
interest.

Jenkins@6# noted that Eq.~15! is a linear ordinary differ-
ential equation in the dependent fluctuation velocity varia
w[AT. He also wrote Eq.~15! in terms of the dimensionles
distances[(h2z)/d from the free surface~Fig. 1!. Thus,
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combining Eq.~3! through Eq.~18!, we obtain three equa
tions governing SFD flows down an inclined plane

d

dsH S 12
h tana

mE
D s

dw*

ds J 2H a3

2a2
S 12

h tana

mE
D

2
8tan2a

a1a2
S 12h

12h tana/mE
D J sw* 50, ~19!

du*

ds
52

4

a1
w* tanaH 12h

12h tana/mE
J , ~20!

and

n2g12~n!5
n̄ cosa

4w* 2 S 12
h tana

mE
D s. ~21!

In these equations the asterisks denote velocities made
mensionless withAgd. Unfortunately, these three equation
are not sufficient to determine the four dependent variab
u* , w* , n, andh. In order to close this problem, we wil
exploit insight provided by the numerical simulations of S
bertet al. @3# in the three regions of the flow. We begin wit
the core.

III. THE CORE REGION

In the core, Silbertet al. @3# observed that the solid vol
ume fraction is remarkably constant. Because the core sp
most of the flow depth, we write that its solid volume fra
tion is roughly equal to the average throughout the flow

ncore'n̄. ~22!

We then determineh using the energy equation, in which w
neglect the flux gradient term. Later, once the mean and fl
tuation velocities are known through the depth, we will ju
tify this assumption by evaluating the relative magnitude
this term. With this simplification, Eq.~19! reduces to a qua
dratic equation inh,

~12h!tan2a

~12h tana/mE!2
5

a1a3

16
. ~23!

To possess real solutions, this equation requires

tana>tanamin5
mE

114mE
2/~a1a3!

. ~24!

The inequality determines the minimum inclination at whi
SFD flows exist. If it is satisfied, Eq.~23! has two solutions.
The larger is typically near unity and gradually increas
with angle of inclination. We dismiss it because it is unphy
cal for the flow to become less collisional with increasi
inclination. Then, in the core, we find
3-3
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h5hcore5mEH 1

tana
2

8mE

a1a3
J

2
4mE

Aa1a3

A12
mE

tana
1

4mE
2

a1a3
. ~25!

In turn, because 0<h,1, this expression yields anothe
necessary condition for SFD flows,

tana<tanamax5Aa1a3/4. ~26!

We then calculate the fluctuation velocity profile from Eq
~21! and ~25!,

w* ~z!52A Jcoresina

a1a3ncoreg12~ncore!
Ah2z

d
, ~27!

whereJcore is given by Eq.~10! in terms ofhcore, a, and
mE . We integrate Eq.~20! to find the corresponding velocit
profile

u* ~z!5ub* 1
16

3a1
Jcore

3/2 A sina

a1a3ncoreg12~ncore!

3S h

dD 3/2H S h2b

h D 3/2

2S h2z

h D 3/2J . ~28!

We will calculate later the thicknessb of the basal layer and
the mean velocityub where it meets the core. Silbertet al.
@3# already recognized the general form of the velocity p
file in Eq. ~28!. They derived an expression similar to th
equation assuming that the shear stress is proportional to
square of the mean strain rate through a constant to be
termined. One contribution of our model is to establish
form of that constant. Another is, like Savage@5#, to provide
angular limits between which SFD flows can exist.

It remains to determine the volume fraction. Sadly, we
not know how to do so in the core. Fortunately, the solutio
in Eqs. ~27! and ~28! are relatively insensitive to its exac
value. Nonetheless, to close the problem, we note that
simulations of Silbertet al. @3# suggest the following relation
~Fig. 2!:

ncore;0.54510.066hcore . ~29!

The simulations imply that, when the volume fraction is ne
random loose packing, the value ofhcore tends to zero, and
the flow becomes fully collisional, thus losing its SFD cha
acter through gradual acceleration. Conversely, a linear
trapolation indicates that the flow will lock up when the vo
ume fraction approaches 61% or so. Further insight fr
numerical simulations is needed to establish whether the
relation in Eq.~29! has any merit beyond the conditions e
amined by Silbertet al. @3#.

