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Model for dense granular flows down bumpy inclines
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We consider dense flows of spherical grains down an inclined plane on which spherical bumps have been
affixed. We propose a theory that models stresses as the superposition of a rate-dependent contribution arising
from collisional interactions and a rate-independent part related to enduring frictional contacts among the
grains. We show that dense flows consist of three regions. The first is a thin basal layer where grains progres-
sively gain fluctuation energy with increasing distance from the bottom boundary. The second is a core region
where the solid volume fraction is constant and the production and dissipation of fluctuation energy are nearly
balanced. The last is a thin collisional surface layer where the volume fraction abruptly vanishes as the free
surface is approached. We also distinguish basal flows with the smallest possible height, in which the core and
surface layers have disappeared. We derive simple closures of the governing equations for the three regions
with insight from the numerical simulations of Silbeitt al.[Phys. Rev. B64, 051302(2001)] and the physical
experiments of PouliquefPhys. Fluidsll, 542(1999]. The theory captures the range of inclination angles at
which steady, fully developed flows are observed, the corresponding shape of the mean and fluctuation velocity
profiles, the dependence of the flow rate on inclination, flow height, interparticle friction, and normal restitution
coefficient, and the dependence of the height of basal flows on inclination.
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. INTRODUCTION contrast with flows down a flat, frictional incline, wheve

scales ah*? [4].

The flows of grains down rough inclined planes have Silbert et al. [3] presented detailed profiles, from which
served as a model for geophysical phenomena such as rogkie can distinguish three regions in the depth of the flow.
slides, dunes, and avalanches, in which the base of the floWear the base, the fluctuation energy of the grains increases
is irregular on the small scale. Pouliquen and Cheyd]r to reach a maximum within a few grain diameters from the
wrote a review of past and current research on the subjectrough bottom surface. We call this region the basal layer.

Two studies have shed recent insight on the phenomenon. Above this layer, the core of the flow is subject to a shear
In the first, Pouliqueni2] conducted a series of experiments stress that gradually decreases toward the free surface as the
with monodisperse glass spheres in a wide chute roughend&¥eight of the granular overburden diminishes. In this core
by gluing similar beads on the base. In the second, Silbefi€gion, granular agitation is produced from the working of
et al. [3] ran numerical simulations, in which they recorded th€ mean shear through the gradient of the mean velocity. In
profiles of solid volume fraction and of the mean and fluc-U", the agitation endows the grains with a rate-dependent
tuation velocity of the grains for different angles of inclina- Sh€ar stress that is driven by collisional interactions. How-
tion of a bumpy inclined surface. ever, because of the high packing density of the grains, the

From these studies, it is clear that steady, fully developeéatter do not only interact through impulsive collisions. They

(SFD) flows down a rough plane are generally dense Thealso experience enduring frictional contacts leading to a rate-

roughness of the base frustrates the motion of the grains, th ladependent component of the stresses. Remarkably, Silbert

‘R al. [3] observed that the core region possesses a volume
leading to a vanishing granular velocity there. The move- L3] 9 P

duced by th itational | : h h fraction independent of depth.
ment induced by the gravitational acceleration then shears g g region is located near the free surface. It is

the entire flow, leading to granular agitation through thegnergized by the agitation conducted from the core and by
whole depth, except at the rough base, where granular agitgse shearing. Its volume fraction abruptly reaches zero at the

tion is dissipated. o ) _ free surface. Its thickness is only a few grain diameters. We
Pouliquen[2] made two principal observations. First, call it the surface layer.

SFD flows only exist within a range of angles of inclination |, ihis paper, we present a model that captures the obser-
a between the base and the horizont@aliy<a<amax-  vations of Pouliquefi2] and Silbertet al.[3]. Our principal
These flows have a minimum height normal to the base pythesis follows Savags] and others in assuming that
=hsiop(@), which decreases with increasing They stop if  he stresses have two components. The first is rate depen-
h<hgsio(a) or if a<api,. They accelerated infinitum  gent |t is driven by collisional interactions and is given by
with a>amax. Second, Pouliquen showed that the depth+he dense kinetic theory of Jenkif] in terms of the granu-
average grain velocity scales ash®2 This result is in  lar agitation and the shear rate. The second is rate indepen-
dent and derives from long-lasting frictional contacts of the
grains. In these SFD flows, we further assume that the cor-
*Email address: Michel.Louge@cornell.edu; URL: http:// responding enduring shear stress is proportional to the endur-
www.mae.cornell.edu/microgravity/ ing normal stress through a constant friction coefficiept
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S~pergsina(h—z) (€]
and
N~ psrg cosa(h—2z), 4

in which the depth-averaged volume fractiorwas substi-
tuted for its local value. The ratio of shear to normal stress
represents the effective friction exerted by the grains on ad-
jacent layers parallel to the base. In SFD flows, it is constant
and equal to the tangent of the angle of inclination,

S

N =tana. (5)

FIG. 1. Sketch of a SFD flow down a bumpy incline showing Our approach is to distinguish two components of the
notation used in the text and the three regions considered in thelf€SSes

model.
S=§+S (6)
We begin by writing governing equations for this flow
that are consistent with the above hypothesis. We then eﬁnd
ploit insight from the numerical simulations of Silbest al. N=N,+N
=N;+Ng, (7)

