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Multifractal spectra of mean first-passage-time distributions in disordered chains
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The multifractal characterization of the distribution over disorder of the mean first-passage time in a finite
chain is revisited. Both, absorbing-absorbing and reflecting-absorbing boundaries are considered. Two models
of dichotomic disorder are compared and our analysis clarifies the origin of the multifractality. The phenom-
enon is only present when the diffusion is anomalous.
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[. INTRODUCTION fractal structure]3,4,6—8,10. An important issue in these
systems is the nature of the multifractality based on the dy-
In the past two decades, a great effort has been devoted t@mical process or in the steady stéas the voltage drop
the study of diffusion and transport in disordered media bydistribution in percolation For the voltage drop distribution,
models based on random walKis-3|. Basically, the dynam- the multifractal behavior is well established for all values of
ics of the system can be described by a master equation for@[3]; whereas for the dynamical diffusive process the mul-
particular probability distribution. Two alternative ways are tifractality only appears in a range of valuesgdf8]. Another
usually employed. The first one is based on the probabilityoroperty of these processes is that while the multifractal be-
P(r,t) that the walker is on site at timet when starting havior appears in the distribution of the probabilyr,t), it
from the origin att=0. The second way consists of analyz- is not present in the mean number of distinct sites visited by
ing the statistics of the exit time from a given region. In botha particle diffusing on the percolating clus{dr9]. Another
cases, there are exact enumeration techniques which enalslgnamical process with “ultra-anomalous” slow motion is
us to calculate the corresponding observable in all the poghe Sinai mode[20] for diffusion in a linear chain in the
sible disorder configurations. Thus, we can numericallypresence of random fields. For this model, the mean square
reckon the distribution over disorder of the probability displacement of a random walk follows asymptoticaliy)
P(r,t), or the momentgPY(r,t)) of this distribution[3—9].  ~ In%. Several studie$5,11,12,14,15,2lLhave established
In an analogous manner, we can numerically evaluate ththe multifractal properties of the model. However, the origin
distribution of the mean first-passage tifiMFPT) over dis-  of the multifractality in this process is yet an open question.
order, or its momentg10-16, In this work, we revisit the Sinai model and we address
the last question. Particularly, we compare the behavior of
* the MFPT distributions over disorder and its moments for
M(a)= fo Top(TdT, @ two processes with dichotomic disorder. One of them is the
Sinai model and the other is a nonanomalous biased random
wherep(T) is the distribution over disorder arglis a real walk in a finite disordered chain. The outline of the paper is
number not necessarily integer. The crucial point of diffusionas follows. In Sec. I, we present expressions for the MFPT
in disordered media is that transport canam®malousi.e.,  for a given realization of thequenchegl disorder in the
the mean square displacement of a random walk scales wighain. The description of the models of disorder, employed
time as(rz):th’dW, whered,,>2 is the anomalous diffu- in our studies, is given in Sec. lll. The moments of the MFPT
sion exponent. A relevant property of the anomalous diffu-distribution over disorder diverge with the system’s size.
sion is that it leads to broad distributions. Their momentsThese divergences are characterized by the scaling exponents
cannot be described by a single exponent but an infinite hié(d) in Sec. IV, where we employ the multifractal formalism
erarchy of exponents is needed to characterize tf@edg].  [17,18 to calculate the exponentgq) of the corresponding
This fact enables us to study the distributions over disordepartition function. Also, the generalized Renyi dimensions
with the multifractal formalisn{17,18. D(q), and the spectré(«) are given in that section. Finally,
Random walks on random fractalsuch as the infinite in Sec. V, we briefly summarize the results of our work.
percolation cluster at criticalijyare processes with anoma-

lous diffusion, which are characterized by logarithmically Il. MEAN FIRST-PASSAGE TIME IN QUENCHED

broad distribution functions reflecting an underlying multi- DISORDERED CHAINS
We consider the continuous time dynamics of a random
*Electronic address: pury@famaf.unc.edu.ar walk on a discrete one-dimensional lattice with nearest
"Electronic address: caceres@cab.cnea.gov.ar neighbor hopping. The walker jumps from siteto site n
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+1 with transition probability per unit timev, , or to site lattice, which can be easily enumerated. The set of values
n—1 with transition probability per unit timev, . We are  {T, i=1,... A} can be exactly calculated employing ex-
concerned with the exit time of the walker from the finite pression(2) for the AA boundary conditions, or by E¢3)
interval D=[ —M,L] on the chain, with at least one absorb- for the RA extremes.

