PHYSICAL REVIEW E 67, 061109 (2003
Analytical model for a cooperative ballistic deposition in one dimension
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We formulate a model for a cooperative ballistic depositiGBD) process whereby the incoming particles
are correlated with those already adsorbed via attractive force. The strength of the correlation is controlled by
a tunable parametex that interpolates the classical car parking problenaa, the ballistic deposition at
a=1, and the CBD model aa>1. The effects of the correlation in the CBD model are as follows. The
jamming coverage(a) increases with the strength of attract@mdue to an ever-increasing tendency of cluster
formation. The system almost reaches the closest packing structare>asbut never forms a percolating
cluster, which is typical of one-dimensional systems. In the largggime, the mean cluster sikéncreases as
a2 Furthermore, the asymptotic approach towards the closest packing is purely algebraic bathawith

q(«)—q(a)~a 2 and withk asq(=)—q(k)~k %, whereq()=1.
DOI: 10.1103/PhysReVvE.67.061109 PACS nuni)er05.20.Dd, 02.50-r, 68.43—h
[. INTRODUCTION realistic and thus covering a wider range of real life situa-

tions [8—10]. Along this road, a good deal of progress has

The kinetics of a monolayer growth by the deposition ofalready been achieved and yet we are far away from a com-
macromolecules and colloidal particles onto solid substrateplete theory. In recent years it has received extra momentum
has been the subject of extensive research for the receand the number of papers published is a clear testimony to
years(see Refs[1-3] for extensive review The reason is this[3,11-15.
well justified because its importance and significance cover The most distinctive feature of the RSA model is its out-
many seemingly unrelated topic in physics, chemistry, biol+ight rejection of the particles that fall on an already ad-
ogy, and other branches of science and technology. From sorbed one. This outright rejection criterion has partially
theoretical point of view, the random sequential adsorptiorbeen lifted by the ballistic depositiofD) model proposed
(RSA) of a monodisperse particle is one of the simplest modby Talbot and Ricc[16,17], which is best explained in terms
els that can describe deposition phenomgHaln this pro-  of the deposition of disks of diameten instead of a line
cess, particles are deposited randomly, one at each time stegggment[16,17]. It is worth mentioning that the landing
with the strong restriction that overlapping is forbidden. Thispoint in the BD model is chosen randomly over the entire
can be described by the following algorith(i). At each time  line exactly in the same way as is done for the classical RSA
step, a random position is chosen from the whole substratmodel. The only difference between the two models lies in
and is assigned to the center of the particle picked for depathe fact that in the BD model whenever an incoming disk
sition. (i) If the incoming particle collides with a previously overlaps an already adsorbed one, it is allowed to roll over
adsorbed one, the trial attempt is rejected; otherwise it ishe latter disk following the path of the steepest descent,
adsorbed irreversibly(iii) In either case, the time is in- whereas in the RSA model this is rejected. In allowing such
creased by one unit and the stepsand (ii) are repeated rolling mechanism, the disk can either touch the the global
until the system reaches a state when particles can no longeatinimum (adsorbing planeor it may find itself trapped in
be adsorbed. Alternatively, a recursive algorithm can be usethe local minimum formed by two or more connected disks.
if one is not interested in the kinetic aspects of the procesdn the former case, the disk is irreversibly attached to the one
The rules for the recursive algorithm are the same as that fdt rolled over leaving no gaps in between, while in the latter
the sequential deposition, except the riile which is re-  case the trial attempt is rejected. Both, in the simple RSA and
placed by the following rule. The number of particles thatin the BD model, only a short-range hard-core repulsion via
make an attempt for adsorption at thth step are 2. the excluded volume effects is taken into account. All forms

One of the virtues of the RSA model is that like many of long-range interactions between the particles in the ad-
statistical physics problems, it is exactly solvable in one di-sorbed and adsorbing phases are ignored. There are some
mension in both its continuum and lattice versions for somdragmented attempts, though, to include some specific forms
specific cases. The continuum version of the model in onef interactions such as the electrostatic, dipolar, and the hy-
dimension(1D) is popularly known as theandom car park-  drodynamic interactiongl8-20.
ing problem and has attracted much attention. Despite its In this paper, we consider a model that includes the at-
inherent simplicity, it still captures the essential generic featractive force between the particles in the adsorbing and the
tures of the process and has proved to describe successfullylsorbed phase mimicking the long-range interaction. In or-
the behavior of many experimental systems, namely, the adier to increase the flexibility of the model, we introduce a
sorption of proteins, latex, and colloidal particle5—7]. parameten that can tune the strength of the attractive forces.
Nevertheless, there have been continuous research efforts Thiis would certainly facilitate the study of the general effect
include various important physical features to make it moreof the long-range interactions in the whole process. We for-
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mulate the model in such way that we still can recover the
simple RSA results by setting=0, the BD results by set-
ting a=1, and the mixture of the tw@RSA and BD for O
<a<1 whena describes the probability with which the par-
ticle that falls onto an already adsorbed one decides to roll
over it. On the other hand, f@a>1, we show that the model C) ' ' C) E— (®)
describes the cooperative ballistic depositi@BD) instead

