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Is the binary hard-sphere mixture a good reference system for sterically stabilized colloids?
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The relevance of the hard-sphere mixture model as a starting point for the study of sterically stabilized
colloids is discussed. Two physical situations are distinguished: true molecular solvent-colloid mixtures, and
pseudobinary mixtures of two supramolecular objects. For the former, the limitation of the hard-sphere mixture
model are recalled. Its potential use as a reference system for perturbation treatments is then analyzed. The
accuracy of the latter is tested numerically. This study shows that the hard-sphere mixture is, in general, not a
good reference system for sterically stabilized colloids in molecular solvents. For pseudobinary mixtures, the
potential of mean force between the bigger solutes induced by the smaller ones is considered. The influence of
a very short-range heteroattraction is discussed.
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[. INTRODUCTION behavior of colloidal systems in which the interactions are
truly dominated by the hard core repulsion. Now, the ques-
The model of a binary mixture of hard sphefétS) with  tion is to know which experimental systems belong to this
large difference in size has been extensively studied in recemategory. Indeed, several theoretical studies considered HS
years, in view to clarifying the microscopic mechanisms thaimixtures without always specifying the physical systems to
govern the phase behavior of sterically stabilized colloidswhich this model is relevant. To this end, two classes of
By incorporating in the simplest way the granularity of the (sterically stabilizeyicolloidal suspensions need to be distin-
solvent, it indeed made possible the understanding of basiguished: true colloid-solvent mixtures, that is, colloidal par-
features such as the short-range behavior of the effectivgcles suspended in a molecular solvent and pseudobinary
interaction between large solute particles. It is precisely inmixtures consisting of two supramolecular hard objects
this manner that Asakura and Oosawa predi¢tgdin the  (colloid-colloid or colloid-polymer mixtures; see, for ex-
context of a study of polymer induced floculation of colloidal ample, Ref[17]) in a molecular solvent. From the modelistic
particles, the so-called depletion force between large paroint of view, it is mainly the range of the interactions be-
ticles immersed in a medium of much smaller ones. Being aween the different species—as compared with their size—
signature of the geometrical asymmetry between the microthat decides to which physical systems the model applies.
scopic components, this effect constitutes a remarkable (1) In colloid-solvent mixtures, the indirect potential be-
specificity (and a generic propentyf colloidal suspensions. tween the big particles mediated by the smaller ones varies at
It is thus considered as one of the fundamental features thge scale of the microscopic components of the mixture. For
explain their thermodynamics. this situation, several theoretical studies have underlined im-
The HS mixture model is entirely characterized by theportant modifications with respect to the pure depletion ef-
size ratioq=o0,/0,>1, the two independent thermody- fect: On the one hand, solvent-solvent and solvent-solute at-
namic variables being usually the packing fractiops tractive forces can have a strong impact on the potential of
=(wl6)p;o? (p; ando; are, respectively, the number density mean force. As a result, the phase behavior of the solute
and the diameter of componenthereaftei =1 will refer to  particles may be qualitatively different and far more complex
the small sphereslt is currently investigated following two than that relative to pure HS mixturé®r related works, see
routes: either the treatment of the trilinary) mixture[2—8]  Ref. [18] and references therginOn the other hand, the
or the effective one-component fluid approg8h-15. From  variation of the direct solute-solute interaction at short range
various theoretical methods and numerical simulations, anust also be considered, as this occurs in a region of similar
number of fundamental features have been established: tlextension to that of the indirect potentid9]. This effect
existence of a stable isostructural solid-so&$) transition  should play an important role for the determination of the
for very large size asymmetfy], and the unstability of the effective potential, especially fay~20-100[20], which is
fluid-fluid (F-F transition with respect to thé=-S one (the  typical of (moleculaj solvent-solute mixtures.
possibility of phase separation at sufficiently lacpeas first The insufficiency of the HS mixture model in the context
pointed out by Biben and Hans¢h6]). These features are a of pure solvent-colloid mixtures is actually evidenced by
consequence of the very short-range attractive tail of thenany experimental observations. For instance, numerous
depletion potential fog>1. mixtures exhibit stable fluid phases rich in solute particles in
The asymmetric binary HS mixture is thus an originala liquid solvent[21] (see also Ref[22] for a review on
model that should provide a unified insight into the phasemicroemulsions This feature, as well as the strong influence
on the phase diagram of the temperat{2€] and of the
physicochemical characteristics of the sol{i#3] and sol-
*Corresponding author. Email: germain@univ-paris12.fr vent particled 24] are by definition foreign to the pure hard
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core scenario. The latter is thus clearly too primitive to de-of the perturbation treatment in one-component sys{&8is
scribe correctly solvent-solute mixtures. The only remainingThe paper is presented as follows: in Sec. Il, we present the
question is thus to know wether the HS mixture may providePT with HS mixture reference system. The principle of the
a good reference system for the perturbative treatment cipproximation of the effective one-component fluid is briefly

nonhard core effects. This is the main problem that we willrecalled. The PT is then presented formally for the true mix-
examine in this work. ture and its efffective fluid representation. The choice of the

structure in the effective interaction induced by the solvent ig€sults are then presented in Sec. Ill for different models of
likely to be masked by the other contributions due to thedttractive forces. Finally, an exemple of interaction param-
smaller colloids. The solvent is thus completely ignored in€ters appropriate to colloid-colloid mixtures will be ana-
the model. Now, the indirect potential between the biggedyzed. Section IV is the conclusion.

