
PHYSICAL REVIEW E 67, 061105 ~2003!
Power law diffusion coefficient and anomalous diffusion: Analysis of solutions and first
passage time
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We investigate one-dimensional equations for the diffusion with a nonconstant diffusion coefficient inside
the second derivative and between the derivatives. In particular, we employ the diffusion coefficientD(x)
}uxu2u (uPR) and a quartic potential. These diffusion equations present a rich variety of behaviors associated
with different regimes. Results of two approaches are analyzed and compared. We also investigate the mean
first passage time of these systems. We show that the system with the coefficientD(x) between the derivatives
can produce different behaviors for the mean first passage time in comparison with those obtained by the
system with the coefficient inside the derivatives.
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I. INTRODUCTION

The Kramers problem or the problem of surmounting
potential barrier is undoubtedly one of the most import
themes in physics in connection with several topics@1#. For
example, it plays a key role in stochastic resonance@2#, in
describing fluctuation-induced transport such as it occur
kink motion @3# and ratchets@4#. Even the extent of chaos i
the Hamiltonian systems has been shown to have con
tions with this quantity@5#. A collection of these and othe
stochastically driven processes can be found in Refs.@6,7#. In
this scenario, we also have a quantity known as the m
first passage time~or the escape time!, directly related to the
Kramers problem, which is defined as the timeT when the
process starts from a given point and reaches a pred
mined level for the first time.

It should be noted that the mean first passage time
been analyzed in many systems where the Brownian mo
(^x2&}t) is present. Recently, the study of the mean fi
passage time in other contexts, such as the systems tha
hibit anomalous diffusion, has attracted a lot of attention@8#.
Further, we can mention the works@9# where the mean firs
passage time has been analyzed in the fractional deriva
approach, and in Ref.@10# the escape time has been d
cussed in terms of a nonlinear Fokker-Planck equation.
these cases, the diffusion is anomalous correlated type,
the second moment is defined and is given by^x2&}ta in
contrast with the usual casea51. For 0,a,1 anda.1,
the system describes subdiffusive and superdiffusive p
cesses, respectively. Similar anomalous behavior may als
obtained in the linear diffusion equation by taking a spa
dependence in the diffusion coefficient into account, for
ample,D(x)}uxu2u. In particular, this coefficient has bee
applied to several physical situations such as fast electron
a hot plasma in the presence of dc electric field@11#, turbu-
lent two-particle diffusion in configuration space@12#; also,
both the Richardson@13# and the Kolmogorov@14# laws ap-
plied it to turbulence and to describe the diffusion on fract
@15#.

In this work we analyze two forms of equations~for dif-
fusion! which can describe anomalous diffusion. They a
1063-651X/2003/67~6!/061105~7!/$20.00 67 0611
t

in

c-

an

er-

as
n
t
ex-

ve

or
e.,

o-
be
l
-

in

s

e

distinguished by a nonconstant diffusion coefficientD(x)
}uxu2u inside the second derivative and between the der
tives. We also analyze the mean first passage time of th
systems with the presence of a quartic potential. This w
we can study the properties concerning the escape time
the systems whose diffusive anomalous processes
present. Also, we can compare the behaviors of system
different approaches. In particular, an understanding of
mean first passage time in such systems could open up c
prehension of new stochastically driven phenomena.

This work is divided into four sections. In Sec. II, w
consider the diffusion equations without the presence of
external force and we present their solutions for the proba
ity distribution and the second moment. Also, different r
gimes are presented and discussed. In Sec. III, we cons
the diffusion equations with the presence of an external
tential, and, in particular, a quartic potential. We obtain t
stationary solutions, and their behaviors are analyzed.
study the mean first passage time of these systems and
pare the results of two approaches as well. In Sec. IV,
present our conclusions.

