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Analytical model for a cooperative ballistic deposition in one dimension
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We formulate a model for a cooperative ballistic deposition~CBD! process whereby the incoming particles
are correlated with those already adsorbed via attractive force. The strength of the correlation is controlled by
a tunable parametera that interpolates the classical car parking problem ata50, the ballistic deposition at
a51, and the CBD model ata.1. The effects of the correlation in the CBD model are as follows. The
jamming coverageq(a) increases with the strength of attractiona due to an ever-increasing tendency of cluster
formation. The system almost reaches the closest packing structure asa→` but never forms a percolating
cluster, which is typical of one-dimensional systems. In the largea regime, the mean cluster sizek increases as
a1/2. Furthermore, the asymptotic approach towards the closest packing is purely algebraic both witha as
q(`)2q(a);a21/2 and withk asq(`)2q(k);k21, whereq(`).1.
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I. INTRODUCTION

The kinetics of a monolayer growth by the deposition
macromolecules and colloidal particles onto solid substra
has been the subject of extensive research for the re
years~see Refs.@1–3# for extensive review!. The reason is
well justified because its importance and significance co
many seemingly unrelated topic in physics, chemistry, b
ogy, and other branches of science and technology. Fro
theoretical point of view, the random sequential adsorpt
~RSA! of a monodisperse particle is one of the simplest m
els that can describe deposition phenomena@4#. In this pro-
cess, particles are deposited randomly, one at each time
with the strong restriction that overlapping is forbidden. Th
can be described by the following algorithm.~i! At each time
step, a random position is chosen from the whole subst
and is assigned to the center of the particle picked for de
sition. ~ii ! If the incoming particle collides with a previousl
adsorbed one, the trial attempt is rejected; otherwise i
adsorbed irreversibly.~iii ! In either case, the time is in
creased by one unit and the steps~i! and ~ii ! are repeated
until the system reaches a state when particles can no lo
be adsorbed. Alternatively, a recursive algorithm can be u
if one is not interested in the kinetic aspects of the proce
The rules for the recursive algorithm are the same as tha
the sequential deposition, except the rule~i! which is re-
placed by the following rule. The number of particles th
make an attempt for adsorption at thenth step are 2n.

One of the virtues of the RSA model is that like ma
statistical physics problems, it is exactly solvable in one
mension in both its continuum and lattice versions for so
specific cases. The continuum version of the model in
dimension~1D! is popularly known as therandom car park-
ing problem and has attracted much attention. Despite
inherent simplicity, it still captures the essential generic f
tures of the process and has proved to describe success
the behavior of many experimental systems, namely, the
sorption of proteins, latex, and colloidal particles@5–7#.
Nevertheless, there have been continuous research effo
include various important physical features to make it m
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realistic and thus covering a wider range of real life situ
tions @8–10#. Along this road, a good deal of progress h
already been achieved and yet we are far away from a c
plete theory. In recent years it has received extra momen
and the number of papers published is a clear testimon
this @3,11–15#.

The most distinctive feature of the RSA model is its ou
right rejection of the particles that fall on an already a
sorbed one. This outright rejection criterion has partia
been lifted by the ballistic deposition~BD! model proposed
by Talbot and Ricci@16,17#, which is best explained in term
of the deposition of disks of diameterm instead of a line
segment@16,17#. It is worth mentioning that the landing
point in the BD model is chosen randomly over the ent
line exactly in the same way as is done for the classical R
model. The only difference between the two models lies
the fact that in the BD model whenever an incoming d
overlaps an already adsorbed one, it is allowed to roll o
the latter disk following the path of the steepest desce
whereas in the RSA model this is rejected. In allowing su
rolling mechanism, the disk can either touch the the glo
minimum ~adsorbing plane! or it may find itself trapped in
the local minimum formed by two or more connected dis
In the former case, the disk is irreversibly attached to the
it rolled over leaving no gaps in between, while in the lat
case the trial attempt is rejected. Both, in the simple RSA
in the BD model, only a short-range hard-core repulsion
the excluded volume effects is taken into account. All form
of long-range interactions between the particles in the
sorbed and adsorbing phases are ignored. There are s
fragmented attempts, though, to include some specific fo
of interactions such as the electrostatic, dipolar, and the
drodynamic interactions@18–20#.