of describing the generalized BD model as studied in Ref.
[21]. The strength of the correlation in the CBD model is
determined by the strength of the attractive force. Note, | | { i
though, that once a patrticle collides with an already adsorbed = S < ©
one, it follows the rule of the simple BD and hence we callit ™ {x+(Q2a-Dm}
the cooperative BD model. Thus, as the strength of interac- g1, 1, schematic illustration of the model in different situa-

tion increases, we expect an increasing rate of successfiybns. The shaded regions betweas and CD in (a) have local
adsorption via the roll-over mechanism. This results in & deminimums and play no other role except for kinetic reasons. We
crease in the density of gaps and in a higher coverage. therefore eliminate all such shaded regions so that we have a system
Interestingly, the rate equation that governs the dynamicghere all the gaps are separated from their neighbors by only one
of the CBD model appears to be similar to that for the gen-disk as shown irib). The dotted lines irtb) represent the probabil-
eralized BD model studied by Vidadt al. [21]. However, the ity distribution in different regions of a given gap. The steepest
physical interpretation od, in the CBD model, is completely descent path irc) is artificially increased by using the idea of a
different from that offered by Vioet al, where it is taken as virtual disk at the expense of lowering the height of probability
the ratio of probabilities corresponding to two mutually ex- distribution so that every point ot+(2a—1)m is now equally
clusive events. In fact, we show that one cannot dedimes  likely to be chosen by the trial attempt.
the ratio of two such probabilities. In addition, we give an
exact analytical solution to the CBD model considering thernono|ayer_ However, for C|arity reason, we postpone discus-
sequential deposition, that is, at each time step only one trialions on how we take into account the attractive interaction.
attempt is made for deposition. To further support our theoryerhaps it is worth mentioning that any trial attempt that
and to gain insightful information on this work, we then useresults in the rejection in anyway may be considered to be
the recursive algorithm to solve the present problem numerihounced back to the bulk and may lose the memory of its
cally where one trial attempt is made for every gap, i.e., thenistory. Therefore, it may mimic the deposition via the
number of particles that make attempt to be adsorbed at therownian motion.
nth step are 2. This proved fine for all the aspects of the  The simplicity of the 1D problem lies in the fact that
problem such as the jamming coverage, number density @very successful deposition of a particle on a given gap di-
the gaps, and their relations with the strength of attractivesides it into smaller gaps having the same geometry as the
force except for the kinetic aspects of the problem. Interestparent gap. It is thishielding property found only in 1D,
ingly, the two processes, namely, the sequential depositiothat we shall use to gain further insight into the problem and
and the recursive algorithm, helped to understand the proho tackle it analytically. For the sake of simplicity, we assume
lem better than it would have been otherwise. that the daughter gaps are uncorrelated, irrespective of the
The rest of the paper is organized as follows. First, weisland size separating the gaps from their neighbors, so that
give a general explanation of the model and a means to trangre can treat each gap as an independent entity. We further
late it into a simple and well-known BD model. Our ideas assume that each roll-over motion is completed prior to the
are backed up and well supported by direct numerical simunext trial attempt for deposition.
lations, which led to a better understanding of the physical At this point, it is useful to discuss first the classical RSA
nature of the system. Second, we present extensive resuligid the simple BD model before introducing the cooperative
showing the asymptotic approach of the coverage towardgD model. In the classical RSA, an incoming particle of size
the jamming limit in terms of the various parameters in-mis adsorbed successfully in a gap of sizéf the center of
volved in the processes. the incoming particle arrives in any place ot2 away from
either ends of a gap. This means that ondy-(m) of a given
gap of size, say, is accessible for adsorption, which we
have illustrated in Fig. ®). In the BD model, on the other
We consider a system that consists of a reservoir of pahand, those particles that fall on an already adsorbed one,
ticles having diametem lying in the immediate vicinity of a may reach the substrate via the roll-over motion. The depo-
1D substrate. The adsorbing particles we may consider to bgtion via rolling is successful if the center of the incoming
in the gas or in the fluid phase and arrive in the adsorbingparticle falls within a distance af/2 on either side of both
plane through the Brownian motion. As soon as a particleends, otherwise it is rejected. It is then adsorbed on the re-
comes into contact with a gap large enough to accommodatgpective edge creating a new gap of sixe-(n). That is, for
it, it is then adsorbed immediately and irreversibly. On thea given gapx, the total position accessible to a new arrival is
other hand, the incoming particle that touches an alread{x+m), which is shown in Fig. @@). That is, any point of
adsorbed one, is allowed to follow the BD rules to form asize x+m can be occupied with an equal probability. Note

