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Dynamics of Vicsek fractals, models for hyperbranched polymers
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We consider the dynamics of Vicsek fractals of arbitrary connectivity, models for hyperbranched polymers.
Their basic dynamical properties depend on their eigenvalue spectra, which can be determined iteratively. This
paves the way for theoretical studies to very high precision for regular, finite, arbitrarily large hyperbranched
structures.
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The past years have seen a considerable increase i
investigations of hyperbranched macromolecular structu
@1–8#, objects which are topologically speaking trees~i.e.,
have no loops!. Paradigmatic for the broad interest are t
dendrimers@2–8#, which are regular subsets of the Cayl
tree: From a core sproutf 21 branches, which in the nex
generation have at their endsf 21 new branches each,f be-
ing the coordination number~number of nearest neighbors!.
Due to the exponential increase of the number of branche
each generation, the chemical synthesis usually stops
five or six generations. Furthermore, while the geometr
and dynamical properties of dendrimers have been studie
much detail, the objects are in many ways atypical for po
mers; dendrimers are by far too regular and do not o
scaling @2–8#. Of much keener interest are general treel
structures~the so-called hyperbranched polymers!. These are
commonly synthesized in batch reactions and are, in p
ciple, not limited in their growth@9–11#.

Theoretically, in search of scaling@12,13#, it is of impor-
tance to study other classes of regular hyperbranched p
mers. One such class is given by the so-called Vicsek frac
@14–19#, which are constructed iteratively. The generaliz
topology on which we focus is displayed in Fig. 1, whic
shows schematically in two-dimensions thef 53 structure.
One starts from the object of generationg51, consisting
here of f 1154 beads~open circles! arranged in starwise
pattern, the central bead having three neighbors. To this
ject one attaches at the next generation, throughf bonds, in
starwise fashion,f identical copies of itself. Hence the ne
stage object (g52) consists of 16 beads. The iteration
now obvious; Fig. 1 presents the finitef 53 Vicsek fractal
for g53. Note that in this way the regular pattern of Fig.
has a fractal dimensiond̄r of

d̄r5
ln~ f 11!

ln 3
, ~1!

since increasing from the center the distance~radius! by a
factor of 3 increases the number of beads inside it
f 11. Note that through Eq.~1!, the extreme overcrowding
found for dendrimers~whered̄r5`) does not appear in Vic
sek fractals.

Many dynamical properties of connected structures@20#
~such as the vibrational spectra, the relaxation modes,
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also random walks over them! depend on the spectrum of th
eigenvalues of their connectivity matrixA5(Ai j ). The off-
diagonal elementsAi j are21 if beadsi and j are connected
by a bond, and 0, otherwise; furthermore, theAii obey Aii

52( j Þ iAi j .
Previous work has centered for finite Vicsek fractals

the casef 54; in this case Jayanthi and Wu@16–18# suc-
ceeded in determining the eigenvalues ofA by computing
the zeros of iteratively determined polynomials. Here we
analyze the problem for generalf and will show that the
eigenvalues of Vicsek fractals can be obtained very ea
for arbitraryf andg, through an algebraic iterative procedur
which involves the Cardano solution for cubic equatio
@21#. These findings open the way to theoretically study
dynamics of arbitrarily large, finite Vicsek fractals.

We continue by displaying the procedure of the determ
nation of the eigenvalues and present the recurrence form
which allows us to obtain the eigenvalues of theg11 gen-
eration from that of theg generation. From these quantitie
we determine for the corresponding hyperbranched polym
both the average displacement of a monomer under a
stant force as a function of time and also the mechan
storage modulus. As we will show, these quantities sc
with exponents that depend only on the spectral dimensiod̃
of the corresponding Vicsek fractal.

FIG. 1. Vicsek fractal at the stageN543. Displayed is a regular
pattern; note that the beads of a hyperbranched polymer in solu
are very mobile.
©2003 The American Physical Society03-1



o
a

f

th
w
th
y

ec

t

on
-

e

al

e

lu-

-

ing

o
,
czos
er,
up-
ven
ay’s
ro-

ra-
ek
re
en
long,

this
ich
ion.

ich

BLUMEN et al. PHYSICAL REVIEW E 67, 061103 ~2003!
The determination of the eigenvalues, i.e., the solution
(A2lI )F50 starts from realizing that the architecture of
Vicsek fractal displaysf-coordinated centers~fCCs!, con-
necting bonds, and also dangling bonds; hence each o
beads has eitherf, 2, or 1 neighbors. Settingf0 for the com-
ponent of the fCC in (A2lI )F50, typical equations for its
neighboring sites are

~ f 2l!f05(
j 51

f

f j , ~2!

~22l!f f5f01fm , ~3!

~12l!f15f0 . ~4!