In this paper, we consider a model that includes the
tractive force between the particles in the adsorbing and
adsorbed phase mimicking the long-range interaction. In
der to increase the flexibility of the model, we introduce
parametera that can tune the strength of the attractive forc
This would certainly facilitate the study of the general effe
of the long-range interactions in the whole process. We f
©2003 The American Physical Society09-1
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HASSAN, WESSEL, AND KURTHS PHYSICAL REVIEW E67, 061109 ~2003!
mulate the model in such way that we still can recover
simple RSA results by settinga50, the BD results by set
ting a51, and the mixture of the two~RSA and BD! for 0
,a,1 whena describes the probability with which the pa
ticle that falls onto an already adsorbed one decides to
over it. On the other hand, fora.1, we show that the mode
describes the cooperative ballistic deposition~CBD! instead
of describing the generalized BD model as studied in R
@21#. The strength of the correlation in the CBD model
determined by the strength of the attractive force. No
though, that once a particle collides with an already adsor
one, it follows the rule of the simple BD and hence we cal
the cooperative BD model. Thus, as the strength of inte
tion increases, we expect an increasing rate of succes
adsorption via the roll-over mechanism. This results in a
crease in the density of gaps and in a higher coverage.

Interestingly, the rate equation that governs the dynam
of the CBD model appears to be similar to that for the g
eralized BD model studied by Viotet al. @21#. However, the
physical interpretation ofa, in the CBD model, is completely
different from that offered by Viotet al., where it is taken as
the ratio of probabilities corresponding to two mutually e
clusive events. In fact, we show that one cannot definea as
the ratio of two such probabilities. In addition, we give
exact analytical solution to the CBD model considering
sequential deposition, that is, at each time step only one
attempt is made for deposition. To further support our the
and to gain insightful information on this work, we then u
the recursive algorithm to solve the present problem num
cally where one trial attempt is made for every gap, i.e.,
number of particles that make attempt to be adsorbed a
nth step are 2n. This proved fine for all the aspects of th
problem such as the jamming coverage, number densit
the gaps, and their relations with the strength of attrac
force except for the kinetic aspects of the problem. Intere
ingly, the two processes, namely, the sequential depos
and the recursive algorithm, helped to understand the p
lem better than it would have been otherwise.

The rest of the paper is organized as follows. First,
give a general explanation of the model and a means to tr
late it into a simple and well-known BD model. Our ide
are backed up and well supported by direct numerical sim
lations, which led to a better understanding of the phys
nature of the system. Second, we present extensive re
showing the asymptotic approach of the coverage towa
the jamming limit in terms of the various parameters
volved in the processes.

II. COOPERATIVE BALLISTIC DEPOSITION MODEL

We consider a system that consists of a reservoir of p
ticles having diameterm lying in the immediate vicinity of a
1D substrate. The adsorbing particles we may consider t
in the gas or in the fluid phase and arrive in the adsorb
plane through the Brownian motion. As soon as a part
comes into contact with a gap large enough to accommo
it, it is then adsorbed immediately and irreversibly. On t
other hand, the incoming particle that touches an alre
adsorbed one, is allowed to follow the BD rules to form
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monolayer. However, for clarity reason, we postpone disc
sions on how we take into account the attractive interacti
Perhaps it is worth mentioning that any trial attempt th
results in the rejection in anyway may be considered to
bounced back to the bulk and may lose the memory of
history. Therefore, it may mimic the deposition via th
Brownian motion.

The simplicity of the 1D problem lies in the fact tha
every successful deposition of a particle on a given gap
vides it into smaller gaps having the same geometry as
parent gap. It is thisshielding property, found only in 1D,
that we shall use to gain further insight into the problem a
to tackle it analytically. For the sake of simplicity, we assum
that the daughter gaps are uncorrelated, irrespective of
island size separating the gaps from their neighbors, so
we can treat each gap as an independent entity. We fur
assume that each roll-over motion is completed prior to
next trial attempt for deposition.

At this point, it is useful to discuss first the classical RS
and the simple BD model before introducing the cooperat
BD model. In the classical RSA, an incoming particle of si
m is adsorbed successfully in a gap of sizex, if the center of
the incoming particle arrives in any place butm/2 away from
either ends of a gap. This means that only (x2m) of a given
gap of size, sayx, is accessible for adsorption, which w
have illustrated in Fig. 1~a!. In the BD model, on the othe
hand, those particles that fall on an already adsorbed
may reach the substrate via the roll-over motion. The de
sition via rolling is successful if the center of the incomin
particle falls within a distance ofm/2 on either side of both
ends, otherwise it is rejected. It is then adsorbed on the
spective edge creating a new gap of size (x2m). That is, for
a given gapx, the total position accessible to a new arrival
(x1m), which is shown in Fig. 1~a!. That is, any point of
size x1m can be occupied with an equal probability. No