Because the core solution predicts a vanishing gran
agitation at the free surface@Eq. ~27!#, it contradicts evidence
from the numerical simulations@3#. Thus, the flow near the
surface has a different character, which we examine nex
06130
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IV. THE SURFACE LAYER

The core solution, if extended all the way upward, wou
in principle, satisfy the free surface boundary conditions
the flux (q50) and all stresses (SE5SI5NE5NI50).
However, there are several reasons why it is inaccurate
the free surface. First, because the flux gradient from E
~16! and ~27! diverges asz→h, it cannot be balanced by
collisional dissipation in Eq.~15!. Second, the volume frac
tion is known to decline from its constant value in the core
the free surface is approached@3#. Third, the core solution
stipulates that enduring and collisional stresses remain
portional @Eq. ~25!#. However, the form of the granular ag
tation in Eq.~27! and of the energy flux in Eq.~16! imply
that there is a net influx of fluctuation energy from the co
to the surface layer. Because the surface layer is she
through its depth, and because it is the scene of a dimin
ing solid volume fraction, it is likely to involve mainly col-
lisional interactions. Finally, the simulations indicate that t
fluctuation energy does not vanish at the free surface,
instead exhibits an inflexion toward higher values@3#. Thus,
it is reasonable to assume that the surface layer has dis
physics from the core region. For these reasons, we ass
h50 in the surface layer. Numerical simulations should d
termine whether this assumption has any merit.

With h50, the energy equation becomes

d

dsS s
dw*

ds D2k2sw* 50, ~30!

in which we define

k2[
a3

2a2
2

8 tan2 a

a1a2
. ~31!

Condition ~26! guarantees thatk2.0. In general, solutions
to Eq. ~30! are modified zeroth-order Bessel functions of t
first and second kind, respectively,I 0(ks) and K0(ks). Be-
cause the energy flux vanishes at the free surface, only
Bessel function of the first kind has physical significance.

FIG. 2. Stress fraction versus solid volume fraction in the co
The symbols are volume fraction data from modelL3 of Silbert
et al. @3#, in which we evaluatehcore using Eq.~25!. The lines
show a suggested fit through the data. The vertical dashed
indicates Pouliquen’s estimate of the mean volume fraction in
experiments and the associated error bar.
3-4
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MODEL FOR DENSE GRANULAR FLOWS DOWN BUMPY . . . PHYSICAL REVIEW E 67, 061303 ~2003!
solve Eq.~30! by matching the magnitude and slope ofw* at
the interface between the core and the surface layer. T
two boundary conditions yield the magnitude of the fluctu
tion velocity profile

w* ~s!5
2

I 0~l0!
A Jcorel0 sina

ncoreg12~ncore!a1a3k
I 0~ks!, ~32!

and the depth of the surface layer

,5l0d/k. ~33!

In these equations,l0.1.07 is a solution to

I 0~l0!52l0I 1~l0!, ~34!

where I 1 is the first-order modified Bessel function of th
first kind.

We then determine the mean velocity profile by match
its value at the interface between the core and the sur
layer, and by integrating Eq.~20! numerically with h50.
Finally, we evaluate the profile of solid volume fraction b
substituting the fluctuation velocity~32! in the equation of
state~21! with h50 and by solving the resulting equation
n. Figures 3 and 4 show typical profiles through the dep
including the basal layer discussed in the following secti

Because in this simple approach there is a discontinuit
h at the interface between the core and the surface la
neither the slope of the mean velocity profile nor the volu
fraction are continuous there~Fig. 4!. This defect is small
and without much consequence when evaluating integ
leading to the depth-averaged velocity or the overall m
flow rate. One may artificially eliminate the discontinuity b
substitutinghcore for h50 in Eq.~21! before calculating the
volume fraction profile.

