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Is the binary hard-sphere mixture a good reference system for sterically stabilized colloids?

Ph. Germain,* C. Regnaut, and S. Amokrane
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The relevance of the hard-sphere mixture model as a starting point for the study of sterically stabilized
colloids is discussed. Two physical situations are distinguished: true molecular solvent-colloid mixtures, and
pseudobinary mixtures of two supramolecular objects. For the former, the limitation of the hard-sphere mixture
model are recalled. Its potential use as a reference system for perturbation treatments is then analyzed. The
accuracy of the latter is tested numerically. This study shows that the hard-sphere mixture is, in general, not a
good reference system for sterically stabilized colloids in molecular solvents. For pseudobinary mixtures, the
potential of mean force between the bigger solutes induced by the smaller ones is considered. The influence of
a very short-range heteroattraction is discussed.
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I. INTRODUCTION

The model of a binary mixture of hard spheres~HS! with
large difference in size has been extensively studied in re
years, in view to clarifying the microscopic mechanisms t
govern the phase behavior of sterically stabilized colloi
By incorporating in the simplest way the granularity of t
solvent, it indeed made possible the understanding of b
features such as the short-range behavior of the effec
interaction between large solute particles. It is precisely
this manner that Asakura and Oosawa predicted@1#, in the
context of a study of polymer induced floculation of colloid
particles, the so-called depletion force between large
ticles immersed in a medium of much smaller ones. Bein
signature of the geometrical asymmetry between the mi
scopic components, this effect constitutes a remarka
specificity~and a generic property! of colloidal suspensions
It is thus considered as one of the fundamental features
explain their thermodynamics.

The HS mixture model is entirely characterized by t
size ratio q5s2 /s1@1, the two independent thermody
namic variables being usually the packing fractionsh i

5(p/6)r is i
3 (r i ands i are, respectively, the number dens

and the diameter of componenti; hereafteri 51 will refer to
the small spheres!. It is currently investigated following two
routes: either the treatment of the true~binary! mixture@2–8#
or the effective one-component fluid approach@8–15#. From
various theoretical methods and numerical simulations
number of fundamental features have been established
existence of a stable isostructural solid-solid (S-S) transition
for very large size asymmetry@8#, and the unstability of the
fluid-fluid ~F-F transition! with respect to theF-S one ~the
possibility of phase separation at sufficiently largeq was first
pointed out by Biben and Hansen@16#!. These features are
consequence of the very short-range attractive tail of
depletion potential forq@1.

The asymmetric binary HS mixture is thus an origin
model that should provide a unified insight into the pha
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behavior of colloidal systems in which the interactions a
truly dominated by the hard core repulsion. Now, the qu
tion is to know which experimental systems belong to t
category. Indeed, several theoretical studies considered
mixtures without always specifying the physical systems
which this model is relevant. To this end, two classes
~sterically stabilized! colloidal suspensions need to be disti
guished: true colloid-solvent mixtures, that is, colloidal pa
ticles suspended in a molecular solvent and pseudobin
mixtures consisting of two supramolecular hard obje
~colloid-colloid or colloid-polymer mixtures; see, for ex
ample, Ref.@17#! in a molecular solvent. From the modelist
point of view, it is mainly the range of the interactions b
tween the different species—as compared with their siz
that decides to which physical systems the model applie

~1! In colloid-solvent mixtures, the indirect potential be
tween the big particles mediated by the smaller ones varie
the scale of the microscopic components of the mixture.
this situation, several theoretical studies have underlined
portant modifications with respect to the pure depletion
fect: On the one hand, solvent-solvent and solvent-solute
tractive forces can have a strong impact on the potentia
mean force. As a result, the phase behavior of the so
particles may be qualitatively different and far more comp
than that relative to pure HS mixtures~for related works, see
Ref. @18# and references therein!. On the other hand, the
variation of the direct solute-solute interaction at short ran
must also be considered, as this occurs in a region of sim
extension to that of the indirect potential@19#. This effect
should play an important role for the determination of t
effective potential, especially forq;20–100@20#, which is
typical of ~molecular! solvent-solute mixtures.

The insufficiency of the HS mixture model in the conte
of pure solvent-colloid mixtures is actually evidenced
many experimental observations. For instance, numer
mixtures exhibit stable fluid phases rich in solute particles
a liquid solvent@21# ~see also Ref.@22# for a review on
microemulsions!. This feature, as well as the strong influen
on the phase diagram of the temperature@22# and of the
physicochemical characteristics of the solute@23# and sol-
vent particles@24# are by definition foreign to the pure har
©2003 The American Physical Society01-1
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GERMAIN, REGNAUT, AND AMOKRANE PHYSICAL REVIEW E67, 061101 ~2003!
core scenario. The latter is thus clearly too primitive to d
scribe correctly solvent-solute mixtures. The only remain
question is thus to know wether the HS mixture may prov
a good reference system for the perturbative treatmen
nonhard core effects. This is the main problem that we w
examine in this work.

~2! In pseudobinary mixtures, a possible short-ran
structure in the effective interaction induced by the solven
likely to be masked by the other contributions due to
smaller colloids. The solvent is thus completely ignored
the model. Now, the indirect potential between the big
colloids induced by the smaller ones has a much lon
range than the size of the microscopic components of
mixture. The range of the attractive forces between the b
ger colloidal species is in this case also much smaller t
that of the depletion one, induced by the smaller colloi
These forces may thus be expected to have a much we
influence than for true solute-solvent mixtures. To o
knowledge, however, this point has not yet been clearly
sessed in the litterature. It will also be partly addressed
this work.