FIG. 1. Schematic illustration of the model in different situ
tions. The shaded regions betweenAB and CD in ~a! have local
minimums and play no other role except for kinetic reasons.
therefore eliminate all such shaded regions so that we have a sy
where all the gaps are separated from their neighbors by only
disk as shown in~b!. The dotted lines in~b! represent the probabil
ity distribution in different regions of a given gap. The steep
descent path in~c! is artificially increased by using the idea of
virtual disk at the expense of lowering the height of probabil
distribution so that every point ofx1(2a21)m is now equally
likely to be chosen by the trial attempt.
9-2
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ANALYTICAL MODEL FOR A COOPERATIVE . . . PHYSICAL REVIEW E 67, 061109 ~2003!
that any particle dropping at any point within the shad
regionsAB or CD are, in fact, trapped due to the local min
mum. These particles will never reach the global minimu
or the adsorbing substrate and hence they may be consid
to be rejected. For the sequential deposition, when the
come by a trial attempts results in rejection, the time ste
increased by one unit@11#. However, if we are not intereste
in the temporal or the kinetic aspect of the system, we
safely delete the shaded regions as if these did not e
since they play no role in determining the jamming covera
or the number density of gaps. In such a case, we may
sume that the neighboring gaps are separated by only
disk as shown in Fig. 1~b!. We can thus define each gap as
independent isolated interval bordered on either end b
semidisk so that if we connect the two remote ends t
would then form a ring with one particle at the joint.

We are now in a position to introduce the long-range
tractive force among the incoming particles and the partic
in the adsorbed phase. We may assume that the particle
still in the gas or in the liquid phase and that they arrive
the substrate through the Brownian motion. However, in
present problem, each adsorbed particle attracts the incom
particles towards its center. The question is how can we
corporate such attractive force in a tractable way? First,
need to understand the effects of such an attractive force.
most significant one is that each adsorbed particle will te
to attract the incoming particle towards it. This would imm
diately break the nature of the uniform probability density
the problem as is the case for the BD model since the inc
ing particles are more likely to land on an already adsor
one than on a gap. For the sake of simplicity, we conside
square-well-type attractive force of width 2m around the
center of each adsorbed particle. We therefore have two
tinct probability distribution~PD! regions as indicated in Fig
1~b!. First, theforce-free region(x2m), where the strength
of the attractive force is strictly zero. Second, theforce field
region of width 2m about the center of each adsorbed p
ticle, where the adsorbed particle exerts an attractive forc
the incoming particles. As a result, any point in this region
more likely to be selected than the points in the force-f
region, which is indicated by the dotted lines in Fig. 1~b!.
The flat PD implies that all the points within the respecti
regions have the samea priori probability.

It is worth mentioning that the simple BD model refers
the case where both regions have the same height in
which is flat in nature and hence the whole substrate re
sents the zero force field or the zero attractive force. Now
soon as we switch on the attractive force, the height of
PD around each adsorbed particle of width 2m will increase
to a degree depending on the strength of the attractive fo
We then attempt to translate such a problem into a sim
BD model, which is the key to the analytical solvability o
the problem. This can be done in the following way. No
that we can lower the height of the PD by increasing
width but keeping the total area unchanged. In this way,
can make the whole system have the same height of the
and treat it like the simple BD model where an incomi
particle can land anywhere with an equal probability inclu
ing the disks that are already occupied as represented in
06110
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1~c!. In other words, we can describe it as follows. Prior
selecting a position for an incoming particle, we replace
size of the deposited particles used for defining the gaps
virtual disk of diameterR5(2a21)m, without altering the
gap size. In this way, we hypothetically enlarge the cro
section of collision of an incoming particle with an alread
adsorbed one. Notice the role of the attractive force
which there will be an extra number of incoming particles
fall on an already adsorbed particle. The increased cross
tion 2m(a21).0 provideda.1 would count exactly the
same number of additional collisions as it would have be
by the potential in question. Once the position for the n
trial deposition is chosen, we can immediately return to
system with disks having diameterm and proceed according
to the simple BD rules as depicted in Fig. 2. What we ha
done is that we have artificially increased the probabi
with which an incoming particle may collide with an alread
adsorbed disk, thus enhancing the probability of adsorp
via the rolling mechanism and mimicking the effect of th
attractive force. One can thus expect an enhanced adsor
probability near the two extreme ends of each gap as
virtual disk size increases and, in the limitR→`, we can
only expect the adsorption via only the rolling mechanis
except in the very early stage where the virtual diameter
the gap size may be of the same order in size.

