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Asymptotic distributions of periodically driven stochastic systems
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We study the large-time behavior of Brownian particles moving through a viscous medium in a confined
potential, and which are further subjected to position-dependent driving forces that are periodic in time. We
focus on the case where these driving forces are rapidly oscillating with an amplitude that is not necessarily
small. We develop a perturbative method for the high-frequency regime to find the large-time behavior of
periodically driven stochastic systems. The asymptotic distribution of Brownian particles is then determined to
second order. To first order, these particles are found to execute small-amplitude oscillations around an effec-
tive static potential that can have interesting forms.
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[. INTRODUCTION it has sometimes been assumed that the driving frequency is
larger than all typical frequencies, including that which is
When a macroscopic system characterized by a Hamilassociated with the noigé&]. Our treatment generalizes that
tonianH (C) is in contact with an environment with tempera- of Refs.[4] and[5] in the high-frequency regime, by allow-
ture 81, at long enough times it reaches an equilibriuming for arbitrary damping; by including position dependence
state and is described by the Boltzmann-Gibbs distributio®f the driving force; and by taking frequencies to be higher
Peo(C)~exd —BH(C)] over the configurations of the sys- than those set by the confining _potentlal, yet not necessarily
tem. If, however, the system is subjected to time-dependertigher than those set by the noise.
forces of appreciable magnitude, there is no analogous gen- Some applications of our results are possible. For in-
eral statement that can be made about the distributioftance, depending on the spatial variation of the fluctuating
P(C,t) at large times. A case of particular interest arisesforces, the effective potential may have more than one local
when these forces vary periodically in time. While it is minimum even if the original potential has only one. Under
straightforward to see that the large-time distribution must b&uch circumstances, an assembly of Brownian particles
periodic as well, its full form is not known in general. It is Would tend to segregate in two separate collections. More-
thus of interest to seek explicit answers for particular physiover, the fact that the effective potential depends on physical
cal systems subjected to periodic driving. properties, such as the mass of the particles, can be exploited
In this paper, we focus on a paradigmaﬂc system: éo promote Segregation of two sets of Brownian particles that
Brownian particle which feels viscous forces and randondiffer from each other in mass or some other physical at-
impulses from the surrounding medium, and is confined by &ribute.
potential well. We ask: What is the effect of a further oscil-  The layout of the paper is as follows. In the following
lating potential on the state of the particle? We are primarilysection, we define the problem and discuss the different time
interested in the case where the fluctuating potential has gcales involved and their interplay, and discuss various re-
nontrivial spatial dependence. We analyze the problengimes qualitatively. In Sec. Ill, we develop the necessary
mostly in the high-frequency limit and find the asymptotic formalism required to address rapid periodic drive and arrive
state perturbatively. The resulting time-averaged asymptotiét @ perturbative scheme. In Sec. IV, we use this scheme to
state is described effectively by a distribution of the Boltz-determine the asymptotic distribution. In Sec. V, we briefly
mann form with an energy function that has three parts: &liscuss the effect of slow periodic driving so as to compare
kinetic energy term that depends only on velocity; an effecWith that of rapid driving. Finally, in Sec. VI, we conclude
tive potential that depends only on position coordinates; an(\jVith a discussion of possible directions in which our results
a term with both velocity and position coordinates. HoweverMay be generalized, possible applicati¢particle segrega-
to the leading order the result is particularly simple, andtion, particle sifting, and an exampléhe simple penduluin
involves 0n|y the kinetic term and an effective frequency-that demonstrates the Significance of the new effects found.
dependent potential energy whose form can be specified ex-
actly. Il. PERIODICALLY DRIVEN BROWNIAN PARTICLE
The effects of rapidly oscillating periodic forces on purely ) ) ) . o
mechanical systems were demonstrated many years ago for a\We shall conS|der.a one—dlmenspna] Brownian partple in
driven penduluni1] and were also studied for more general @ Potential well, subjected to a periodic force along with a
cases[2]. Periodically driven stochastic systems too haved@mping force and random noise. The equation of motion of
been studied extensively over the past two decades in thi€ driven Brownian particle moving in a viscous environ-
context of stochastic resonantsee, e.g., Ref.3], and ref- Mentis
erences therejn However, most of these studies were re- 5
stricted to weak periodic driving with position-independent " :
forces[4-7], ofterf)only in the ogerdam?)ed regime. FI):urther, mX==x= 5U(X) RGO+ (), @
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wherem s the massy is the coefficient of viscosityJ(x) is  viscous medium and the othet,,=27/wg, is related typi-
a static confining potential-(x,t) is the periodic driving cally to the curvature at the bottom of the potential well,
force with a periodT, F(x,t)=F(x,t+T), and »(t) is a wg=VU"(Xmin)/M. The velocity variable equilibriates in a
Gaussian random noise withy(t)),=0 and(#5(t)n(t')), time scale set by, and hence for larger times it gets de-
=2yB 18(t—t'), wherep ! is the temperature of the sur- Scribed by a stationary distribution. Thus, in a highly viscous
rounding heat bath. medium, wherer, <, holds, after a timeg> r, the distri-
The probability distribution of the Brownian particle is bution can be written a®(x,v,t)=Peq(v)P(X,t), where
defined asP(x,v,t)=(8(x—x,(t)) 8w —X,(t))),, where Peq(v)~exd —Bzmu?] is the canonical distribution for ve-
X, (t) andx, (t) are the position and the velocity at timéor ~ 10City andP(x,t) =/ duP(x,v,t) is the marginal distribution
a”particula?history of 7(t)} over a timet. The time evolu- involving only position. This marginal d|str|but|c_)n satisfies
tion of P(x,v,t) is described by the following Fokker-Planck an FP equatior(often called the Smoluchowski equatjon

