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Impulse backscattering in granular beds: Introducing a toy model

T. R. Krishna Mohan* and Surajit Sen†
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~Received 29 January 2003; published 24 June 2003!

Impulses efficiently propagate into nominally dry granular beds and backscatter from buried inclusions in
such beds may be potentially exploited to image shallow buried objects~SBOs!. However, reliable imaging of
SBOs requires ‘‘cleaning up’’ of surface vibrations, and, in addition to three-dimensional~3D! particle dynam-
ics simulations, a phenomenological model to parametrize the bed surface may be useful for field applications.
We introduce a 1D mean-field-like toy model with two parameters, which allows one to model surface
vibrations, is consistent with experiments in a granular bed, and can help estimate the approximate signal
transmission properties of the bed.
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INTRODUCTION

The imaging of shallow buried objects in a complex m
dium, e.g., nominally dry soil, is a difficult problem that ha
seen limited progress@1#. Such imaging is of relevance i
connection with locating antipersonnel land mines, in
chaeology, land surveying, and in other applications. It
been shown that gentle mechanical impulses@2# can be used
to detect buried objects at depths of a meter or so in no
nally dry sand beds. Detailed three-dimensional~3D! simu-
lations establish that nonlinear pulse propagation in 3D b
is a quasi-1D process@3#; normally incident pulses travel a
weakly dispersive energy bundles and become more
more 1D-like with an increase in area over which the i
pulse is generated. It would be of interest to rapidly gene
images of buried backscatterers by exploiting the inform
tion contained in the time-dependent surface vibrations
granular beds@3#.

To accomplish such imaging, it is necessary to pro
some global parameter that contains coarse-grained info
tion about grain dynamics at the bed surface. We study
space averaged, time evolution of thetime integratedkinetic
energies of the surface grains in idealized sand beds. Se
groups have measured impulse backscattered signals a
surface in empty beds and in beds with some buried ob
@2#. Newtonian dynamics based 3D simulations of impu
backscattering in idealized beds have been carried out by
et al. @3#. These authors used the velocity-Verlet algorith
@4# to integrate the equations of motion, and their data
consistent with the available experiments. Thus, a conse
on the spatiotemporal behavior of impulse backscattered
is beginning to emerge.

It is apparent from the existing work that the energy i
parted by the impulse penetrates into the system. The sp
of the energy in a givenx-y plane at a given depth depend
on the packing in the system. There is impulse backscatte
at every granular contact. If one measures the amoun
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backscattered energy at the bed surface, the energy dens
the bed surface rapidly depletes after the initiation of
impulse, and then rises as a function of time. The ba
scattering from the shallow layers is significant. The amo
of backscattering from the deeper layers does get wea
and eventually dies out. The dissipative properties of the
play an important role in the attenuation of the impulse.

We contend that, at least for the purposes of field ap
cations, it is desirable to explore a tractable 1D toy mo
that can capture the critical results of the 3D simulations
this Rapid Communication, we propose a two-parame
model to describe impulse backscattering at the surface
granular assembly. It may be necessary to use more pa
eters ~e.g., to include information about the area acro
which the impulse is imparted! if one is looking for detailed
agreement with experiments. The physics is similar in sp
to that of mean-field theories.

PHENOMENOLOGICAL MODEL

We define a vertical alignment of layers, where each la
can be thought of as a mass@5#. At time t50, we set initial
energyE51 for layer one and zero for the rest. Att51, the
first layer in the vertical chain transfersp (,1) of the im-
pulse energy to the second layer, and retains (12p). At sub-
sequent times, the impulse will propagate in the same m
ner, at every step, all the way down the chain~see Table I!.
Each layer, after pushing the next layer in any time step, w
push the preceding layer in the opposite direction in the
lowing time step. Since the phase reverses at every time s
they will interact, alternately, with layers above and below,
alternate time steps, thereby introducing significant ba
scattering into the problem. Note also that successive la
will be in opposite phases at any time, assuring interact
between them only in alternate time steps~Table I!.

We model the interaction between two adjacent layers
our simulations in the following two ways:~i! equipartition
case and~ii ! exchange case. In the equipartition case, the
interacting layers will move away from the interaction wi
equal amounts of energy; we add up the individual energ
of the two layers and divide the sum equally between the
In the exchange case, we let the layers exchange their e
gies; the two interacting layers, after the interaction, mo

l-
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TABLE I. Description of the energy transfer process in the 1D model. The arrows indicate the dire
in which the layers (lyr1, etc.! will interact in the next time~t! step. The exchange case has been depic
for convenience.ebs(t) is the backscattered energy received back at the surface.

t ebs(t) lyr1 lyr2 lyr3 lyr4 lyr5 •••

0 0.0
→
1 0 0 0 0 •••

1 0.0 ~12p!
←

p
→

0 0 0 •••

2 p(12p) ~12p!2

→
p~12p!

←
p2

→
0 0 •••

3 0.0 p~12p!
←

~12p!2

→
p2~12p!

←
p3

→
0 •••

4 p2(12p) p~12p!2

→
p2~12p!

←
~12p!2

→
p3~12p!

←
p4

→
•••
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away with the energy of the other. We have ergodiclike
havior in the equipartition case, where we assume that
two adjacent layers get compressed to the same extent d
the interaction, and the potential energy of compression
converted back to the respective kinetic energies, which
now be half of the total energy of the two layers. The eq
partition ansatz negates the symmetry breaking introdu
by pÞ0.5. The exchange model captures the essence of
linear impulse propagation in which an impulse travels a
perfect solitary wave in a 1D chain of elastic grains@6#, and
as a weakly dispersive energy bundle in 3D beds@3#; we
model the situation where two energy bundles, traveling
opposite directions, go through each other without distorti
In real systems, one would expect that both the equiparti
and the exchange behaviors would be present, and suc
extension of our study will be reported elsewhere@7#.