Note that, because in this model the volume fraction v
ishes abruptly at the free surface~Fig. 4!, it is legitimate to
assume a form for the governing equations that is approp
for dense flows, rather than invoking more complicated
pressions that would span the entire range of solid volu
fractions.

FIG. 3. Typical profiles of dimensionless mean and fluctuat
velocities for Pouliquen’s ‘‘system 1’’ at the inclination shown. Th
horizontal dashed lines mark the interfaces between the sur
layer, the core, and the basal layer.
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Finally, we can now evaluate the error involved in n
glecting the flux gradient term in our determination ofh in
the core. Using the profiles of mean and fluctuation velo
ties in Eqs.~27! and ~28!, we calculate the relative magn
tude of the flux term and one of the other two balanced te
in Eq. ~15!,

udq/dzu
uS du/dzu

5
a2

2a3
S d

h2zD
2

. ~35!

Because the gradient of fluctuation velocity becomes stee
as the free surface is approached, the relative magnitud
the flux term is greatest at the interface between the core
the surface layer. Thus, the relative error is strictly less th
(a2/2a3)(d/,)2. Because the thickness of the surface lay
decreases with angle of inclination, the worst error occ
when the angle is small, and it drops with increasing inc
nation. For example, at the smallest angle of 22° at wh
Pouliquen@2# observed a deep flow in ‘‘system 1,’’ the rela
tive magnitude of the flux term was less than 13%. At t
interface with the basal layer, the error at 22° was down
6% for h/d57 and 0.1% forh/d524. At 28°, the largest
error was only 7%. Thus, it is legitimate to neglect the fl
gradient term in Eq.~19! to calculateh in the core@Eq. ~23!#.

V. BASAL FLOW AND MINIMUM HEIGHT

The simulations of Silbertet al. @3# clearly reveal the
presence of a region above the base consisting of a few
ers of grains whose agitation gradually rises from zero at
bumpy boundary to a peak value at the interface with
core. We call this region the ‘‘basal layer.’’ Before derivin
its governing equations in the following section, it is instru
tive to consider first its behavior in the limit where the flo
height is minimum.

If the height of a deep flow is progressively decreased
Pouliquen@2# did, then the entire flow eventually reduces
a passive basal layer that possesses no core or surface
overhead. We call this diminutive flow a ‘‘basal flow.’’ It

n

ce

FIG. 4. Profile of solid volume fraction for the conditions of Fig
3. The dashed curves denote the volume fractions calculated
Eq. ~21! with the value ofh predicted by the model. The solid line
represent curves in which discontinuities have been removed
artificially adoptingh5hcore in Eq. ~21! for the surface and basa
layers.
3-5
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MICHEL Y. LOUGE PHYSICAL REVIEW E67, 061303 ~2003!
height is what Pouliquen@2# calledhstop(a).
In basal flows, grains tumble and roll over one another.

Louge and Keast@4# pointed out for thin shear layers near
flat, frictional surface, grains acquire angular moment
from frictional interactions with adjacent granular laye
above and below. Thus, the shear stress that a horizo
layer exerts over grains above and below produces ang
momentum at a rateP proportional to the total shear stre
and inversely proportional to the moment of inertiaI and the
grain number densityn,

P}S/nI}S/rsnd2. ~36!

Conversely, grains lose angular momentum in collisions w
other grains in the same horizontal layer. Because the im
protagonists roll at roughly the same angular velocity, th
collisions produce impulses resulting in the frustration
both of their rotation rates. As Louge and Keast@4# showed,
the corresponding rate of loss of angular momentumD is
proportional to the collision frequency;ng12(n)AT/d and
to the impulsive reduction in granular spin;AT/d. Then,

D}ng12~n!T/d2. ~37!

At steady state,P5D or, using Eqs.~14! and~5! through Eq.
~9!,

S

NI
5

tana

12h tana/mE
5C, ~38!

whereC is a constant that we will determine later. At th
stage, we will merely assume thatC is constant through the
depth. Extractingh from this relation, the energy equatio
becomes

d

dsS s
dw*

ds D2Ksw* 50, ~39!

where

K5
a3

2a2
2

8C

a1a2
H CS 12

mE

tana D1mEJ . ~40!