(FP) equation(also referred to as the Kramers equatjon obtained by qroppmg the inertial Ferm n E8), as t_h's term
becomes insignificant in comparison with the viscous term

once the time exceeds .
If, however, there is a driving force with a high enough
frequency, then this reduction to the Smoluchowski limit

P__d
- xwPIT g,

1 d
E‘ —yv—&U(x)—FF(X,t))P

2 does not take place. The oscillating driving force introduces
y 9P . . . . .
— - (2 one other important time scale associated with the time-
pm= dv period T whose existence restricts the domain of validity of

the Smoluchowski equation even in the high-friction limit. It
is useful to demarcate different regimes of the driving fre-
quency in this limit: (a)y,<7,<T and (b)r,<T<r7, or T
_ . <r,<71,. In case (a), the velocity decouples from the po-

FixH=T0)cogwt) +g(x)sin(wt) © sition and one can still use the Smoluchowski equation to
in the domainL,;<x<L,, where the amplitude functions OPtain the large-time distribution, while in case (b), the driv-
f(x) andg(x) vanish at the boundaries=L, andL,, and g force has a time scale comparable to that of the velocity
outside the domain. This choice Bi(x,t) is made for con- relaxatlon_ time and hence it is necessary to retain the Kram-
venience; choosing a more general periodic function will nofe's equation. _ _
hinder our analysis. The generalization to higher dimensions ! the time scale of measurement exceeds the time period
and to many interacting particles is also straightforward. Ourl» then the relevant quantity is the large-time distribution
aim is to find the large-time distribution that we denote byaveraged — over —a  time  period P.(Xuv,t)
Pw(xﬂ)at):"mHmP(X!U!t)- =(1/T)f(T)POO(X,v,t). Hence we shall also determine
P..(x,v,t).

The driving forceF(x,t) that is oscillating with a frequency
w=2m/T is chosen to be

In the absence of a driving force, all solutioRéx,v,t) of
the FP equation, corresponding to various arbitrary initial
distributions, tend to a unique distribution after a long
enough timg8]. This distributionP_.(x,v,t) for the Brown- In a mechanical system, in the absence of a viscous force
ian particles takes the equilibrium canonical foRrgy(x,v) and random noise, it is known that far>w, the particle
= (1Zo)exp{— Amv*+U(X)]}. When a periodic driving €xecutes small amplitude oscillations of frequencgbout a
force is present?..(x,v,t) approaches a periodic function of SMooth mean path2]. This motion can be described by
time which is unique up to a pha$@,3]. In brief, the argu- separating it into slow and fast yarlables; the fgst variable
ment for the periodicity goes as follows. When the FP operad€couples from the slow one while the slow variable sees a
tor is periodic,£(t) = £(t+T), the solution to the FP equa- static effectl_ve potenﬂgl, mod_|f|ed due to the oscillations of
tion [4,— £(t)]P(x,v,t)=0 can be expanded in terms of the the fast variable. In this section, we develop_ the necessary
Floquet-type functionsp,,(x,v,t)exp(-ut). The functions fprm_ahsm that accommod.ates an analogy with this separa-
p,.(x.v.t)=p,(x,v,t+T) are periodic and are the right tion into slow an_d fast variables and enables us to solve the
eigenfunctions ofl,— £(t) with eigenvaluegs. It is known problem when viscous and random forces are included.