colloids induced by the smaller ones has a much longer

range than the size of the microscopic components of the || PERTURBATION THEORY WITH HS MIXTURE

mixture. The range of the attractive forces between the big- REFERENCE SYSTEM

ger colloidal species is in this case also much smaller than
that of the depletion one, induced by the smaller colloids.
These forces may thus be expected to have a much weaker We consider a binary mixture of particles interacting with
influence than for true solute-solvent mixtures. To oursome model potential;; , assumed here with spherical sym-
knowledge, however, this point has not yet been clearly asmetry. The total interaction potentiéd is

sessed in the litterature. It will also be partly addressed in

A. Hamiltonian for non-hard-sphere particles

this work. 1NN 1 N2 N
The asymmetric HS mixture model appears thus to be H=Z 2 2 Up(ri) + > 2 2 UaoATij)
more appropriate to pseudobinary mixtures than to solvent- i=1j=1 23131
colloid ones.A priori, the former provide the main experi- Ny N,
mental motivation of the persistent and difficult investiga- +3°S unr) 1)
tions in view of establishing its complete phase behavior =1i=1 12007

together with simple parametrization of the pair distribution

functions(PDF9 and the equation of statéor recent work,  whereN; is the total number of particles of species

see, for example, Ref§25-27 and references thereirFor When all the interactions are hard-sphere-like, one has
these systems, the colloid-colloid size ratio usually lies in the

rangeq=1-10. Greater values af correspond more likely

to true colloid-solvent mixtures. However, valuesf 10 HS ©, I<oj

are commonly considered in theoretical studies of the HS Ui (1) = 0,
mixture: for instance, the phase behavior was computed for

g=1-33 in Ref[8], q=1—20 in Ref.[28]. The question is \yith iy =(o+0;)12 for additive HS (thus ;=0 and
thus to which physical systems these results are relevan(g.zzz o).

This point is not always made explicit in the theoretical stud- “p¢ emphasized in the introduction, some correction to the

ies as stressed above. Hence, the only justification of the HFg jnteraction might be necessary for some specific systems:
mixture model forg>1 would be its potential use as a ref-

erence system for more realistic interactions in the context of
solvent-colloid binary mixture. One indeed frequently finds Auij(r)=uij(r)—ui’?s(r), (2)
the general argument that the HS mixture should play a role
similar to that of the HS fluid for one-component systems inso that one writes
perturbation treatments.

The perturbation theoryPT) [29] has already been ap-
plied successfully to moderately asymmetric mixtufsse, H=Hps+Hy, 3
for example, Ref[30]), but it has been seldom used for true
mixtures in the colloidal regime. For instance, nonadditivitywhereH s andH; correspond, respectively, to the HS inter-
in the solvent-solute hard core potentiahich might model ~ actionu;;® and toAu;; in Eq. (1). By assuming that the latter
solvatation forceswas studied in Ref[31] by first-order lead only to small modifications with respect to the pure HS
perturbation and its effect on the stability of the liquid phasecase, one can use standard methods of the perturbation
was examined. A thorough test of this approach was, howtheory[29], the reference system being the HS mixture.
ever, not performed. This was done, for instance, by Gazzillo The question of the choice of the “true” interactions
[32] for the nonadditivity, but with HS spheres of equal di- u;;(r) in real colloidal suspensions and hence Xfi; is
ameter. It is thus necessary to consider the validity of the PBctually not a simple one. It will be partially examined in
in the high asymmetry regime and in situations more generdbec. IV, where a few typical cases will be studied numeri-
than the mere nonadditivity. cally. In what follows, we examine the aspects of the pertur-

The main scope of this paper is thus to investigate the Pbation treatment that do not require specification of these
for asymmetric mixtures, by extending our previous analysisorrections.

r)O’ij
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B. Thermodynamic potentials

To discuss the validity of the PT, the effective one-

PHYSICAL REVIEW B7, 061101 (2003

Q=00(11,T,V)+Npw1(uq,T,V)

Nz No

component representation will prove more convenient: first,
because it is numerically simpler; second, because it is the ,21 JZ @2(Mij 1, T, V) ©)
most transparent way to capture the impact of the perturba-
tion potentials on the properties of the solutes. The suitablgvith
thermodynamic ensemble is then the semigrand one. The
mixture has a fixed number of solute particdg, and is in
thermodynamic equilibrium with a reservoir of solvent par-
ticles with temperaturd and chemical potentigl;. The
associated thermodynamic potent&IN,,V,T; u,) reads

QOZ_len[Zo(,U/l,T,V)], (10)

oy TV)=—kTIn{—Zl(M1'T'V)} (19
F=—KTINZ(N,,V,T: 1) (4) AT Zo(ui, TV) |’
with
Zy(r p1, T,V)
wz(r;,ul,T,V)Z—kT{| {Z(,(Tl'l'\/)}
1
—aN. drl\lldl’,’\‘2 Zl(lu’llT!V)
N |A3N2 %: N If f —2|n[m (12)
X — BH N7 7Ny
exif — BH(rMe,r )], 6
where B=1/KT, zleISexp(B,ul) is the solvent fugacity
with A;=h/y27m;kT, andV is the volume of the mixture. le N \
Equivalently,Z reads ZO:NE N—l,JVdf texd — BHu(r")], (13
T Ny!