The form of this differential equation implies that its s
lutions are Bessel functions. However, because the fluc
tion energy flux and, consequently, the slope ofw* must
vanish at the free surface, the second kind of Bessel or m
fied Bessel functions is excluded. Further, because there
relative velocity between the base and the flowing grains,
flux of fluctuation energy at the bottom boundary is negat
and reduces to

q52D, ~41!

whereD is a rate of fluctuation energy dissipation per u
surface of the base. Consequently, because the boundar
only dissipate fluctuation energy withq}2dw/dz
}dw* /ds,0, the solutions are zeroth-order Bessel fun
tions of the first kindJ0, with K,0. Defining m2[2K,
these solutions have the form
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w* 5w0* J0~ms!. ~42!

Using Eq. ~40!, the conditionK,0 implies that there is a
minimum angle of inclination for basal flows,

tana.
mE

12a1a3 /@16C2#1mE /C
, ~43!

where the strict inequality indicates that the flow stops a
gether asa tends to its lower limit.

The simulations of Silbertet al. @3# and the experiments
of Pouliquen@2# clearly reveal that basal flows and the
deeper counterparts share the same minimum angle of i
nation. This is evident by inspecting diagrams showing
heights at which these authors observe SFD flows ve
angle of inclination. In these diagrams, the border betw
the presence and absence of flow is a vertical asymptote
single minimum angle of inclination. A border having an
other shape, such as an oblique asymptote, would have
trayed limiting angles depending on flow depth. Therefo
the minimum angles in Eqs.~24! and~43! are matched. This
observation fixes the magnitude ofC. From Eq.~38!, we then
extract the stress fraction in basal flows,

h5hb5
mE

tana
2

8mE
2

a1a3
, ~44!

and, from Eq.~40!, the value ofK[2m2,

m25
a3

2a2
H 12

a1a3

4mE
S 1

tana
2

1

mE
D J . ~45!

The bottom boundary condition determines the heighthstop
of basal flows. The simulations of Silbertet al. @3# suggest
that the fluctuation velocity vanishes at the base,w50 at z
50. From Eq.~42!, this condition implies

hstop~a!5 j 01d/m, ~46!

where j 01 is the first root satisfyingJ0( j 01)50.
Finally, the condition 0<hb,1 must be satisfied for

basal flows to exist. We find that any anglea.amin guaran-
teeshb,1. However, to satisfy 0<hb , Eq. ~44! requires

tana<tanamax8 5
a1a3

8mE
. ~47!

Curiously, the model thus predicts that the maximum an
for basal flows is larger than the maximum angle for dee
flows, amax8 .amax. Simulations of Silbertet al. @3# will
later confirm this peculiar observation.

VI. THE BASAL LAYER

If the height of a basal flow is progressively increas
from hstop, then the grain assembly develops a core an
surface layer. Our assumption is that the grains near the
will continue to experience the same stress fraction as
basal flow@Eq. ~44!#, and thus to be governed by Eq.~39!
3-6
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with K52m2 from Eq. ~45!. The solution of the energy
equation is then

w* 5w1* J0~ms!1w2* Y0~ms!, ~48!

whereY0 is the zeroth-order Bessel function of the seco
kind. We calculatew1* and w2* by matching the fluctuation
velocity at the interface between the core and the basal la
and by making it maximum there,dw* /ds50. The thick-
nessb of the basal layer is then set by the bottom bound
condition, which we write, once again,w* 50 at z50. We
find

w1* 52A Jcoresina

a1a3ncoreg12~ncore!
Ah2b

d

3
Y0~mh/d!

Y0S mh

d D J0S m
h2b

d D2J0S mh

d DY0S m
h2b

d D ,

~49!

w2* 52w1*
J0~mh/d!

Y0~mh/d!
, ~50!

and an equation that can be solved forb,

J0S mh

d DY1S m
h2b

d D5Y0S mh

d D J1S m
h2b

d D , ~51!

whereJ1 and Y1 are the first-order Bessel functions of th
first and second kinds, respectively.

