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Power law diffusion coefficient and anomalous diffusion: Analysis of solutions and first
passage time
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We investigate one-dimensional equations for the diffusion with a nonconstant diffusion coefficient inside
the second derivative and between the derivatives. In particular, we employ the diffusion coeBi¢i@nt
«|x|~? (#eR) and a quartic potential. These diffusion equations present a rich variety of behaviors associated
with different regimes. Results of two approaches are analyzed and compared. We also investigate the mean
first passage time of these systems. We show that the system with the coefiti@riietween the derivatives
can produce different behaviors for the mean first passage time in comparison with those obtained by the
system with the coefficient inside the derivatives.
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[. INTRODUCTION distinguished by a nonconstant diffusion coefficidh{x)
«|x|~? inside the second derivative and between the deriva-

The Kramers problem or the problem of surmounting atives. We also analyze the mean first passage time of these
potential barrier is undoubtedly one of the most importantsystems with the presence of a quartic potential. This way,
themes in physics in connection with several tofits For ~ we can study the properties concerning the escape time for
example, it plays a key role in stochastic resonaein the systems whose diffusive anomalous processes are
describing fluctuation-induced transport such as it occurs ifPresent. Also, we can compare the behaviors of systems of
kink motion[3] and ratchet§4]. Even the extent of chaos in diﬁerent approaches. In .particular, an understanding of the
the Hamiltonian systems has been shown to have connef2€2an first passage time in such systems could open up com-
tions with this quantity5]. A collection of these and other Prenension of new stochastically driven phenomena.
stochastically driven processes can be found in R6fg]. In Th|s work IS d|\_/|ded Into four sections. In Sec. ll, we
this scenario, we also have a quantity known as the mea onsider the diffusion equations without the presence of an

. . : . external force and we present their solutions for the probabil-
first passage timéor the escape timedirectly related to the . .~ ° . :

A . : ity distribution and the second moment. Also, different re-
Kramers problem, which is defined as the tifievhen the

tarts f _ int and h det imes are presented and discussed. In Sec. Ill, we consider
process starts 1rom a given point and reaches a predeteye girysion equations with the presence of an external po-
mined level for the first time.

) . tential, and, in particular, a quartic potential. We obtain the
It should be noted that the mean first passage time hagationary solutions, and their behaviors are analyzed. We

beezn analyzed in many systems where the Brownian motiogy,qy the mean first passage time of these systems and com-

((x)t) is present. Recently, the study of the mean firstyare the results of two approaches as well. In Sec. IV, we

passage time in other contexts, such as the systems that gxesent our conclusions.

hibit anomalous diffusion, has attracted a lot of attenfi®h

Further, we can mention the work8] where the mean first Il. DIFFUSION EQUATIONS

passage time has been analyzed in the fractional derivative

approach, and in Ref10] the escape time has been dis- We first consider the diffusion systems without the pres-

cussed in terms of a nonlinear Fokker-Planck equation. Fognce of any external force. For simplicity, we only study

these cases, the diffusion is anomalous correlated type, i.€@ne-dimension systems. As motivated in the preceding sec-

the second moment is defined and is given(k§)t® in  tion we shall analyze the following diffusion equations:

contrast with the usual cage=1. For O<a<1 anda>1,

the system describes subdiffusive and superdiffusive pro- ﬂ_D§Z|X|70P1 1

cesses, respectively. Similar anomalous behavior may also be ot Ix2 @

obtained in the linear diffusion equation by taking a spatial

dependence in the diffusion coefficient into account, for ex-and

ample,D(x)|x| ~’. In particular, this coefficient has been

applied to several physical situations such as fast electrons in py

a hot plasma in the presence of dc electric fidld], turbu- ot

lent two-particle diffusion in configuration spaf&2]; also,

both the Richardsofil3] and the Kolmogoroy14] laws ap- whereD|x| ¢ is the diffusion coefficient. Equatiofl) is a

plied it to turbulence and to describe the diffusion on fractald~okker-Planck equation, whereas E@2) is a one-

[15]. dimensional diffusion equation which has been studied, for
In this work we analyze two forms of equatioffsr dif- instance, by O’'Shaughnessy and Procaccia based on fractal

fusion) which can describe anomalous diffusion. They aregeometry[15]. Equation(2) also corresponds to a Fokker-