N2'A3sz driVzexp{— B[Hpo(r"2) +Q1},  (6)

2, N1
z,=2 _|f drVtexp — B| Hyy(rN)+ > ugs(ry) ||,
N, NilJv =1

(14
with

Ny

N1
z
z)" Z,=2 ﬁf dereXF{_B<H11(rN1)+z [uo(ri)
Q=—kTInE m Ny, N1 Jv i=1
N, Nip

+Hyr' M, rN2) ]}, ()

dr'Neexp{ — B[Hyy(r' M)
v

. (15

+u12(|ri—r|)])

where H;; is the sum of the pair interaction ternos; be-
tween species andj. Equations(6) and(7) are exact. They
constitute the starting point of the effective one-componen
representationZ appearing as the canonical partition func-
tion of a one-component system with thermodynamic vari-
ables (\,,T,V) interacting through the effectiv®l,-body
interaction potential:

Equation(9) may be interpreted as follows: the first tefdy
'[s the grand potential of the solvent at; and T without
interaction with the solutéone has indeed) =) for u,,
=0). The following termsw, and w, are the one-body and

two-body contributions td) induced by the solvent-solute
interaction. The one-body terid,w- is the grand potential
difference obtained by considering as independant the con-
tribution of each solute particle in the solvent $ram Eqgs.
(9), (11), (13), and (14), one has folN,=1: Q=0+ w,
=—kTInZ. The two-body term containingw, is the

In this treatment, the effect of the solvent on the solute parl.OWGSt -order correction due to the solute-solute correlation.
ticles is entirely contained in the indirect potentidl The  Note that for N,=2 one recovers exactlﬁ Oo+2w,q
latter depends o, and is a functional of the interaction +w,=—kTInZ, [see Eqs(9)—(15)]. The interaction term
potentialsu,, anduy, through Eq.7). It is not, in general, a w-, is the potential of mean force. In this approximation, it
pairwise additive potential. The following step is to write contains the whole effective contribution of the solvent to the
expansion of) at high dilution. At second order, this reads phase behavior of the solute. From E¢®.and(9), one has
(see, for example, Ref8]) indeed

HEff:H22+Q. (8)
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geff:QO(Ml T,V) + Npwy (g, T,V) +AH; [see Eqg.(2)]. The same approximation in the one-
T n component representation is deduced from H4$) and
1 N2 Mo (17):
+5 > > uetir i pg, V) (16)
i=1j=1 . o o
Fpert:FHs+A[Qo+ N2w1]+f f dl‘dl"pdep(l’,l")
with
X[Awy([r=r")+Auzy(|r=r'D], (20)
UCT(rs g, T V) = Ups(1) + wp(r5 g, T,V). (17) where

In Eg. (16), the first term(), refers only to the solvent, Swo(r)
which is assumed to remain homogeneas we are inter- sz(r)zf ar'\ ———- Auq,(r)
ested in conditions in which only the solutes are concerned Suyy(r’) (uy =uliS,

by the phase transition, the thermodynamic variables have to

be chosen, for a fixed potentiaj,, either in the supercritical Swy(r)
region for the solvent or outside tlieF binoda). The sec- T
ond termN,w,(uq,T,V) is also irrelevant for the solutes duzAr’)
phase behavior because its contribution to the grand poten-
tential is linear inN,. Therefore,u®'" is the sole relevant and wherel?HS is the free energy of theN,,T,V) effective
term of H®' for the thermodynamics of the solutes. It con- one-component system computed from Etf); u¢f=ub>
tains the direct parti, of the solute-solute interaction and + 0gep p%P(r,r') is the corresponding pair density and
the indirect onew,, which is mediated by the solvent sea. In A[ (), + N,w, ] the variation of (2¢+N,w;) induced by the

the pure HS mixturew, reduces to the depletion potential, perturbation potential. In this scheme, the effect of the PT is
which we will denotewge, in the rest of the paper. For a to neglect the variations induced by the charging process on

given size ratiowqe, depends only om and w4 or, equiva- the one-component pair densiE/\(r,r’) and on the two

AUlz(r)) (21)

—_H
(=}

% o .
lently, onr andp} the solvent density in the reservoir. terms [ Sw,(r)/u; (r')]], leading to Aw,. We will now
explain why the effective one-component fluid representation
C. Perturbation treatment is preferable for our study.

1. Perturbation free energy 2. Choice of the one-component representation

Starting from Eq(1) and using the HS mixture reference  \ye consider here a perturbation involving omiyi,; and
system one obtains the thermodynamic potential at first orde&u12 since the direct solute-solute interaction potentigl
as plays the same role in the mixture and in the effective fluid.
The accuracy of the perturbation free eneRff" depends
on the magnitude of the ter®AF that is neglected. For our

1
pert_ - r HS ’ Y
F Frst Zf f drdr’ pyy°(r.r) Augy(|r=r’) present concern, the latter reddse Eq(19)]

o] [ araroiie s suste-r) ﬁAF=J:d§f [ arar Lot = ol 1w

1
+§fjdrdrfpgzs(r,rfmu22<|r—rr|), (18) =) +LpIAr ) =P (r,r ) JAu(r=r])}.
(22)

whereF s is the thermodynamic potential of the HS refer-
ence system an;i!}'s(r,r’) the corresponding two-body den-
sity for species andj. This approximation amounts to ne-
glecting the variations of the pair correlation functions
during the charging process. The part of the grand potenti
neglected in this approximation is