ing end. The average of the survival time until the absorp-
tion, over realizations of the random walk, is the MFPT.
Recently, we have obtained a general exact expression for

the MFPT for a fixed set of.transition pr'ol.)gbilitiéwji} Now, we assume that the hopping probabilitim$ are
[22]. Let T, denote the MFPT if the walker initially began at strictly positive random variables, chosen independently
site neD. For an interval with both absorbing extremes from site to site and identically distributed. Additionaly, we

IIl. MODELS OF DISORDERED CHAINS

(WX (ms1)=W_;+1=0) we get admit that the site transition probabilities are not necessarily
o1k B symmetric in the sense that’ #w; . Thus, we can incor-
14 Wi porate the effects of bias in to the chain by external fields.
k=M = wi We select the first distribution for the transition probabili-
Th= o x L ties in such a way that they satisfy the Sinai condifiafl,
14 Wi namely, the random variable lmJ(/Wj’) has zero mean and
k=M j==M W,-+ finite variances?. Thus, we consider a dichotomic model by
defining w; =1-w;” and prescribingw;” to be equal to
- 1 N : wj 1/2+ e with equal probabilities. The parametermeasures
X kZM W—:Jrk;M w_,j i:%1 1:111 W_J+ the strength of disorder, and can take values between 0 and

1/2. e=0 corresponds to a simple homogeneous random
n-1 T o S Y Vo walk, and fore>0 we get a disordered random walk with
_( E —+ 2 - ) (2 local bias(random field. It is easily verified that the above
k==M W, k=-M W prescriptions satisfy the Sinai condition. Particularly, we ob-
_ _ _ _ o tain o?=In?y(e), where y(e)=(1+2¢€)/(1—2¢). In the
In this work we fix the starting poino=0 (defining T 45ymptotic limite—1/2, the variance diverges. The MFPT
=To) and we consider two possible boundary conditionsayeraged over disorder for the dichotomic Sinai model di-
The first one is the interval —L,L] with absorbing- verges asp(e)Ns for Ny—x, where B(€)=(1+4e)/(1

absorbing(AA) extremes. The total number of sitéé,, in —4¢€) [23], whereas the typical value of the first-passage
the interval is 2 +1. The MFPT for this case is given by {ime  defined as expln ), diverges slower, as

Eq. (2) taking M =L. The second case is the interyalL ] exp(o/7Ny/2) [24]. Here, the bracket¢. --) denote the

with reflecting-absorbingRA) ends. HereNs=L+1 and  4yerage over the disorder. Therefore, the distribution of the
from Eq.(2), takingn=0, M=0, andw, =0, we immedi-  pMEPT over the Sinai disorder has a power-law [2B].

ately obtain for the MFPT22], It is easily seen that the largest value of the MFPJ,,,
L L_1 L i _ is obtained for the RA ends when at all the sites, the right
=3 i+ > 1 S I Wi 3 jump transition is 1/2 €, and the left jump transition is
K=0 w, k=0 w iZk+1j=k+1 ij' 1/2+ €. In the asymptotic limit ofNg—o°, we obtainT,

~Ns[14]. For the AA extremesT .« cannot be easily evalu-

The effect of the reflecting boundary is the striking simplifi- ated. Thus, instead of an analytical expression, in Fig. 1 we
cation of the structure of the equation for the MFPT. Thisshow a numerical calculation af,, for several values oé.
fact leads us to consider also the AA boundary conditions inNVe see that asymptotically l05{,,)~Ns, as in the RA case.
the problem of multifractality of the MFPT distribution over  In Fig. 2, we show the histogram of the distributip(T)
disorder. over the dichotomic Sinai disorder. The figure was con-

In finite discrete systems, we can enumerate all the constructed computing Eq2) for M=L=7 (Ng=15), and us-
figurations\ of disorder. We denote by, the MFPT for  ing all the possible configurations of disorder. A related fig-
theith realization of the quenched disorder. We stress that allire, for the histogram ofp(T) for chains with the RA
the configurations of disorder are equally probable. Howevemrgxtremes, can be seen in Rlf4]. The distributionp(T) has
the resulting valued ;, are distributed by(T), the MFPT  previously been studig@5] for the RA boundary conditions
distribution over disorder. Thus, we can compute exactly theand results broad.
moments of the MFPT distribution, given the set of values Our second random biased model for the transition prob-
{Tay, i=1,... A}, from the definition given by Eq1), abilities is defined byv; =w;" — e and prescribingv;" to be
equal to 1/2 or 3/2 with equal probabilities. In this case, the
parametefe measures the strength of the bias, and can take
values between 0 and 1/2. In the limit e=0, we get a
disordered symmetrical random walk. This dichotomic
In particular, the MFPT averaged over disorder results irmodel corresponds to a class of weak disorder with global
M(1). Fordichotomic models of disorder, in a chain wkiy ~ bias. The quantities(%kz((llwf’)k) result finite for all k
sites, there are\V'=2Ns possible realizations of the random =1. Therefore, the model does not present anomalous diffu-