that for anN-dimensional FP equation, the real parts of these
eigenvalues Ref) are positive semidefinite and hence in the
large-time limit, for typical confining potentials, only In this subsection, we transform the FP equation under a
Po(X,v,t) survives. We are interested in finding this large- specific coordinate transformation which enables it to be
time distribution P..(x,v,t) for a given F(x,t). Since no solved perturbatively. For the perturbative treatment to be
analytic solution of the FP equation is known for an arbitraryvalid a sufficient condition, though not necessary, is that
time periodicF(x,t), even when it involves only the funda- be large, while no assumption is made about the amplitude of
mental frequency, we shall restrict our attention to certairfhe driving force in comparison with the static potential.
regimes of the driving frequency while solving for ~We make the coordinate transformatiofx,v,t}
P.(X,0,t). —{X,V, 7} under which the distribution is made to behave
In the absence of the driving force there are two importantike a scalar functionP(x,v,t)—P(X,V,7)=P(x,v,t). The
time scales in the system; one,=m/ vy, is introduced by the old and new coordinates are related as follows,

Ill. RAPIDLY OSCILLATING FORCES: FORMALISM

A. Transformation of FP equation
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x=X+&(X,7), v=V+ %g(x,r), t (4)

The explicit form of&(X, 7) will be specified later. Note that
the volume element dxdv=dXdVJX,V,7), where
J(X,V,7)=(1+09¢&/dX) and hence, ifP is the probability

density in &,v) space, theiPJ becomes the the probability
density in X,V) space. Also, under the above coordinate

transformation the derivatives transform as follows:

P 1 9 & 9
X 14¢g X 14¢ IV
_d
v IV’
J_a & 0 173 P .
at ar 1+¢ c?X 1+§ N’ ®)

where thedots and primeson ¢ stand for derivatives with
respect tor and X, respectively. Making use of Eq&t) and
(5) in Eq. (2), we get

S VP 91 V+f (X
o= o (VP = Ui WA (X )

9*P
+ X2

F(X+¢,7) —F(X,7)}P ot oV

g P & 9P
v —~+ Vi
1+¢ X 1+¢ N

1 . . cix oP 6
+ —Imé+yE-F(X. 1]y, (6)
wherefy(X)=—dU(X)/dX.

Now chooseé(X, ) such that it is a solution of the fol-
lowing equation,

mé=— yé+F(X, 7). 7)

For F(X,7) as given in Eq.3), the solution to the above
equation is

E(X,7)= ﬁ[( 0+ — g<X>)cos(m>

w?+ r
m2

8

+gx)— m—);)f(X))sin(wT) .

Since ¢ is small for large values of?+ y?/m?), we may
expand Eq(6) perturbatively in¢. The reason for choosing
the above dynamidd€Eq. (7)] for € is that the last term in Eq.
(6) becomes zero and further the explicitlytime)
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7-dependent term becomes smalkifs small, thus making
the equation amenable to perturbative analysis.

Note that when the driving force isindependent, E(6)
reduces to the usual FP equation with the static féydex)
being replaced by (X+§).

B. The perturbative scheme

We now find the large-time solution of E(6) perturba-
tively in powers ofé¢. Upon substitutingé as given in Eq.
(8), we see that Eq6) takes the form

(%F’(x,v, ) =[L+AL]P(X,V,7)

= ZO [LOM+ALMIBX,V,7), (9

where £ and AL are static and time-dependent operators,
respectively. The superscript on the operatar§” and
AL M indicates that they are @(&"); the explicit forms of
the first few operators are

ro— vl oo
& aw[)’ (X)] B V2
1— 9
D= _ Z¢g! —
L méF (X 7)=5,
1 J — d
(2)—_— _g2pym o 2
£ 2m§U (X)é?V Ve ax’
AE(O)ZO,