II. COOPERATIVE BALLISTIC DEPOSITION MODEL
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that any particle dropping at any point within the shaded ) (i)
regionsAB or CD are, in fact, trapped due to the local mini-

mum. These particles will never reach the global minimum v

or the adsorbing substrate and hence they may be considere O @

to be rejected. For the sequential deposition, when the out-,/'

come by a trial attempts results in rejection, the time step is /P qD

increased by one uniil1]. However, if we are not interested .~ X

in the temporal or the kinetic aspect of the system, we can

safely delete the shaded regions as if these did not exist, FIG. 2. Schematic illustration of the rules for the cooperative
since they play no role in determining the jamming coverageballistic deposition model. The incoming disk is adsorbed directly
or the number density of gaps. In such a case, we may a&s shown in(i) if it is dropped within &—m). The deposition via
sume that the neighboring gaps are Separated by On|y oﬁbe roIIing mechanism is depicted GI’I\) Here, any disk that falls on
disk as shown in Fig.(b). We can thus define each gap as anthe steepest descent path of the virtual d8k, is assumed to be
independent isolated interval bordered on either end by gropping on its (_:orresponding equivalent point of the _re_al particle
semidisk so that if we connect the two remote ends the)QP from where it can successfully reach the global minimum.
would then form a ring with one particle at the joint.

We are now in a position to introduce the |0ng-|’ange at-l(C). In other WOde, we can describe it as follows. Prior to
tractive force among the incoming particles and the particle§electing a position for an incoming particle, we replace the
in the adsorbed phase. We may assume that the particles &@e of the deposited particles used for defining the gaps by a
still in the gas or in the liquid phase and that they arrive onvirtual disk of diametelR=(2a—1)m, without altering the
the substrate through the Brownian motion. However, in th&dap size. In this way, we hypothetically enlarge the cross
present problem, each adsorbed particle attracts the incomirigction of collision of an incoming particle with an already
particles towards its center. The question is how can we inadsorbed one. Notice the role of the attractive force for
corporate such attractive force in a tractable way? First, wa&hich there will be an extra number of incoming particles to
need to understand the effects of such an attractive force. THall on an already adsorbed particle. The increased cross sec-
most significant one is that each adsorbed particle will tendion 2m(a—1)>0 provideda>1 would count exactly the
to attract the incoming particle towards it. This would imme-same number of additional collisions as it would have been
diately break the nature of the uniform probability density ofby the potential in question. Once the position for the next
the problem as is the case for the BD model since the inconririal deposition is chosen, we can immediately return to the
ing particles are more likely to land on an already adsorbe@ystem with disks having diameterand proceed according
one than on a gap. For the sake of simplicity, we consider & the simple BD rules as depicted in Fig. 2. What we have
square-well-type attractive force of widthn2around the done is that we have artificially increased the probability
center of each adsorbed particle. We therefore have two digvith which an incoming particle may collide with an already
tinct probability distribution(PD) regions as indicated in Fig. adsorbed disk, thus enhancing the probability of adsorption
1(b). First, theforce-free region(x—m), where the strength Via the rolling mechanism and mimicking the effect of the
of the attractive force is strictly zero. Second, fhece field ~ attractive force. One can thus expect an enhanced adsorption
region of width 2m about the center of each adsorbed par-Probability near the two extreme ends of each gap as the
ticle, where the adsorbed particle exerts an attractive force ovirtual disk size increases and, in the linfitt>, we can
the incoming particles. As a result, any point in this region isonly expect the adsorption via only the rolling mechanism
more likely to be selected than the points in the force-free€xcept in the very early stage where the virtual diameter and
region, which is indicated by the dotted lines in Fighjl ~ the gap size may be of the same order in size.

The flat PD implies that all the points within the respective
regions have the samzepriori probability. IIl. ANALYTICAL SOLUTION OF THE SEQUENTIAL