II. DIFFUSION EQUATIONS

We first consider the diffusion systems without the pre
ence of any external force. For simplicity, we only stu
one-dimension systems. As motivated in the preceding s
tion we shall analyze the following diffusion equations:

]r1

]t
5D

]2uxu2ur1

]x2
~1!

and

]r2

]t
5D

]

]x F uxu2u
]r2

]x G , ~2!

whereDuxu2u is the diffusion coefficient. Equation~1! is a
Fokker-Planck equation, whereas Eq.~2! is a one-
dimensional diffusion equation which has been studied,
instance, by O’Shaughnessy and Procaccia based on fr
geometry@15#. Equation~2! also corresponds to a Fokke
©2003 The American Physical Society05-1
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Planck equation in a different order of prescription in s
chastic calculus~see Bouchaud and Georges@8# and@16,17#!.
Usually, the form of Eq.~2! is known as the transport form o
the Fokker-Planck equation@17#. The transport form in Eq
~2! results from using a stochastic calculus description wh
is different from the Ito and the Stratonovich rule; Eq.~2! is
the result of the postpoint discretization rule for the stoch
tic integral prescription@18#.

As we shall see, the above equations can describe
localized, superdiffusive, normal diffusive, and subdiffusi
processes. We note that Eqs.~1! and~2! are symmetric unde
the changex→2x. The physical solution of Eq.~1! can be
obtained as follows. By using the following transformatio

z5
x

F~ t !
~3!

and setting

r15

f S x

F~ t ! D
F~ t !

, ~4!

Eq. ~1! is transformed to

2
Ḟ~ t !

F2~ t !

d

dz
@z f~z!#5D@F~ t !#232u

d2

dz2
@ uzu2u f ~z!#.

~5!

Now, we can obtain a set of solutions by separating the v
ablest andz, and putting

Ḟ~ t !@F~ t !#11u5k, ~6!

wherek is a constant. The solution forF(t) is given by

F~ t !5@k~21u!t#1/(21u). ~7!

For convenience, we have taken the integration constan
solution ~7! equal to zero. The other equation that depen
on the variablez is given by

2k
d

dz
@z f~z!#5D

d2

dz2
@ uzu2u f ~z!#. ~8!

This last equation has the following solution:

f ~z!5 f 0uzuuexpF2
kuzu21u

D~21u!G , ~9!

where f 0 is one of the integration constants and the ot
integration constant was put equal to zero.

The normalized solution forr1 is given by

r15C

uxuuexpF2
uxu21u

D~21u!2t
G

@Dt# (11u)/(21u)
, ~10!
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whereC is a constant to be determined by the normalizat
of r1. For u,22 andu.21, C is given byC51/2G(1
1u/21u)u21uuu/(21u). For 22,u<21, the distribution
function r1 is not normalizable. We should note that th
distribution r1 diverges atx50 in the interval22<u,0,
from which the system is locked at the singular point. We s
that r1 has the form of a stretched Gaussian multiplied
uxuu. For u50, we recover the Wiener process and the d
tribution recovers the usual Gaussian form. The second
ment, foru ,23 andu .21, yields

^x2&5

GF31u

21uG
GF11u

21uG @D~21u!2t#2/(21u). ~11!

The result~11! shows that system~1! can describe the local
ized processes (u ,23), superdiffusive processes (21,u
,0), normal diffusive processes (u50), and subdiffusive
processes (u.0). For 23<u ,22, the second moment i
divergent. In this last case, the regime presents a sim
characteristic to the Le´vy process.

In the case of system~2! the solution was obtained in
Refs.@15,19# and is given by

r25
1

2GS 31u

21u D
expF2

uxu21u

D~21u!2t
G

@D~21u!2t#1/(21u)
. ~12!

The factor of 2 in the denominator is absent in the express
given in Ref.@15# due to the fact that we have considered t
whole space. This distribution also has the form of
stretched Gaussian. Foru50, we recover the Wiener proces
and the distributionr2 recovers the usual Gaussian form
The second moment of this system is

^x2&5

GF 3

21uG
GF 1

21uG @D~21u!2t#2/(21u). ~13!