III. ANALYTICAL SOLUTION OF THE SEQUENTIAL
CBD MODEL

To address the CBD model analytically, we adopt t
well-studied rate equation approach of the gap size distr
tion function or concentrationc(x,t). The quantityc(x,t)dx
is defined as the number of gaps at timet in the size range
betweenx andx1dx. Within this rate equation approach,
is beyond our scope to add the particle-particle interaction
any type directly into the rate equation as it is based on
master equation, which is typical of nonequilibrium statis
cal physics. We therefore use the possible effect of such
teraction and scale it in terms of the size of the deposit
particles. The most immediate consequence of the attrac
interaction as we already mentioned is that the incom
particles will be more likely to fall on an already adsorb
one than on any gap. Let us assume now that the depos

FIG. 2. Schematic illustration of the rules for the cooperat
ballistic deposition model. The incoming disk is adsorbed direc
as shown in~i! if it is dropped within (x2m). The deposition via
the rolling mechanism is depicted in~ii !. Here, any disk that falls on
the steepest descent path of the virtual disk,OP, is assumed to be
dropping on its corresponding equivalent point of the real part
QP from where it can successfully reach the global minimum.
9-3
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HASSAN, WESSEL, AND KURTHS PHYSICAL REVIEW E67, 061109 ~2003!
particle, which is adsorbed successfully on the substrate
stantaneously grows to a disk of a larger size having dia
eter (2a21)m. This happens without occupying any spa
of the substrate. That is, the extra spaces 2(a21)m required
for the growth of the deposited particles are assumed to
hypothetical as they do not destroy the size of the gap
ated by each deposition event. The whole thing happen
such a way, as if, only the incoming particles see su
growth and hence plays no role in calculating the cover
and the number density of the gaps. The larger they grow,
larger is the steepest descent path, which will essentially
to a higher number of particles falling on the particles tho
are already adsorbed. The excess size 2(a21)m thus takes
care of the attractive force in an appropriate manner. T
kinetics of adsorption of the monodisperse particles can t
be described by the following set of rate equations:

]c~x,t !

]t
52~x2m!c~x,t !12E

x1m

`

c~y,t !dy

12am$c~x1m,t !2c~x,t !% ~1!

for x>m and

]c~x,t !

]t
52E

x1m

`

c~y,t !dy12amc~x1m,t ! ~2!

for x,m. The above rate equations are mean field in nat
as the fluctuations and correlations are ignored. The
equation approach is based on the assumption that the
ation and annihilation of gaps are independent of the siz
the neighboring gaps. The first two terms of Eq.~1! and the
first term of Eq.~2! are the same as that of the simple RS
process and thus describe the creation and destruction
gap of sizex due to the direct adsorption of sizem on size
y>x1m or on sizex, respectively. The remaining terms
both equations also describe the creation and destructio
gaps but via a rolling mechanism following the steepest
scent path allowing to travel the maximum linear distan
am, wherea is a dimensionless constant number that we
tune. The factor 2 in the integral terms accounts for the f
that any of the two new gaps created upon a direct depos
on the gap sizey>x1m can be of sizex; whereas the sam
factor in the remaining terms takes into account that a ga
sizex can be created or destroyed from either end by ads
tion. In order to understand the role ofa, it is convenient to
rewrite Eq.~1! as

]c~x,t !

]t
52$x1~2a21!m%c~x,t !12E

x1m

`

c~y,t !dy

12amc~x1m,t !. ~3!

The$x1(2a21)m% term in the above equation is the ke
to understand the role ofa. Note that by settinga50 we
recover the classical RSA case where (x2m) of a given gap
x is accessible for adsorption, which is consistent with o
discussion in the preceding section. Similarly,a51 de-
scribes the simple BD model where the total positions acc
sible to a new arrival are (x1m) which is again consisten
06110
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~see Fig. 1!. However, fora.1 $x1(2a21)m% means that
a given gap of sizex is bounded by at least two semidisks
diameterR5(2a21)m while the adsorbing particles are o
size m,R. That is, any particle that falls within a distanc
am from either end of$x1(2a21)m% effectively will col-
lide with the virtual disk. Every point of the steepest desc
of the virtual pathOP in Fig. 2 has its corresponding equiva
lent point on the real pathQP. Therefore, an incoming par
ticle falling on the virtual path is assumed as if it were fallin
on the exact equivalent position of the real path and v
versa.

To solve Eq.~1! we seek a trial solution of the following
form

c~x,t !5A~ t !e2(x2m)t, ~4!

where A(t) is still an undetermined quantity fixed by th
initial condition. Let us assume a monodisperse initial co
dition c(x,0)5d(x2L)/L, so that we have

lim
L→`

E
0

L

c~x,0!dx50, lim
t→0

E
0

`

xc~x,t !dx51. ~5!