It is worth mentioning that the simple BD model refers to CBD MODEL
the case where both regions have the same height in PD,
which is flat in nature and hence the whole substrate repre- To address the CBD model analytically, we adopt the
sents the zero force field or the zero attractive force. Now, as/ell-studied rate equation approach of the gap size distribu-
soon as we switch on the attractive force, the height of théion function or concentration(x,t). The quantityc(x,t)dx
PD around each adsorbed particle of widtin @ill increase is defined as the number of gaps at titne the size range
to a degree depending on the strength of the attractive forcdetweenx andx+dx. Within this rate equation approach, it
We then attempt to translate such a problem into a simplé beyond our scope to add the particle-particle interaction of
BD model, which is the key to the analytical solvability of any type directly into the rate equation as it is based on the
the problem. This can be done in the following way. Notemaster equation, which is typical of nonequilibrium statisti-
that we can lower the height of the PD by increasing itscal physics. We therefore use the possible effect of such in-
width but keeping the total area unchanged. In this way, wéeraction and scale it in terms of the size of the depositing
can make the whole system have the same height of the Pparticles. The most immediate consequence of the attractive
and treat it like the simple BD model where an incominginteraction as we already mentioned is that the incoming
particle can land anywhere with an equal probability includ-particles will be more likely to fall on an already adsorbed
ing the disks that are already occupied as represented in Figne than on any gap. Let us assume now that the depositing
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particle, which is adsorbed successfully on the substrate, insee Fig. 1L However, fora>1 {x+(2a—1)m} means that
stantaneously grows to a disk of a larger size having diama given gap of siz& is bounded by at least two semidisks of
eter (22—1)m. This happens without occupying any spacediameterR=(2a— 1)m while the adsorbing particles are of
of the substrate. That is, the extra spaces2{)m required  sizem<R. That is, any particle that falls within a distance
for the growth of the deposited particles are assumed to bam from either end ofx+(2a—1)m} effectively will col-
hypothetical as they do not destroy the size of the gap crdide with the virtual disk. Every point of the steepest descent
ated by each deposition event. The whole thing happens iof the virtual pathOP in Fig. 2 has its corresponding equiva-
such a way, as if, only the incoming particles see suchent point on the real pat@P. Therefore, an incoming par-
growth and hence plays no role in calculating the coveragécle falling on the virtual path is assumed as if it were falling
and the number density of the gaps. The larger they grow, then the exact equivalent position of the real path and vice
larger is the steepest descent path, which will essentially leagdersa.

to a higher number of particles falling on the particles those To solve Eq.(1) we seek a trial solution of the following
are already adsorbed. The excess size&-21)m thus takes form

care of the attractive force in an appropriate manner. The

kinetics of adsorption of the monodisperse particles can then c(x,t)=A(t)e x~mt, (4)

be described by the following set of rate equations:
y g . where A(t) is still an undetermined quantity fixed by the

ac(x,t) ] initial condition. Let us assume a monodisperse initial con-
. —(x—m)c(x,t)+2L+mc(y,t)dy dition c(x,0)= 8(x—L)/L, so that we have
L oo
+2am{c(x+m,t)—c(x,t)} ) lim f c(x,0)dx=0, Iimf xe(x,t)dx=1. (5
L—owJO0 t—0J0

for x=m and
P . Substituting the trial solution into Eql), we obtain the
c(x, )zzf c(y,t)dy+2ama x+m,t) (2)  following differential equation for(t):
m

at X+
dinA(t) 2e ™ ot

for x<m. The above rate equations are mean field in nature dt 1 +2ae ™. (6)
as the fluctuations and correlations are ignored. The rate
equation approach is based on the assumption that the crgolving it, satisfying the initial conditions, we get
ation and annihilation of gaps are independent of the size of
the neighboring gaps. The first two terms of Ef). and the A(t)=t2F(a,mt), (7)
first term of Eq.(2) are the same as that of the simple RSA
process and thus describe the creation and destruction ofvghere the auxiliary functiofir(a,mt) is defined as
gap of sizex due to the direct adsorption of sire on size il o
y=Xx+m or on sizex, resp_ectlvely. The remaining terms in F(a,mt)zex;{ _Zf € du+2a(1—mt—e ™|,
both equations also describe the creation and destruction of 0
gaps but via a rolling mechanism following the steepest de- ®)
scent path allowing to travel the maximum linear distance
am, wherea is a dimensionless constant number that we carf© obtainc(x,t) for x<<m, we substitute the solution of Eq.
tune. The factor 2 in the integral terms accounts for the factl) into Eg.(2) and then upon a direct integration, we get
that any of the two new gaps created upon a direct deposition .
on the_gap Sizg=x+m can be of size, whereas the same c(x,t)=2f u(1+amu)F(a,mu)e *'du. )
factor in the remaining terms takes into account that a gap of 0
sizex can be created or destroyed from either end by adsorp-
tion. In order to understand the role afit is convenient to  The solutionsc(x,t) can provide a complete analytical de-

rewrite Eq.(1) as scription of the process including its kinetic aspect. All we
need now is to find useful ways of using these solutions for
Jc(x,t) * computing various physical quantities of interest such as the
. —{x+(2a—1)m}c(x,t)+2fx+mc(y,t)dy jamming coverage, the mean number density, the mean clus-
ter size, etc.
+2amax+m,t). (3

IV. NUMERICAL SIMULATION OF THE RECURSIVE

The{x+(2a—1)m} term in the above equation is the key CBD MODEL

to understand the role ai. Note that by settinja=0 we

recover the classical RSA case whexe-(m) of a given gap To test the physical description of our CBD model, we