d dp2
_ —0_"<
D X |X| ox

: 2
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Planck equation in a different order of prescription in sto-whereC is a constant to be determined by the normalization
chastic calculussee Bouchaud and Geord@&3 and[16,17)). of p;. For 6<—2 and#>—1, Cis given byC=1/2I'(1
Usually, the form of Eq(2) is known as the transport form of + g/2+ 6)[2+ 6|”?* 9. For —2<#=<-—1, the distribution
the Fokker-Planck equatidrii7]. The transport form in Eq. function p,; is not normalizable. We should note that the
(2) results from using a stochastic calculus description whichdistribution p, diverges atx=0 in the interval—2< <0,
is different from the Ito and the Stratonovich rule; EB) is  from which the system is locked at the singular point. We see
the result of the postpoint discretization rule for the stochasthat p; has the form of a stretched Gaussian multiplied by
tic integral prescriptiorj18]. |x|?. For #=0, we recover the Wiener process and the dis-
As we shall see, the above equations can describe theibution recovers the usual Gaussian form. The second mo-
localized, superdiffusive, normal diffusive, and subdiffusivement, ford <—3 and6 > —1, yields
processes. We note that E¢¥) and(2) are symmetric under

the changex— —x. The physical solution of Eq.l) can be 3+0
obtained as follows. By using the following transformation, 210
<X2> = 1—+Q9[D(2+ 0)2t]2/(2+ 0, (11
X IN'-=—
7= 0 3 2+0
and settin The result(11) shows that systerfll) can describe the local-
9 ized processes#(< —3), superdiffusive processes-( <6
X <0), normal diffusive processe®9€0), and subdiffusive
f ﬂ) processes{>0). For—3<6<—2, the second moment is
p1= t) ’ (4) divergent. In this last case, the regime presents a similar
d(t) characteristic to the w process.
] In the case of systeni?) the solution was obtained in
Eq. (1) is transformed to Refs.[15,19 and is given by
d(t) d d? Ix|2+¢
- —[2f(2)]=D[@(1)] >[4~ (2)]. exg — ————
®2(t) dz dz 1 D(2+6)%
(5 p2_2F 340) [D(21 ) IE (12
Now, we can obtain a set of solutions by separating the vari- 2+0

ablest andz, and putting
The factor of 2 in the denominator is absent in the expression

B[ D(t Lo 6 given in Ref[15] dye tq thg fapt that we have considered the
(OLeO] © whole space. This distribution also has the form of a
wherek is a constant. The solution fab(t) is given by stretched Gaussian. Fér=0, we recover the Wiener process
and the distributiorp, recovers the usual Gaussian form.
O(t)=[k(2+ g)t]l/(2+ o) (7) The second moment of this system is
For convenience, we have taken the integration constant of I 3
solution (7) equal to zero. The other equation that depends 5 2+6 2:12/(2+ )
on the variablez is given by (x5 = T 72+ o)1 : (13
2 r 2+6

d d
—kd—[zf(Z)]=D—Z[IZI*"f(Z)]- (€S) . : :
z dz This result shows that systef®) can describe the following

processes: superdiffusive-2< <0, normal diffusive
This last equation has the following solution: =0, and subdiffusived>0. For §<—2, the distribution
2]+ function p, is not normalizable. The validity of solutidii?2)

z

B 0 is restricted to the intervad> —2.
f(Z)— fO|Z| exp — m

The distribution(10), in particularp,|x| ¢, has a similar
where f,, is one of the integration constants and the other2). However, the ternix|?, which appears in Eq10), splits

, 9

form to that obtained in Eq12) using the diffusion equation

integration constant was put equal to zero. the peak of the stretched Gaussian into two ones, and the
The normalized solution fop, is given by distribution p, presents similar characteristic to the
asymptotic distribution on fractals, such as the Sierpinski

|x|2*? gaskef 20]. As in Ref.[15], # can be identified as the expo-
|x|’exp — P nent of the anomalous diffusion in both the systems. We see
D(2+6)7 ' (10) that two different systems can give the same form for the
[Dt]E+0/(2+0) second moment, except for the coefficients. It should be

p1=C
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FIG. 2. Plots of the normalized stationary distributid®) de-
scribed by Eq(14), in arbitrary units. The solid lines correspond to
the potential withc=3, d=6, andD=1. The dotted lines corre-
spond to the potential wito=1/4, d=1/2, andD=1.

FIG. 1. Plots of the quartic potenti&l(x)=cx*—dx? in arbi-
trary units.

noted that Eq(2) can be transformed in the form of equation

(1). This way, Eq.(2) can be viewed as the Fokker-Planck hem analytical solutions of these systems cannot be easily
equation(1) with an external potential, and the divergence, gptained. Thus, we only obtain the stationary solutions. The
which appears in the distributiop, of the system for-2  ggationary solutions can give us some insights into the sys-
< 6<0, described by the Fokker-Planck equati is re-  tems and, therefore, the behaviors of the first passage time
moved by this external potential. Further discussion on thigan pe better understood. The stationary solutions, with natu-
subject will be given in the following section. ral boundary conditiong22], of Egs.(14) and(15) are given,