The asymmetric HS mixture model appears thus to
more appropriate to pseudobinary mixtures than to solv
colloid ones.A priori, the former provide the main exper
mental motivation of the persistent and difficult investig
tions in view of establishing its complete phase behav
together with simple parametrization of the pair distributi
functions~PDFs! and the equation of state~for recent work,
see, for example, Refs.@25–27# and references therein!. For
these systems, the colloid-colloid size ratio usually lies in
rangeq51 –10. Greater values ofq correspond more likely
to true colloid-solvent mixtures. However, values ofqs10
are commonly considered in theoretical studies of the
mixture: for instance, the phase behavior was computed
q51 –33 in Ref.@8#, q51 –20 in Ref.@28#. The question is
thus to which physical systems these results are relev
This point is not always made explicit in the theoretical stu
ies as stressed above. Hence, the only justification of the
mixture model forq@1 would be its potential use as a re
erence system for more realistic interactions in the contex
solvent-colloid binary mixture. One indeed frequently fin
the general argument that the HS mixture should play a
similar to that of the HS fluid for one-component systems
perturbation treatments.

The perturbation theory~PT! @29# has already been ap
plied successfully to moderately asymmetric mixtures~see,
for example, Ref.@30#!, but it has been seldom used for tru
mixtures in the colloidal regime. For instance, nonadditiv
in the solvent-solute hard core potential~which might model
solvatation forces! was studied in Ref.@31# by first-order
perturbation and its effect on the stability of the liquid pha
was examined. A thorough test of this approach was, h
ever, not performed. This was done, for instance, by Gazz
@32# for the nonadditivity, but with HS spheres of equal d
ameter. It is thus necessary to consider the validity of the
in the high asymmetry regime and in situations more gen
than the mere nonadditivity.

The main scope of this paper is thus to investigate the
for asymmetric mixtures, by extending our previous analy
06110
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of the perturbation treatment in one-component systems@33#.
The paper is presented as follows: in Sec. II, we present
PT with HS mixture reference system. The principle of t
approximation of the effective one-component fluid is brie
recalled. The PT is then presented formally for the true m
ture and its efffective fluid representation. The choice of
latter is justified and the numerical method is described. T
results are then presented in Sec. III for different models
attractive forces. Finally, an exemple of interaction para
eters appropriate to colloid-colloid mixtures will be an
lyzed. Section IV is the conclusion.

II. PERTURBATION THEORY WITH HS MIXTURE
REFERENCE SYSTEM

A. Hamiltonian for non-hard-sphere particles

We consider a binary mixture of particles interacting w
some model potentialui j , assumed here with spherical sym
metry. The total interaction potentialH is

H5
1

2 (
i 51

N1

(
j 51

N1

u11~r i j !1
1

2 (
i 51

N2

(
j 51

N2

u22~r i j !

1(
i 51

N1

(
j 51

N2

u12~r i j !, ~1!

whereNi is the total number of particles of speciesi.
When all the interactions are hard-sphere-like, one ha

ui j
HS~r !5H `, r ,s i j

0, r>s i j

with s i j 5(s i1s j )/2 for additive HS ~thus s115s1 and
s225s2).

As emphasized in the introduction, some correction to
HS interaction might be necessary for some specific syste

Dui j ~r !5ui j ~r !2ui j
HS~r !, ~2!

so that one writes

H5HHS1H1 , ~3!

whereHHS andH1 correspond, respectively, to the HS inte
actionui j

HS and toDui j in Eq. ~1!. By assuming that the latte
lead only to small modifications with respect to the pure H
case, one can use standard methods of the perturba
theory @29#, the reference system being the HS mixture.

The question of the choice of the ‘‘true’’ interaction
ui j (r ) in real colloidal suspensions and hence ofDui j is
actually not a simple one. It will be partially examined
Sec. IV, where a few typical cases will be studied nume
cally. In what follows, we examine the aspects of the pert
bation treatment that do not require specification of th
corrections.
1-2
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B. Thermodynamic potentials

To discuss the validity of the PT, the effective on
component representation will prove more convenient: fi
because it is numerically simpler; second, because it is
most transparent way to capture the impact of the pertu
tion potentials on the properties of the solutes. The suita
thermodynamic ensemble is then the semigrand one.
mixture has a fixed number of solute particlesN2, and is in
thermodynamic equilibrium with a reservoir of solvent pa
ticles with temperatureT and chemical potentialm1. The
associated thermodynamic potentialF(N2 ,V,T;m1) reads

F52kT ln Z~N2 ,V,T;m1! ~4!

with

Z5
1

N2!L2
3N2 (

N1

z1
N1

N1! E E drN1dr 8N2

3exp@2bH~rN1,r 8N2!#, ~5!

where b51/kT, z15L1
23 exp(bm1) is the solvent fugacity

with L i5h/A2pmikT, andV is the volume of the mixture
Equivalently,Z reads

Z5
1

N2!L2
3N2

E
V
drN2 exp$2b@H22~rN2!1V#%, ~6!

with

V52kT ln(
N1

z1
N1

N1! EV
dr 8N1 exp$2b@H11~r 8N1!

1H12~r 8N1,rN2!#%, ~7!

where Hi j is the sum of the pair interaction termsui j be-
tween speciesi and j. Equations~6! and ~7! are exact. They
constitute the starting point of the effective one-compon
representation,Z appearing as the canonical partition fun
tion of a one-component system with thermodynamic va
ables (N2 ,T,V) interacting through the effectiveN2-body
interaction potential:

He f f5H221V. ~8!