X is accessible for adsorption, which is consistent with outhave simulated it on a computer. One obvious constraint of
discussion in the preceding section. Similary=1 de- the simulation is, of course, the finite-size effect. However,
scribes the simple BD model where the total positions accedor a sufficiently large substrate in comparison to the depos-
sible to a new arrival arex(+ m) which is again consistent iting particles, the finite-size effect can be made sufficiently
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a=2 The number density of gaps, on the other hand, is defined by
the following relation:
a=1
__—3mp I\o - a=0 1 13m2 N(a,t)=f c(x,t)dx. (11
-5m/2 -m/2] m2 1-m/2 \l-m/2 1+5m/2 0

However, we find it more convenient to handle their rate
equation rather than their definition itself. The kinetic equa-

FIG. 3. Schematic illustration of the recursive simulation tion for the coverage is

scheme of the CBD model. dé(a,t)

dt

mJ {x+m(2a—1)}c(x,t)dx=P(a,t).
small. To simplify the simulation, we use the approximation m 12
mentioned in the preceding section that the gaps are uncor- (12

related and can be treated independently. Furthermore, iqere, quantityd®(a,t) is the fraction of the substrate acces-
simplify the problem we use a recursive algorithm. The sim-gjp|e 10 a new particle at a given timeThe kinetic equation
plicity of the problem is achieved at the expense of the ki the number density, on the other hand, is

netic aspect of the system. In brief, the description of the

recursive scheme of the simulation is as follows. Let us as- dN(a,t) %
sume that the initial gap of unit intervgDd, 1] is bordered on dt :f
both ends by semidisks of radiusg2 1)m/2 as shown in

Fig. 3. We then generate a random numbérom the inter-  The ahove two equations can be combined together to obtain
val [ —(2a—1)m/2,1+ (2a—1)m/2] to assign to the center

of the incoming particle. The incoming particle is then ad- dé(a,t) dN(t) o
sorbed directly, creating two new smaller intervals nif at . M at +2amj
e[m/2,1-m/2]. Otherwise, the disk is adsorbed on one of

the edges of0,1] creating only one new gap of interval Note that, in the simple RSA, one gap corresponds to one
[m.1] if ne[—(2a—1)m/i2m/2] or of interval[0,1-m] if  particle and thus we haw&(0,t) =mN(0}t) reflecting the fact
ne[1-m/2,1+(2a—1)m/2], respectively. In the case that the average particle size is the same as the size of the
when the disk is adsorbed in one of the two edges, we inadsorbing particles. However, in the present caseafed,
crease the counter that provides the information on the meape second term of the above equation describes the cluster
cluster size of the system. We then continue the process agrmation. That is, the first term on the right-hand side of Eq.
suming each new gap is again bordered by virtual semidiskg) 3) takes into account the direct deposition while the effect
and treat them in the same way as the first step until we havgf the rolling mechanism is described by the second term.

no more gaps of sizeé=m. The number of particles thus ysing the solution for the appropriate boundary in Etp)
deposited at thath step is simply 2. Finally, we add all the yields

gaps of size less tham and, using this, we can immediately

calculate the jamming coverage and the mean cluster size. mt

We have performed the simulation with substrate size f(a,t)= fo F(a,u)(1+2au)du. (19

~10°m-1Cm within the interval[0,1] and found an excel-

lent match with the corresponding analytical results up toThis can provide all the information about kinetic aspects of

several digits. We also noticed that increasing the substratge process, namely, how the coverage evolves in time. One

size by decreasing tha value only contributes to a higher of the characteristics of the deposition process is that the

order precision as expected. The simulation results are avegystem reaches a state of deadlock in a finite time when

aged over 500 different realizations and are shown by th@articles can no longer be adsorbed. This is typically known

symbols (<) along with the theoretical results shown by as the jamming limit and the exact critical time to reach such

solid lines in various plots where appropriate. a state should depend @n However, to date there do not
exist any theoretical means to pin down the exact critical
time for reaching the jamming limit. Nevertheless, we can

V. RESULTS AND ANALYSIS safely calculate the coverage in the jamming limit as

(Xx—m)c(x,t)dx. (13

m

c(x,t)dx. (14

m

It is worth mentioning here that only the adsorbed par-
ticles are enlarged keeping the size of the gaps unchanged.
The fraction of the line covered by the adsorbing particles or
the coveragé(a,t) at different instants of time can therefore The jamming coverage has been of special interest in the
be defined as study of the deposition phenomena as it can uniquely char-

acterize the structure of the resulting monolayer. From the
exact expression for the coverage, E), it has been of
f(at)=1— fwxc(x,t)dx. (10) interest to _knoyv hoyv th_e poveragﬁa_,t) approaches the
0 corresponding jamming limigj(a). We find that beyond the

g(a)y=Iliméa(a,t). (16)

t—oo
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FIG. 4. Jamming coverage as a functionaothat measures the oa.t)

strength of attractionq(a) vs a. FIG. 6. Time dependence of the number density as a function of