[3] to indicate how these equations can provide closed solu-
tions. Finally, we compare the predictions with the data o

f . . o . .
Pouliquen[2] and Silbertet al. [3], where the subscrigtrefers to impulsive interactions leading

to rate-dependent stresses and the sub<€erifEnotes endur-
ing contacts associated with rate-independent stresses. Re-
Il. GOVERNING EQUATIONS cent simulations by Campbel[7] indicate that rate-

. . . . ependent and rate-independent stresses generally coexist.
We consider flows of monodisperse spherical grains Oe\/p b 9 y

. ) . . e model the latter by postulating the existence of an inter-
material densityps. The local state of flow is characterized -
: . nal friction ug such that
by the solid volume fractiow, and by the granular mean and
fluctuation velocities, which are made dimensionless with S
the square root of the grain diamettand the gravitational Ne
accelerationg. The square of the fluctuation velocity is the E

“ ” — ./ _! ./E/\-’ . . .
granlia_r temperature T—(1/3)<u.| Ui > _where Ui =Ui For convenience, we define the fractignof the total shear
—Uj, U; is the instantaneous velocity; is its average over giress that is rate independent

time, and the index=x,y,z denotes three orthogonal Carte-
sian directions pointing, respectively, downward along the Se

flow, across its width and up perpendicularly from the bot- =3 (9)
tom surface(Fig. 1). The granular temperature is a measure

of the agitation of the grains.

In SFD flows, the mean velocity is parallel to the base
uy=u,=0 andu,=u. Simple force balances on an infini-
tesimal slice of thicknesdz yield differential equations for
the shear stresSand normal stressl on surfaces parallel to

=ME- (8)

Thus, a purely collisional flow like that studied by Jenkins
'[6] has a stress fractiop=0. A static granular heap that is

not flowing hasny=1. In SFD flows, we then combine Egs.

(5)—(9) and express the ratio of any two stresses an®my

S, Ny, Sg, andNg in terms of , tana, and ug. For

the base example, the effective collisional friction is
ds ) _
dz - per9sine. @ =T B )L (10
N| (l—ntana/,uE)
and To model the rate-dependent stresses, we invoke the theory
of Jenkins[6], who assumed that velocity fluctuations and
d_N _ 5 normal stresses are isotropic, and who provided expressions
dz __ Psvgcosa. @ in the limit wherew is large,
In a dense flow, these equations can be integrated to yield, _ 2 ﬂ
approximately, Si=a1psr?giv)dT a7’ (11
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whereg;, is the sphere pair distribution function at contact combining Eq.(3) through Eq.(18), we obtain three equa-
anda,=8(1+ 7/12)/5/7. For such dense flows, we adopt tions governing SFD flows down an inclined plane
the correction of Torquatj8] to the pair distribution function

of Carnahan and Starling], d ptana) dw* as 1 ntana
dS ME s dS 2a2 ME
91 V)= ——— for Osw=uy (12 8tarfa 1-
2(1-1)3 - 7 SW* =0, (19)
a,a, \1—ntanalwg
and
(=) (ve-w) W [ g (20)
— V¢ Ve~ Vi =——wWtana\ ————(»
V)= for vi<v<w., (13 ds a; 1-ntanalue
012 V) 2(1—vf)3 (ve— ) f ¢ (13
) ~and
where v;=0.49 andv.=0.64 is the random close packing
fraction. In this dense limit, the normal collisional stress is — ¢
Vg v) = vCOSa( _ ptana . 2
N, =4psr?g1A¥)T. (14 e 4w*2 ME

From Egs.(11) and(14), it is clear that the rate-dependent | these equations the asterisks denote velocities made di-
stresses are governed by the magnitude of the fluctuatioensionless with/gd. Unfortunately, these three equations
energy. To determine the latter, we write a SFD fluctuationyee not sufficient to determine the four dependent variables

energy balance in an infinitesimal slice of thicknelss u*, w*, », and . In order to close this problem, we will
d q exploit insight provided by the numerical simulations of Sil-
_ 9 +(S, +SE)—U— y=0. (15)  bertetal.[3] in the three regions of the flow. We begin with
dz dz the core.

The balance involves a flux of fluctuation energy provided
by Jenking 6] in the dense limit lil. THE CORE REGION

5 dT In the core, Silberet al. [3] observed that the solid vol-
0= —azps¥ g1 v)dyT dz’ (16) ume fraction is remarkably constant. Because the core spans
most of the flow depth, we write that its solid volume frac-

with a,=4(1+97/32)/\/7, and a volumetric rate of energy tion is roughly equal to the average throughout the flow

dissipation _
Veore™ V. (22)
y=agpsr?giv) T3, (17
We then determiney using the energy equation, in which we
where neglect the flux gradient term. Later, once the mean and fluc-
tuation velocities are known through the depth, we will jus-
ag=24(1—eeq)/ /7, (18)  tify this assumption by evaluating the relative magnitude of