1 N
M=% 2, Th)- (4)
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FIG. 2. Histogram ofp(T) for a chain withL=7, the AA
boundary conditions, and the Sinai disorder with 0.25. We are
using the rescaled variable Tfn T, and uniform buckets of
sion[1]. For the MFPT averaged over disorder with the AA Width equal to 2. Ty,,=9824.
boundary conditions, we obtain up to first orderih22,26],

(L+1)?

2p: 1

FIG. 1. Numerical evaluation of 5 @s a function ofNg for
chains with the AA ends and from 1 to 13.

the right in all sites. Assuming that the jump probabilities per
unit time involve the Arrhenius factofsee Ref[26]), the
landscape for the particle potential is schematically sketched
in Fig. 4 for both models.
The asymmetry in the hopping transitions links the strength
of the bias with the fluctuation of the disorder, defined by
F=(B,—B3)/B3. In our particular case, we ged;=4/3,
and F=1/4. On the other hand, for the RA extremes, we - T
obtain up to first order ire [22],
(L+1)(L+2) L

=1 |1 3316}

23

Strikingly, for these boundary conditions, the fluctuation of &=
the disorder is not present in the averaged MFPT. This facl&
relies on the difference in the structures of E@.and (3).
In the limit of L—o, M(1) diverges a4 ? independently of
the boundary conditions.

In Fig. 3, we show the histogram of the corresponding
distribution p(T) over dichotomic weak disorder. Here, we
do not obtain a broad but a more localized distribution. We
must stress the difference in the scales used to construct th
plots in Figs. 2 and 3. This fact is the first indication of the
different nature in the distribution over disorder between -
both models. Both models were constructed to (wf) 0
=1, and the main difference among them is in the role of the 0.6 0.7 0.8 0.9 1
parametefe. This parameter controls the disorder in the Si- T/T
nai model and regulates the bias in the second model. Thus, nax
in the Sinai model the bias is local, i.e., the direction of the FIG. 3. Histogram ofp(T) for a chain withL=7, the AA
bias is randomly drawn in each site, whereas in the seconbbundary conditions, and weak disorder wéth 0.25. We are using
model, we are considering a global bias field which points tauniform intervals of width equal to%2 T,,,,=31.75.

1
1+ E(l+~7_-):816

M(1)= : ©)

0.03 T T T T T T T

0.025

M(1) (6) I

0.02 -

0.015

001

0.005

061106-3



P. A. PURY AND M. O. CACERES PHYSICAL REVIEW E67, 061106 (2003

U n-1 n n+1 ST T T T T T T T T
1 I I L J
= £=035 /

5 —
-—- £=025 ;
9¢ F |- =010 ././ .
41— K |
(4
L ’ |
.,'
7/
3 I - p—
~_~ ! /
(a) 3 B 4 ! // 1
wp / R
2+ ’ / .
U n-1 n n+1 s o
1 I I L 7 , J
/ ,//
4 7
1+ S .
€ i ./'/’,//,’ ......... |
o, /’ -----
0 — /“(fr- . —
et o

L S ol i

e AA

b | | | | | | ] | |
( ) -5 4 3 -2 - 0 1 2 3 4 5

FIG. 4. Sketches of the particle potential for both kinds of dis- q
order and smal&: (a) The Sinai model. The difference between two
consecutive peaks ise2 with random sign(b) Weak disorder. The
difference between one peak and the following is always

FIG. 5. Plot of the scaling exponen£§q) for chains with the
AA boundary conditions and the Sinai disorder.