From this expression, one would naively expect the PT to be
valid when the two-body densitigs; and p,, computed for
the total potential do not differ much from their reference
alues. This would indeed lead to a small value of the ratio
AF/B(F—Fyg), that expresses the relative weight of the
neglected part. This reasoning is, in fact, incorrect since only
L a very small fraction of the total thermodynamic potential is
AF=I TJ f drdr’[z [pi”j(r,r’)—pi'?s(r,r’)] _zli_ck:‘t.ually relevant to the pha;e behavior of the solute particles.
0 i is appears more clearly in the one-component representa-
tion. Indeed, from Eq(16) the effective free energf®'

xAuij(|r—r’|)} (190 reads

. . . Fef=0g(u1,T,V) +Npwy (1, T,V) + F(Np; 11, T,V),
with pi”j(r,r’) the pair density computed foH,=Hyg (23
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whereF’(N,;uq,T,V) is given by For the PT free energy, we have kept in E20) only the
interaction terms that are relevant for the phase behavior.
. 1 B This gives:
F=—KkTlIn mf drNZex;{—EE [U22(rij)
! \Y i1 #] _
2 : F'PeftzFHSer?vf dr ggep(NAw(r). (25)
\%

+w22(rij)]}- (24)
where gg4¢p is the PDF of the fluid of solute particles at
As already emphasized, the phase behavior of the solutd&2,T,V) computed for the potentiauep=wgept Uz, p

is determined only b}?. This is a small quantity when com- is th? solutg number density, addy(r) =Aw,(r). Jshe di-
pared withQy and Nyw;. One has indeetF|~N2, while rect interaction has been taken as the HS opg=u,,”. For

. .. —1 S
Qo|~N? [see Eqs(10) and (13)] and N,|wy|~N;N, [see the sake of simplicity, the dependanceFdf>, Aw, andggep
1

. . — on 7 andq will be specified only when necessary.
Egs. (1), (13), and(14)] which, with N,<N,, leads to|F| . )
<|0g+ Nyw,|. Therefore, even a deviatiohF that would The depletion potentiabye, has been computed from the

be small with respect to. the tot_al pe.rturbatioﬁ—(FHS) Sitrgséﬁluntigr? r\?\/lil:r? ;qeuﬁ;\?g%zo?u?;tgg ::]SRrg[%(élj_riﬁtimtl
could have a very strong impact h This would also hold  proved RHNC closure with bridge functions from Rosen-
with a more exact expression Bf'', integrating the indirect feld’s DFT [3] has been used more recently by Amokrane
potential() beyond the two-body term,, since one has in and Malherbd35]. However, as the aim of the present work
any case [Q—Q¢—Nywq/<|Qp+N,w,|. The one- paperwas to test the PT rather than to study a specific physi-
component expressiof24) of the free energy is, therefore, cal system, the effective potentials from the much simpler
more appropriate to test the PT than that of the mixfit@ = HNC closure are sufficient. o
(18)]. From Egs(20) and(21), we see that the validity of the To compute the exact free enerfy the total potential of
PT is, in fact, linked to the choice of the depletion potentialmean forcew,, was also needed. We used the same method
(plus the HS direct repulsigras a reference for the effective as for wgep, that is, the OZE/HNC for the actual potentials
potentialu®’’. Equation(20) shows that this amounts to ne- .. andu,,. Next, the reference free energieS andF, for
glecting the effect on the solute pair distributiph’™ of the  the effective one-component fluid, were computed by apply-
attractive contributiondu,, andAuy, [for the discussion of ing the RHNC method with optimized reference sys{@]
Eq. (21) see Sec. 11D with the respective potentialsye, and ;= Uyt wy,. The

To conclude this section, we wish to emphasize the mairaccuracy of this method for the HS mixture model for the
point of the previous discussion: in many physical situationsdensities considered in this work has been shown in Refs.
the effect ofAu;; andAuy, on the associated pair densities [18 3¢. Thus,F"S andF will be considered as “exact.”

p11 andpy, is moderate(for example, see Figs. 3 and 4 in ~ The RHNC free energy uses also the one-component HS
Ref. [34]). These “small perturbations” may nevertheless fyig reference system but the additional part of the interac-
have a strong impact on the potential of mean fa#Ge or  tion is treated in a nonperturbative w$7]. We used the
equivalentely on the solute-solute correlations at infinite di~ersion proposed in Ref33], which takes as unique imput
lution. This means that the situation is completely differentthe HS bridge functiorB,(r) proposed by Malijevsky and
frpm that of simp_le quids.or slightly asymmetric mixtures: in_ Labik [38] (the RHNC/OZE were solved with the algorithm
highly asymmetric ones indeed, moderate changes of the insf | apik, Malijevski, and Vonka[39]). The HS reference
teraction potentials with respect to the HS mixture ones maypr g (r) is next deduced fromB,(r) by solving the OZE
strongly modify the structural properties of the solute. In thefor the HS potentialfor more details read Sec. Il of Ref.
following section, numerical results with realistic interac- [33]). Although this method is computationally less conve-
tions uy; anduy, will illustrate the quantitative and in some pjent than that using directly the Verlet-Weiss PRI, it is
case even qualitative inaccuracy of the perturbation treathecessary to solve the numerical convergence problems aris-

ment in the fluid state. ing at high density, when the parametrizgg(r) does not
strictly correspond tdq(r).
D. Outline of the numerical method As a last step, the PT free ener§yP" was deduced