In this treatment, the effect of the solvent on the solute p
ticles is entirely contained in the indirect potentialV. The
latter depends onm1 and is a functional of the interactio
potentialsu11 andu12 through Eq.~7!. It is not, in general, a
pairwise additive potential. The following step is to wri
expansion ofV at high dilution. At second order, this read
~see, for example, Ref.@8#!
06110
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V̄5V0~m1 ,T,V!1N2v1~m1 ,T,V!

1
1

2 (
i 51

N2

(
j 51

N2

v2~r i j ;m1 ,T,V! ~9!

with

V052kT ln@Z0~m1 ,T,V!#, ~10!

v1~m1 ,T,V!52kT lnFZ1~m1 ,T,V!

Z0~m1 ,T,V!G , ~11!

v2~r ;m1 ,T,V!52kTH lnFZ2~r; m1 ,T,V!

Z0~m1 ,T,V! G
22 lnFZ1~m1 ,T,V!

Z0~m1 ,T,V!G J ~12!

and

Z05(
N1

z1
N1

N1! EV
drN1exp@2bH11~rN1!#, ~13!

Z15(
N1

z1
N1

N1! EV
drN1 expF2bS H11~rN1!1(

i 51

N1

u12~r i !D G ,

~14!

Z25(
N1

z1
N1

N1! EV
drN1 expF2bS H11~rN1!1(

i 51

N1

@u12~r i !

1u12~ ur i2r u!# D G . ~15!

Equation~9! may be interpreted as follows: the first termV0
is the grand potential of the solvent atm1 and T without
interaction with the solute~one has indeedV5V0 for u12
50). The following termsv1 andv2 are the one-body and
two-body contributions toV̄ induced by the solvent-solut
interaction. The one-body termN2v1 is the grand potentia
difference obtained by considering as independant the c
tribution of each solute particle in the solvent sea@from Eqs.
~9!, ~11!, ~13!, and ~14!, one has forN251: V̄5V01v1
52kT ln Z1]. The two-body term containingv2 is the
lowest-order correction due to the solute-solute correlati
Note that for N252 one recovers exactlyV̄5V012v1
1v252kT ln Z2 @see Eqs.~9!–~15!#. The interaction term
v2 is the potential of mean force. In this approximation,
contains the whole effective contribution of the solvent to t
phase behavior of the solute. From Eqs.~8! and~9!, one has
indeed
1-3
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H̄e f f5V0~m1 ,T,V!1N2v1~m1 ,T,V!

1
1

2 (
i 51

N2

(
j 51

N2

ue f f~r i j ;m1 ,T,V! ~16!

with

ue f f~r ;m1 ,T,V!5u22~r !1v2~r ;m1 ,T,V!. ~17!

In Eq. ~16!, the first termV0 refers only to the solvent
which is assumed to remain homogeneous~as we are inter-
ested in conditions in which only the solutes are concer
by the phase transition, the thermodynamic variables hav
be chosen, for a fixed potentialu11, either in the supercritica
region for the solvent or outside theF-F binodal!. The sec-
ond termN2v1(m1 ,T,V) is also irrelevant for the solute
phase behavior because its contribution to the grand po
tential is linear inN2. Therefore,ue f f is the sole relevan
term of H̄e f f for the thermodynamics of the solutes. It co
tains the direct partu22 of the solute-solute interaction an
the indirect onev2, which is mediated by the solvent sea.
the pure HS mixture,v2 reduces to the depletion potentia
which we will denotevdep in the rest of the paper. For
given size ratio,vdep depends only onr andm1 or, equiva-
lently, on r andr1* the solvent density in the reservoir.

C. Perturbation treatment

1. Perturbation free energy

Starting from Eq.~1! and using the HS mixture referenc
system one obtains the thermodynamic potential at first o
as

Fpert5FHS1
1

2E E drdr 8r11
HS~r ,r 8!Du11~ ur2r 8u!

1E E drdr 8r12
HS~r ,r 8!Du12~ ur2r 8u!

1
1

2E E drdr 8r22
HS~r ,r 8!Du22~ ur2r 8u!, ~18!

whereFHS is the thermodynamic potential of the HS refe
ence system andr i j

HS(r ,r 8) the corresponding two-body den
sity for speciesi and j. This approximation amounts to ne
glecting the variations of the pair correlation functio
during the charging process. The part of the grand poten
neglected in this approximation is

DF5E
0

1dl

2 E E drdr 8F(
i , j

@r i j
l ~r ,r 8!2r i j

HS~r ,r 8!#

3Dui j ~ ur2r 8u!G ~19!

with r i j
l (r ,r 8) the pair density computed forHl5HHS
06110
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1lH1 @see Eq.~2!#. The same approximation in the one
component representation is deduced from Eqs.~16! and
~17!:

F̄pert5F̄HS1D@V01N2v1#1E E drdr 8r̄dep~r ,r 8!

3@Dv2~ ur2r 8u!1Du22~ ur2r 8u!#, ~20!

where

Dv2~r !5E dr8S dv2~r !

du11~r 8!
U

(ui j 5u
i j
HS) i j

Du11~r !

1
dv2~r !

du12~r 8!
U

(ui j 5u
i j
HS) i j

Du12~r !D ~21!

and whereF̄HS is the free energy of the (N2 ,T,V) effective
one-component system computed from Eq.~16!; ue f f5u22

HS

1vdep, r̄dep(r ,r 8) is the corresponding pair density an
D@V01N2v1# the variation of (V01N2v1) induced by the
perturbation potential. In this scheme, the effect of the PT
to neglect the variations induced by the charging process
the one-component pair densityr̄l(r ,r 8) and on the two
terms @dv2(r )/dui j (r 8)#ul leading to Dv2. We will now
explain why the effective one-component fluid representat
is preferable for our study.