We now transform all such equations to a set involving
coordinates of nearest-neighboring fCCs only; by this
eliminate from these linear equations the variables of
intermediate and dangling beads. As can be verified b
short calculation, one obtains

@ f 2P~l!#f̃05(
j 51

f

f̃ j , ~5!

@22P~l!#f̃ f5f̃01f̃m , ~6!

@12P~l!#f̃15f̃0 , ~7!

with

P~l!5l~l23!~l2 f 21!. ~8!

This procedure, which is closely related to real-space d
mation@22,23#, can now be iteratedk times, by whichP(l)
gets replaced bypk(l)5P„pk21(l)….

For finite Vicsek fractals, Eq.~8! allows to determine the
eigenvalues at generationg11 from those at generationg
through the relation

P~l i
(g11)!5l i

(g) . ~9!

Evidently, in this way, each previous eigenvalue gives rise
three new ones, a fact already noted in Refs.@15–19# for the
casef 54. Moreover, at every generation one has the n
degenerate model150; furthermore, we find one nonde
generate mode corresponding to the eigenvaluef 11 andDg
new degenerate modes corresponding to the eigenvalu
where

Dg5~ f 22!~ f 11!g2111, ~10!

an expression that extends the findings of Refs.@15–18# to
arbitrary f. From Eq.~10!, one can readily compute the tot
number of nondegenerate,Ng

(nd) , and of degenerate,Ng
(d) ,

eigenvalues, obtainingNg
(nd)511(3g21)/2 and Ng

(d)

5(3g21)/21( f 11)g23g; hence Ng
(nd)1Ng

(d)5( f 11)g

5N, as it should be.
Furthermore, Eqs.~5!, ~8!, and~9! can be used to comput

the l i
(g) iteratively, based on the roots of the polynomial
06110
f

its

e
e
e
a

i-

o

-

1,

x32~ f 14!x213~ f 11!x2a50. ~11!

Introducing

p5 1
3 @ f ~ f 21!17#, ~12!

q5 1
27 ~52 f !~ f 14!~2 f 21!, ~13!

and

r5up/3u3/2, ~14!

the roots of this polynominal are given by the Cardano so
tion, see Ref.@21#

xn5~ f 14!/312r1/3cos@~f12pn!/3# with n e$1,2,3%,
~15!

where

f5arccos@~a2q!/2r#. ~16!

Considering as in Ref.@24# the limit a→0 of Eq. ~11!, one
obtains as spectral dimension,

d̃5
2 ln~ f 11!

ln~3 f 13!
. ~17!

We used the above procedure, Eqs.~15! and ~16!, and
determined exemplarily, forf 52, 3, 4, and 5, the eigenval
ues of Vicsek fractals, recovering, forf 54, the former find-
ings @15–19#. Here, for instance, forf 53 we readily obtain
the eigenvalues for fractals up toN5413. For small struc-
tures it is also possible to fully diagonalize the correspond
A matrix and to verify the correctness of the procedure~ei-
genvalues and degeneracies!. For larger systems, say up t
N548, we have used the fact that theA matrices are sparse
and computed their eigenvalues based on a modified Lan
algorithm@25–27#. The agreement is perfect. Note, howev
that in its standard form, the Lanczos procedure then s
plies only the eigenvalues, but not their degeneracy. For e
larger systems one reaches quite soon the limits of tod
feasible numerical diagonalizations, while our iterative p
cedure is only limited by the number of digits employed.

We now consider the spectra which we obtained ite
tively and display in Fig. 2 as a histogram, for the Vics
fractalN5413, the density of states. Particularly striking a
the discrete form of the spectrum, the multitude of forbidd
bands, and the inherent symmetries. The eigenvalues be
as also found for dual Sierpinski gaskets@28,29# and paral-
leling earlier results@17–19,22,23#, to two sets: First, the
localized modes, for which at a certaink one haspk(l)
51, and hence, as in Eq.~7!, all fCCs of generationk and
higher are immobile. Second, the modes withpk(l)Þ1 for
all k; these get infinitely iterated according to Eqs.~12!–~16!,
creating thus a Cantor set. Furthermore, as we will show,
spectrum gives rise to rather smooth relaxation forms, wh
scale according to relations based on the spectral dimens

We now turn to regular hyperbranched structures, wh
we model as generalized Gaussian structures~GGSs! @30#,
the extension of the classical Rouse model@31–33# to net-
3-2
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works. A GGS consists ofN beads subject to friction~with
friction constantz) connected to each other by springs~with
elasticity constantK). In the Langevin formalism, the pos
tion vectorr l(t) of the l th bead of the GGS, subject to th
external forceFl(t), obeys@6,7#

z
dr l~ t !

dt
1K (

m51

N

Almrm~ t !5Fl~ t !1zwl~ t !, ~18!

whereA is ~as before! the connectivity matrix of the GGS
andzwl(t) is the thermal noise~here assumed to be Gaus
ian, with zero mean value!.