ALO=T[EU(X)— £ (X,7)+ T (X g
m ' oV

)
Ve +vg'

1 — d
( ):_ — n _ "
AL@=5 [(£2-E)U"(X) - ¢7F (x,m—w

— V(&% 6’2) 73 & = (10)
where thebar over the terms indicates an average over a
time period. The perturbative asymptotic solution of E3).

can be formally written as follows:

~ 1 ~
P.(X,V,7)=Q.(X,V,7)+ py ALP(X,V,1),

c
1D

whereQ..(X,V, 7) is the right eigenfunction of with eigen-
value zero. Since the asymptotic distribution is periodic and
the nonzero eigenvalues df have a nonvanishing real part,

it follows from Eq. (9) that ALP.. has no overlap with the
eigenfunction ofg.— £ with zero eigenvalue. Hence the op-
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eration of the inverse of.— £ is well defined as it acts only the desired order i§. Then use one of the truncated series

on the space of functions orthogonal to that eigenfunction. (12), (13), or (16), such that the truncation is consistent with
It is not possible to obtain an explicit form for the inverse the chosen order, keeping in mind tifadepends orw. Next

of 9.— L for arbitraryU(X) andF(X,7), in which case nu- substitute this truncated inverse operator in Ebl) and

merical or variational methods might be adopted to deterfrom it extractf’x(x,v,q-) order by order.

mine the eigenfunctions and eigenvaluesobr £, and to

obtain (9,—£)~*. If for some form of the potentiall (X), IV. ASYMPTOTIC DISTRIBUTION: A PERTURBATIVE
we are able to find all the eigenfunctions of, séy,then this ANALYSIS
inverse can be conveniently expanded to any ordef as

follows A. First-order perturbation

We now find the asymptotic distributioR..(Xx,v,t), to
first order in &, with the condition that it vanishes at the
boundary of k,v) space. We will also show that the time
average of this distributioR..(x,v,t) is the canonical equi-
But a more suitable series expansion can be given for thikbrium distribution with U(x) replaced byU.¢¢(x)=U(X)
operator when eithew or y/m is large. If o is also much  +U®)(x), whereU™)(x) will be explicitly evaluated.

n

S

PRy (L—Ly) 9Ly’ (12

'T

larger thany/m, then this suitable expansion is To this end we need to determing.(X,V,7)
. =2nQ§o“)(X,V,r) to the same order from the equation

-3 (i K)n 1 13 £Q..(X,V,7)=0. As before, the superscript @, indicates

— a, the corresponding order i&. The zeroth orde?) is the

solution to the equatior (Q(?=0, which yields the equi-
In the case whery/m is comparable ta, we can write the |ibrium distribution
inverse in terms of an operatof, containing terms of

ich is qi - 1
O(y/m) only and which is given as BOX.V.7)=QO(X,V,7)= - expl— BLAMV2+ U(X)T).
0

2
ro=" s ‘9_=efﬁmv2/4 _ Y atal|esmvia 17)
v m JV ﬁmz &VZ m ’ . =(1) : .
(14) The first orderP.;” is obtained from Eqs(11) and (16),
where the operatora anda’ follow the commutation rela- 1) _ AL — BmV2/ 1 2] (0
tion[a aT]:Fi and are defined as PLi= Qe —Veﬂmv ALER,
' T
ad,+ Ea a
1 1 90 1
a= \/_0”V+ 2\/ V aT=—\/:§—V+§\/,8mV. (18)
pm 15 where Q) is the solution to the equationC(@Q

+£MQ®=0. This solution is straightforward to determine

So in this case the convenient expansion of the inverse ogince £(MQ!) has the same form as the right-hand side of
erator is the identity: £ @[h(X)Q®1=—Vh'(X)Q? for any arbi-
trary functionh(X). We get

1 - no1
= — _— 1 _ Do
9—L 2 [57_ o, LT QM(X,V, 7)== BUD(X)PY,
© n J -
_e e S 1 (L L) U0 ==X F (X, 7). (19)
n=0 Y +
d,+—a'a .
m In Eqg. (18) we have used inverse operatdr6) truncated
right after the first term which amounts to neglecting
1 eBmVAI4. (16) O(¢/w) terms. To this approximation, it is then sufficient to
g+ Yata keep only the term proportional t§ in AL®, which is

rewritten as follows:

