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Dynamics of Vicsek fractals, models for hyperbranched polymers
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We consider the dynamics of Vicsek fractals of arbitrary connectivity, models for hyperbranched polymers.
Their basic dynamical properties depend on their eigenvalue spectra, which can be determined iteratively. This
paves the way for theoretical studies to very high precision for regular, finite, arbitrarily large hyperbranched
structures.
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The past years have seen a considerable increase in thtso random walks over therdepend on the spectrum of the
investigations of hyperbranched macromolecular structuresigenvalues of their connectivity matrix= (A;;). The off-
[1-8], objects which are topologically speaking tre@s.,  diagonal elementsy; are —1 if beadsi andj are connected
have no loops Paradigmatic for the broad interest are thepy a bond, and 0, otherwise; furthermore, the obey A;;
dendrimers[2—8], which are regular subsets of the Cayley — —3iA; .
tree: From a core sprodt—1 branches, which in the next  previous work has centered for finite Vicsek fractals on
generation have at their enls-1 new branches eachbe-  the casef=4: in this case Jayanthi and Wid6—1§ suc-
ing the coordination numbenumber of nearest neighbdrs  ceeded in determining the eigenvalues/fofby computing
Due to the exponential increase of the number of branches @he zeros of iteratively determined polynomials. Here we re-
each generation, the chemical synthesis usually stops aftghalyze the problem for generfiland will show that the
five or six generations. Furthermore, while the geometricabigenvalues of Vicsek fractals can be obtained very easily,
and dynamical properties of dendrimers have been studied ifyr arbitraryf andg, through an algebraic iterative procedure,
much detail, the objects are in many ways atypical for polyyhich involves the Cardano solution for cubic equations
mers; dendrimers are by far too regular and do not obey21]. These findings open the way to theoretically study the
scaling[2—8]. Of much keener interest are general treelikegynamics of arbitrarily large, finite Vicsek fractals.

structuregthe so-called hyperbranched polymefEhese are  ~ we continue by displaying the procedure of the determi-
commonly synthesized in batch reactions and are, in prinpation of the eigenvalues and present the recurrence formula,
ciple, not limited in their growtj9—11]. which allows us to obtain the eigenvalues of the 1 gen-

Theoretically, in search of scalirig2,13, it is of impor-  eration from that of they generation. From these quantities,
tance to study other classes of regular hyperbranched polyge determine for the corresponding hyperbranched polymers
mers. One such class is given by the so-called Vicsek fractalgoth the average displacement of a monomer under a con-
[14-19, which are constructed iteratively. The generalizedsiant force as a function of time and also the mechanical
topology on which we focus is displayed in Fig. 1, which storage modulus. As we will show, these quantities scale

séhowstsihefmatlcg:ly |nb_twct>-d]1men5|ont_s th913 strugttt{re. with exponents that depend only on the spectral dimerion
ne starts irom the object of generatigr=1, CONSISUNG = ¢ 1y corresponding Vicsek fractal.

here of f+1=4 beads(open circlep arranged in starwise
pattern, the central bead having three neighbors. To this ob-

ject one attaches at the next generation, througbnds, in

starwise fashionf identical copies of itself. Hence the next

stage object g=2) consists of 16 beads. The iteration is "
now obvious; Fig. 1 presents the finife=3 Vicsek fractal

for g=3. Note that in this way the regular pattern of Fig. 1

has a fractal dimen:sioar of

a_In(f+l) !
=3 (1)
since increasing from the center the distaficdiug by a

factor of 3 increases the number of beads inside it by
f+1. Note that through Eq.l), the extreme overcrowding '
found for dendrimersswherearzoc) does not appear in Vic- !
sek fractals. FIG. 1. Vicsek fractal at the stade=42. Displayed is a regular

Many dynamical properties of connected structi2d]  pattern; note that the beads of a hyperbranched polymer in solution
(such as the vibrational spectra, the relaxation modes, buire very mobile.
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The determination of the eigenvalues, i.e., the solution of x3—(f+4)x>+3(f+1)x—a=0. (11
(A—\1)®=0 starts from realizing that the architecture of a
Vicsek fractal displaysf-coordinated center$fCCs), con-  Introducing
necting bonds, and also dangling bonds; hence each of its L
beads has eithdr 2, or 1 neighbors. Setting, for the com- p=3[f(f-1)+7], (12)
ponent of the fCC in A—\I)®=0, typical equations for its N
neighboring sites are q=2(5-F)(f+4)(2f-1), (13
f and
f=N) o= i 2
(0d0=2, & ? p=[p/3*, (14)
(2=N\) = o+ b (3)  the roots of this polynominal are given by the Cardano solu-
tion, see Ref[21]
1-N)p1=yg. 4
(170 1= o @ x,=(f+4)13+2pYcog (p+2mv)/3] with v €1,2,3,
We now transform all such equations to a set involving the (15
coordinates of nearest-neighboring fCCs only; by this We Here
eliminate from these linear equations the variables of the
intermediate and dangling beads. As can be verified by a $=arccof(a—q)/2p]. (16)

short calculation, one obtains
Considering as in Ref24] the limit a—0 of Eq.(11), one