We focus on the motion~drift and stretching! of the GGS
under a constant external forceF(t)5Fu(t)ey , switched on
at t50 and acting on a single bead in they direction. The
displacement along they direction,Y(t), which then follows,
reads the following after averaging both over the fluctuat
forceswl(t) and over all the beads of the GGS@6,7,34#:

Y~ t !5
F

zN
t1

Ft0

z

1

N (
i 52

N
12exp@2l i~ t/t0!#

l i
, ~19!

with t05z/K and l150. Equation~19! is very simple; it
involvesonly the eigenvaluesl i ~but not the eigenvectors! of
the connectivity matrixA. One may note that in Eq.~19!,
due tol150, the motion of the center of mass has separa
automatically from the rest. Clearly, the behavior of the m
tion for extremely short and for very long times is obviou
One has in the limit of very short times, from Eq.~19!,
Y(t);Ft/z, whereas for very long times one attainsY(t)
;Ft/(Nz). These are very general features, which ma
clear that the particular structure of the GGS under inve
gation~and thus information about its structural matrixA! is
revealed only in the intermediate time domain.

Apart from Y(t), a quantity which nowadays may be a
cessed through micromechanical manipulations@35#, classi-
cal experiments focus on the mechanical and dielectric re
ation. Most mechanical experiments probe the comp
dynamic modulusG* (v), i.e., its realG8(v) and imaginary

FIG. 2. Histogram of the density of statesr(l)dl of a Vicsek
fractal at the stageN5413 in bins of widthD50.02.
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G9(v) components, ~the storage and the loss modu
@36,37#!. For instance,G8(v) is given by, see Eqs.~4.159! of
Ref. @32#,

G8~v!5C(
i 52

N
~vt0/2l i !

2

11~vt0/2l i !
2

, ~20!

whereC is, for our purposes here, a constant.
For Vicsek fractals, we can now use the recursively o

tained eigenvalues in order to calculate the relaxation qu
tities, Eqs.~19! and ~20!. We start by focusing on the ave
aged displacementY(t), Eq.~19!, in which we sett051 and
F/z51. The results are presented in Fig. 3 for finite Vics
fractals, ranging fromN543 to N5413. Note that in Fig. 3
the scales are doubly logarithmic. Clearly evident from t
figure is that at long times one reaches the domainY(t)
;Ft/(Nz) and that at short times one hasY(t);Ft/z. Be-
cause of theN dependence ofY(t), in Fig. 3 curves belong-

FIG. 3. The averaged monomer displacementY(t) under the
action of an external force. Displayed are, in double-logarithm
scales to basis 10 and in dimensionless units, botht and the nor-
malizedY(t) for N543, 45, 47, 49, 411, and 413 from above.

FIG. 4. The normalized storage modulusG8(v), displayed in
dimensionless units and double-logarithmic scales to basis 10
N543, 45, 47, 49, 411, and 413 from below.
3-3
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ing to fractals of different sizes are shifted with respect
each other. Now, typical for thefractal structure is the do-
main at intermediate times, in which the different curv
merge. In the double-logarithmic scales of Fig. 3 this sub
fusive scaling domain appears„as in Fig. 1~a! of Ref. @34#…
as a straight line; as we proceed to show its slope tend
g512d̃/2.

We can use now the slopes of the curves in Fig. 3
determine numerically the slopeg. In fact we find for the
largest fractal considered, namely,N5413, the best linear fit
in the region betweent5104 and 109. In this region a linear
approximation leads tog50.442, to be compared with
12d̃/250.44211 . . . . Theaccuracy attained indeed allow
to assess@38# that the sole fractal parameter of importance
d̃. As shown by us previously, analogous findings hold
Sierpinski-type structures@28,29,39#.

We turn now to the storage modulusG8(v), given by Eq.
~20! and presented in Fig. 4. Here again we used finite fr
tals extending fromN543 to N5413; we plot Eq.~20! in
le

ul

l-
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dimensionless units, by settingt051 andC51. Clearly evi-
dent from Fig. 4 are the limiting, connectivity-independe
behaviors at very small and very highv; for v!1 one has
G8(v);v2 and forv@1 one findsG8(v);v0. Again the
fractal connectivity aspect is given by the in-between regi
here by going fromN543 to N5413 we have a change in
the minimal slope from 0.621 to 0.557. The last value sho
be compared tod̃/250.557 88 . . . .Also, one may note from
Figs. 3 and 4 that ifN is 64, due to the substantial crossov
domains, the slopes which are inferred are rather far fr
12d̃/2 and from d̃/2, respectively; to obtain these value
accurately, large GGS are needed.

A point which deserves attention is that the curves
picted in Figs. 3 and 4 are very smooth, and that they do
betray the very complex structure of the Cantor set wh
underlies them.
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