Substituting the trial solution into Eq.~1!, we obtain the
following differential equation forA(t):

d ln A~ t !

dt
5

2e2mt

t
12ae2mt. ~6!

Solving it, satisfying the initial conditions, we get

A~ t !5t2F~a,mt!, ~7!

where the auxiliary functionF(a,mt) is defined as

F~a,mt!5expF22E
0

mt12e2u

u
du12a~12mt2e2mt!G .

~8!

To obtainc(x,t) for x,m, we substitute the solution of Eq
~1! into Eq. ~2! and then upon a direct integration, we get

c~x,t !52E
0

t

u~11amu!F~a,mu!e2xudu. ~9!

The solutionsc(x,t) can provide a complete analytical de
scription of the process including its kinetic aspect. All w
need now is to find useful ways of using these solutions
computing various physical quantities of interest such as
jamming coverage, the mean number density, the mean c
ter size, etc.

IV. NUMERICAL SIMULATION OF THE RECURSIVE
CBD MODEL

To test the physical description of our CBD model, w
have simulated it on a computer. One obvious constrain
the simulation is, of course, the finite-size effect. Howev
for a sufficiently large substrate in comparison to the dep
iting particles, the finite-size effect can be made sufficien
9-4
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small. To simplify the simulation, we use the approximati
mentioned in the preceding section that the gaps are un
related and can be treated independently. Furthermore
simplify the problem we use a recursive algorithm. The si
plicity of the problem is achieved at the expense of the
netic aspect of the system. In brief, the description of
recursive scheme of the simulation is as follows. Let us
sume that the initial gap of unit interval@0,1# is bordered on
both ends by semidisks of radius (2a21)m/2 as shown in
Fig. 3. We then generate a random numbern from the inter-
val @2(2a21)m/2,11(2a21)m/2# to assign to the cente
of the incoming particle. The incoming particle is then a
sorbed directly, creating two new smaller intervals ifn
P@m/2,12m/2#. Otherwise, the disk is adsorbed on one
the edges of@0,1# creating only one new gap of interva
@m,1# if nP@2(2a21)m/2,m/2# or of interval @0,12m# if
nP@12m/2,11(2a21)m/2#, respectively. In the cas
when the disk is adsorbed in one of the two edges, we
crease the counter that provides the information on the m
cluster size of the system. We then continue the process
suming each new gap is again bordered by virtual semid
and treat them in the same way as the first step until we h
no more gaps of size>m. The number of particles thu
deposited at thenth step is simply 2n. Finally, we add all the
gaps of size less thanm and, using this, we can immediate
calculate the jamming coverage and the mean cluster s
We have performed the simulation with substrate s
;106m–108m within the interval@0,1# and found an excel-
lent match with the corresponding analytical results up
several digits. We also noticed that increasing the subst
size by decreasing them value only contributes to a highe
order precision as expected. The simulation results are a
aged over 500 different realizations and are shown by
symbols (3) along with the theoretical results shown b
solid lines in various plots where appropriate.

V. RESULTS AND ANALYSIS

It is worth mentioning here that only the adsorbed p
ticles are enlarged keeping the size of the gaps unchan
The fraction of the line covered by the adsorbing particles
the coverageu(a,t) at different instants of time can therefo
be defined as

u~a,t !512E
0

`

xc~x,t !dx. ~10!

FIG. 3. Schematic illustration of the recursive simulati
scheme of the CBD model.
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The number density of gaps, on the other hand, is defined
the following relation:

N~a,t !5E
0

`

c~x,t !dx. ~11!

However, we find it more convenient to handle their ra
equation rather than their definition itself. The kinetic equ
tion for the coverage is

du~a,t !

dt
5mE

m

`

$x1m~2a21!%c~x,t !dx5F~a,t !.

~12!

Here, quantityF(a,t) is the fraction of the substrate acce
sible to a new particle at a given timet. The kinetic equation
for the number density, on the other hand, is

dN~a,t !

dt
5E

m

`

~x2m!c~x,t !dx. ~13!

The above two equations can be combined together to ob

du~a,t !

dt
5m

dN~ t !

dt
12amE

m

`

c~x,t !dx. ~14!

Note that, in the simple RSA, one gap corresponds to
particle and thus we haveu(0,t)5mN(0,t) reflecting the fact
that the average particle size is the same as the size o
adsorbing particles. However, in the present case, fora.0,
the second term of the above equation describes the clu
formation. That is, the first term on the right-hand side of E
~13! takes into account the direct deposition while the eff
of the rolling mechanism is described by the second te
Using the solution for the appropriate boundary in Eq.~12!
yields

u~a,t !5E
0

mt

F~a,u!~112au!du. ~15!