This result shows that system~2! can describe the following
processes: superdiffusive22,u,0, normal diffusive u
50, and subdiffusiveu.0. For u,22, the distribution
functionr2 is not normalizable. The validity of solution~12!
is restricted to the intervalu.22.

The distribution~10!, in particularr1uxu2u, has a similar
form to that obtained in Eq.~12! using the diffusion equation
~2!. However, the termuxuu, which appears in Eq.~10!, splits
the peak of the stretched Gaussian into two ones, and
distribution r1 presents similar characteristic to th
asymptotic distribution on fractals, such as the Sierpin
gasket@20#. As in Ref.@15#, u can be identified as the expo
nent of the anomalous diffusion in both the systems. We
that two different systems can give the same form for
second moment, except for the coefficients. It should
5-2
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noted that Eq.~2! can be transformed in the form of equatio
~1!. This way, Eq.~2! can be viewed as the Fokker-Plan
equation~1! with an external potential, and the divergenc
which appears in the distributionr1 of the system for22
,u,0, described by the Fokker-Planck equation~1!, is re-
moved by this external potential. Further discussion on
subject will be given in the following section.

III. MEAN FIRST PASSAGE TIME

Here, we consider the diffusion equations presented in
preceding section with the presence of an external fo
which are given by

]r

]t
5

]@U8~x!r#

]x
1D

]2uxu2ur

]x2
~14!

and

]r

]t
5

]@U8~x!r#

]x
1D

]

]x F uxu2u
]r

]xG , ~15!

where U(x) is a time-independent confining potential.
particular, we consider the familiar quartic potentialU(x)
5cx42dx2, wherec andd are positive real constants~see,
for example, Ref.@21#!. In Fig. 1 we show the form of the
quartic potential for (c51/4, d51/2) and (c53, d56),
where it can be noted that the second pair gives a gre
potential height. In these systems we are interested in
investigation of the diffusion of a particle over a barrie
namely, the mean first passage time. Moreover, these sys
permit us to analyze, at the same time, the behaviors of
mean first passage time in different regimes and to comp

FIG. 1. Plots of the quartic potentialU(x)5cx42dx2 in arbi-
trary units.
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them. Analytical solutions of these systems cannot be ea
obtained. Thus, we only obtain the stationary solutions. T
stationary solutions can give us some insights into the s
tems and, therefore, the behaviors of the first passage
can be better understood. The stationary solutions, with n
ral boundary conditions@22#, of Eqs.~14! and~15! are given,
respectively, by

r3(stat.)5c1uxuu expF2
4cuxu41u

D~41u!
1

2duxu21u

D~21u! G ~16!

and

r4(stat.)5c2 expF2
4cuxu41u

D~41u!
1

2duxu21u

D~21u! G , ~17!

wherec1 andc2 are constants to be determined by the n
malization.

In Figs. 2 and 3, we show the plots of the normaliz
distributions given by Eqs.~16! and ~17!. It is interesting to
note that the peaks of the stationary distributions~16! are
dislocated to the walls of the potential with the increase
the values ofu ~Fig. 2!. This means that the particles a
pushed against the walls of the potential foru.0. For 23
,u,22, the distribution keeps close to the originx50 and
the barrier of the potential tends to separate the peak
distribution. Also, the height of the peaks increases with
decrease of the value ofu, whereas the behaviors of station
ary solution ~17! described by diffusion equation~15! are
different. The peaks of distributions~Fig. 3! are kept at the
minima of the potential with different values ofu and the
parameters of the potential (c and d). These results can b

FIG. 2. Plots of the normalized stationary distribution~16! de-
scribed by Eq.~14!, in arbitrary units. The solid lines correspond
the potential withc53, d56, andD51. The dotted lines corre-
spond to the potential withc51/4, d51/2, andD51.
5-3
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understood as follows. Equation~15! can be written as a
Fokker-Planck equation of the type~14!