The idea of writing this operator in terms afanda’ is that B —

its action onh(V)exp(—AmVZ/2), where h(V) is some = \[E(SU”—gF’%F’)aT

polynomial ofV, can be determined more easily since it in-

volves the action of a specific function afa on a series 9 a+al .

made of eigenfunctions af'a. + ’W Bm —¢(a+aha’
The calculational scheme is thus reduced to the following:

Find the right eigenfunctio.. of £ with eigenvalue zeroto Hence Eq(18) upon neglecting terms @ (&/w) reduces to

AL D= e—ﬁmv2/4

eBmV2/4_ (20)
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5 1 The additional ternu® is the average energy associated
POX,V,7)=—BUD(X) PO —eAmVIA___— with the rapid motion. This can be seen easily upon substi-
g+ Yata tuting for F in terms of¢ using Eq.(7) and rewritingU® as
Tm follows:

% ['.Sg(a+ aT)aT]efﬁmVZM;efBU(x)

UM (x)=— f "y EY.DF (y,0]

=— BIUDX)+KD(V;6)1PO(X,V, 1),

1 ——— X - d
(21) =§m[§(x,t)]Z—J dy(—yf(y.t)wi(y,t) . (26
where ThusU™ is sum of the average kinetic energy and the work
done against the damping on the fast variahle
2y (2y _ A first-order perturbation treatment is justified, provided
KO(V: &)= ~ {_(_5' g’) £ and AL ® are negligible when compared ©®) and
w2 al pmi m ALM, respectively. The criterion for this i$&df/ax|

m2 >|U"¢&2|. For instance, suppose that the length scales over
which U(x) and F(x,t) vary are comparable andlw, is a

0. 27, o 22 typical frequency associated with anharmonic terms. Then
Tt e ImVE, (22 the above criterion reduces twt+ y2/m?)> a?ws, which
is consistent withé being small.
which simplifies toK M(V; &) ~ ¢’ mV2 when w> y/m. It should be remarked that the restriction of periodicity of
We now get the asymptotic distribution from Eq), F(x,t) to the fundamental frequenay is not essential; one
(17), and(21) can include the higher harmonics as well. Also by consider-

ing generalizations to higher dimensions or to many interact-
1 ing particles one does not encounter any additional compu-
P.(X,0,t)= S exp{— B[ imv2+U(x)+UD(x) tational Qi_fficulties in th(_a evaluation of the distribu'_[ion. The
Z only additional assumption needed to write dougy is that

+K(1)(v;§)—§U'(x)—émv]}. (23) f(x) andg(x) are curl free.
Unlike in the distributions for static potentials, here the ve- B. Second-order perturbation
locity v gets coupled to the positianthroughé. The aver- We now calculate the second-order corrections to the
aged large-time distribution is given as asymptotic distribution. Further, in this subsection, we re-
strict our treatment to frequencies that satisfy the condition
- 1 _ W w>y/m, in which case the first-order ter®(") is as given
Peo(X,0,t)= exp{ = BLzmu + U (x) + U () I}, in Eq. (21) with KD(V; &) =& mV2. The second-order term
(24) of Eq. (1)) is

where the explicit expression fdy(*)(x) is obtained upon  B@=Q@+ ﬁ[AE“)F’&OHAU”F’SH AL @BO)]

substitutingé¢ from Eqg. (8) in Eq. (19) and then integrating, T
=Q@+ ;AE WPO| + iAﬁ(l)T:')g)
UM(x)= > [<f2<x>+g2<x>> —L© I
4m w2+7—2 1 ~ 1
m +a—Ac<2>P§§’)+o —&2). (27)
w

T

2y [* : ,
+ @J' dy{g(W ' () =f(¥)a"(¥)}|- (29  Though the second term in the above expression B(@),
it has been included here because when calculated earlier, to

Thus the time-averaged large-time behavior of the BrownialxIrSt order iné, the terms ofO(&/w) were neglected. This