This can provide all the information about kinetic aspects
the process, namely, how the coverage evolves in time.
of the characteristics of the deposition process is that
system reaches a state of deadlock in a finite time w
particles can no longer be adsorbed. This is typically kno
as the jamming limit and the exact critical time to reach su
a state should depend ona. However, to date there do no
exist any theoretical means to pin down the exact criti
time for reaching the jamming limit. Nevertheless, we c
safely calculate the coverage in the jamming limit as

q~a!5 lim
t→`

u~a,t !. ~16!

The jamming coverage has been of special interest in
study of the deposition phenomena as it can uniquely ch
acterize the structure of the resulting monolayer. From
exact expression for the coverage, Eq.~15!, it has been of
interest to know how the coverageu(a,t) approaches the
corresponding jamming limitq(a). We find that beyond the
9-5
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transient behavior, the system reaches its asymptotic co
age, namely, the jamming limit exponentially, with a dec
constant 2a, multiplied by an algebraic prefactort21

q~a!2u~a,t !;t21e22at, ~17!

which was also reported in Ref.@21#. Obviously, for the clas-
sical RSA (a50), we recover the power-law behavio
which is also known as Feder’s law@22#. Here fora.0, the
exponential approach towards the jamming limit reflects
fact that the increasing number of particles that land on
already adsorbed particles are successfully accommod
via rolling. Another interesting point to check is how th
jamming limit varies as we increase the strength of inter
tion a. In other words, we want to see how the jamming lim
changes as we increase the degree of correlation betwee
particles in the adsorbed and adsorbing phases. Figu
shows a sharp rise in the jamming coverage at lowa and a
slow rise towards the closest packing in the largea regime.
In an attempt to quantify the slow regime we plot ln@q(`)
2q(a)# against ln(a) in Fig. 5 and find that the jamming

FIG. 4. Jamming coverage as a function ofa that measures the
strength of attraction:q(a) vs a.

FIG. 5. The linear fits of ln@q(`)2q(a)# vs ln(a) having slope
21/2 in the largea regime reveals that the convergence of t
jamming coverage towards the closest packing is power law
nature.
06110
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coverage converges towards the closest packing obeyin
power law

q~`!2q~a!;a21/2, ~18!

whereq(`)'1. It is important to note here that the syste
never reaches a complete closest packing (q51) even for
a→`. This is due to the fact that the substrate size too is
the same order as that of the size of the virtual disk, he
there is always a nonzero probability for a direct deposit
at least in the early stage. We attempted to check it in
computer choosing both the virtual diameter and the ini
substrate size to be of the same order and large enoug
minimize the finite-size effect. This is exactly the case d
scribed by the analytical model as we leta→`. In doing so
we never find a cluster covering the whole substrate.
checked it over and over again by increasing the subst
size and the virtual disk size up to;1010m. Nevertheless,
neither the analytical solution nor the simulation could gi
us an exact estimate forq(`).

We now intend to obtain an exact expression for the nu
ber density by substituting the solutionc(x,t) for x.m into
Eq. ~13!, which yields

N~a,t !5

E
0

mt

F~a,u!du

m
. ~19!

The above relation for the number density immediately i
plies that it depends on the size of the adsorbing partic
Here it is worth mentioning that the mean number density
the classical RSA (a50) is simply the coverage divided b
the size of the adsorbing particles. In this case, the m
number density increases linearly with the coverage as t
proceeds, having a slopem during the process~see Fig. 6!.
However, as soon as a particle that fell on a previously
sorbed one can roll over the latter, the linear relation betw
N(a,t) andu(a,t) is immediately ceased and it is replace
by a nonlinear relation~see Fig. 6!. Therefore, the mere

in

FIG. 6. Time dependence of the number density as a functio
the coverage. The curves from top to bottom representsN(a,t) vs
u(a,t) for a50, 1, 5, and 10.
9-6
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knowledge of one of the two is not sufficient to obtain t
other. This is due to the fact that the mean cluster size
different from the size of the adsorbing particle as the sys
keeps producing connected clusters of different sizes
pending on the value ofa. Figure 6 shows that fora.0 the
number density grows linearly at a very low coverage. T
is due to the fact that at an initial stage the incoming partic
hardly encounter any preoccupied species and therefore
exists almost no cluster. However, as the substrate
crowded, it is evident from Fig. 6 that the mean numb
density increases in a nonlinear manner and the strengt
nonlinearity increases with increasinga. Therefore, to obtain
the coverage~the number density! from the number density
~coverage!, we need to know the mean cluster size. The
pression for the coverageu(a,t) and the mean number den
sity N(a,t) at different instants of time can give us an es
mate of how the mean cluster size is defined, i.e.,

s~ t !5
u~a,t !