2. Choice of the one-component representation

We consider here a perturbation involving onlyDu11 and
Du12 since the direct solute-solute interaction potentialu22
plays the same role in the mixture and in the effective flu
The accuracy of the perturbation free energyFpert depends
on the magnitude of the termbDF that is neglected. For ou
present concern, the latter reads@see Eq.~19!#

bDF5E
0

1dl

2 E E drdr 8$@r11
l ~r ,r 8!2r11

HS~r ,r 8!#Du11~ ur

2r 8u!1@r12
l ~r ,r 8!2r12

HS~r ,r 8!#Du12~ ur2r 8u!%.

~22!

From this expression, one would naively expect the PT to
valid when the two-body densitiesr11 andr12 computed for
the total potential do not differ much from their referen
values. This would indeed lead to a small value of the ra
bDF/b(F2FHS), that expresses the relative weight of th
neglected part. This reasoning is, in fact, incorrect since o
a very small fraction of the total thermodynamic potential
actually relevant to the phase behavior of the solute partic
This appears more clearly in the one-component represe
tion. Indeed, from Eq.~16! the effective free energyF̄e f f

reads

F̄e f f5V0~m1 ,T,V!1N2v1~m1 ,T,V!1F̄~N2 ;m1 ,T,V!,
~23!
1-4
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whereF8(N2 ;m1 ,T,V) is given by

F̄52kT ln
1

N2!L2
3N2

E
V

drN2 expF2
b

2 (
iÞ j

@u22~r i j !

1v22~r i j !#G . ~24!

As already emphasized, the phase behavior of the sol
is determined only byF̄. This is a small quantity when com
pared withV0 and N2v1. One has indeeduF̄u;N2

2, while
uV0u;N1

2 @see Eqs.~10! and ~13!# and N2uv1u;N1N2 @see

Eqs.~11!, ~13!, and~14!# which, with N2!N1, leads touF̄u
!uV01N2v1u. Therefore, even a deviationDF that would
be small with respect to the total perturbation (F2FHS)
could have a very strong impact onF̄. This would also hold
with a more exact expression ofF̄e f f, integrating the indirect
potentialV beyond the two-body termv2, since one has in
any case uV2V02N2v1u!uV01N2v1u. The one-
component expression~24! of the free energy is, therefore
more appropriate to test the PT than that of the mixture@Eq.
~18!#. From Eqs.~20! and~21!, we see that the validity of the
PT is, in fact, linked to the choice of the depletion potent
~plus the HS direct repulsion! as a reference for the effectiv
potentialue f f. Equation~20! shows that this amounts to ne
glecting the effect on the solute pair distributionr̄e f f of the
attractive contributionsDu11 andDu12 @for the discussion of
Eq. ~21! see Sec. II D#.

To conclude this section, we wish to emphasize the m
point of the previous discussion: in many physical situatio
the effect ofDu11 andDu12 on the associated pair densitie
r11 and r12 is moderate~for example, see Figs. 3 and 4
Ref. @34#!. These ‘‘small perturbations’’ may neverthele
have a strong impact on the potential of mean forcev2, or
equivalentely on the solute-solute correlations at infinite
lution. This means that the situation is completely differe
from that of simple fluids or slightly asymmetric mixtures:
highly asymmetric ones indeed, moderate changes of the
teraction potentials with respect to the HS mixture ones m
strongly modify the structural properties of the solute. In t
following section, numerical results with realistic intera
tions u11 andu12 will illustrate the quantitative and in som
case even qualitative inaccuracy of the perturbation tr
ment in the fluid state.

D. Outline of the numerical method

The accuracy of the PT with HS mixture reference syst
for mixtures with attractive forces has been tested by co
paring the PT free energy to the ‘‘exact’’ one, both bei
computed in the one-component representation. Two mo
of perturbation potentials have been investigated~see Sec.
III !. To avoid possible effects of pair additivity assumpti
involved in the effective one-component approach, we h
considered the region of the phase diagram where this
proximation has been tested successfully by direct sim
tions of the mixture in the case of pure HS potentials.
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For the PT free energy, we have kept in Eq.~20! only the
interaction terms that are relevant for the phase behav
This gives:

F8pert5F̄HS1r2VE
V
dr gdep~r !Dv~r !. ~25!

where gdep is the PDF of the fluid of solute particles a
(N2 ,T,V) computed for the potentialfdep5vdep1u22

HS , r
is the solute number density, andDv(r )[Dv2(r ). The di-
rect interaction has been taken as the HS one:u225u22

HS . For

the sake of simplicity, the dependance ofF̄HS, Dv, andgdep

on h1* andq will be specified only when necessary.
The depletion potentialvdep has been computed from th

Ornstein-Zernike equations~OZE! of the HS mixture at infi-
nite dilution with the HNC closure as in Ref.@36#. An im-
proved RHNC closure with bridge functions from Rose
feld’s DFT @3# has been used more recently by Amokra
and Malherbe@35#. However, as the aim of the present wo
paper was to test the PT rather than to study a specific ph
cal system, the effective potentials from the much simp
HNC closure are sufficient.