. . - o _ . this term. With this simplification, Eq19) reduces to a qua-
and eq¢; is an effective coefficient of restitution combining dratic equation iny

the collisional energy dissipation associated with inelastic

and frictional impactg10]. To derive Egs(11), (14), (16), (1— p)tarfa a.a
- a8

and(17), Jenking 6] assumed that the collisional fluctuation = _ (23)
energy dissipation is small or, equivalently, tegf; is nearly (1- ptanal/ug)®> 16
unity.
In Eq. (15), we follow Louge and Kead#4] in allowing  To possess real solutions, this equation requires
both the enduring and impulsive stresses to produce fluctua-
tion energy by their working through gradients of the mean
velocity. For flows down a flat, frictional surface, Louge and tanaztanamin=+. (24)
Keast[4] showed that ignoring the production associated 1+4pg/(a1as)

with enduring stresses would lead to restrictions prohibiting

the existence of SFD flows for most situations of practicalThe inequality determines the minimum inclination at which

interest. SFD flows exist. If it is satisfied, Eq23) has two solutions.
Jenking[6] noted that Eq(15) is a linear ordinary differ- The larger is typically near unity and gradually increases

ential equation in the dependent fluctuation velocity variablewith angle of inclination. We dismiss it because it is unphysi-

w=/T. He also wrote Eq(15) in terms of the dimensionless cal for the flow to become less collisional with increasing

distances=(h—2z)/d from the free surfacéFig. 1). Thus, inclination. Then, in the core, we find
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1 Bue

tana a1a3

1.0

7= Mcore™ :UvE[

ncore O 0066
=0.545 + 0.066M)
4p M dug v
- EE \J1- = TE (25)
Vajag tanae  a;ag 0.5

In turn, because € <1, this expression yields another
necessary condition for SFD flows,

Pouliquen

|

tana<tana .= Vaas/4. (26) 00 1 il
0.50 0.55 Veore 0.60 0.65
We then calculate the fluctuation velocity profile from Egs.

(21) and (25), FIG. 2. Stress fraction versus solid volume fraction in the core.

The symbols are volume fraction data from modd of Silbert

\/ E coreSina \/h—z et al. [3], in which we evaluaten.,. using Eq.(25. The lines
w*(z)=2 ) (27) show a suggested fit through the data. The vertical dashed line

a183Vcored12 Veore) d

indicates Pouliquen’s estimate of the mean volume fraction in his

— . . experiments and the associated error bar.
where = o is given by Eq.(10) in terms of 9¢qe, @, and P

ne . We integrate Eq(20) to find the corresponding velocity IV. THE SURFACE LAYER
profile '
The core solution, if extended all the way upward, would,

. . o sina in principle, satisfy the free surface boundary conditions for
W=+ 35, oo N By as veorddid Veord the flux (q=0) and all stressesSt=S=Ng=N,=0).

However, there are several reasons why it is inaccurate near
h—z) 3’2] the free surface. First, because the flux gradient from Egs.

h

h 3/2 h—b 3/2
X(a ((T) N (28) (16) and (27) diverges asz—h, it cannot be balanced by
collisional dissipation in Eq(15). Second, the volume frac-
We will calculate later the thicknessof the basal layer and tion is known to decline from its constant value in the core as
the mean velocity, where it meets the core. Silbest al. ~ the free surface is approachggl. Third, the core solution
[3] already recognized the general form of the velocity pro-Stipulates that enduring and collisional stresses remain pro-
file in Eq. (28). They derived an expression similar to this portional[Eq. (25)]. However, the form of the granular agi-
equation assuming that the shear stress is proportional to tation in Eq.(27) and of the energy flux in Eq16) imply
square of the mean strain rate through a constant to be déat there is a net influx of fluctuation energy from the core
termined. One contribution of our model is to establish theto the surface layer. Because the surface layer is sheared
form of that constant. Another is, like Savada, to provide through its depth, and because it is the scene of a diminish-
angular limits between which SFD flows can exist. ing solid volume fraction, it is likely to involve mainly col-

It remains to determine the volume fraction. Sadly, we ddisional interactions. Finally, the simulations indicate that the
not know how to do so in the core. Fortunately, the solutiondluctuation energy does not vanish at the free surface, but
in Egs. (27) and (28) are relatively insensitive to its exact instead exhibits an inflexion toward higher val§gs Thus,
value. Nonetheless, to close the problem, we note that thé is reasonable to assume that the surface layer has distinct
simulations of Silberet al.[3] suggest the following relation Physics from the core region. For these reasons, we assume

(Fig. 2): 7=0 in the surface layer. Numerical simulations should de-
termine whether this assumption has any merit.
Veore~ 0.545+ 0.0661 /¢ - (29 With »=0, the energy equation becomes
The simulations imply that, when the volume fraction is near d( dw) swt =0 (30
random loose packing, the value 9f,,. tends to zero, and ds S ds sSw=0,

the flow becomes fully collisional, thus losing its SFD char-
acter through gradual acceleration. Conversely, a linear exn which we define
trapolation indicates that the flow will lock up when the vol-

ume fraction approaches 61% or so. Further insight from k2=2— 8tarf a (31)
numerical simulations is needed to establish whether the cor- C2a,  aa

relation in Eq.(29) has any merit beyond the conditions ex-

amined by Silberet al. [3]. Condition (26) guarantees tha?>0. In general, solutions