]r

]t
5

]

]x Fd@U~x!2Duxu2u#

dx
rG1D

]2uxu2ur

]x2
. ~18!

This equation has the potential

Ū~x!5U~x!2Duxu2u. ~19!

The termDuxu2u becomes the potentialŪ(x) deeper than
U(x) and it modifies the potentialU(x) for u.0 greatly.
Due to this fact the particles are attracted more to the cen
and the peaks of the distributions are maintained at
minima of potential.

Now we analyze the mean first passage time of Eq.~14!.
To do so, we present the formulas that we shall use for
calculation. A closed expression for the mean first pass
time which relates the coefficients of the Fokker-Plan
equation can be obtained by the Backward equation@1,16#,
i.e.,

T~x!5E
x

b dy

c~y!
E

a

yc~z!

B~z!
dz ~20!

and

c~x!5expH E
a

xA~z!

B~z!
dzJ , ~21!

with the boundary condition: witha reflecting,b absorbing,
and a,b. The coefficients, for system~14!, are related to

FIG. 3. Plots of the normalized stationary distribution~17! de-
scribed by Eq.~15!, in arbitrary units. The solid lines correspond
the potential withc53, d56, andD51. The dotted lines corre
spond to the potential withc51/4, d51/2, andD51.
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A(z)52U8(z) and B(z)5D uzu2u. In this case, Eq.~20!
should be evaluated numerically. Our calculation is p
formed on an infinite range with the substitutions in the lim
its of integrals byb→x0 , a→2`, andx→xL , wherexL is
the left minimum of the potential andx0 is the point in which
the particle is removed from the system@16#. Therefore,
T(xL→x0) represents a measure of the escape time from
left-hand to the right-hand well.

In order to confirm our result, we also perform numeric
calculation by using, in parallel, the corresponding Lange
equation given by

xn115xn1A~xn ,tn!t1AB~xn ,tn!twn , ~22!

where the time interval (Dt) is divided intoN small finite
steps of lengtht5Dt/N andwn is a random number genera
tor @22#. We should note that Eq.~22! cannot be used foru
.0 due to the singularity ofB(z) at the origin (x50), but
we can use it to check out our result foru<0. In the calcu-
lation of Eq. ~22! we have performed 2000 realizations a
then taken the average time to obtain the mean first pas
time. The agreement between two approaches@Eqs.~20! and
~22!# is good.

In Fig. 4~a!, we show the mean first passage time w
respect tox for different regimes with the parameters of th
potential given byc51/4, d51/2, andD51. In these cases
there is no formation of plateau due to the fact that the he
of potential barrier is small. Further, we can note that th
are ‘‘competitions’’ concerningT(xL→x0) for different re-
gimes. Initially, the smaller the value ofu, the faster the
escape timeT(xL→x0). Then, the processes are inverte
and finally, close to the right potential wall, the processes
inverted again. When the height of potential barrier
creases, the plateau becomes evident as it can be seen
Fig. 4~b!. For u521/2, we see that the mean first passa
time takes a long time before crossing the barrier, but it d
not diverge. In this last case, the particles tend to accumu
close to the origin~see Fig. 2!. For u,22, T(xL→x0) di-
verges before crossing the barrier. Moreover, we note that
subdiffusive regimes run faster than those of normal regim
to surmount the barrier. After surmounting the barrier, t
quantityT(xL→x0) of normal regime, at a certain point ofx,
becomes faster than those of subdiffusive regimes. In
4~c!, we see again the ‘‘competitions’’ concerningT(xL
→x0) for different regimes. The value of the noise streng
D at the intersection points, for different regimes, depends
the height of the potential barrier.