To compute the exact free energyF̄, the total potential of
mean forcev22 was also needed. We used the same met
as forvdep, that is, the OZE/HNC for the actual potentia
u11 andu12. Next, the reference free energiesF̄HS andF̄, for
the effective one-component fluid, were computed by app
ing the RHNC method with optimized reference system@37#
with the respective potentialsfdep andf tot5u221v22. The
accuracy of this method for the HS mixture model for t
densities considered in this work has been shown in R
@18,36#. Thus,F̄HS and F̄ will be considered as ‘‘exact.’’

The RHNC free energy uses also the one-component
fluid reference system but the additional part of the inter
tion is treated in a nonperturbative way@37#. We used the
version proposed in Ref.@33#, which takes as unique impu
the HS bridge functionB0(r ) proposed by Malijevsky and
Labik @38# ~the RHNC/OZE were solved with the algorithm
of Labik, Malijevski, and Vonka@39#!. The HS reference
PDF g0(r ) is next deduced fromB0(r ) by solving the OZE
for the HS potential~for more details read Sec. III of Ref
@33#!. Although this method is computationally less conv
nient than that using directly the Verlet-Weiss PDF@40#, it is
necessary to solve the numerical convergence problems
ing at high density, when the parametrizedg0(r ) does not
strictly correspond toB0(r ).

As a last step, the PT free energyF8pert was deduced
from F̄HS and gdep ~also provided by the RHNC computa
tion! by applying Eq.~25!. However, in contrast with a stric
perturbative treatment ofDu11(r ) andDu12(r ), we used for
Dv the exact relationDv5v22vdep, instead of the aproxi-
mate one given by Eq.~21!. Thus, in our version,F8pert is
just the PT free energy of a one-component fluid with pot
tial f tot , computed for the reference potentialfdep. This
choice was, in fact, the simplest one since bothv2 andvdep

are already necessary inputs for the computation ofF̄HS and
F8pert. Moreover, it provides an improved version of the P
1-5
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by accounting for the exact changes ofv2 induced by the
perturbation potentials. This point is established in the
pendix by comparing the free energyF8pert obtained follow-
ing the two routes. Note that, in both cases, the PT ha
variational foundation since the free energy satisfies
Gibbs-Bogoliubov inequality.

III. RESULTS AND DISCUSSION

A. Molecular solvent-colloid mixture

The numerical results presented below were obtained
a few examples ofui j typical of molecular solvent—
sterically stabilized colloid mixtures. As recalled in the I
troduction, at least two physical effects may lead to stro
modifications of the total effective potential between the s
utes, in comparison with the depletion one plus a hard-sph
interactionu22

HS . The first one is the influence of the solven
solute and the solvent-solvent attractive forces. For this s
cific point, the study by integral equations and simulati
made in Ref.@18# of the influence of the range of the solven
solvent attraction clearly shows how critical this influen
might be. A somewhat less recognized effect is that of
direct interaction between the solute particles: it must
considered at the same scale as the short-range structu
the indirect interaction~that mediated by the solvent!. When
both show a comparable spatial variation, the image o
near-hard-sphere solute may indeed become insufficient@19#.
It was shown in Ref.@20# that the direct potential is predom
nant with respect to the indirect one forR;100 ~coated
silica particles in inorganic solvent provide a typical exam
of this situation!. On the contrary, the latter is still relevan
for R;20, which corresponds rather to the case of water
oil microemulsion. We will thus consider this situation. A
though the fine structure of the direct potential also prove
be significant in this regime@19#, we will only focuss on the
influence of the solvent-solvent and solvent-solute attrac
forces, the direct potential being a HS one. We use for
heteroattractionu12 a Yukawa potential

bu12~r !

5H 2
s12

r
«12* exp@2l12~r 2s12!/s1#, `, r>s12

`, r ,s12

and for the solvent-solvent interaction, a Lennard-Jones~L-J!
one:

bu11~r !54«11* F S d1

r D 12

2S d1

r D 6G .
In these expressions,« i j* characterizes the magnitude of th
potential ~in units of kBT). The inversel12

21 of the dimen-
sionless parameterl12 is the reduced range of the Yukaw
potential, in unit of the solvent ‘‘effective’’ HS diameters1.
This is chosen such thatu11(s1)50, that is,s15d1. An-
other choice could be made, for instance,u11(s1)5 3

2 kT ~see
06110
-

a
e

or

g
l-
re

e-

e
e

in

a

-

to

n
e

Ref. @36#!, but as the term (d1 /r )12 increases very quickly
for r ,d1 this would not change the indirect potential in
significant way.

Even in this restricted framework, the joint effect ofu11
andu12 is subtle and can produce a quite complex behav
of the potential of mean force. The accuracy of the PT w
HS reference mixture will thus be investigated in two sp
cific situations, hereafter referred to as model~A! and model
~B! ~see Table I!.

With model A a fluid suspension rich in solute particle
was found to be stable in Ref.@18# . This case is particularily
relevant for real solvent-colloid mixtures as it provides
microscopic insight into the solvation effect, which is usua
addressed on more phenomenological grounds.

Model B corresponds to solvophilic macroparticles in
weakly attracting L-J fluid. While leading at largeh1* to the
expected solvation effect, such potentials induce more
prisingly a phase separation at very lowh1* ~see Ref.@41#
and hereafter!. This situation is thus numerically appropria
for testing the ability of the PT with HS mixture referenc
system to predict correctly aF-F transition.