Because the core solution predicts a vanishing granulaio Eg. (30) are modified zeroth-order Bessel functions of the
agitation at the free surfa¢&q. (27)], it contradicts evidence first and second kind, respectively(ks) and Ky(ks). Be-
from the numerical simulation8]. Thus, the flow near the cause the energy flux vanishes at the free surface, only the
surface has a different character, which we examine next. Bessel function of the first kind has physical significance. We
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FIG. 3. Typical profiles of dimensionless mean and fluctuation  FG_ 4. Profile of solid volume fraction for the conditions of Fig.
velocities for Pouliquen’s “system 1" at the inclination shown. The 3 The dashed curves denote the volume fractions calculated from
horizontal dashed lines mark the interfaces between the surfageq. (21) with the value ofy predicted by the model. The solid lines
layer, the core, and the basal layer. represent curves in which discontinuities have been removed by

] artificially adoptingz= 7.,e in EQ. (21) for the surface and basal
solve Eq.(30) by matching the magnitude and slopensf at  |ayers.

the interface between the core and the surface layer. These
two boundary conditions yield the magnitude of the fluctua-  Finally, we can now evaluate the error involved in ne-

tion velocity profile glecting the flux gradient term in our determinationpfin
the core. Using the profiles of mean and fluctuation veloci-
WH (5)= 2 \/ EcorehoSina ly(ks), (32) ties in EQs.(27) and (28), we calculate the relative magni-
" 1o(Ng) Y eore912 Veore)@razk: 0 ' tude of the flux term and one of the other two balanced terms
in Eq. (15),
and the depth of the surface layer
|dg/dZl &, [ d |2
=Xod/k. (33 [Sdudd ~ 2a, m) : (39
In these equations,,=1.07 is a solution to Because the gradient of fluctuation velocity becomes steeper
as the free surface is approached, the relative magnitude of
lo(No) =2Nol1(No), (34)  the flux term is greatest at the interface between the core and

the surface layer. Thus, the relative error is strictly less than
wherel, is the first-order modified Bessel function of the (a,/2a;)(d/¢)?. Because the thickness of the surface layer
first kind. decreases with angle of inclination, the worst error occurs
We then determine the mean velocity profile by matchingwhen the angle is small, and it drops with increasing incli-
its value at the interface between the core and the surfaggation. For example, at the smallest angle of 22° at which
layer, and by integrating Eq20) numerically with »=0.  Pouliquen[2] observed a deep flow in “system 1,” the rela-
Finally, we evaluate the profile of solid volume fraction by tive magnitude of the flux term was less than 13%. At the
substituting the fluctuation velocit{82) in the equation of interface with the basal layer, the error at 22° was down to
state(21) with »=0 and by solving the resulting equation in 6% for h/d=7 and 0.1% forth/d=24. At 28°, the largest
v. Figures 3 and 4 show typical profiles through the deptherror was only 7%. Thus, it is legitimate to neglect the flux

including the basal Iayer discussed in the fO”OWing SeCtiOl’l.gradient term in Eq(lg) to Ca|cu|ate77 in the Cord:Eq_ (23)]
Because in this simple approach there is a discontinuity of

7 at the interface between the core and the surface layer,
neither the slope of the mean velocity profile nor the volume
fraction are continuous ther@ig. 4). This defect is small The simulations of Silberet al. [3] clearly reveal the
and without much consequence when evaluating integralpresence of a region above the base consisting of a few lay-
leading to the depth-averaged velocity or the overall massrs of grains whose agitation gradually rises from zero at the
flow rate. One may artificially eliminate the discontinuity by bumpy boundary to a peak value at the interface with the
substituting.oe for =0 in Eq.(21) before calculating the core. We call this region the “basal layer.” Before deriving
volume fraction profile. its governing equations in the following section, it is instruc-
Note that, because in this model the volume fraction vantive to consider first its behavior in the limit where the flow
ishes abruptly at the free surfadig. 4), it is legitimate to  height is minimum.
assume a form for the governing equations that is appropriate If the height of a deep flow is progressively decreased, as
for dense flows, rather than invoking more complicated exPouliquen2] did, then the entire flow eventually reduces to
pressions that would span the entire range of solid volumea passive basal layer that possesses no core or surface layer
fractions. overhead. We call this diminutive flow a “basal flow.” Its

V. BASAL FLOW AND MINIMUM HEIGHT
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height is what Pouliquef2] calledhgo (). w* =Wk Jo(ms). (42)
In basal flows, grains tumble and roll over one another. As

Louge and Keasd4] pointed out for thin shear layers near a Using Eq.(40), the conditionK <0 implies that there is a

flat, frictional surface, grains acquire angular momentumminimum angle of inclination for basal flows,

from frictional interactions with adjacent granular layers

above and below. Thus, the shear stress that a horizontal WE

layer exerts over grains above and below produces angular tana> > , (43

momentum at a rat® proportional to the total shear stress 1-2,3,/[16C7]+ pe/C

and inversely proportional to the moment of ineitiand the

grain number density,

where the strict inequality indicates that the flow stops alto-

gether asy tends to its lower limit.