: . : : ISP term is written withinpipesto indicate that only terms of

articles is described by the canonical distribution at a tem- .
gerature,fg"l with an effgctive potentiall o1;=U + U@ that O(glwg and O(&»?) have to be retained Nan)d not the
depends on the frequency and space dependence of the drfd{&/ «") term that has already been mgludedHﬁ .
ing force in addition to the properties of the particle. Note We now evaluate the terms on the right-hand side of Eq.
that a nontrivial contribution to the effective potential arises(27). The first termQ(? is the solution to the equation
to this order only iff or g are space dependent, and that it canC (VQ{?+ £ WQM + £ Q¥ =0. This, as in the case of
be tuned by varyind, g, or . (D s straightforward to determine and we get
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- B2 -
QXY 7)== BUy(X) PO+ = (UD(x)) P,
au X)= ’2U'X+1_2U’”X 28
() =—(£)7U"(X)+ 5(§U"(X). (28
The second term is
1
T A,@BO)
ﬁT_E(O)AE p
— i+££<0)+i(£<o>)z+... AL WBO
d; 5 & N
= — BK(X,V; 6P, (29)

where
=(0) d, 1 0
K(X,V;PD=— —ZH(X,V;8) — SLOHX,V;§),
w w

H(X,Vi8)=(£U"+ £'U" = §£F " + 1R VP

+LOmV2ePO). (30)

The third and the fourth terms are

1 ~ —
S ALWRD=— pmVA[(£)7 - (£)7 PO+ g2 UDmVEE’

T

+3(mV2¢")2IPY),

;Ac<2>ﬁ§?>:%3mv2[(§'>2—<T>2]ﬁ£9)—ﬂ[u2(X>

T

+C(X,V) PO, (31)
where (4,)' = ££'U" -3¢ €U’ andC(X,V) is an arbitrary
r-independent function. These arbitrary andndependent
terms are included since the actionaf* allows this ambi-
guity. This ambiguity is removed from the condition ob-
tained by substitutind®.. in Eq. (9) and averaging over a
period. ThusP? should satisfy

LOBR AL OPD=0, (32)

which implies, after some calculation, th@tis the solution
of the equation
LO[CPO]+4me’ ¢'ViPD=0. (33

In the high-viscous limit,y/m> wq, this functionC(X,V)
~(4m/3y) & €"(mVB+6V/B). Using Equations(27)-(31)

and Eq.(21) we get the asymptotic distribution to second

order

PHYSICAL REVIEW E 67, 061111 (2003

P.(xv,0)= %eXp{—B[%mV2+U(X)+ UD(X)+UB(X)
+R(X,V,1) 1}, (34)
where ROV, ) =KD(V;8) +L(X,V;€)

+ImVA([ £ (X)) 12— (€' (X.1)) 3+ C(X,V); U@ (x)
=Uy(X)+U,(X); and, to second orderX=x—§&(Xx,t)
—&(x, 1) &' (x,t) and V=v—&(x,t)—&(x,t) &' (x,t). It is
clear from the above equation thBt,(x,v,t) will contain
terms with bothv and x dependence in addition to purely
x-dependent and-dependent terms.

The explicit form ofU?)(X) =U®)(x) which contributes
at second order to the effective static potential is

U®@(x)=

1| [FO0?+9()?]U" (%)

Amlw?| w?+ r
m

2

—8 [ ayIt P+ AU )| @9

We notice here that a nontrivial contribution arises even for
x-independent driving, providetd (x) is anharmonic. Also
note that this second-order correction to the effective poten-
tial depends orlJ(x) while this is not the case at the first
order.

We recover the results of Devoret al. [4] and Jund 5]
whenf(x) andg(x) are independent of the position coordi-
natex. In the former reference the inertial term was consid-
ered while in the latter it was not, but their analysis of the
high-frequency limit is tantamount to assuming that the driv-
ing frequency is larger than all typical frequencies of the
system including that of noise. This assumption restricts the
validity of the answer, and clearly does not hold for white
noise. In fact, this assumption would lead to the absence of
the term [X[(f")?+(g’)2]U’ in the effective potential for
x-dependent driving. That the error, when this assumption is
made, shows up aD(&?) is also evident from the presence
of the termV&'29/9X in £(?) operator.

We reiterate that there is a nontrivial contribution to the
effective potential from the position-dependent driving
forces. First, it shows up at first order itself and, second, it
shows up at second order even for harmonic potentials; both
of which are absent for position-independent driving forces.

V. SLOWLY OSCILLATING FORCES

In this section, we will consider the opposite extreme,
namely,o small compared to botly/m and wq. The aim is
to compare with the asymptotic behavior we found in the
previous section under rapid driving. Under slow driving, the
Brownian particle sees an unchanging potential within its
relaxation time and so the Boltzmann-like distribution corre-
sponding to the instantaneous potential is a good zeroth-
order starting point for perturbation.