1. ModelA

In the first case,fdep and f tot were computed for the
following values of the densityr* of the solvent in the res-
ervoir: r* 50.15,0.3,0.4 ~for greater values ofr* , one
crosses the nonconvergence region of the RHNC equat
for the depletion potential!. The deviationbDF5b(F8pert

2F̄) that measures the inaccuracy of the PT was next c
puted for the same densities as a function of the solute p
ing fractionh. The results are shown in Fig. 1: we see th
the total potential of mean force is repulsive in the region
contact, the depletion effect being completely masked by
solvation one~see Refs.@18,19,34,35,42# for a similar dis-
cussion!. As a result, theF-F transition predicted above
r* ;0.5 for the pure HS case is shifted to much higher s
vent density~the F-F transition is then due to the attractiv
tail of the interaction forr /s1*11). A finer analysis shows
that the magnitude ofDf5f tot2fdep at contact increase
when r* increases in the range 0.15–0.4. One has, for
stance,Df(r 5s2);6.5kT for r* 50.4. The deviationbDF
@Fig. 1~b!# shows a variation withr* and h similar to that
already obtained in our previous study of one-compon
systems@33#: at fixed r* , bDF increases first withh,
reaches a maximum at some valuehmax, and then decreases
Thus, the variation ofbDF with h is clearly nonlinear. This
is an important point because it means that the devia
observed is thermodynamically relevant. To confirm th

TABLE I. Parameters of the binary mixture model:q is the HS
diameter ratio;«11* the solvent-solvent L-J parameter; («12* ,l12) the
solute-solvent Yukawa parameters.

Model q «11* «12* l12

A 10 0.5 8 2.5
B 10 0.1 13 2.5
1-6
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point, the pressure differenceDP52](F8pert2F̄)/]V was
computed forr* 50.4 ~see inset!: we do not observe im-
provement after derivation.

It was shown in Ref.@33# that the location ofhmax de-
pends, in fact, on the respective widths onDf and of the
correlation peak ofgre f in the contact region. To understan
this feature, one has to consider that the reference PDF
correctely reproduce the behavior of the true one only w
the spatial variation of the perturbation potential is smo
enough within the separation range corresponding to
peak ofgre f . In this case, indeed, the perturbation forces
weak enough in this region and do not modify this peak
strongly. This explains why, forDf fixed, bDF decreases a
very high density, when the width of the correlation peak
small enough. However, the effective potentials in collo
are of very short range. Therefore, one does not observe
region—at very high density—where the PT should be va

FIG. 1. ~a! HNC potential of mean force at infinite dilution fo
q510 and different solvent bulk densitiesr* 5r1s1

3. First set
~negative at contact!: pure HS mixture; second set~positive at
contact!: HS1attractions~modelA). Dotted line:r* 50.23; dashed
line: r* 50.3; solid line:r* 50.4. r is the distance between th
centers of the solute particles.~b! Free energy differencebD f *
5(s2

3/V)b(F8pert2F̄) in model A vs solute packing fractionh
5(p/6)r2s2

3. The solvent density is from bottom to top
r* 50.15,0.23,0.3,0.4. Inset: Pressure differenceDP*
5bs2

3(]F8pert/]V2]F̄/]V)5(b/s2
3)@D f * 2h(]D f * /]h)# vs h

for r* 50.4.
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again, as in simple fluids~for R520, hmax is greater than the
close packing limit!. On the contrary, the variation ofDP
~see inset! show that the PT tends to induce an artific
transition towards a very dense state. In Ref.@33#, we already
found that the PT is pathological for very short-range pot
tials, as it may lead to unphysicalF-F transitions, which are
pure artefacts of the method.

For h fixed, bDF increases withr* ~this is the direct
consequence of the increase ofDf). For r* 50.4, we found
DF>F̄2F̄HS for h50.5. For greater values ofr* , as those
corresponding to theF-F transition of the system with at
tractions, the situation would even be worse. The PT is t
very inaccurate for this choice of potentials.

2. ModelB

The behavior ofbDF for r* 50.09–0.13 is shown in Fig
2~b!. This range of density was chosen because it co
sponds to a metastableF-F coexistence region@15,36# ~a
stable transition is obtained for«12* *13 @15# but this is irrel-
evant for the present analysis!. The variations ofbDF with
r* andh are similar to those in Fig. 1~b! and those reported
in our previous paper@33#. However,bDF increases more
quickly in the present case, andhmax is outside the fluid
regime. Thus, the PT is even more inaccurate than for mo

FIG. 2. ~a! Same as Fig. 1~a! with model A. Dashed lines:r*
50.1; solid linesr* 50.2. ~b! Same as Fig. 1~b! with model B.
From bottom to top:r* 50.09,0.13,0.23.
1-7
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GERMAIN, REGNAUT, AND AMOKRANE PHYSICAL REVIEW E67, 061101 ~2003!
A. This result may be easily understood from the compari
of fdep andf tot @Fig. 2~a!#: the sign of the contact value i
again reversed by the attractive forces. Butf tot has this time
a sizeable attractive~and nonoscillatory! tail with a much
longer range thanfdep. The comparison ofgdep and gtot ,
computed forr* 50.13 andh50.4, shows the complete in
adequacy of the HS mixture model for approximating t
solute PDF in the region of contact when attractive forces
present~Fig. 3!. Note that in this case, the PDFg0(r ) of the
one-component HS fluid with suitable diameter provide
much better estimate ofgtot thangdep.

Now, we compare the phase behavior computed for
sameui j in the PT and in the ‘‘exact’’ treatment~at one-
component level!. In the latter, the onset aF-F transition is
observed forrc* .0.11. This is a consequence of the partic
lar shape off tot discussed above. The PT was then tes
nearrc* . It is found to fail in predicting the phase transitio
This is shown in Fig. 4, forr* 50.12, that is just aboverc* :
one observes that the change of concavity ofF(h) obtained
in the exact treatment@see Fig. 4~a! and inset# is absent in the
pertubative one. More specifically, the inability of the PT f
estimating the excess partF15F2F̄HS of F is shown in Fig.
4~b!. To complete this test,F8pert(h) has been computed u
to r* 50.5 ~for greaterr* one encounters again the nonco
vergence region of the RHNC equations forfdep): the fail-
ure of the PT is complete since theF-F transition is never
observed in this approximation.