The accuracy of the PT with HS mixture reference systen{r®m FHs and ggep (also provided by the RHNC computa-
for mixtures with attractive forces has been tested by comtion) by applying Eq.(25). However, in contrast with a strict
paring the PT free energy to the “exact” one, both beingPerturbative treatment afu,,(r) andAu,,(r), we used for
computed in the one-component representation. Two modef @ the exact relatiol w = w; — wqep, instead of the aproxi-
of perturbation potentials have been investigatege Sec. Mate one given by E¢21). Thus, in our versionf'P*" is
IIl). To avoid possible effects of pair additivity assumptionust the PT free energy of a one-component fluid with poten-
involved in the effective one-component approach, we havdial ¢, computed for the reference potentidep. This
considered the region of the phase diagram where this aghoice was, in fact, the simplest one since bethand wgep
proximation has been tested successfully by direct simulaare already necessary inputs for the computatioR'6t and
tions of the mixture in the case of pure HS potentials. F’Pe'™ Moreover, it provides an improved version of the PT

061101-5



GERMAIN, REGNAUT, AND AMOKRANE PHYSICAL REVIEW E67, 061101 (2003

by accounting for the exact changes @f induced by the TABLE |. Parameters of the binary mixture modglis the HS
perturbation potentials. This point is established in the apdiameter ratiog7; the solvent-solvent L-J parametes;jg,\1,) the
pendix by comparing the free energyP®" obtained follow-  solute-solvent Yukawa parameters.

ing the two routes. Note that, in both cases, the PT has &

variational foundation since the free energy satisfies the Model q el &1, N2
Gibbs-Bogoliubov inequality. A 10 05 8 o5
B 10 0.1 13 2.5

Ill. RESULTS AND DISCUSSION
A. Molecular solvent-colloid mixture . .
_ _ Ref. [36]), but as the termd, /r)*? increases very quickly

The numerical results presented below were obtained fofor r <d, this would not change the indirect potential in a

a few examples ofuj; typical of molecular solvent— gjgnificant way.
sterically stabilized colloid mixtures. As recalled in the In- "Eyen in this restricted framework, the joint effect of;
troduction, at least two physical effects may lead to strongynqy,, is subtle and can produce a quite complex behavior
modifications of the total effective potential between the sol-s the potential of mean force. The accuracy of the PT with
utes, in comparison with the depletion one plus a hard-sphergg yeference mixture will thus be investigated in two spe-

solute and the solvent-solvent attractive forces. For this spgB) (see Table)l

cific point, the study by integral equations and simulation \jith model A a fluid suspension rich in solute particles
made in Ref[18] of the influence of the range of the solvent- ywas found to be stable in Rdfl8] . This case is particularily
solvent attraction Cleal’ly shows how critical this inﬂuencere|evant for real solvent-colloid mixtures as it provides a
might be. A somewhat less recognized effect is that of thenicroscopic insight into the solvation effect, which is usually
direct interaction between the solute particles: it must beyddressed on more phenomenological grounds.

considered at the same scale as the short-range structure in\odel B corresponds to solvophilic macroparticles in a
the indirect interactiorithat mediated by the solvem/vhen weakly attracting L-J fluid. While leading at largg to the
both show a comparable spatial variation, the image of &ypected solvation effect, such potentials induce more sur-
near-hard-sphere solute may mde_ed become_ m_sufﬁkﬂ@ﬂn _ prisingly a phase separation at very loji (see Ref[41]

It was shown in Refl20] that the direct potential is predomi- 5 hereafter This situation is thus numerically appropriate

n.a'nt With. respeqt to th_e indirect one fex~ 10(.) (coated for testing the ability of the PT with HS mixture reference
silica particles in inorganic solvent provide a typical exampleSystem to predict correctly B-F transition
of this situation. On the contrary, the latter is still relevant '

for R~ 20, which corresponds rather to the case of water-in-

oil microemulsion. We will thus consider this situation. Al- 1. ModelA

though the fine structure of the direct potential also proves to |n the first casebyep and ¢yo Were computed for the

be significant in this regimg19], we will only focuss on the  foliowing values of the density* of the solvent in the res-
influence of the solvent-solvent and solvent-solute attractioryojr: p* =0.15,0.3,0.4(for greater values ofp*, one
forces, the direct potential being a HS one. We use for throsses the nonconvergence region of the RHNC equations
heteroattraction;, a Yukawa potential for the depletion potential The deviationBAF = B(F'Pe"