N~a,t !
~20!

grows in time and with the strength ofa. We find that for a
given size of the adsorbing species, the mean cluster siz
the jamming limit is

lim
t→`

u~a,t !

N~a,t !
5s5

E
0

`

F~a,u!~112au!du

E
0

`

F~a,u!du

m. ~21!

Obviously, like the mean number density, the mean cl
ter size should depend on the size of the adsorbing part
However, the ratio between the twok5s/m remains constan
in the jamming limit and therefore it is useful to call it th
universal mean cluster size. It is worth mentioning here t
for the simple RSA we getk51 and hence the mean clust
size is the same as that of the size of the adsorbing spe
However, fora.0 we find that the universal mean clust
k.1 andk increases monotonically with increasinga. Fur-
thermore, Fig. 7 reveals that in the largea regime the uni-

FIG. 7. The linear fits of the plot of ln(k) vs ln(a) in the largea
regime with slope 1/2 show that the mean cluster size increase
;a1/2.
06110
is
m
e-

s
s
ere
ts
r
of

-

in

-
le.

t

es.

versal mean cluster sizek increases with the strength of a
tractive force as

k;a1/2. ~22!

The probability of adsorption of particles without overla
ping with any preadsorbed particle for alla decreases with
time; however, the strength of such decrease gets sharpe
sharper asa increases. In the limita→` the virtual disk
sizes are of the same order as that of the substrate. There
at a very early stage the adsorption of particles by dir
deposition or the adsorption by the rolling mechanism ha
the same probability. Thus, the system never reaches a
of closest packing but of almost closest packing. The ja
ming coverage thus increases with increasingk ~see Fig. 8!.
We find that like theq(a) vs a, the approach of the jamming
limit towards almost closest packing againstk also follows a
power-law form but with a different exponent. As shown
Fig. 9, the plot ofq„k(a→`)…2q(k) vs k in the logarithmic
scale along both axes is well fitted by a straight line w
slope 1 and hence

q„k~a→`!…2q~k!;k21, ~23!

whereq„k(a→`)…'1.

as
FIG. 8. The jamming coverage as a function of the mean clu

sizek.

FIG. 9. The linear fits of ln@q(`)2q(a)# vs ln(k) in the largek
regime show that the jamming coverage increases in a power
form ;k21.
9-7
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VI. DISCUSSION

We first discuss various possible interpretations for diff
ent regions constituted by different values ofa of the CBD
model. It is interesting to note that whena51, the size of
the virtual and the real disk coincides and hence every p
of the substrate bear the same probability of occupation
the incoming particle. In this case, particles that fall on
already adsorbed one may travel up to a linear distance o
own size m via the rolling motion following the steepes
descent path. The particle can either be trapped in the l
minimum or it can reach the global minimum. In the form
case, it is rejected while in the latter case it is adsorb
irreversibly touching that it just rolled over, provided there
at least one gap to accommodate it. However, in either c
the time is increased by one step. The casea51 thus de-
scribes the well studied BD model. The situation for 0,a
,1 is also interesting as it describes a mixed process c
posed of the simple RSA and the BD process, which, in fa
should be termed as the generalized ballistic deposition
cesses. In this case thea parameter describes the probabili
with which the adsorbing particle decides to roll over tha
falls on to. Such a rolling mechanism can be assumed to
due to the gravitational pull towards the adsorbing surfa
The above two situations together, i.e., 0,a,1, constitute
the constituents of the generalized ballistic deposition p
cesses. However, for 1,a,` the basic rules are still the
same as for the simple BD model, but it also incorporate
square-well-type attractive interaction between the elem
of the adsorbed phase and the incoming particles.

It is worth mentioning that Viotet al. made an attempt to
generalize the ballistic deposition model and gave the
lowing definition @21#. The disks having the same diamet
are dropped uniformly and sequentially one at each t
step. The disks can either reach the adsorbing plane or fa
an already adsorbed disk. In the former case, the trial atte
is retained with a probabilityq5(12p). In the latter case
on the other hand, the trial disk follows the path of the ste
est descent over the disk it encountered. The disk is t
adsorbed with probabilityp, provided the particle can reac
the global minimum by the roll-over motion; otherwise it
trapped in an elevated position and is rejected. This is
actly the case defined in the mixed processes of both R
and BD~i.e., the 0,a,1 regime!. However, Viotet al. then
defined thea parameter asa5p/q. There is a clear mis-
match between the definition of the model in words and
definition of a. We would like to point out anyway, that on
cannot definea5p/q due to the following reasons. We ca
rewrite Eqs.~1! and ~2! for a5p/q upon multiplying both
equations by (12p).

q
]c~x,t !