[f— P()\)]&ozé (7)] , ) obtains as spectral dimension,
o _ 2In(f+1)
- o~ o~ d=———. (17)
[2=POV)]de=dot b, (6) In(3f+3)
~ o~ We used the above procedure, E@s5) and (16), and
[1=P(\)]b1= o, (7)) determined exemplarily, fdr=2, 3, 4, and 5, the eigenval-

ues of Vicsek fractals, recovering, fo= 4, the former find-

ings[15-19. Here, for instance, fof =3 we readily obtain
POV =AA=3)(A—f—1). (8) the ei_ggnvalues fo_r fractals up_kb=413_. For small struc-

tures it is also possible to fully diagonalize the corresponding

This procedure, which is closely related to real-space deci® matrix and to verify the correctness of the procedigie

mation[22,23, can now be iterateld times, by whichP(\) ~ 9envalues and degeneragieSor larger systems, say up to

gets replaced bp,(\)=P(py_1(\)). N=48, we have used the fact that tAematrices are sparse,
For finite Vicsek fractals, Eq@8) allows to determine the and computed their eigenvalues based on a modified Lanczos

eigenva'ues at generaticg’H_l from those at generatiog algor|thm[25—2ﬂ The agreement is perfect. NOte, hOWeVer,
through the relation that in its standard form, the Lanczos procedure then sup-

plies only the eigenvalues, but not their degeneracy. For even
P(NOTD)=)\(9) (9) larger systems one reaches quite soon the limits of today’s
feasible numerical diagonalizations, while our iterative pro-
Evidently, in this way, each previous eigenvalue gives rise taedure is only limited by the number of digits employed.
three new ones, a fact already noted in REfS~19 for the We now consider the spectra which we obtained itera-
casef=4. Moreover, at every generation one has the nontively and display in Fig. 2 as a histogram, for the Vicsek
degenerate modi;=0; furthermore, we find one nonde- fractalN=4'3 the density of states. Particularly striking are
generate mode corresponding to the eigenvélué andA,  the discrete form of the spectrum, the multitude of forbidden
new degenerate modes corresponding to the eigenvalue hands, and the inherent symmetries. The eigenvalues belong,
where as also found for dual Sierpinski gaskg®8,29 and paral-
leling earlier result§17-19,22,28 to two sets: First, the
Ag=(f=2)(f+1)971+1, (100 localized modes, for which at a certalnone hasp,(\)
) o =1, and hence, as in E7), all fCCs of generatiork and
an expression that extends the flndlngs of REf5~1§ to higher are immobile. Second, the modes witf\) # 1 for
arbitraryf. From Eq.(10), on(idgzan readily compute thgj)total all k; these get infinitely iterated according to E¢E2)—(16),
number of nondegenerathl, ', and of degeneratdy”,  creating thus a Cantor set. Furthermore, as we will show, this
eigenvalues, obtainingN{™¥=1+(3-1)/2 and N{’  spectrum gives rise to rather smooth relaxation forms, which
=(39-1)/2+(f+1)9-39% hence Né,”d)+ Ngd)=(f+ 1)9  scale according to relations based on the spectral dimension.
=N, as it should be. We now turn to regular hyperbranched structures, which
Furthermore, Eqg5), (8), and(9) can be used to compute we model as generalized Gaussian structe&Ss [30],
the \(9) iteratively, based on the roots of the polynomial  the extension of the classical Rouse mofB1-33 to net-

with

061103-2



DYNAMICS OF VICSEK FRACTALS, MODELS F® . .. PHYSICAL REVIEW E 67, 061103(2003

0.3 : ; ; ; ‘ LA o S e B S B B B
15
13| d
0.2 ¢ ] /
~ 1|
=
s 9
a )
= 1} .
0.1 r
5 - -
‘ MML ‘ i :
0.0 L.u. wul r ]
0 1 2 3 4 5 4l ]
A L -
-3 PR N (NN NN TN T ST SN NAN S T N
FIG. 2. Histogram of the density of statpé\)d\ of a Vicsek -3 -1 1.3 5 7 9 11 11517
fractal at the stagdl=4'2in bins of widthA=0.02. t