BuAT) —F) that measures the inaccuracy of the PT was next com-
puted for the same densities as a function of the solute pack-
o1, _ ing fraction . The results are shown in Fig. 1: we see that
- Tslzexq_hlz(r_‘fﬂ)/"l]' * =01 the total potential of mean force is repulsive in the region of
contact, the depletion effect being completely masked by the
% r<o solvation one(see Refs[18,19,34,35,4Rfor a similar dis-
cussion. As a result, theF-F transition predicted above
and for the solvent-solvent interaction, a Lennard-J¢hed  p*~0.5 for the pure HS case is shifted to much higher sol-
one: vent density(the F-F transition is then due to the attractive
tail of the interaction for/o1=11). A finer analysis shows
N2 (dg)\® that the magnitude oA ¢= ¢oi— dgep at contact increases
Bull(r)=48’fl[(7) _(T) } when p* increases in the range 0.15-0.4. One has, for in-
stanceA ¢(r = o,) ~6.5T for p* =0.4. The deviatiorBAF
[Fig. 1(b)] shows a variation witlp* and » similar to that
In these expressions,-’} characterizes the magnitude of the already obtained in our previous study of one-component
potential (in units of kgT). The inverser;,' of the dimen-  systems[33]: at fixed p*, BAF increases first withy,
sionless parametexy, is the reduced range of the Yukawa reaches a maximum at some valgg,,, and then decreases.
potential, in unit of the solvent “effective” HS diameter;. Thus, the variation oBAF with % is clearly nonlinear. This
This is chosen such that;,(o,)=0, that is,c;=d;. An- is an important point because it means that the deviation
other choice could be made, for instanog,(o;)=3kT (see  observed is thermodynamically relevant. To confirm this
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FIG. 1. (a) HNC potential of mean force at infinite dilution for FIG. 2. (8 Same as Fig. (B) with model A. Dashed linesp*
q=10 and different solvent bulk densitigs*=p,03. First set =0.1; solid linesp*=0.2. (b) Same as Fig. (b) with model B.
(negative at contagt pure HS mixture; second sépositive at  From bottom to topp* =0.09,0.13,0.23.
contacj: HS+attractiongmodelA). Dotted line:p* =0.23; dashed
line: p*=0.3; solid Iine:p*_:0.4. r is the distan_ce between the again, as in simple fluiddor R= 20, 5,1, is greater than the
centers of the solute particlegh) Free energy differencg@Af* close packing limit On the contrary, the variation afP
:(”glv)'g(f,pen_ F) in model A vs solute packing fractiom  (seq insgt show that the PT tends to induce an artificial
:*(fgs)l’?gzz' 5 ggeo ZOl"eTt dgnsntg is_from E?fttom ;SP 10P: transition towards a very dense state. In RR&8], we already
P 3 e pert g =T nset: 3 reisure i erenc found that the PT is pathological for very short-range poten-
Z'B‘T*Z(‘;F 1oV =dFIN)=(Blo)[AT* = n(dAf*[an)] vs 7 igls as it may lead to unphysica}F transitions, which are
for p*=0.4. pure artefacts of the method.

For 7 fixed, BAF increases withp* (this is the direct
consequence of the increasefod). Forp* =0.4, we found

AF=F—FHSfor »=0.5. For greater values @f, as those
corresponding to th&-F transition of the system with at-
tractions, the situation would even be worse. The PT is thus
very inaccurate for this choice of potentials.

point, the pressure differencdeP = —g(F'Pe"—F)/9V was
computed forp* =0.4 (see inset we do not observe im-
provement after derivation.

It was shown in Ref[33] that the location ofy,.y de-
pends, in fact, on the respective widths Ay and of the
correlation peak 0§,.¢ in the contact region. To understand
this feature, one has to consider that the reference PDF can
correctely reproduce the behavior of the true one only when
the spatial variation of the perturbation potential is smooth The behavior ofBAF for p* =0.09-0.13 is shown in Fig.
enough within the separation range corresponding to th@(b). This range of density was chosen because it corre-
peak ofg,e;. In this case, indeed, the perturbation forces aresponds to a metastable-F coexistence regiofil5,3§ (a
weak enough in this region and do not modify this peak toostable transition is obtained fef,= 13 [15] but this is irrel-
strongly. This explains why, foh ¢ fixed, BAF decreases at evant for the present analysi§he variations of8AF with
very high density, when the width of the correlation peak isp* and» are similar to those in Fig.(b) and those reported
small enough. However, the effective potentials in colloidsin our previous papef33]. However, BAF increases more
are of very short range. Therefore, one does not observe thguickly in the present case, ang,., is outside the fluid
region—at very high density—where the PT should be validregime. Thus, the PT is even more inaccurate than for model

2. ModelB
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FIG. 3. Solute pair distribution functiog(r) in the effective ! ' )
fluid with »=0.4. The potential of mean force is computed 6pr 05 | e
=10, p*=0.13, and two models of the mixture: pure Kidashed _-
line); modelB (solid line). r is the distance between the centers of 0 T T T T e e -~ - 7
the solute particles. 05 - i
s
A. This result may be easily understood from the comparisor Lor ]
of ¢gep @nd ¢yo; [Fig. 2a)]: the sign of the contact value is 1s b i
again reversed by the attractive forces. Buj; has this time
a sizeable attractivéand nonoscillatory tail with a much 20 7
longer range tharbye,. The comparison 0§4ep and gy, 25 | i
computed forp* =0.13 andn= 0.4, shows the complete in- ‘ ‘ ‘ . ‘
adequacy of the HS mixture model for approximating the 3, 0.1 0.2 03 04 0.5
solute PDF in the region of contact when attractive forces areb) n

present(Fig. 3). Note that in this case, the POjg(r) of the s
one-component HS fluid with suitable diameter provides a *f'(?l;' g") Rhec;ulc_ed-f;;s;_a- enl‘?(;gl}’ _'(I(R’TH/r:llc)ZﬂihOf _modell;for o
much better estimate f;o; than guep. p*=0.12. Dashed line: PT; solid line: . The inset shows the

Now, we compare the phase behavior computed for thgrnt'((:b)reg:;id;;e;er}:;g%ragg fg:jégmg;eo;st?reegn::é ré;mpo-
sameu;; in the PT and in the “exact” treatmertat one- ' g