. . . . the coverage. The curves from top to bottom represHifgst) vs
transient behavior, the system reaches its asymptotic COVEjia 1) for a=0, 1, 5, and 10

age, namely, the jamming limit exponentially, with a decay

. . . 71
constant 2, multiplied by an algebraic prefactor coverage converges towards the closest packing obeying a

q(a)— 6(a,t)~t~ e 2 (ap ~ Powerlaw

. . . q(=)—q(a)~a 2 (18)
which was also reported in RéR1]. Obviously, for the clas-

sical RSA @=0), we recover the power-law behavior, whereq()~1. It is important to note here that the system
which is also known as Feder’s |d®2]. Here fora>0, the  never reaches a complete closest packige {) even for
exponential approach towards the jamming limit reflects they .. This is due to the fact that the substrate size too is of
fact that the increasing number of particles that land on afhe same order as that of the size of the virtual disk, hence
already adsorbed particles are successfully accommodatefere is always a nonzero probability for a direct deposition
via rolling. Another interesting point to check is how the at |east in the early stage. We attempted to check it in the
jamming limit varies as we increase the strength of interaccomputer choosing both the virtual diameter and the initial
tion a. In other words, we want to see how the jamming limit sybstrate size to be of the same order and large enough to
changes as we increase the degree of correlation between thenimize the finite-size effect. This is exactly the case de-
particles in the adsorbed and adsorbing phases. Figure <ribed by the analytical model as we &t In doing so
shows a sharp rise in the jamming coverage atémand a e never find a cluster covering the whole substrate. We
slow rise towards the closest packing in the lasgeegime.  checked it over and over again by increasing the substrate
In an attempt to quantify the slow regime we plofd(*)  size and the virtual disk size up to10°m. Nevertheless,
—q(a)] against Ing) in Fig. 5 and find that the jamming neither the analytical solution nor the simulation could give
us an exact estimate fay(«).

—3.8 We now intend to obtain an exact expression for the num-
_al ber density by substituting the solutiafix,t) for x>m into
Eqg. (13), which yields
_ 4.2
w mt
‘?’-—4.4- F(a,u)du
©Q 0
[+ 2] -
§_4,6. N(a,t) o . (19
o —4.8f
% The above relation for the number density immediately im-
-5 plies that it depends on the size of the adsorbing particles.
5o Here it is worth mentioning that the mean number density for
> the classical RSA4=0) is simply the coverage divided by
5.4 . . . . N the size of the adsorbing particles. In this case, the mean
6 6.5 7 7.5 8 8.5 9

number density increases linearly with the coverage as time
proceeds, having a slope during the processsee Fig. 6.

FIG. 5. The linear fits of Ifig(=)—q(a)] vs In@) having slope ~ However, as soon as a particle that fell on a previously ad-
—1/2 in the largea regime reveals that the convergence of the Sorbed one can roll over the latter, the linear relation between
jamming coverage towards the closest packing is power law ifN(a,t) and #(a,t) is immediately ceased and it is replaced
nature. by a nonlinear relationsee Fig. 6. Therefore, the mere

In(a)

061109-6



ANALYTICAL MODEL FOR A COOPERATIVE.. .. PHYSICAL REVIEW E 67, 061109 (2003

5 . v v T 1
4t
0.95¢
3 3
= =
E < o9}
2 3
1l 0.85f
% > 4 6 8 10 0.8 ' ' '
0 20 40 60 80
In(a) K
FIG. 7. The linear fits of the plot of Ik vs In@) in the largea FIG. 8. The jamming coverage as a function of the mean cluster
regime with slope 1/2 show that the mean cluster size increases a§ek.
~al2

versal mean cluster sizeincreases with the strength of at-
knowledge of one of the two is not sufficient to obtain thetractive force as

other. This is due to the fact that the mean cluster size is
different from the size of the adsorbing particle as the system
keeps producing connected clusters of different sizes d

pending on the value d. Figure 6 shows that foa>0 the ing with any preadsorbed particle for aldecreases with

_number density grows "”ef'”.'Y at a very IO.W coverage. Th' ime; however, the strength of such decrease gets sharper and
is due to the fact that at an initial stage the incoming part'de%harper asa increases. In the limia—o the virtual disk

hardly encounter any preoccupied species and therefore theéf‘:'Zes are of the same order as that of the substrate. Therefore,

exists almost no cluster. However, as the substrate ge ; - -
o . X X ver rl h rption of particl ir
crowded, it is evident from Fig. 6 that the mean number%& a very early stage the adsorption of particles by direct

density i : i d the st h deposition or the adsorption by the rolling mechanism have
ensily Increases In a honfinear manner an € streng e same probability. Thus, the system never reaches a state
nonlinearity increases with increasiagTherefore, to obtain