We then evaluate the profile of mean velocity by integr
ing Eq. ~20! numerically withh5hb subject tou50 at z
50, and find the value ofub* 5u* (z5b) required in Eq.
~28!. We note that, becausew increases from zero at the bas
the concavity of the mean velocity profile is opposite to
counterpart in the core~Fig. 3!.

Finally, we derive the profile of solid volume fractio
from that of the fluctuation velocity using Eq.~21! with h
5hb . As with the core-surface layer interface, there are
nor discontinuities atz5b for the solid volume fraction and
the velocity gradients, which are the result of the jump ofh
from hb to hcore ~Fig. 4!. Once again, these discontinuitie
are of little consequence for evaluating the overall mass fl
rate.

VII. PREDICTIONS

In this section, we compare the predictions of our mo
with experimental data from Pouliquen@2# and with numeri-
cal results from Silbertet al. @3#. We begin with the experi-
mental data.

Pouliquen@2# did not measure the frictional or collisiona
properties of his glass spheres. Instead, he reported the r
of inclination angles at which he observed SFD flows. Fr
his minimum and maximum angles, we infer the coefficie
of internal friction and normal restitution using Eqs.~24! and
~26!,
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mE52
tanamax

tanamin
@ tanamax2Atan2 amax2tan2 amin#

~52!

and

ee f f512
2Ap

3a1
tan2 amax. ~53!

The results are summarized in Table I, in which we usea1

58(11p/12)/5Ap. The relatively high effective restitution
justifies our use of Jenkins’ expressions@6# for nearly elastic
spheres. The internal friction has a magnitude that is typ
of granular materials, see, for example, Savage@11#.

As Fig. 5 illustrates, our expression forhstop(a) in Eq.
~46! captures Pouliquen’s measurements for basal flows
system 1. Figure 5 also reveals that, because the heigh
nearly all of his deeper SFD flows exceed,1b, these flows
possess a basal layer, a core, and a surface layer.

The theory also confirms the scaling of the dep
averaged velocity that Pouliquen@2# and Silbertet al. @3#
observed for relatively deep flows. Because the mass fl
rates of such flows are dominated by the core region,
principal benchmark for gauging the model’s accuracy is

TABLE I. Parameters of Pouliquen’s@2# experiments.

System d ~mm! db ~mm! amin ~deg! amax ~deg! ee f f mE

1 0.5 0.5 20.7 32.8 0.57 0.42
2 1.3 1.3 21.7 26.4 0.74 0.50
3 1.15 1.3 22.9 30.4 0.64 0.5
4 0.5 1.3 20.9 29.1 0.68 0.44

FIG. 5. Dimensionless height of SFD flows versus angle of
clination for Pouliquen’s system 1. The circles represent experim
tal values ofhstop/d. The thick solid line is the prediction of Eq
~46!. The small squares show the heights of all relatively deep S
flows observed. The vertical dashed lines show the limiting ang
of the core regionamin and amax from inequalities~24! and ~26!.
The dashed curve indicates the sum of the heights of the basa
surface layers,(a)1b(a). Because our steady, fully develope
model assumes the existence of three distinct regions, it ceases
valid when either the surface layer or the basal layer engulfs
entire flow depth, i.e., whenh,,(a)1b(a).
3-7
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plot the ratioū/Agd/(h/d)3/2 versus angle of inclination. As
Fig. 6 shows, a model that adopts the constants of Jenk
theory @6# agrees well with experimental observations. B
cause these three constantsa158(11p/12)/5Ap, a254(1
19p/32)/Ap, anda3524(12ee f f)/Ap were derived with-
out considering long-lasting contacts, it is remarkable h
well they fare in flows where both rate-dependent and ra
independent stresses coexist. Nearly perfect agreement i
tained using a slightly different value fora151.5. In Fig. 6,
the proximity of the right-most data point to the theoretic
dashed curve also hints that a model with the theoreticaa1
works better when the angle of inclination is larger, as
pected from a flow with the greatest collisional contributio

Figure 7 shows the corresponding dependence of
depth-averaged velocity on height and angle of inclinati
Note that Pouliquen’s system 1 is the only dataset comp
enough to permit these comparisons.