— 3 _[EHS
component levgl In the latter, the onset B-F transition is = (2l V)B(F=F™).
observed fop} =0.11. This is a consequence of the particu-

lar shape of¢,,; discussed above. The PT was then testedhe t.rue n;|éturi.8ln_th|shqaﬁe, trlshamsgntsHtso usmgfahsmple
nearpy . Itis found to fail in predicting the phase transition. vz:js_ltpn or ?'( ) inw _|cdo_r|1_yt € '_;?112(012) oft ef thi
This is shown in Fig. 4, fop* =0.12, that is just abovg? : additive mixture is required. To assess the accuracy of this

one observes that the change of concavitf6f) obtained method, it is still necessary to consider the quantities that are
in the exact treatmefisee Fig, 48) and inse}is absent in the relative to the solute only. The effective one-component po-

) 2" oo tentials ¢gyep and ¢y Were thus computed at* =0.4. Fig-
per-tubaltlve one. More spemﬂcaII&HtShe mgbmty of the PT for ure 5 shows some results for different valuesgofind A,
estimating the excess p&{=F—F">of Fis shown in Fig.  one observes thab,,, quickly departs fromegewhen A

4(b);< To complete this tSSE'pert( 77) has been computed Up jncreasedsee also Refl44]). The accuracy of the PT with
to p* =0.5(for greaterp™ one encounters again the noncon- 5qgitive HS reference system may therefore be questioned in

vergence region of the RHNC equations tbge): the fail-  some cases. This is shown in Table Il whesAF/V and
ure of the PT is complete since titeF transition is never AF/(F—EHS) are reported forp=0.4. The ratioAF/(F

observed in this approximation. —s, -
—F"™) is never negligible, even foA=—0.01. ForA=
3. Nonadditivity —0.04 it is greater than 100%.

As a final illustration, we consider here nonadditive HS _ _

mixtures defined by ayo=[(c13+ o12)/2](1+A). Their B. Pseudobinary mixture

phase diagram was studied by perturbation by Louis, Finken, In this last section, we briefly consider a mixture of two
and Hansef31] both for positive and negative nonadditivity. differently sized colloids. As stressed in the Introduction, the
A=0-0.25, g=5 and A=-0.01, g=~9.3. For the fluid role of the solvent is usually ignored in this case. We thus do
phase, the free energy of the reference system was takerot considered it either. The indirect potential between the
from the Mansooriet al. [43] equation of state. The free bigger colloids induced by the smaller ones has a range com-
energy of the nonadditive HS was computed by the PT foparable to the size of the latter. On the contrary, the attractive
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FIG. 5. (@ Influence of the nonadditivity parametér on the
HNC potential of mean force at infinite dilution fag=5; p*
=0.4. From top to bottom at contact:=0,0.02,0.05,0.1(b) Same
as Fig. %a) for g=10; p* =0.4 From bottom to top at contack
=0,—-0.01,-0.02,-0.04.
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FIG. 6. Influence of a very short-range Yukawa heteroattraction
on the HNC potential of mean force at infinite dilution fge= 10,
p*=0.4. Yukawa parameters:},=8; «.,=10 (dotted ling, 20
(dashed ling Solid line: depletion potential.

being weaker than in the previous situatiofsee, for in-
stance, Fig. (@) at the same densikythe difference between
b0t and dgep is far from being negligible:A ¢(r = o)
~4.&T and 2.&T for k=10 and 20, respectively. Fot
=10, the depletion well is completely removed, while its
depth is still significantly reduced foe=20. These results
suggest that the question of the relevance of the HS model to
colloid-colloid mixtures deserves further examination. The
actual answer should depend on the respective sizes of the
components of the mixture and of the range of the direct
interactions, as suggested by our results and those of Ref.
[34]. Finally, we observed that the inaccuracy of the PT free
energy with¢y., as a reference potential can also be signifi-
cant in this situation, albeit somehow less than for true mo-
lecular solvent-colloid mixtures.

potentials between the colloidal particles have a much

smaller range, characteristic of their specific structisua-

face layer for exampleA rapid insight on the effect of these
forces may be obtained by modeling the colloidal particles as .
a binary mixture of hard spheres with a very short-range

Yukawa heteroattraction. We toaje 10 for the big to small
colloid size ratio, and},= 8 andx,= 10,20 for the Yukawa

tail (inverse range in units of the diameter of the smaller
colloid). =20 should be appropriate, for instance, to colloi-

dal particles with diameters of 10 nm and 100 n&s=10
would rather correspond to the microemulsion rangg (

~2 nm). The effect of the heteroattraction on the potentia

of mean force is shown in Fig. 6 fos* =0.4. Although

TABLE Il. Influence of the nonadditivity HS parametér on
the free energy deviatioA= Bo—gAF/V and on the relative impre-
cision R=AF/(F—F"S) of the PT, forq=10, p*=0.4, n=0.4
[with 7= (7/6)p,03 the solute packing fractign