PxS/nlocS/ ppd2. 36 The §|mulat|ons of Silberét al. [3] and the experlments_
* xS ps¥ (36 of Pouliquen[2] clearly reveal that basal flows and their

Conversely, grains lose angular momentum in collisions witfl€€per counterparts share the same minimum angle of incli-
other grains in the same horizontal layer. Because the impa@@tion. This is evident by inspecting diagrams showing the
protagonists roll at roughly the same angular velocity, theil€ights at which these authors observe SFD flows versus
collisions produce impulses resulting in the frustration of@ngle of inclination. In these diagrams, the border between
both of their rotation rates. As Louge and Kepgtshowed, the presence and absence of flow is a vertical asymptote at a
the corresponding rate of loss of angular momentnis single minimum angle of inclination. A border having any
proportional to the collision frequency vg;»)\T/d and other shape, such as an oblique asymptote, would have be-

. . S : trayed limiting angles depending on flow depth. Therefore,
h I lar spin{T/d. Th - : .
o the impulsive reduction in granular s /d en. the minimum angles in Eq$24) and(43) are matched. This

Do vgo v) T/d2. (37)  observation fixes the magnitude ©f From Eq.(38), we then
extract the stress fraction in basal flows,

At steady statelP=D or, using Eqs(14) and(5) through Eq.

2
(9), __ me  Bug
7= ana  agag’ (44)
S tana _
N_|_ 1— ptanal ue =C, (38) and, from Eq.(40), the value ofkK=—m?,
whereC is a constant that we will determine later. At this T P 1 1 (45)
stage, we will merely assume th@tis constant through the - 2a, 4ue\tana  ug) |’
depth. Extractingy from this relation, the energy equation
becomes The bottom boundary condition determines the helulf,
of basal flows. The simulations of Silbest al. [3] suggest
d/ dw") Ksw* =0 g thatthe fluctuation velocity vanishes at the base;0 atz
ds S ds swh=0, (39 =0. From Eq.(42), this condition implies
where Nstop( @) =]jo1d/m, (46)
as 8C We wherej g is the first root satisfyindy(jg,) =0.
= %8, aa, ~anal THE( (40) Finally, the condition 8 7,<1 must be satisfied for

basal flows to exist. We find that any angte> «,,;,, guaran-

The form of this differential equation implies that its so- te€sn7,<1. However, to satisfy & 7,, Eq. (44) requires
lutions are Bessel functions. However, because the fluctua-
tion energy flux and, consequently, the slopewsf must tana<tana'...— ——3
vanish at the free surface, the second kind of Bessel or modi- max Bug
fied Bessel functions is excluded. Further, because there is no
relative velocity between the base and the flowing grains, thé&uriously, the model thus predicts that the maximum angle
flux of fluctuation energy at the bottom boundary is negativefor basal flows is larger than the maximum angle for deeper
and reduces to flows, a/ ., @max- Simulations of Silbertet al. [3] will

later confirm this peculiar observation.

, aias

(47)

q=-D, (41
whereD is a rate of fluctuation energy dissipation per unit VI THE BASAL LAYER
surface of the base. Consequently, because the boundary canlf the height of a basal flow is progressively increased
only dissipate fluctuation energy withqx—dw/dz  from hg,,, then the grain assembly develops a core and a
«dw*/ds<0, the solutions are zeroth-order Bessel func-surface layer. Our assumption is that the grains near the base
tions of the first kindJ,, with K<0. Defining m?=—K, will continue to experience the same stress fraction as in a
these solutions have the form basal flow[Eqg. (44)], and thus to be governed by E@9)
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with K=—m? from Eq. (45). The solution of the energy TABLE |. Parameters of Pouliquenf®] experiments.
equation is then

System d (mm) d, (MM)  apin (ded  amax (de9  eqrr  ug

* * *
WH=W1 Jo(MS) + W5 Yo(Ms), (48) 1 05 05 20.7 328 057 0.42
where Y is the zeroth-order Bessel function of the second 2 1.3 13 2L7 26.4 0.74 050
kind. We calculatev; andw3} by matching the fluctuation 115 1.3 22.9 30.4 064 050
velocity at the interface between the core and the basal layer, 05 13 20.9 29.1 0.68 0.44
and by making it maximum there&lw*/ds=0. The thick-
nessb of the basal layer is then set by the bottom boundary tan
condition, which we write, once agaim* =0 atz=0. We MEZZm[tanamax_ Vtar? apa— tart aminl
find tanamin
(52)
. \/ E oreSina \/h—b and
! a183Vcored12 Veore) d \/_
2N\
% YO(mh/d) eeff:]._ 3a tanz Xmax- (53)
v mh)J h—b) 3 th h—b\’ !
of g /70| Mg o g ) o\ Mg The results are summarized in Table I, in which we age
(49) =8(1+m/12)/5{m. The relatively high effective restitution
justifies our use of Jenkins’ expressidigg for nearly elastic
Jo(mhd) spheres. The internal friction has a magnitude that is typical
wh=—wj (500  of granular materials, see, for example, Savglidg.