3. Nonadditivity

As a final illustration, we consider here nonadditive H
mixtures defined bys125@(s111s12)/2#(11D). Their
phase diagram was studied by perturbation by Louis, Fink
and Hansen@31# both for positive and negative nonadditivit
D5020.25, q55 and D520.01, q'9.3. For the fluid
phase, the free energy of the reference system was t
from the Mansooriet al. @43# equation of state. The fre
energy of the nonadditive HS was computed by the PT

FIG. 3. Solute pair distribution functiong(r ) in the effective
fluid with h50.4. The potential of mean force is computed forq
510, r* 50.13, and two models of the mixture: pure HS~dashed
line!; modelB ~solid line!. r is the distance between the centers
the solute particles.
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the true mixture. In this case, this amounts to using a sim
version of Eq.~18!, in which only the PDFg12

HS(s12) of the
additive mixture is required. To assess the accuracy of
method, it is still necessary to consider the quantities that
relative to the solute only. The effective one-component
tentialsfdep andf tot were thus computed atr* 50.4. Fig-
ure 5 shows some results for different values ofq and D.
One observes thatf tot quickly departs fromfdepwhen D
increases~see also Ref.@44#!. The accuracy of the PT with
additive HS reference system may therefore be questione
some cases. This is shown in Table II wherebDF/V and
DF/(F2F̄HS) are reported forh50.4. The ratioDF/(F
2F̄HS) is never negligible, even forD520.01. ForD5
20.04 it is greater than 100%.

B. Pseudobinary mixture

In this last section, we briefly consider a mixture of tw
differently sized colloids. As stressed in the Introduction, t
role of the solvent is usually ignored in this case. We thus
not considered it either. The indirect potential between
bigger colloids induced by the smaller ones has a range c
parable to the size of the latter. On the contrary, the attrac

f

FIG. 4. ~a! Reduced free energyf * 5(s3/V)bF of modelB for
r* 50.12. Dashed line: PT; solid line: RHNC. The inset shows
RHNC reduced free energy after substraction of the linear com
nent. ~b! Same as Fig. 4~a! for the reduced excess free energyf 1*

5(s2
3/V)b(F2F̄HS).
1-8
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potentials between the colloidal particles have a mu
smaller range, characteristic of their specific structure~sur-
face layer for example!. A rapid insight on the effect of thes
forces may be obtained by modeling the colloidal particles
a binary mixture of hard spheres with a very short-ran
Yukawa heteroattraction. We tookq510 for the big to small
colloid size ratio, and«12* 58 andk12510,20 for the Yukawa
tail ~inverse range in units of the diameter of the sma
colloid!. k520 should be appropriate, for instance, to coll
dal particles with diameters of 10 nm and 100 nm.k510
would rather correspond to the microemulsion range (s1
;2 nm). The effect of the heteroattraction on the poten
of mean force is shown in Fig. 6 forr* 50.4. Although

FIG. 5. ~a! Influence of the nonadditivity parameterD on the
HNC potential of mean force at infinite dilution forq55; r*
50.4. From top to bottom at contact:D50,0.02,0.05,0.1.~b! Same
as Fig. 5~a! for q510; r* 50.4 From bottom to top at contact:D
50,20.01,20.02,20.04.

TABLE II. Influence of the nonadditivity HS parameterD on
the free energy deviationd5bs2

3DF/V and on the relative impre

cision R5DF/(F2F̄HS) of the PT, forq510, r* 50.4, h50.4
@with h5(p/6)r2s2

3 the solute packing fraction#.

D 20.01 20.02 20.04

d 0.25 0.65 1.37
R~%! 28 56 106
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being weaker than in the previous situations~see, for in-
stance, Fig. 1~a! at the same density!, the difference between
f tot and fdep is far from being negligible:Df(r 5s2)
;4.2kT and 2.6kT for k510 and 20, respectively. Fork
510, the depletion well is completely removed, while
depth is still significantly reduced fork520. These results
suggest that the question of the relevance of the HS mod
colloid-colloid mixtures deserves further examination. T
actual answer should depend on the respective sizes o
components of the mixture and of the range of the dir
interactions, as suggested by our results and those of
@34#. Finally, we observed that the inaccuracy of the PT fr
energy withfdep as a reference potential can also be sign
cant in this situation, albeit somehow less than for true m
lecular solvent-colloid mixtures.