The mean first passage time of system~15! can also be
obtained by using formulas~20! and ~21!. In this case, we
should consider Eq.~15! in the form of the Fokker-Planck
equation~14!, i.e., the Backward equation of Eq.~18! with
the potentialŪ given by Eq.~19! and the diffusion coeffi-
cient Duxu2u. The coefficientsA(z) and B(z) are given by
A(z)52d@Ū(z)#/dz and B(z)5Duzu2u. From Figs. 5~a!
and 5~b! we note that the behaviors of the mean first pass
time ~for u.0) are very different from those obtained by th
Fokker-Planck equation~14! @see Figs. 4~a! and 4~b!#. They
are modified, mainly, in the region where the termDuxu2u
5-4
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FIG. 4. ~a! Plots of the mean first passage time of system~14! for different regimes withc51/4, d51/2, andD51, in arbitrary units.
~b! Plots of the mean first passage time of system~14! for different regimes withc53, d56, andD51, in arbitrary units.~c! Plots of the
mean first passage time of system~14! in function ofD for different regimes, in arbitrary units.~a1! For c53 andd56. ~b1! For c51/4 and
d51/2. T(xL→x0) is calculated fromxL to the local maximum ofU(x) at x50.
061105-5
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FIG. 5. ~a! Plots of the mean first passage time of system~15! for different regimes withc51/4, d51/2, andD51, in arbitrary units.
~b! Plots of the mean first passage time of system~15! for different regimes withc53, d56, andD51, in arbitrary units.~c! Plots of the
mean first passage time of system~15! in function ofD for different regimes, in arbitrary units.~a1! For c53 andd56. ~b1! For c51/4 and
d51/2. T(xL→x0) is calculated fromxL to the local maximum ofU(x) at x50.
061105-6
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has the significative contribution to the new potentialŪ. As
we can verify, the particle spends almost no time, foru
.0, to cross the interval near the origin (x50). Contrary to
the Fokker-Planck equation~14!, for u.0, the plateau is
formed even though the height of potential barrier ofU(x) is
small. This behavior can be understood from the transform
potentialŪ which has an infinite well centered at the orig
x50. In general, foru.0, T(xL→x0) of the diffusion equa-
tion ~15!, plotted in Figs. 5~a! and 5~b!, is smaller than that
of Eq. ~14! @Figs. 4~a! and 4~b!#. For u521, the mean first
passage time corresponding to Eq.~15! diverges before
crossing the barrier ofU(x). Figure 5~c! showsT(xL→x0)
in function of D. In this case, there are no ‘‘competitions
concerningT(xL→x0) for different regimes for a large rang
of D. The behaviors of the escape time for anomalous
gimes are similar to that of the normal regime (u50).

IV. CONCLUSION

We have studied two forms of diffusion equations: Eq
~1! and ~2!. As a matter of fact, there are many differe
.

s.

.

06110
d
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descriptions; for instance, some of them, including the t
forms studied in this work, have been analyzed and app
to diverse systems@16,18,23#. In particular, Eq.~2! may be
useful to investigate fractal behavior in gravitational syste
@24#. We have shown that the diffusion coefficientDuxu2u

can also produce a stretched Gaussian distribution in
framework of the Fokker-Planck equation. Although the d
fusion equation~2! has been conceived by O’Shaughnes
and Procaccia@15#, with an appeal for the diffusion on frac
tal structures, the solution of Fokker-Planck equation~10!
approximates more to the asymptotic distribution on fracta
such as the Sierpinski gasket~see Metzler and Klafter@9# and
@20#! than that obtained by the diffusion equation~12!. We
have shown that these diffusion equations can describe
eral kinds of anomalous diffusion processes: subdiffusi
superdiffusive, localized, and the Le´vy type. Our compara-
tive study on the behaviors of mean first passage time
these systems have shown that they are very different. As
have noted, the diffusion equation~15! can be written in the
form of the Fokker-Planck equation~14! plus an attractive
potential. This potential term has the tendency of attract
the particles into the regions close to the origin.
,
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