_Wl —,
Yo(mhvd) As Fig. 5 illustrates, our expression fog,(a) in Eq.

and an equation that can be solved for (46) captures Pouliguen’s measurements for basal flows in
system 1. Figure 5 also reveals that, because the heights of
. _ nearly all of his deeper SFD flows exceéd b, these flows
mh h—b mh h—b
_)Yl m—) =Yo(—)31< m—), (51) possess a basal layer, a core, and a surface layer.
d d d d The theory also confirms the scaling of the depth-

i ) averaged velocity that Pouliqudi2] and Silbertet al. [3]
whereJ; andY; are the first-order Bessel functions of the gpserved for relatively deep flows. Because the mass flow
first and second kinds, respectively. _ _ rates of such flows are dominated by the core region, the
~ We then evaluate the profile of mean velocity by integrat-pincipal benchmark for gauging the model’'s accuracy is to
ing Eq. (20) numerically with = 7, subject tou=0 atz
=0, and find the value ofij =u*(z=b) required in Eq. 12
(28). We note that, becauseincreases from zero at the base, Oo
the concavity of the mean velocity profile is opposite to its
counterpart in the coréFig. 3.

Finally, we derive the profile of solid volume fraction 8
from that of the fluctuation velocity using E1) with 7 a Y o
= 7y . As with the core-surface layer interface, there are mi- \
nor discontinuities at=b for the solid volume fraction and
the velocity gradients, which are the result of the jumpyof
from 7y, t0 7¢0re (Fig. 4). Once again, these discontinuities
are of little consequence for evaluating the overall mass flow
rate.
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VIl. PREDICTIONS

In thi fi th dicti f del FIG. 5. Dimensionless height of SFD flows versus angle of in-
. n this Sfec lon, we compare .e predic Ions. or our m_o €lination for Pouliquen’s system 1. The circles represent experimen-
with experimental data from Pouliqué¢f] and with numeri-

. . . . tal values ofhg,,/d. The thick solid line is the prediction of Eq.
cal rfsluclitst from Silberet al. [3]. We begin with the experi- (46). The small squares show the heights of all relatively deep SFD
mental data.

) ) L o flows observed. The vertical dashed lines show the limiting angles
Pouliquen[2] did not measure the frictional or collisional of the core regionu,;, and a,a, from inequalities(24) and (26).

properties of his glass spheres. Instead, he reported the rangge dashed curve indicates the sum of the heights of the basal and
of inclination angles at which he observed SFD flows. Fromsurface layers/(a)+b(a). Because our steady, fully developed
his minimum and maximum angles, we infer the coefficientsmodel assumes the existence of three distinct regions, it ceases to be
of internal friction and normal restitution using E424) and  valid when either the surface layer or the basal layer engulfs the
(26), entire flow depth, i.e., wheh<{€(a)+b(«).
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FIG. 6. Ratiou/\/gd/(h/d)®? versus angle of inclination. The B 3 7
symbols are measurements with Pouliquen’s system 1. The dashed 0 =
and solid lines are predictions of the model wity=8(1 20 o(deg) 30

+/12)/5J7 and a;=1.5, respectively. Note that, ag— ami,,

the core and basal layer disappear, and the remaining basal flow FIG. 8. Dimensionless height of SFD flows versus angle of in-

stops.

plot the ratiou/\/gd/(h/d)32 versus angle of inclination. As

Fig. 6 shows, a model that adopts the constants of Jenking,q 4 reasonabl

clination for Pouliquen’s systems 2, 3, and 4. The symbols are ex-
perimental values offis;,,. The thick and thin solid lines represent
hsioi(@) from Eq. (46) andhg,,(«) from Eq. (56), respectively.

y well. However, it clearly overpreditig,,

theory [6] agrees well with experimental observations. Be-for system 2. Pouliquen also encountered unexplained diffi-

cause these three constants=8(1+ 7/12)/5/7, a,=4(1
+97/32)/\J7r, andas=24(1— e,;)/ 7 were derived with-

culties with this system, notably in scaling the depth-
averaged velocity. It is possible that for shallow basal flows,

out considering long-lasting contacts, it is remarkable howhe bottom boundary condition may not alwayswe 0 at
well they fare in flows where both rate-dependent and rate;=0. |f the flow was more agitated at the base, then(&).
independent stresses coexist. Nearly perfect agreement is ofyuld be more appropriate. For fully collisional flows, Jen-

tained using a slightly different value far,=1.5. In Fig. 6,

the proximity of the right-most data point to the theoretical

dashed curve also hints that a model with the theoretigal

works better when the angle of inclination is larger, as ex-
pected from a flow with the greatest collisional contribution.

kins and Richmar12] calculated

1—-cosé

2
D—z\[;(l—evv)—smza NIVT,

(54)

Figure 7 shows the corresponding dependence of the
depth—averageq velocity on height and angle of inclinationwhere sirg=(d—d,+A)/(d+d,) is a measure of the bumpi-
Note that Pouliquen’s system 1 is the only dataset completgess of the boundary with spherical bumps of diamdter

enough to permit these comparisons.
Figure 8 shows Pouliquen’s measurements 9f () for