Figure 8 shows Pouliquen’s measurements ofhstop(a) for
systems 2, 3, and 4. The model captures data in system

FIG. 6. Ratioū/Agd/(h/d)3/2 versus angle of inclination. The
symbols are measurements with Pouliquen’s system 1. The da
and solid lines are predictions of the model witha158(1
1p/12)/5Ap and a151.5, respectively. Note that, asa→amin ,
the core and basal layer disappear, and the remaining basal
stops.

FIG. 7. Dimensionless depth-averaged velocity versus dim
sionless flow height for Pouliquen’s system 1. The squares, circ
triangles, and crosses represents inclinations of 22°, 24°, 26°,
28°, respectively. The lines are predictions of the model witha1

51.5.
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and 4 reasonably well. However, it clearly overpredictshstop
for system 2. Pouliquen also encountered unexplained d
culties with this system, notably in scaling the dept
averaged velocity. It is possible that for shallow basal flow
the bottom boundary condition may not always bew50 at
z50. If the flow was more agitated at the base, then Eq.~41!
could be more appropriate. For fully collisional flows, Je
kins and Richman@12# calculated

D52A2

p
~12ew!

12cosu

sin2 u
NIAT, ~54!

where sinu[(d2db1D)/(d1db) is a measure of the bumpi
ness of the boundary with spherical bumps of diameterdb ,
D is the mean separation between the centers of two adja
bumps, andew is the coefficient of normal restitution in th
impact of a flow sphere with a bump. Pouliquen’s values od
and db are found in Table I. We assume thatD5db . If we
adopted Eqs.~41! and~54! instead ofw50 atz50, then the
bottom boundary condition would become

dw*

ds
52

4

a2
A2

p
~12ew!

12cosu

sin2 u
w* , ~55!

and the new flow depthhstop8 would satisfy

4

a2
A2

p
~12ew!

12cosu

sin2 u
J0S m

hstop8

d D 5mJ1S m
hstop8

d D .

~56!

Because the solutions of Eq.~39! monotonically decrease
with s, hstop8 is strictly smaller thanhstop in Eq. ~46!. It so
happens that the height of system 2 is more closely predi
by hstop8 ~thin line, Fig. 8! than it is byhstop. Although basal

ed

ow

n-
s,
nd

FIG. 8. Dimensionless height of SFD flows versus angle of
clination for Pouliquen’s systems 2, 3, and 4. The symbols are
perimental values ofhstop. The thick and thin solid lines represen
hstop(a) from Eq. ~46! andhstop8 (a) from Eq. ~56!, respectively.
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flows are too shallow to have much importance in practi
applications, it would be useful to investigate their botto
boundary condition further.

An important prediction of our model is that ‘‘basa
flows’’ and the ‘‘core’’ region of deep flows do not share th
same physics. The former is composed of grains tumblin
a minimum heighthstop, below which no flow can exist. The
latter is a region, generally deep, where the volume frac
is constant and the production and dissipation of fluctua
energy are nearly balanced. Therefore, in this view, it i
coincidence that the mean velocity ofdeep flows, which is
dominated by the core region, should be roughly invers
proportional to the depthhstop of basal flows. Pouliquen pro-
posed such empirical relation after analyzing his experim

tal data,ū/Agh.b(h/hstop). Although we regard this rela
tion and its ‘‘constant’’b as coincidental, our model doe
indicate that it is approximately valid. In fact, we predict th
b, despite its relatively weak variations witha, h, mE , and
ee f f , is nearly constant except as it approaches the lim
a→amin or h→hstop. For example, for deep flows o
Pouliquen’s system 1, we findb50.1860.03 for
aP$21°,22°, . . . ,32°%, whereas Pouliquen report
b.0.136. In the limit of ‘‘basal flows’’ whereh[hstop,
our model predicts b50.06360.009 for a
P$21°,22°, . . . ,32°%.