IV. CONCLUSION

In this paper we have investigated the relevance of the
mixture model as a starting point for the study of sterica
stabilized colloids. Two different situations were disti
guished. In the first one relative to polymer-colloid
colloid-colloid mixtures, the HS mixture model is usual
considered as appropriate, and if present, non-hard-core
teractions are considered as small perturbations. On the
trary, several experimental and theoretical facts underline
limitations of this model for the case of colloidal particles
a molecular solvent. However, the numerous theoret
works devoted to its study considered both the regimes
moderate and high size asymmetry, without always spec
ing the physical system under study. As the latter regi
corresponds to pure solvent-colloid mixtures, it is necess
to discuss the potential use of the HS model as a refere
system for investigating more realistic interactions. We th
studied numerically the PT with HS mixture reference s
tem in the effective one-component representation, for t
typical models of attractions between the solvent partic
and between the solvent and the solute ones. In compar
with the ‘‘exact’’ RHNC free energy, the perturbation trea

FIG. 6. Influence of a very short-range Yukawa heteroattract
on the HNC potential of mean force at infinite dilution forq510,
r* 50.4. Yukawa parameters:«12* 58; k12510 ~dotted line!, 20
~dashed line!. Solid line: depletion potential.
1-9
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GERMAIN, REGNAUT, AND AMOKRANE PHYSICAL REVIEW E67, 061101 ~2003!
ment was shown to be inaccurate for both models. The c
parison quickly worsens when the solvent density increa
This discrepancy of the PT may be easily understood fr
the comparison of the solute-solute effective potentials co
puted for the reference HS potential~depletion potential! and
for the total one. These results are very similar to those
served in a previous work on one-component hard part
fluids with very short-range attractions. For the seco
model the F-F transition could be studied numerically:
PT failed completely to predict the phase transition in
wide domain of solvent density that can be explored by
numerical algorithm. The excess free energy with respec
that of the depletion potential is indeed poorly estimated
the perturbation theory. As a last example, the model of n
additive HS recently studied in a similar perturbative w
was considered. The difference in excess free energy
tween the PT and the RHNC is found to increase quic
with the nonadditivity parameter. These results suggest
the binary HS mixture, with large difference in size, is
general not a good reference system for sterically stabili
suspensions of colloids in a molecular solvent. In this
spect, efforts for improving the computation of the effecti
potential to be used in the effective fluid approach se
worth being continued. A clarification of the role of man
body effects is then necessary. Alternatively the treatmen
the true mixture with improved closures of the OZE rema
to be developped. Furthermore, a fine analysis of the di
interaction potential between the solutes would be neces
for studying any specific mixture.

Finally, we briefly considered the case of pseudobin
mixtures of colloidal particles. To model this situation, w
considered the colloidal particles as hard sphere but the
terarction between unlike species had a very short-ra
Yukawa attraction. We observed that in this situation,
potential of mean force may still be significantly modifie
with respect to the pure depletion one. This suggests
even for these kinds of mixtures, the question of the
equacy of the binary HS model needs again a carefull an
sis.
p
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APPENDIX

Let us consider the total potentialH5HHS1DH. The
perturbation free energyFpert of Eq. ~18! may also be writ-
ten as

Fpert5FHS1^DH&HS ~A1!

with

^DH&HS5
1

ZHS
(
N1

z1
N1

N1! E E drN1dr 8N2$DHexp@2bHHS#%,

~A2!

where

ZHS5(
N1

z1
N1

N1! E E drN1dr 8N2 exp@2bHHS#. ~A3!

For DH5DH111DH12 ~andDH2250), Eq. ~A2! leads to

^DH&HS5
1

ZHS
E

V
drN2Fexp@2bH22

HS#

3S (
N1

z1
N1

N1! EV
drN1$~DH111DH12!

3exp@2b~H12
HS1H12

HS!#% D G . ~A4!

By multiplying the numerator and the denominator
exp@2bVHS#, with VHS, the indirect potential correspondin
to the HS mixture reference system, and by using Eq.~7! for
the denominator, one gets

^DH&HS5
1

ZHS
E

V
drN2$DVexp@2b~H22

HS1VHS!#%,

~A5!

where
DV5

(
N1

z1
N1

N1! EV
drN1~DH111DH12!exp@2b~H11

HS1H12
HS!#

(
N1

z1
N1

N1! EV
drN1exp@2b~H11

HS1H12
HS!#

. ~A6!
One has thusDV5^DH111DH12&1
HS , where the symbol

^ &1
HS denotes the statistical average over the solvent com

nents for the reference potential. Equations~A5! and ~A6!
are equivalent to Eqs.~20! and ~21! when V is a pairwise
additive potential.

Now, let us write the exact expression ofDV5V
2VHS, with V the total indirect potential corresponding
H. This reads
o- DV52kT lnH (
N1

z1
N1

N1! EV
drN1$exp@2b~DH11

1DH12!#exp@2b~H11
HS1H12

HS!#%/

H (
N1

z1
N1

N1! EV
drN1exp@2b~H11

HS1H12
HS!#J . ~A7!
1-10
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Thus, DV also reads DV52kT ln^exp@2b(DH11

1DH12)#&1
HS . Comparing Eqs.~A6! and~A7!, and applying

the relation exp(X)>X, one gets:

DV<DV. ~A8!

Then, calling^DH &̃HS the free energy correction obtaine
hy

s

tte

06110
by using in Eq.~A5! the exactDV instead ofDV, one has

^DH &̃HS<^DH&HS . ~A9!

Let us compare alsôDH &̃HS to the exact free energy
differenceDF defined by Eq.~19!. This one may also read
DF52kT lnH E
V
drN2$exp@2bDV#exp@2b~H22

HS1VHS!#%

E
V
drN2exp@2b~H22

HS1VHS!#
J . ~A10!
u-
m
ent

ed
and
As the denominator of Eq.~A10! is equal toZHS , one
gets the usual Gibbs-Bogoliubov relation:

DF<^DH &̃HS . ~A11!

Relations ~A9! and ~A11! show that the choice ofDV
instead ofDV in Eq. ~A5! leads to a more accurate comp
tation of the free energy, the Gibbs-Bogoliubov criteriu
being satisfied in both cases. This conclusion is independ
of the approximation used for the indirect potential, provid
this approximation is the same for the reference potential
for the total one.
and
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