. . of closest packing but of almost closest packing. The jam-
Ezgv(;?;g;a%éhﬁeggTgigg@ntsr:)eyf::g;h;ugﬁgbs?;ede%sgyex_ming coverage thus increases with increadingee Fig. 3.
pression for the coverag#(a,t) and the mean number den- We find that fike theg(@) vs a, the approach of the jamming

itv N(a.t) at diff t instants of i . i limit towards almost closest packing agaiksilso follows a
sity N(a,t) at different instants ortime can give us an esti- power-law form but with a different exponent. As shown in
mate of how the mean cluster size is defined, i.e.,

Fig. 9, the plot ofg(k(a—=))—q(k) vsk in the logarithmic
scale along both axes is well fitted by a straight line with
(200  slope 1 and hence

q(k(a—))—q(k)~k™*, (23

k~al?, (22)

®rhe probability of adsorption of particles without overlap-

B f(a,t)
" N(a,t)

s(t)

grows in time and with the strength af We find that for a whereq(k(a—))~1
given size of the adsorbing species, the mean cluster size In q '
the jamming limit is

-15
o -2t
f F(a,u)(1+2au)du
i 6(at)  Jo (21 ~25
tm NEXI Jx m ff- -3}
F(a,u)du @
0 g-35
Obviously, like the mean number density, the mean clus- &
ter size should depend on the size of the adsorbing particle. :2'
However, the ratio between the twe- s/m remains constant -457
in the jamming limit and therefore it is useful to call it the
universal mean cluster size. It is worth mentioning here that
for the simple RSA we get=1 and hence the mean cluster 55 1 > 3 1 5
size is the same as that of the size of the adsorbing species. In(k)

However, fora>0 we find that the universal mean cluster  FIG. 9. The linear fits of Ifg()—q(a)] vs InK) in the largek

k>1 andk increases monotonically with increasiagFur-  regime show that the jamming coverage increases in a power-law
thermore, Fig. 7 reveals that in the largeegime the uni- form ~k™ 1.
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VI. DISCUSSION for x<m. If we then setq=0 in these equations, we find
We first discuss various possible interpretations for differ-that the remaining terms alone are mcapgble of descrlb!ng
: ; : any meaningful physical process. The point to emphasize
ent regions constituted by different valuesaobf the CBD h is that th i hani f he trial
model. It is interesting to note that wher=1, the size of ere Is that the roll-over mechanism comes after the tria
: ' ttempt for deposition is made. That is, the trial attempt to

the virtual and the real disk coincides and hence every poin . L : .
of the substrate bear the same probability of occupation bX;ﬁOc)srxtlyabpeazjtlecslf:r:f)etgebsr;?ea?cl)lIi\\l/(vairr:tgogéﬂgt% r;)_cess, which

the incoming particle. In this case, particles that fall on an
already adsorbed one may travel up to a linear distance of its

) . . . . ac(x,t) o
own sizem via the rolling motion following the steepest =—0(x—m)(x—m)c(x,t)+2J c(y,t)dy,
descent path. The particle can either be trapped in the local at x+m
minimum or it can reach the global minimum. In the former (26)

case, it is rejected while in the latter case it is adsorbed _ o )

irreversibly touching that it just rolled over, provided there isWhere 6(s) is the Heaviside step function The roll-over
at least one gap to accommodate it. However, in either Casr@ech.anlsm can only follow thereafter. Th(la. terms describing
the time is increased by one step. The casel thus de- the trial attempts cannot bear any probability. Therefore, the
scribes the well studied BD model. The situation focr®  tWo events, the direct adsorption and the deposition via roll-
<1 is also interesting as it describes a mixed process com'd; aré not mutually exclusive events and hence one cannot
posed of the simple RSA and the BD process, which, in factdefine the parameter=p/(1-p). .

should be termed as the generalized ballistic deposition pro- The model we have presented in this paper is solved ex-
cesses. In this case taeparameter describes the probability @Ctly by means of a kinetic equation approach based on se-
with which the adsorbing particle decides to roll over that jtquéntial deposition. In order for further support, we solved it
falls on to. Such a rolling mechanism can be assumed to b@Y the numerical simulations based on the recursive algo-
due to the gravitational pull towards the adsorbing surfacefithm. The two approaches, sequential and recursive, turn out
The above two situations together, i.es:<1, constitute 0 be highly rewarding in the sense that these helped not only
the constituents of the generalized ballistic deposition prof0 confirm the validity of the mean-field approximation, but
cesses. However, forda<o the basic rules are still the @IS0 to s.hed a dpeper insight mto'the nature of the problem.
same as for the simple BD model, but it also incorporates d N€ basic principle of the model is the same as that of the

square-well-type attractive interaction between the element3mple ballistic deposition process as we mentioned earlier.
of the adsorbed phase and the incoming particles. Nevertheless, we have extended the simple BD by adding a