IV. MULTIFRACTAL ANALYSIS Again, we postulate that in the |imNS~>OO, the partition
function obeys a scaling relation. Thus, we wrifq)

In order to characterize the divergences of the moments of. A/—7(@) |t is well known that for nonmultifractal distribu-
the MFPT distribution over disorder, we postulate that in thetions, the exponents(q) are linear functions ow, namely,
limit Ng—-co, the gth moment obeys the scaling relation r(q)=q—1. The multifractality appears with a nontrivial
M(q)~N4®_ In order to verify this ansatz, we have nu- dependence of the scaling exponentsjoRor all values of
merically reckoned lgdvi(d)] vs Ns. For chains with the AA and g, and for both models of disorder, we obtain straight

ends, we také from 1 to 13 and use Eq2) for evaluating  |ines when we plot loiZ(q)] vs Ng. Therefore, the scaling
the sef{T,,i=1,... N}, for a givenL. For chains with the

RA boundary conditions, we takefrom 1 to 20 and use Eq. 2T T T T T T T
(3) for calculating the valued ;, for a fixed size of the
chain. For all values ok and g, and for both models of = £=035 4
disorder, with the AA or RA extremes, we obtain straight 10 == £=025 ;
lines. L - £=0.10 K i
The slope of the linear fitting for the Sinai model with the s
AA (RA) ends is plotted in Fig. BFig. 6) as functions of, ;
for three values ofe. For all €, we obtain thaté(q) is a " ; 7
monotonically increasing function witl§(0)=0, which is =
due to the normalization condition of the distribution. We 57 s s
observe that for large values ef £(q) is a nonlinear func- s /s
tion; whereas in the limit of weak disordej(q) becomes a 4+ ;s -
linear function. For the model of weak disorder, we obtain ;e
£(q)=0q, where6>0 is a decreasing function ef There- ro
fore, for weak disorder, we get a single gap exponent for iy
describing the moments of the MFPT distribution. The analy- - St . |
sis with both kinds of boundary conditions leads us to quali- e
tatively similar behaviors for the exponengsq), for both pan RA
models of disorder described in Sec. Ill. frraan==" 1
Now, let us define the partition function as folloys7]: ) P T T [T TN T N T

T
}

1 N
Z(q)= (W—)q ;1 Th) - (7

T,
21 )

FIG. 6. Plot of the scaling exponenggq) for chains with the
RA boundary conditions and the Sinai disorder.
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TABLE |. Fitted values for the parameteps andp,, using Eq.
(8), for the plots7(q) in Figs. 7 and 8.

4 T T T T T T T T T

e £=0.10
L |-- e=025 .- AA RA
- £=035 o € P P> P P2

ot 0.00 0.500 0.500 0.500 0.500

Q)

-2

-4

U ] 0.10

0.25
0.35

0.461
0.395
0.336

0.543
0.700
0.825

0.425
0.295
0.173

0.602
0.878
0.964

normalization condition ofZ(qg). In the limit of e—0,
7(q)~q—1, and for strong disordet,(q) exhibits a nonlin-

ear dependence. Thus, the multifractality for the Sinai model
is unambiguously established, independently of the boundary
conditions. For the model of weak disorder, we obtain)
=qg—1 for all values ofe, within the accuracy of the nu-
merical evaluations. Therefore, we have not found multifrac-
tality in our model of weak disorder, neither with the AA nor

with the RA boundary conditions. This result reinforces the
idea that the multifractal phenomenon is only related to
anomalous diffusion. Both models are based on the same
FIG. 7. Plot of the scaling exponent§q) for chains with the ~ dichotomic rule for assigning values to the transition prob-
AA boundary conditions and the Sinai disorder, usinffom 5to  abilities. Moreover, in both cases we fOUI<IWj+>=1- In
13. The solid line corresponds to the linear relatipal. spite of these similar characteristics, the selected models
have quite different behaviors. The random field resulting
ansatz is verified. Here, we have also ukdtbm 1 to 13 for  from the Sinai condition is at the basis of the anomalous
the AA ends, and. from 1 to 20 for the RA extremes. diffusion and the origin of the multifractal behavior of the
In Fig. 7 (Fig. 8), we plot 7(q) for chains with the di- MFPT distribution over disorder.
chotomous Sinai model, the ARRA) ends, and for three The simple plots obtained in the graphs for the functions
representative values ef The functionsr(q) satisfy 7(0) 7(q) suggest us that the multifractality is due to the presence
=—1. Additionally, we getr(1)=0, which is due to the of a binomial multiplicative process. For this process, the
mass exponents afé8]