respectively, by
IIl. MEAN FIRST PASSAGE TIME

. o _ . 4c|x|**? 2d|x]**’
Here, we consider the diffusion equations presented in the P3stat)= Ca/X|? exg — Sa+ra T Dior e (16)
preceding section with the presence of an external force, ( ) ( )
which are given by and
gp U (x)p] X" 4clx|*? 2d|x[***
_ = + = —
ot Ix D— 2 (149 Pasa)=C2 R ~ 5 Y 5o g (47
and wherec, andc, are constants to be determined by the nor-
malization.
p AU (x)p] d _o9P In Figs. 2 and 3, we show the plots of the normalized
gt IX + D& | Nk (19 distributions given by Eq916) and(17). It is interesting to

note that the peaks of the stationary distributidh6) are
where U(x) is a time-independent confining potential. In dislocated to the walls of the potential with the increase of
particular, we consider the familiar quartic potentia(x)  the values ofé (Fig. 2. This means that the particles are
=cx*—dx?, wherec andd are positive real constan{see, pushed against the walls of the potential for0. For —3
for example, Ref[21]). In Fig. 1 we show the form of the <#<—2, the distribution keeps close to the origis 0 and
quartic potential for ¢=1/4, d=1/2) and €=3, d=6), the barrier of the potential tends to separate the peaks of
where it can be noted that the second pair gives a greatelistribution. Also, the height of the peaks increases with the
potential height. In these systems we are interested in théecrease of the value @f whereas the behaviors of station-
investigation of the diffusion of a particle over a barrier, ary solution(17) described by diffusion equatiofl5) are
namely, the mean first passage time. Moreover, these systerdiferent. The peaks of distributior(&ig. 3) are kept at the
permit us to analyze, at the same time, the behaviors of thminima of the potential with different values @f and the
mean first passage time in different regimes and to compangarameters of the potentiat @ndd). These results can be
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10 A(z2)=—-U'(2) andB(2)=D |z’ In this case, Eq(20)
o= should be evaluated numerically. Our calculation is per-
formed on an infinite range with the substitutions in the lim-
its of integrals byb—x,, a— —, andx—x,, wherex, is
ot the left minimum of the potential and, is the point in which

the particle is removed from the systefh6]. Therefore,
\’e , { T(x_—Xp) represents a measure of the escape time from the

0.8

left-hand to the right-hand well.
In order to confirm our result, we also perform numerical
calculation by using, in parallel, the corresponding Langevin

PasayX) | . .
o equation given by

Xnt1=Xn T A(Xy ) 7+ VB(Xy, 1) 7W), (22

where the time interval At) is divided intoN small finite
steps of lengthr=At/N andw,, is a random number genera-
tor [22]. We should note that Eq22) cannot be used fof
>0 due to the singularity oB(z) at the origin k=0), but
we can use it to check out our result f6=0. In the calcu-

3 lation of Eq.(22) we have performed 2000 realizations and

X then taken the average time to obtain the mean first passage

) . o time. The agreement between two approadkess. (20) and
FIG. 3. Plots of the normalized stationary distributic¥) de- (22)] is good.

scribed by_ Eq(}S), in arbitrary units. The solid lines cqrrespond to In Fig. 4(@), we show the mean first passage time with
the potential withc=3, d=6, andD=1. The dotted lines corre- ognact tox for different regimes with the parameters of the
spond to the potential witb=1/4, d=1/2, andD=1. potential given byc=1/4, d=1/2, andD=1. In these cases
there is no formation of plateau due to the fact that the height
of potential barrier is small. Further, we can note that there
are “competitions” concerningrl (x, —Xg) for different re-

0.2

0.0

understood as follows. Equatiofi5) can be written as a
Fokker-Planck equation of the typgé4)

%) —Dlx| ¢ 2/~ 6 gimes. Iqitially, the smaller the value df, the fastgr the
&_p:i du ) i ]p +DM_ (18 escape timeT(x_.—Xg). Then, the processes are inverted,
at. ax dx x> and finally, close to the right potential wall, the processes are

inverted again. When the height of potential barrier in-
creases, the plateau becomes evident as it can be seen from
Fig. 4b). For 6= —1/2, we see that the mean first passage
time takes a long time before crossing the barrier, but it does

e L not diverge. In this last case, the particles tend to accumulate
The termD|x|~? becomes the potentid) (x) deeper than close to the origirsee Fig. 2 For 6<—2, T(x, —Xg) di-

U(x) and_ it modifies the potentidl(x) for §>0 greatly. verges before crossing the barrier. Moreover, we note that the
Due to this fact the particles are attracted more to the Ceme&ubdiffusive regimes run faster than those of normal regimes

% surmount the barrier. After surmounting the barrier, the

Now we analyze the mean first passage time of (). quantity T(x, —Xg) of normal regime, at a certain point xf

mes f r than th f iffusive regimes. In Fig.
To do so, we present the formulas that we shall use for oubeCO es faster than those of subdiffusive regimes 9

. . . N(c), we see again the “competitions” concerniff(x
calculation. A closed expression for the mean first passage( ) g b X

time which relates the coefficients of the Fokker-PIanckHXO) for different regimes. The value of the noise strength

) . D at the intersection points, for different regimes, depends on
equation can be obtained by the Backward equdtigh6], the height of the potential barrier.