A —0.01 —0.02 —0.04
1) 0.25 0.65 1.37
R(%) 28 56 106

IV. CONCLUSION

In this paper we have investigated the relevance of the HS
mixture model as a starting point for the study of sterically
stabilized colloids. Two different situations were distin-
guished. In the first one relative to polymer-colloid or
colloid-colloid mixtures, the HS mixture model is usually
considered as appropriate, and if present, non-hard-core in-
teractions are considered as small perturbations. On the con-
trary, several experimental and theoretical facts underline the
limitations of this model for the case of colloidal particles in
molecular solvent. However, the numerous theoretical
works devoted to its study considered both the regimes of
moderate and high size asymmetry, without always specify-
ing the physical system under study. As the latter regime
corresponds to pure solvent-colloid mixtures, it is necessary
to discuss the potential use of the HS model as a reference
system for investigating more realistic interactions. We thus
studied numerically the PT with HS mixture reference sys-
tem in the effective one-component representation, for two
typical models of attractions between the solvent particles
and between the solvent and the solute ones. In comparison
with the “exact” RHNC free energy, the perturbation treat-
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ment was shown to be inaccurate for both models. The com- APPENDIX

parison quickly worsens when the solvent density increases. . oy

This discrepancy of the PT may be easily understood from Let us consider the Egtr?l potentiétl =Hys+ AH. Th_e

the comparison of the solute-solute effective potentials Comperturbatmn free energy™™" of Eq. (18) may also be writ-

puted for the reference HS potentidepletion potentialand ten as

for the total one. These results are very similar to those ob- FPert=FHS4 (AH)ys (A1)

served in a previous work on one-component hard particle

fluids with very short-range attractions. For the secondwith

model the F-F transition could be studied numerically: the L M

PT failed completely to predict the phase transition in the 1 ,

wide domain of solvent density that can be explored by the<AH>HS:z_HS Nzl N_lIJ J driidr"M2{AHexd — BHysl},

numerical algorithm. The excess free energy with respect to (A2)

that of the depletion potential is indeed poorly estimated by

the perturbation theory. As a last example, the model of nonwhere

additive HS recently studied in a similar perturbative way N

was considered. The difference in excess free energy be- R N Nj 4y /N -~

tween the PT and the RHNC is found to increase quickly ZHS_NE1 Nl!f fdr drzexd — BHus]. - (A3)

with the nonadditivity parameter. These results suggest that

the binary HS mixture, with large difference in size, is in For AH=AH;+AH;; (andAH»,=0), Eq.(A2) leads to

general not a good reference system for sterically stabilized

suspensions of colloids in a molecular solvent. In this re- (AH) :ij drN2
: : : : HS

spect, efforts for improving the computation of the effective Zyslv

potential to be used in the effective fluid approach seem N

worth being continued. A clarification of the role of many- z! N

body effects is then necessary. Alternatively the treatment of X %‘« Ny! Vdr Y(AHy+AHy)

the true mixture with improved closures of the OZE remains !

to be developped. Furthermore, a fine analysis of the direct

interaction potential between the solutes would be necessary xexp — B(H S+ HTZS)]})

for studying any specific mixture.

_FinaIIy, we bri_efly con;idered the case .Of pseudobinary By multiplying the numerator and the denominator by
mixtures of colloidal particles. To model this situation, we exd — BOMS], with QS the indirect potential corresponding

considered the colloidal particles as hard sphere but the in[b the HS mixture reference system, and by using(Exfor
terarction between unlike species had a very short—rangfhe denominator, one gets '

Yukawa attraction. We observed that in this situation, the
potential of mean force may still be significantly modified 1 N HS s
with respect to the pure depletion one. This suggests that (AH>Hs:Z—HSdef 2{AQexd — B(H+ Q™) ]},

exy — BHYS

. (A4)

even for these kinds of mixtures, the question of the ad- (A5)
equacy of the binary HS model needs again a carefull analy-
sis. where
22'1
3 ) R AR et - pHER i)
AQ=— . (AB)

Ny
Zl

S ) e - pHISHHED)]
R,

One has thua Q=(AHq;+AH;)"S, where the symbol M
( )'S denotes the statistical average over the solvent compo- ~ AQ=-kTIn > mf drNi{exd — B(AH;
nents for the reference potential. EquatiqA®%) and (A6) Ny TtV
::j%iﬁegl\p/)iltirr]]ttigol Eqg20) and (21) when () is a pairwise +AH12)]exp[—ﬁ(H?ls+ H?zs)]}/

Now, let us write the exact expression @ =0 le
— QNS with Q the total indirect potential corresponding to > mf drMiexg — B(HYS+HD) 1. (A7)
H. This reads Ny N1t Jv
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Thus, AQ also reads AQ=—kTIn(exd—B(AH;; by using in Eq.(A5) the exactA() instead ofAQ, one has
+AH ) )}'S. Comparing Eqs(A6) and(A7), and applying

the relation exp{)=X, one gets: (AR s=<(AH)ys. (A9)
AQ=AQ. (A8)

. Let us compare als§AH),s to the exact free energy
Then, calling({AH)ys the free energy correction obtained differenceAF defined by Eq(19). This one may also read

fdrNZ{exr[—,BAQ]exp[—,B(H§25’+QH5)]}
AF=—kTIn{ — _ (ALD)
fderexp[—ﬁ(H;'§+QHS)]
Vv

As the denominator of EqAL0) is equal toZys, one instead ofA(Q in Eqg. (A5) leads to a more accurate compu-

gets the usual Gibbs-Bogoliubov relation: tation of the free energy, the Gibbs-Bogoliubov criterium
. being satisfied in both cases. This conclusion is independent
AF<(AH)us. (A11)  of the approximation used for the indirect potential, provided

this approximation is the same for the reference potential and
Relations (A9) and (Al1l) show that the choice ofAQ}  for the total one.
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