4 L) I L) I T I L) I T I L) I 1 I Ll I 1 I L |
I i In(p{+p3)
ok |-+ e=010 P H(Q)=——5—, ®
| | -- e=025 g ] In2
ok |~ &=035 LremrmzTo I ) o ) o
P wherep,+p,=1. This expression immediately satisfies the
i o T conditions 7(0)=—1 and 7(1)=0, and in the limitp;
i 7 . =p,=1/2, results inr(q)=q—1. Forp;<1/2, we get the
- - e T limit expressions
o -4 - e ,'I -
b/ 4 e s
[ ‘o“ /,, ,~" T |n pl
s // S . (@)= =95 forg——e, €)
I /”’ ./', 1
-8 > /'/ - In P,
- e ] 7(q)——q-—5 for gq—ce. (10
s In2
-10 /'I .
o ;/' _ In our case, the parameteps and p, are functions of the
| RA 1 strength of disorderd). In Table I, the values of the fitting
Y I T A H N B R B B of 7(q), using the two parametegs, andp,, are displayed

for both kinds of boundary conditions. We only obtain a

good quality of fitting for small values of. For strong dis-

order, the conditiop,+ p,=1 is relaxed and we can only fit
FIG. 8. Plot of the scaling exponent$q) for chains with the  both asymptotic regimes of the curves tpr- + . This fact

RA boundary conditions and the Sinai disorder, udinfjom 6 to IS @ strong indication that the nature of the multifractal phe-

14. The solid line corresponds to the linear relatipnl. nomenon is more complex than a multiplicative rule.
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FIG. 11. Multifractal spectraf(«) for chains with the AA
FIG. 9. Generalized dimensiori3(q) for chains with the AA  boundary conditions and the Sinai disorder.
boundary conditions and the Sinai disorder.

L _ L spectra for the same conditions and valueg @fs given by
_ A usual_ charact_enzatlon of mulUfra_ctaIlty is the general- Fig. 7 (Fig. 8. We find thatD(q) is a monotonically de-
ized Renyi dimension spectrufi8] defined by{27] creasing function of}, and satisfie(0)=1, which is the
dimension of the support of the distribution.

Taking the Legendre transform efq), we can obtain the
multifractal spectrum f(a)=-7(q)+ga, where the
Lipschitz-Hdder exponenix is the derivative ofr(q) with
respect tag. Figure 11(Fig. 12 shows thef(«) spectra for

7(q)
q-1

In Fig. 9 (Fig. 10, we depict the generalized dimension

D(q)= (1D
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FIG. 12. Multifractal spectraf(«) for chains with the RA

boundary conditions and the Sinai disorder.

061106-6



MULTIFRACTAL SPECTRA OF MEAN FIRST-PASSAGE .. PHYSICAL REVIEW E 67, 061106 (2003

the same conditions and valuese#s given by Fig. 1Fig. Particularly, the last relation satisfies inmediately théd)
8). For strong disorder, the curvé(a) becomes broad, =-—1 andr(1)=0. From the result quoted in Sec. lll, for
whereas fore— 0 the spectrum collapses to the point (1,1). chains with the RA ends, we fourg{1)=log,A(e).

As is known, the maximum value dfis the fractal dimen-

sion of the support of the measure. V. CONCLUDING REMARKS

In this work, we have chosen the scaling paraméteio In this work, we have considered the distribution of the
characterize the system size. In R@#], a similar multifrac-  MFPT over two classes of disorder, the Sinai and another
tal analysis for the Sinai disorder and the RA boundary condichotomic model with global bias and nonanomalous diffu-
ditions was based on the scaling paramdtgg,. We have  sion. Our results confirm us that the multifractality is related
seen in Sec. Ill thaf .. However, this choice of the only to anomalous diffusion.
scaling parameter leads to spurious results, such as the varia- The multifractal behavior in the MFPT distribution over
tion of D(0) with e. This phenomenon is an artifact of the the Sinai disorder is not a consequence of the multiplicative
mathematical selection of the scaling parameter, and not structure of Eq(2) or (3) (the expressions for the MFPT for
characteristic property of the system under analysis. On tha fixed realization of disordgras was stated in a previous
other hand, for one-dimensional systems, we expect that tH@&port[14]. The multifractality is an inherent attribute of the

dimension of the support of the multifractal measure is equa$trong disorder in the Sinai model, and is well established for
to 1. both kinds of boundary conditions. Moreover, the multifrac-

Finally, we derive the relation between the exponent§al signature found in the spectra obtained suggests us that

£(q) and 7(q). From the definitions given by Eq&) and th_e origin_ o_f thg phenomenon is more complex than a bino-
(7), we inmediatly obtain mial multiplicative process.
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