The large-time distributionP..(x,v,t) will acquire the
same periodicity as that of the driving force. Hence the left-
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hand side of Eq(2) is of O(w) while the right-hand side has potentials for specific forms of the driving functions, and use
two terms, one ofO(y/m) and the other oO(wy). Thus these results to point out some possible applications. The
P..(x,v,t) can be evaluated perturbatively im{/y) and nature of these effective potentials can be drastically differ-
(w/ wg). To the leadingzeroth order, this distribution is ent from that of the original potentials, and we illustrate this
fact using the example of a simple pendulum.
The principal results of this paper concern the form of the
asymptotic distribution of a Brownian particle subjected to a
_ driving force, which is periodic in time but is an arbitrary
+Ug(x)sin(wt) ]}, (36)  function of position. In the limit of high-frequency driving,
the particle makes small, rapid excursions around a smooth
yvhere L.Jf(x): —J7dyf(y) anq UQ(X): —dyg(y); Z(,t) ath along which the motion is relatively slow. This affords
is the instantaneous normalization constant determined by 1 ossibility of a systematic perturbative treatment in pow-
the normalization conditionfdxP..(x,v,t)=1 at any time,

. L AT ° ers of the excursion amplitude. The result for the distribution
alng(t:)awdently satisfies the periodicity conditiaf(t+T)  ayeraged over a cycle is described in terms of an effective

. , . ... potential whose form we derived. Interestingly, the leading
__We now estimate the averaged large-time distributionqnyribytionu(®, which is second order in the amplitude of
P..(x,v,t) atlow and high temperatures separately. To deterthe applied driving force, is present only if the driving force
mine the average distribution at high temperature, it is conjg position dependent. This®) can be interpreted as the

PO(x,v,t)= iexp{—ﬁ[lmv% U(x) + U¢(x)coq wt)
o Uy Z(t) 2 f

venient to rewrite this equation as follows. average energy of the excursion variable. In the next-order
1 contribution to the effective potential as well, this position
P..(X,0,)= ——— e AlmZ2+UNI 7 (BV/(x)) dependence of the driving force has an interesting effect
Z(t) even for purely harmonic confining potentials.
T (BV(X) Cent_ral to our discussion of rapid periodic driving is the
x| 14>, enet2 (37)  separation into slow and fast variables. It should be noted

n#0 To(BV(X)) |’ that this demarcation of slow and fast is based on whether or
. . . not the variable varies considerably over a time period. This
where In(az) is_the r2r10d|f|ed Bessel function and(x) g gifferent from the distinction made in discussions of fast
= [U1() 12+ [Ug(x)]% The ratio Z,(e)/Zo(e) lies be-  and slow variables that are so categorized according to
tween 0 and 1 for & <, and decreases very rapidly for \yhether they relax in small or large times. In this latter case,
small a; Zp(@)/Zo(a)~a"/2'n!. Thus it suffices to keep @ many methods have been developed to eliminate the fast
few terms, and to leading order we obtal.(x,v,t)  variables and obtain an effective dynamics for the relaxation
= (1/Z) exp{— B[ 2mv2+Ug(¥) ]}, where of the slow variable$8,10].
The effective potential that we find can be qualitatively
1 5 5 different in the low- and high-frequency regimes. Wheiris
Uer(X)=U(x)— [—gln{Io(B\/[Uf(x)] +[Ug(x) ]9} small, the leading additional potential felt by the particles,
(38) AU(X)=Uq1(x) —U(x), is always nonpositive for any
choice of f(x) and g(x). On the other hand for large,
Thus the Brownian particles, when observed over a time oAU (x) can be either positive or negative in general, though
O(T), get described by the canonical distribution at a tem-if one of f(x) or g(x) is identically zero then it is always
peratureB~ ! with an effective potential that depends on the non-negative. Also to the leading order whenis small,

temperature. _ o AU(x) depends on temperature but not en whereas in
At low temperature the saddle-point approximation can bearge w limit it only depends ornw and not on temperature.
used to evaluat®..(x,v,t). To the leading order, this will Certain choices of the driving force can lead to interesting