A is the mean separation between the centers of two adjacent
bumps, anc,, is the coefficient of normal restitution in the

systems 2, 3, and 4. The model captures data in systemsj@pact of a flow sphere with a bump. Pouliquen’s valued of

ied

andd, are found in Table I. We assume that=d, . If we
adopted Eqs41) and(54) instead ofw=0 atz=0, then the
bottom boundary condition would become

dw* 4 \F(l )l—cos& . 55
=——\/—(1-ey)———Ww*,
ds a vw " sirt g
and the new flow depthg,,, would satisfy
4 \F 1—cosé heiop Mltop
a—2 ;(1—8\,\,) Si? o Jo(m d =mJ; mT .
(56)

FIG. 7. Dimensionless depth-averaged velocity versus dimen- . .
sionless flow height for Pouliquen’s system 1. The squares, circle€cause the solutions of E¢39) monotonically decrease

triangles, and crosses represents inclinations of 22°, 24°, 26°, andlith s, Ny,

28°, respectively. The lines are predictions of the model waith
=1.5.

!

is strictly smaller tharhg,, in Eq. (46). It so
happens that the height of system 2 is more closely predicted
by hgtop (thin line, Fig. § than it is byhg,,. Although basal
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same physics. The former is composed of grains tumbling at
a minimum heighty,,, below which no flow can exist. The
latter is a region, generally deep, where the volume fraction 10
is constant and the production and dissipation of fluctuation
energy are nearly balanced. Therefore, in this view, it is a
coincidence that the mean velocity déep flowswhich is
dominated by the core region, should be roughly inversely
proportional to the depthg;,, of basal flows Pouliquen pro-

osed such empirical relation after analvzing his experimen- FIG. 9. Dimensionless height of SFD flows versus angle of in-
P P yzing P clination for the simulations of Silbedt al.[3] with modelL3. For

tal data,u/ @:B(h/hstop)- Although we regard this rela-  symbols, lines and comments, see Fig. 5. The solid circles represent
tion and its “constant”g as coincidental, our model does basal flows at an angle of inclination that exceeggs,y.

indicate that it is approximately valid. In fact, we predict that

[, despite its relatively weak variations with h, ug, and  api,=19.5° anda,,,=28.7°, we inferug=0.40 andegs

€q¢f, IS Nearly constant except as it approaches the limits=0.83, which, as expected, are, respectively, smaller than
a— amin O h—hg,,. For example, for deep flows of ande. In addition, we find that the model agrees well with
Pouliquen’s system 1, we find3=0.18-0.03 for the data forhg,(«). Finally, the simulations also confirm

flows are too shallow to have much importance in practical 40 T
applications, it would be useful to investigate their bottom Ofpoonoooaoo =
boundary condition further. 30k !
An important prediction of our model is that “basal !

” « " i h/d !
flows” and the “core” region of deep flows do not share the !
201 :

Hl

'.'I

ae{21°,22°,...,32%, whereas Pouliguen reports that steady basal flows can exist with angles of inclination
B=0.136. In the limit of “basal flows” whereh=hg,, exceedingamax [EQ. (47)], dark circles in Fig. 9.

our model predicts B=0.063-0.009 for « Figure 10 examines the scaling of the depth-averaged ve-
e{21°,22°, ...,32}. locity with height and angle of inclination. Unlike the physi-

We now turn to the numerical simulations of Silbettal.  cal experiments of Pouliqud], we find that the simulation
[3]. These authors considered two kinds of three-dimensionalata depart significantly from the predictions of a model that
systems that differed in their granular contact laws. The firstassumes the constaa{=8(1+ w/12) /57 derived from the
labeled “L3,” models contacts using a linear spring-dashpotcollisional theory. Instead, we find thaj=2.1 captures the
system tuned to yield a constant coefficient of normal restidata better. However, we note that the magnitudes of the
tution e=0.88. The second, labeledH3,” assumes a Hert- depth-averaged velocities recorded in the simulations of Sil-
zian contact law with viscoelastic damping that produces dertet al.[3] can vary by as much as a factor of 1.8 depend-
velocity-dependent normal restitution. ing on the form of the contact model employg@dodelsL 3

Both models assume Coulomb interparticle friction with aand H3). We also suspect that Silbest al. [3] may have
coefficient x=0.5 independent of relative contact velocity. mislabeled some results &8 rather thanH3 in instances
We do not know how to evaluate the corresponding internaimentioned in Figs. 10 and 11.
friction coefficientug, in general. However, as the follow- The principal benefit of the simulations resides with their
ing two-dimensional calculation suggests, we expect dnsight on granular behavior through the flow depth. We find
simple relation betweepng andu whenu is small. Consider
two contacting disks having a line of centers making an 016 F
angle¢ with they direction. A forceF, <0 directed along the
negativey direction is exerted on the center of mass of the

N

A
—_——— e

aq=8(1+m/12)/5vn -~

<+ 7/2, then the mean value @f’ is u/2. Thus, for small
M, we expectugo u with wg<u. In the other limit where
u—o, we expect that the angle of internal friction should 0.00 '2'0 2'4 3
reach an asymptote that is independenj.of
To evaluate the effective coefficient of restitution from the
parameters of the simulations, we invoke the collisional gG, 10. Ratiou/\/gd/(h/d)32 versus angle of inclination. The
theory of Jenkins and Zhang0l, who provide an expression triangles and circles represent the simulations of Silbedl. [3]
for eqr=e€csi(€,u). With e=0.88 andu = 0.50, they predict for modelsH3 andL3, respectively. We believe that the squares
€e11=0.58. In generalg<e. correspond to modéti3, although Silberet al. [3] labeled them as
Figure 9 shows the heights of SFD flows that Siltedrél.  L3. The dashed, dotted, and solid lines are predictions of the model
[3] observed with modelL3. From their limiting angles with a;=8(1+#/12)/5/m, a;=1.5, anda,;=2.1, respectively.