This equation has the potential

U(x)=U(x)—D]|x|~*. (19)

minima of potential.

.6, The mean first passage time of syst€bs) can also be
b dy (vi(2) obtained by using formula€0) and (21). In this case, we
T(x)zf —f B(2) (20 should consider Eq(15) in the form of the Fokker-Planck
x ¥(y)JaB(2) equation(14), i.e., the Backward equation of E(L8) with
and the potentialU given by Eq.(19) and the diffusion coeffi-
cientD|x|*i The coefficientsA(z) andB(z) are given by
0 = ex fXA(Z)dz (p A@=-dlU(z))/dz and B(z)=D|z]~%. From Figs. %a)
aB(2) ' and 8b) we note that the behaviors of the mean first passage

time (for #>0) are very different from those obtained by the
with the boundary condition: witl reflecting,b absorbing, = Fokker-Planck equatiofil4) [see Figs. &) and 4b)]. They
anda<b. The coefficients, for systerl4), are related to are modified, mainly, in the region where the teBx| ¢
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FIG. 4. (a) Plots of the mean first passage time of systéd) for different regimes withc=1/4, d=1/2, andD =1, in arbitrary units.
(b) Plots of the mean first passage time of systa# for different regimes witlce=3, d=6, andD=1, in arbitrary units(c) Plots of the
mean first passage time of systébd) in function of D for different regimes, in arbitrary unit¢éal) Forc=3 andd=6. (b1) Forc=1/4 and
d=1/2. T(x_—Xp) is calculated fronx, to the local maximum ofJ(x) atx=0.
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FIG. 5. (a) Plots of the mean first passage time of systé®) for different regimes wittc=1/4, d=1/2, andD =1, in arbitrary units.
(b) Plots of the mean first passage time of systas) for different regimes witlc=3, d=6, andD=1, in arbitrary units(c) Plots of the
mean first passage time of syst€h®) in function of D for different regimes, in arbitrary unitéal) Forc=3 andd=6. (b1l) Forc=1/4 and

d=1/2. T(x_.—Xg) is calculated fromx, to the local maximum ofJ(x) atx=0.
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has the significative contribution to the new potential As
we can verify, the particle spends almost no time, éor
>0, to cross the interval near the origin=0). Contrary to
the Fokker-Planck equatiofl4), for 6>0, the plateau is
formed even though the height of potential barrietJgk) is

small. This behavior can be understood from the transforme

PHYSICAL REVIEW [E7, 061105 (2003

descriptions; for instance, some of them, including the two
forms studied in this work, have been analyzed and applied
to diverse systemgl6,18,23. In particular, Eq.(2) may be
useful to investigate fractal behavior in gravitational systems
[24]. We have shown that the diffusion coefficieDfx| ¢

an also produce a stretched Gaussian distribution in the
ramework of the Fokker-Planck equation. Although the dif-

potentialU which has an infinite well centered at the origin f,sion equation(2) has been conceived by O’Shaughnessy

x=0. In general, fo®>0, T(x, —Xg) of the diffusion equa-

tion (15), plotted in Figs. &) and 5b), is smaller than that

of Eq. (14) [Figs. 4a) and 4b)]. For 6= —1, the mean first

passage time corresponding to EdJ5 diverges before

crossing the barrier o) (x). Figure 5c) showsT(x, —Xg)

in function of D. In this case, there are no “competitions”
concerningT (X, —X,) for different regimes for a large range

and Procacci@l5], with an appeal for the diffusion on frac-

tal structures, the solution of Fokker-Planck equat{@f)
approximates more to the asymptotic distribution on fractals,
such as the Sierpinski gaskseee Metzler and Klaftei9] and

[20]) than that obtained by the diffusion equati@i®). We
have shown that these diffusion equations can describe sev-
eral kinds of anomalous diffusion processes: subdiffusive,

of D. The behaviors of the escape time for anomalous resuperdiffusive, localized, and the \ue type. Our compara-

gimes are similar to that of the normal regim@=0).

IV. CONCLUSION

tive study on the behaviors of mean first passage time of
these systems have shown that they are very different. As we
have noted, the diffusion equatigh5) can be written in the
form of the Fokker-Planck equatiofi4) plus an attractive

We have studied two forms of diffusion equations: Eqgs.potential. This potential term has the tendency of attracting
(1) and (2). As a matter of fact, there are many different the particles into the regions close to the origin.
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