We now turn to the numerical simulations of Silbertet al.
@3#. These authors considered two kinds of three-dimensio
systems that differed in their granular contact laws. The fi
labeled ‘‘L3,’’ models contacts using a linear spring-dashp
system tuned to yield a constant coefficient of normal re
tution e50.88. The second, labeled ‘‘H3,’’ assumes a Hert-
zian contact law with viscoelastic damping that produce
velocity-dependent normal restitution.

Both models assume Coulomb interparticle friction with
coefficientm50.5 independent of relative contact velocit
We do not know how to evaluate the corresponding inter
friction coefficientmE , in general. However, as the follow
ing two-dimensional calculation suggests, we expec
simple relation betweenmE andm whenm is small. Consider
two contacting disks having a line of centers making
anglej with they direction. A forceFy,0 directed along the
negativey direction is exerted on the center of mass of t
top disk. If m is small enough for the contact to rema
frictional, then the bottom disk opposes a force with proje
tion Fx5mFy cos2 j2Fy sinj cosj along thex direction. The
resulting contribution to internal friction ism85Fx /Fy . If
all anglesj have equal probability in the range2p/2<j
<1p/2, then the mean value ofm8 is m/2. Thus, for small
m, we expectmE}m with mE,m. In the other limit where
m→`, we expect that the angle of internal friction shou
reach an asymptote that is independent ofm.

To evaluate the effective coefficient of restitution from t
parameters of the simulations, we invoke the collisio
theory of Jenkins and Zhang@10#, who provide an expressio
for ee f f5ee f f(e,m). With e50.88 andm50.50, they predict
ee f f50.58. In general,ee f f,e.

Figure 9 shows the heights of SFD flows that Silbertet al.
@3# observed with modelL3. From their limiting angles
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amin519.5° andamax528.7°, we infermE50.40 andee f f
50.83, which, as expected, are, respectively, smaller tham
and e. In addition, we find that the model agrees well wi
the data forhstop(a). Finally, the simulations also confirm
that steady basal flows can exist with angles of inclinat
exceedingamax @Eq. ~47!#, dark circles in Fig. 9.

Figure 10 examines the scaling of the depth-averaged
locity with height and angle of inclination. Unlike the phys
cal experiments of Pouliquen@2#, we find that the simulation
data depart significantly from the predictions of a model t
assumes the constanta158(11p/12)/5Ap derived from the
collisional theory. Instead, we find thata152.1 captures the
data better. However, we note that the magnitudes of
depth-averaged velocities recorded in the simulations of
bertet al. @3# can vary by as much as a factor of 1.8 depen
ing on the form of the contact model employed~modelsL3
and H3). We also suspect that Silbertet al. @3# may have
mislabeled some results asL3 rather thanH3 in instances
mentioned in Figs. 10 and 11.

The principal benefit of the simulations resides with th
insight on granular behavior through the flow depth. We fi

FIG. 9. Dimensionless height of SFD flows versus angle of
clination for the simulations of Silbertet al. @3# with modelL3. For
symbols, lines and comments, see Fig. 5. The solid circles repre
basal flows at an angle of inclination that exceedsamax.

FIG. 10. Ratioū/Agd/(h/d)3/2 versus angle of inclination. The
triangles and circles represent the simulations of Silbertet al. @3#
for modelsH3 andL3, respectively. We believe that the squar
correspond to modelH3, although Silbertet al. @3# labeled them as
L3. The dashed, dotted, and solid lines are predictions of the m
with a158(11p/12)/5Ap, a151.5, anda152.1, respectively.
3-9
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that our model closely captures the profiles of mean
fluctuation velocity reported by Silbertet al. @3#. Figure 11
shows mean velocity profiles for several flow heights. Unf
tunately, because Silbertet al. @3# only reported relative pro-
files of fluctuation velocity, we could not evaluate the deg
of anisotropy of their velocity fluctuations or compare the
with absolute predictions of our model. Nonetheless, as
12 illustrates, the model reproduces relative profiles of fl
tuation velocity well.