]t
5qH 2~x2m!c~x,t !12E

x1m

`

c~y,t !dyJ
12pm$c~x1m,t !2c~x,t !% ~24!

for x>m and

q
]c~x,t !

]t
52qE

x1m

`

c~y,t !dy12pmc~x1m,t ! ~25!
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for x,m. If we then setq50 in these equations, we fin
that the remaining terms alone are incapable of describ
any meaningful physical process. The point to emphas
here is that the roll-over mechanism comes after the t
attempt for deposition is made. That is, the trial attempt
deposit a particle is the primary event of the process, wh
can only be described by the following equation:

]c~x,t !

]t
52u~x2m!~x2m!c~x,t !12E

x1m

`

c~y,t !dy,

~26!

where u(s) is the Heaviside step function The roll-ove
mechanism can only follow thereafter. The terms describ
the trial attempts cannot bear any probability. Therefore,
two events, the direct adsorption and the deposition via r
ing, are not mutually exclusive events and hence one can
define the parametera5p/(12p).

The model we have presented in this paper is solved
actly by means of a kinetic equation approach based on
quential deposition. In order for further support, we solved
by the numerical simulations based on the recursive a
rithm. The two approaches, sequential and recursive, turn
to be highly rewarding in the sense that these helped not o
to confirm the validity of the mean-field approximation, b
also to shed a deeper insight into the nature of the probl
The basic principle of the model is the same as that of
simple ballistic deposition process as we mentioned ear
Nevertheless, we have extended the simple BD by addin
certain degree of correlation between the adsorbing parti
and those already adsorbed. To increase the flexibility of
model, we allowed a parametera that can tune the strengt
of the correlation which is induced by the attractive forc
Instead of using the attractive force directly, we have sho
a way of transforming it into a virtual situation, which is the
just the simple BD model.

The most significant consequence of the presence of
attractive force is that it results in an increased packing fr
tion as well as the mean cluster size due to the formation
the higher order connected clusters. Moreover, the jamm
coverage increases with the increasing degree of the stre
of the attractive force. Similar results have also been rece
reported by Pastor-Satorras and Rubi@13#, who studied a
model of correlated sequential adsorption by numeri
simulation both in one and two dimensions. However, unl
the square-well-type PD studied here, they used a Gaus
and exponential-type PD around the center of each adso
particle. Nevertheless, despite the apparent differences in
detailed nature of the forces or in the PD, the qualitat
behavior seems remarkably identical to what we have fo
in this paper. Pastor-Satorras and Rubi too observed the s
trend of the increase of jamming coverage as well as
mean cluster size. In addition, they too reported the appro
towards the closest packing in the limit where the correlat
is maximal. This reveals that the qualitative effect of t
attractive force is insensitive to the detailed nature of
attractive force. However, in addition to solving the mod
analytically, we were able to quantify the effect of the attra
tive force. To this end, we have shown that in the stro
9-8
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force regime the convergence towards the closest pac
against the strength of the attractive force follows a pow
law relationq(`)2q(a);t21/2. Perhaps, the emergence
such a power-law behavior implies a universal nature of
phenomena. It also includes the exponent, in the sense th
is independent of the detailed nature of the attractive fo
However, at this point it is just a conjecture and we intend
investigate it in our future work.

VII. CONCLUSION

In this paper, we have presented an extension of
simple BD model by incorporating an attractive force b
tween the elements of the adsorbed phase and the inco
particle. The most significant consequence of the presenc
the attractive force is the increase in packing fraction or
jamming coverage of the resulting monolayer as we incre
the strength of the attractive forcea. This is manifested
through the increase in the mean cluster sizek, which in-
creases as;a1/2 in the strong force field regions. We hav
shown that the system exhibits a power-law approach of
ids

P

A

.-

e
s.

06110
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jamming coverage towards the closest packing both ina and
k but with different exponents;a21/2 and ;k21, respec-
tively, except for the weak field. It is important to note th
although the jamming coverage increases with the degre
correlationvis-a-visthe mean cluster size, we can never c
ate one single connected cluster spanning the whole subs
and giving the coverageq51, which is indeed a typica
character to all 1D problems. Nonetheless, it indicates
potential structural phase transition in higher dimensions
has been indeed observed in Ref.@13#. Finally, we found that
for a given set of rules various aspects of the problem exc
the temporal behavior are independent of how many parti
arrive on the substrate at each step. It reveals the versa
of the adsorption phenomena.
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