i

1

1

i
top disk. If x is small enough for the contact to remain g 012 E //' e
frictional, then the bottom disk opposes a force with projec- g ! 7 ‘,’5-’
tion F,=uF, cog &—Fysinécos¢ along thex direction. The = 008f ot ) 1/:
resulting contribution to internal friction ig'=F,/F, . If '{" I 5
all angles¢ have equal probability in the range w/2<¢ = 004 i

R I
1
I
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0 | 24 deg u e
0 50 100 L — 32 . . -
wgd FIG. 13. Ratiou/+/gd/(h/d)*< versus interpatrticle friction and

normal restitution for an inclination of 22° artdd=40. The sym-

FIG. 11. Profiles of mean velocity versus depth at an inclinationPols represent the simulations of Silbettal. [3] for modelsL3.
of 24° and for the relative heights shown. The lines are predictiond N lines are predictions of the model withy=2.1, pg/u
of the model witha; =2.1. The squares, diamonds, and circles are=0-80, andeg = eer(u,€) from Jenkins and ZhanglO].
for model L3 of Silbertet al. [3]. We suspect that the triangles
bglong instead to modéd3, which would explain the unexpected model clearly agrees with Silbeet al.[3] that the flow rate
discrepancy between model and datduet=39. is much more sensitive to interparticle friction than it is to
normal restitutionFig. 13. Because purely collisional theo-
Jies (7=0V v) predict instead thau/\/gd/(h/d)%? de-
pends strongly ore and weakly onu, their relevance to
dense SFD flows down a bumpy incline is questionable.

that our model closely captures the profiles of mean an
fluctuation velocity reported by Silbedt al. [3]. Figure 11

shows mean velocity profiles for several flow heights. Unfor-
tunately, because Silbegt al.[3] only reported relative pro-

files of fluctuation velocity, we could not evaluate the degree
of anisotropy of their velocity fluctuations or compare these
with absolute predictions of our model. Nonetheless, as Fig.

tuation velocity well. . inclines in which the stresses have a collisional, rate-

Finally, Silbertet al.[3] examined the dependence of the gependent part coexisting with a rate-independent, frictional
mean flow rate on interparticle frictiop and normal resti-  ontribution [5]. For deep flows, the model distinguishes
tution e at «=22°. To compare our predictions with their three regions: a basal layer where grains gradually acquire
results despite the absence of data/frandecs, we adopt  flyctuation kinetic energy away from the base; a core where
the theory of Jenkins and ZhafgO] for the effective resti-  the solid volume fraction is constant; and a collisional sur-
tution, and we assume that the rafig /u remains constant face layer, where the volume fraction decreases rapidly near
and equal to the value 0.40/0.50 that we determined earliethe free surface. The model also describes the behavior of
As Fig. 13 shows, this approach captures well the deperpasal flows, which possess the smallest sustainable height.
dence of the mean flow rate on friction whenis small. At With insight from the numerical simulations of Silbert
higher values, the mean flow rate becomes independemt of et al. [3], we have proposed simple closures for the govern-
as ug reaches a constant asymptotic value. Further, théng equations of SFD flows in the three regions. The result-

ing solutions provided expressions for the limiting angles at
40 which such flows exist, and for the profiles of mean and
23 deg quctuatic_)n velocities though the dep_th. They aIsc_) pr_edi(_:ted
24d the scaling of the mean flow rate with angle of inclination
and flow height.

Although our results compared favorably with the physi-
20} cal experiments of Pouliqudr2] and the numerical simula-
tions of Silbertet al. [3], several issues warrant further re-
search. Foremost, it remains to explain why the solid volume
fraction remains constant in the core, and to predict its value
& without resorting to an empirical closure. It is possible, for
0 example, that the constant volume fraction may be associated

0 1 wfw 2 3 with a phase transition between two states in which colli-
30 sional and enduring stresses, respectively, dominate.

FIG. 12. Relative profiles of fluctuation velocity versus depth at  In this context, related work should focus on deriving
an inclination of 23°. The abscissavsrelative to its valuewgyat ~ constitutive relations for rate-dependent stresses and colli-
z/d=30. The lines are predictions of the model with=2.1. The  sional boundary conditions that account explicitly for the
squares, diamonds, and circles are the data of Sitdeat. [3] for ~ presence of enduring contacts. In addition, the angle of in-
modelL3 in thex, y, andz directions, respectively. ternal friction should be calculated in terms of frictional

VIIl. CONCLUSIONS
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properties of the contacts, or related to other physical paranabsolute level of fluctuation velocity, and to inform the de-
eters, such as the angle of repose, so that limiting angles fotelopment of a better model.

SFD flows can be predicted from independent measure-
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