Finally, Silbertet al. @3# examined the dependence of th
mean flow rate on interparticle frictionm and normal resti-
tution e at a522°. To compare our predictions with the
results despite the absence of data formE andee f f , we adopt
the theory of Jenkins and Zhang@10# for the effective resti-
tution, and we assume that the ratiomE /m remains constan
and equal to the value 0.40/0.50 that we determined ear
As Fig. 13 shows, this approach captures well the dep
dence of the mean flow rate on friction whenm is small. At
higher values, the mean flow rate becomes independentm
as mE reaches a constant asymptotic value. Further,

FIG. 11. Profiles of mean velocity versus depth at an inclinat
of 24° and for the relative heights shown. The lines are predicti
of the model witha152.1. The squares, diamonds, and circles
for model L3 of Silbert et al. @3#. We suspect that the triangle
belong instead to modelH3, which would explain the unexpecte
discrepancy between model and data ath/d539.

FIG. 12. Relative profiles of fluctuation velocity versus depth
an inclination of 23°. The abscissa isw relative to its valuew30 at
z/d530. The lines are predictions of the model witha152.1. The
squares, diamonds, and circles are the data of Silbertet al. @3# for
modelL3 in thex, y, andz directions, respectively.
06130
d

-

e
e
g.
-

r.
n-

e

model clearly agrees with Silbertet al. @3# that the flow rate
is much more sensitive to interparticle friction than it is
normal restitution~Fig. 13!. Because purely collisional theo
ries (h50 ; n) predict instead thatū/Agd/(h/d)3/2 de-
pends strongly one and weakly onm, their relevance to
dense SFD flows down a bumpy incline is questionable.

VIII. CONCLUSIONS

We have outlined a model for granular flows down bum
inclines in which the stresses have a collisional, ra
dependent part coexisting with a rate-independent, frictio
contribution @5#. For deep flows, the model distinguishe
three regions: a basal layer where grains gradually acq
fluctuation kinetic energy away from the base; a core wh
the solid volume fraction is constant; and a collisional s
face layer, where the volume fraction decreases rapidly n
the free surface. The model also describes the behavio
basal flows, which possess the smallest sustainable heig

With insight from the numerical simulations of Silbe
et al. @3#, we have proposed simple closures for the gove
ing equations of SFD flows in the three regions. The res
ing solutions provided expressions for the limiting angles
which such flows exist, and for the profiles of mean a
fluctuation velocities though the depth. They also predic
the scaling of the mean flow rate with angle of inclinatio
and flow height.

Although our results compared favorably with the phy
cal experiments of Pouliquen@2# and the numerical simula
tions of Silbertet al. @3#, several issues warrant further re
search. Foremost, it remains to explain why the solid volu
fraction remains constant in the core, and to predict its va
without resorting to an empirical closure. It is possible, f
example, that the constant volume fraction may be associ
with a phase transition between two states in which co
sional and enduring stresses, respectively, dominate.

In this context, related work should focus on derivin
constitutive relations for rate-dependent stresses and c
sional boundary conditions that account explicitly for t
presence of enduring contacts. In addition, the angle of
ternal friction should be calculated in terms of friction

n
s

e

t

FIG. 13. Ratioū/Agd/(h/d)3/2 versus interparticle friction and
normal restitution for an inclination of 22° andh/d540. The sym-
bols represent the simulations of Silbertet al. @3# for modelsL3.
The lines are predictions of the model witha152.1, mE /m
50.80, andee f f5ee f f(m,e) from Jenkins and Zhang@10#.
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properties of the contacts, or related to other physical par
eters, such as the angle of repose, so that limiting angles
SFD flows can be predicted from independent meas
ments.

Another opportunity for research is to reexamine the c
sure in the basal layer of deep flows, or in basal flows o
minimum height. If, as we suggest, the angular moment
of the grains plays an important role there, then it may
fruitful to extend the micropolar fluid theory of Hayakaw
@13# and Mitaraiet al. @14# from purely collisional flows to
granular flows experiencing enduring contacts as well.

Finally, the numerical simulations should be interroga
further to examine whether the model correctly predicts
.
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absolute level of fluctuation velocity, and to inform the d
velopment of a better model.
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