FIG. 3. The averaged monomer displacem¥it) under the
works. A GGS consists afl beads subject to frictiofwith  action of an external force. Displayed are, in double-logarithmic
friction constant) connected to each other by sprin@8th  scales to basis 10 and in dimensionless units, bathd the nor-
elasticity constanK). In the Langevin formalism, the posi- malizedY(t) for N=43, 45, 47, 4°, 411 and 43 from above.
tion vectorr(t) of thelth bead of the GGS, subject to the

external forceF(t), obeys[6,7] G"(w) components,(the storage and the loss moduli
[36,37)). For instanceG’ (w) is given by, see Eq$4.159 of
dr(t) N Ref.[32],
+K Y Amfm(D=F()+{w(1), (18
dt m=1 N 2
(w7ol2\;)
G'(w)=C> —————, (20
whereA is (as beforg the connectivity matrix of the GGS, =2 1+ (w70/2)))
and ¢w(t) is the thermal noiséhere assumed to be Gauss- )
ian, with zero mean valle whereC is, for our purposes here, a constant. .
We focus on the motiofdrift and stretchingof the GGS For Vicsek fractals, we can now use the recursively ob-

under a constant external foré¢t) =F 6(t)e, , switched on tained eigenvalues in order to calculate the relaxation quan-
att=0 and acting on a single bead in thedirection. The tities, Egs.(19) and (20). We start by focusing on the aver-

displacement along thedirection,Y(t), which then follows, —agded displacement(t), Eq.(19), in which we setro=1 and
reads the following after averaging both over the fluctuating™/{=1. The results are presented in Fig. 3 for finite Vicsek

forcesw,(t) and over all the beads of the GG6,7,34: fractals, ranging frorN=4° to N=4%. Note that in Fig. 3
the scales are doubly logarithmic. Clearly evident from the

N figure is that at long times one reaches the dom¥fi)
—  F Fro 1 1- -\ -
Y(t)= _Hﬂ - E X~ Ai(U7o)] 19 ~Ft/(N¢) and that at short times one h¥§t)~Ft/{. Be-
O={ 7N N . (19 Jime
=2 ' cause of the\ dependence of(t), in Fig. 3 curves belong-

with 7o=¢/K and \;,=0. Equation(19) is very simple; it 0T
involvesonly the eigenvalues; (but not the eigenvectorsf I
the connectivity matrixA. One may note that in Eq19),
due tox;=0, the motion of the center of mass has separated
automatically from the rest. Clearly, the behavior of the mo-
tion for extremely short and for very long times is obvious:
One has in the limit of very short times, from E(L9),
Y(t)~Ft/{, whereas for very long times one attaiv$t)
~Ft/(N{). These are very general features, which make
clear that the particular structure of the GGS under investi-
gation(and thus information about its structural matéx is
revealed only in the intermediate time domain.

Apart fromY(t), a quantity which nowadays may be ac-
cessed through micromechanical manipulatif8], classi-
cal experiments focus on the mechanical and dielectric relax- FIG. 4. The normalized storage modulGs (), displayed in
ation. Most mechanical experiments probe the complexiimensionless units and double-logarithmic scales to basis 10 for
dynamic moduluss* (w), i.e., its realG’ (w) and imaginary N=43, 45, 47, £, 41, and 4= from below.
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ing to fractals of different sizes are shifted with respect todimensionless units, by setting=1 andC=1. Clearly evi-
each other. Now, typical for th&ractal structure is the do- dent from Fig. 4 are the limiting, connectivity-independent
main at intermediate times, in which the different curvesbehaviors at very small and very high for o<1 one has
merge. In the double-logarithmic scales of Fig. 3 this subdif-G' ()~ w? and forw>1 one findsG’ (w)~ w°. Again the
fusive scaling domain appeafas in Fig. 1a) of Ref.[34])  fractal connectivity aspect is given by the in-between region;

as a straight line; as we proceed to show its slope tends fere by going fromN=4° to N=4"> we have a change in
y=1-1/2 the minimal slope from 0.621 to 0.557. The last value should

determine numerically the slopg. In fact we find for the Figs. 3 and 4 that iN is 64, due to the substantial crossover
largest fractal considered, namely=413, the best linear fit domains, the slopes which are inferred are rather far from

in the region betweet=10* and 10. In this region a linear 1—d/2 and fromd/2, respectively; to obtain these values
approximation leads toy=0.442, to be compared with accurately, large GGS are needed.
1-T/2=0.44211 Theaccuracy attained indeed allows A point which deserves attention is that the curves de-

; ._picted in Figs. 3 and 4 are very smooth, and that they do not
EO assesg38] that the solg fractal parameter (,)f @portance ISbetray the very complex structure of the Cantor set which
d. As shown by us previously, analogous findings hold for

LI e underlies them.
Sierpinski-type structure®8,29,39.
We turn now to the storage modul@s (), given by Eq. We acknowledge gratefully the help of the Deutsche For-

(20) and presented in Fig. 4. Here again we used finite fracschungsgemeinschaft. A.B. thanks the Fonds der Chemis-
tals extending fronN=43 to N=4'3 we plot Eq.(20) in  chen Industrie and BMBF for their support.
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