be P.(x,v,t)= Peq(v)[l/N(t)]EiN:(tl) s(x—x (1)), where outcomes. Suppose we choc_i:t(a() to be a cor_1fining poten-
(x® (1)} are the minima at time of the functionU(x) tial which is a monotonically increasing function jof while
+Ug(x) cos@t)+Uy(x)sin(t) and N(t) is the number of f(X) is @ monotonically decreasing function pf| which
minima at that time. vanishes afx|=L, and g(x) vanishes identically: for ex-
It might appear thatl¢(x) andU(x), obtained by inte- ~ample,U(x)= imeix® and f(x) = fosin(mx/L) for —L<x
grating f(x) andg(x), respectively, have different constants <L and zero otherwise. Whea is small the effective po-
of integration in regions where the driving forces are presentential continues to have a single minimum at the origin. But
from those where they are absent. However, they get fixed byhen o is large, it develops two additional minima; one
the condition thatP(x,v,t) and 9P(x,v,t)/dx are single- close tolL, between 0 and. and the other close to-L,
valued functions ok. between—L and 0. Thus, a system of Brownian particles
would cluster in a region near the origin for low driving
VI. DISCUSSION frequency, while at high frequency these particles would seg-
regate into two clusters which are separated by a distance of
In this section, we review the results of this paper for aO(L).
general position-dependent periodic driving force with a fo- The parameters specifying the particles also enter the ef-
cus on the high-frequency regime. We then discuss effectivéective potential. Hence the minima of the effective potential
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as seen by different species of particles are different. One can Interestingly, if we oscillate the point of suspension along
make use of this fact, for instance, to separate different spehe x axis instead of thg axis, the pendulum will exhibit a
cies of Brownian particles in a situation where they are ini-different behavior. In this case, the effective potential has
tially mixed, by driving them with a space-dependent peri-extrema at§=0, 7, and =cos A if A<1; the points
odic force. _ o +cos I\ are stable when they exist=0 is unstable ifA

To get an idea of the magnitude of the qualitative change< 1 and stable otherwis#)=  is always unstable. In other
the effective potential introduces, it is instructive to examineyords the pendulum now oscillates about points that do not
f‘” e’;]"’l‘mplﬁ' COﬂSId?I’ a rigid penr?ulum:. a m?‘ssless rod Gfs on they axis. The nature of the extrema of the effective
engthl with a bob of massn attached to it at the end and potential does not change in the presence of the viscous term

?g;::‘g?g_'% 3n%r3!tat'®?l?clhﬁzlfg r-(rars]ee?:ct)it/eer;“alstgi)lse 2: d and noise except that the value »fwill now be different
- —T » 1eSP Y [with w? replaced byw*/(w?+ (y/m)?)].

unstable points, wheré is the angle the rod makes with the To conclude, we have developed a perturbative calcula-

Pheeg?)tcl)\i/r?gg(fu(;:l)%zgsi?r? glltr)er}\(;t?;e;;igr@\i/tﬂy :I?r\évqisecr:ﬂi)e tionz_al scheme to stut_jy the asymptotit_; behavi_or c_)f Brownian
and amplitudea. The angled then evolves according to the particles under the mflueng:(_a of rapidly OSC'"at'r.]g. forces.
S LY ) When these forces are position dependent, nontrivial effects
equationl 6+ gsing=aw"sin fcoset). The effective poten- 4re seen in the large-time behavior. The formalism developed
tial Ver(6) has extrema ag=0,7 and 6., where6. =7  pere can be generalized straighforwardly to interacting
+cos *(\) with A =2gl/a’*w?. The stability of these points Brownian particles in any dimensions. It can also be ex-

is as follows:6=0 is stable;f= 0. exist only if A<1 and  tended to study the behavior of fluctuating fields when sub-
when they exist they are unstables m is stable wherf.  jected to periodic driving.

exist and is unstable otherwise. In a nutshell, whenl the
pendulum shows no qualitative change in its behavior upon
oscillating the point of suspension whereas whenl then
0= also becomes a stable point and hence the pendulum
can make small oscillations about this point too. This dra- The authors would like to thank Deepak Dhar for helpful
matic change in the behavior of the pendulum was expericomments and discussions. M.B. also acknowledges useful
mentally demonstrated by Kapitfa]. conversations with Ashutosh Sharma.
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