It is worth mentioning that Vioet al. made an attempt to  Certain degree of correlation between the adsorbing particles
generalize the ballistic deposition model and gave the fol&nd those already adsorbed. To increase the flexibility of the

lowing definition[21]. The disks having the same diameter Model, we allowed a parametarthat can tune the strength
are dropped uniformly and sequentially one at each tim&®f the correlation which is induced by the attractive force.
step. The disks can either reach the adsorbing plane or fall dfiStéad of using the attractive force directly, we have shown
an already adsorbed disk. In the former case, the trial attem@Way of transforming it into a virtual situation, which is then

is retained with a probabilitg=(1—p). In the latter case, JuSt the simple BD model.

on the other hand, the trial disk follows the path of the steep- 1N€ most significant consequence of the presence of the
est descent over the disk it encountered. The disk is thefittractive force is that it results in an increased packing frac-

adsorbed with probabilitp, provided the particle can reach tion as well as the mean cluster size due to the formation_ of
the global minimum by the roll-over motion; otherwise it is the higher order connected clusters. Moreover, the jamming

trapped in an elevated position and is rejected. This is excoVerage increases with the increasing degree of the strength
actly the case defined in the mixed processes of both RSA! the attractive force. Similar results have also been recently
and BD(i.e., the 0<a< 1 regime. However, Viotet al.then ~ reported by Pastor-Satorras and R{ib8], who studied a
defined thea parameter ag=p/q. There is a clear mis- model of correlated sequential adsorption by numerical
match between the definition of the model in words and théimulation both in one and two dimensions. However, unlike
definition ofa. We would like to point out anyway, that one the square-well-type PD studied here, they used a Gaussian
cannot definea=p/q due to the following reasons. We can and exponential-type PD around the center of each adsorbed

rewrite Eas.(1) and (2) for a=p/a upon multinlving both  Particle. Nevertheless, despite the apparent differences in the
equationsqbys ()1_ p).( ) prq up Pying detailed nature of the forces or in the PD, the qualitative

behavior seems remarkably identical to what we have found
in this paper. Pastor-Satorras and Rubi too observed the same

C(y,t)dYJ trend of the increase of jamming coverage as well as the
m mean cluster size. In addition, they too reported the approach

+2pm{c(x+m,t)—c(x,t)} (24)  towards the closest packing in the limit where the correlation

is maximal. This reveals that the qualitative effect of the

for x=m and attractive force is insensitive to the detailed nature of the

attractive force. However, in addition to solving the model

=2 - c(y.Hydy+2pmax+mt 25 analytically, we were able to quantify the effect of the attrac-
qfx+m (v.t)dy+2pmd ) @ tive force. To this end, we have shown that in the strong

©

&c(x,t)_
P

q —(x—m)c(x,t)+2f

X+

ac(x,t)
ot

q
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force regime the convergence towards the closest packingmming coverage towards the closest packing bothamd
against the strength of the attractive force follows a powerk but with different exponents-a~*2 and ~k !, respec-
law relationq () —q(a)~t~ 2 Perhaps, the emergence of tively, except for the weak field. It is important to note that
such a power-law behavior implies a universal nature of theilthough the jamming coverage increases with the degree of
phenomena. It also includes the exponent, in the sense thatdbrrelationvis-a-visthe mean cluster size, we can never cre-
is independent of the detailed nature of the attractive forceate one single connected cluster spanning the whole substrate
Howeyer, at_ this point it is just a conjecture and we intend togq giving the coveragg=1, which is indeed a typical
investigate it in our future work. character to all 1D problems. Nonetheless, it indicates the
potential structural phase transition in higher dimensions that
VIl. CONCLUSION has been indeed observed in Haf]. Finally, we found that
for a given set of rules various aspects of the problem except
In this paper, we have presented an extension of thene temporal behavior are independent of how many particles

simple BD model by incorporating an attractive force be-arrive on the substrate at each step. It reveals the versatility
tween the elements of the adsorbed phase and the incomigg the adsorption phenomena.

particle. The most significant consequence of the presence of
the attractive force is the increase in packing fraction or the
jamming coverage of the resulting monolayer as we increase
the strength of the attractive forca This is manifested
through the increase in the mean cluster dizevhich in- This work was supported by the Alexander von
creases as-a*? in the strong force field regions. We have Humboldt-Foundation (M.K.H.) and the Deutsche
shown that the system exhibits a power-law approach of th&olkswagen-StiftungN.W. and J.K).
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