We monitor the energy transfer at the surface in our mo
analysis. The first layer, in its negative phase~we assume
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positive phases to point down the chain!, will transmit p
fraction of its energy to the surface and retain (12p) frac-
tion to itself; the surface does not transfer any energy bac
the first layer. At the bottom of the chain, we let the last lay
lose p fraction of its energy in its positive phase and reta
(12p); the lost energy is presumed to travel further down
a similar manner. These boundary conditions do not, in
way, affect our final results. We have verified our results w
longer chains and there are no qualitative changes~see fur-
ther discussion below!; we have, therefore, employed a 4
layer long system for our studies.

SOME ANALYTICAL RESULTS

For the exchange model, the sequence of backscatt
energy packets that arrive at the surface,ebs(t), can be
worked out@cf. Table I; see Fig. 1~a!#:

p~12p!,p2~12p!,p3~12p!, . . . ,p~12p!3,p2~12p!3,
o
c

with
FIG. 1. The two cases of exchange and equipartition are shown in~a! and~b!, respectively, wherep is constant across the layers. The tw
smaller insets in~a! show the exponential decay ofebs(t) within a subsequence~top; y-axis logarithmic! and the associated logarithmi
growth in Ebs(t) ~bottom; x-axis logarithmic!; the solid lines are the corresponding curve fitting lines. Smaller insets in~b! show the
logarithmic growth ofEbs(t), in the initial stages, in the equipartition case~bottom inset uses the same data as the top inset, plotted
logarithmicx axis!. Available 3D simulation results@8# show favorable comparisons with these results.
1-2
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p3~12p!3, . . . ,p~12p!5,p2~12p!5,p3~12p!5,

and so on. Sincep,1, the sum of the first subsequen
~each subsequence is separated by•••) yields p, and, simi-
larly, the sum of the second subsequence yieldsp(12p)2,
and so on. Thus, the entire sequence of energy packet
ceived back at the surface can be summed to obtain,

Ebs(t) respresenting( t850
t85t ebs(t8),

Ebs~ t5`!5p@11~12p!21~12p!41•••#51/~22p!.

We see thatEbs(t5`) will always be.1/2; also,Ebs(t
5`) is higher ifp is higher. Ifp,0.5, the successive pack
ets of ebs(t) in each subsequence is going to decrease f
and, when the next subsequence involving a higher powe
(12p) arrives, a jump inEbs(t) takes place. In the othe
case, whenp.0.5, there is going to be a faster increase
Ebs(t) within each subsequence itself than that brought in
the arrival of the next subsequence. The above anal
shows that a plot ofEbs(t) against time is going to be cha
acterized by a sequence of steps and plateaus, as is seen
Fig. 1~a!, first inset. The subsequences can be understoo
due to the solitary wave–like propagation@3,6#, where each
packet travels down the chain undiminished till it loses e
ergy ~by p fraction! at the two ends. Note that the sequenc
are geometrically decreasing, and, as may be gathered
the plot ~top smaller inset!, characterized by an exponenti
decrease in packet sizes. As a consequence,Ebs(t) is char-
acterized approximately by logarithmic growth in the sub
quences~bottom smaller inset!, with the added feature of a
saturation plateau seen in the earlier inset.

An analysis such as the above is not possible for the
uipartition case because of the complicated algebra resu
from distributing half of the total energy of the two particle
to each, after the interaction. Nevertheless, numerical res
indicate that a similar result, ofEbs(t5`) being always
.1/2, holds in this case as well. Also, there are no steps
plateaus in this case, except for the ones introduced by
fact thatebs(t) arrives in alternate time steps@Fig. 1~b!; see
further discussion below#.

NUMERICAL ANALYSIS

Soil is a highly heterogeneous medium, and impu
propagation and scattering properties vary much spati
decreasing and/or increasing with successive layers. Th
fore, we investigate the above models for different scena
characterized by different distributions ofp. A reasonable
model that can be chosen, for qualitative comparison of
sults for differentp’s, is that of a logarithmic growth patter
in Ebs(t). This is best illustrated forp50.25 ~for all layers!
in the equipartition case@Fig. 1~b!#; depending on the distri
bution and values ofp, the growth can be higher or lowe
than an average logarithmic growth in the initial stages.
Fig. 1~b!, it is seen thatebs(t)50 in alternate steps; also, th
packets arrive in exponentially decreasing quanta in alter
steps. Such decay inebs(t) is expected in view of the fac
that most of the backscattered energy, at early times, is f
the first few layers, where, by construction, the energy w
06030
re-
th

st,
of

f
y
is

rom
as

-
s
m

-

q-
ng

lts

nd
he

e
y,
re-
s

-

n

te

m
ll

be more. The deeper layers, the backscattered energ
which reaches the surface at later times, contribute to p
gressively higher-order backscattering. The first inset to
figure showsEbs(t), growing rapidly in time at early times
followed by a progressive slowing down. The two smal
insets in this figure shows~as a zoom-in!, the region close to
the origin, of the earlier inset, to show the form of the~loga-
rithmic! growth in Ebs(t); the bottom inset plots the dat
with logarithmic abscissa for explicit confirmation. This pa
tern has been seen in 3D simulations of impulse propaga
in sand beds@8#, and is consistent with experimental resu
@2#.

The maximum attained value ofEbs(t), referred to as
Emax

bs , is high compared to the 3D simulation results. Thu
the 1D toy model, with its restrictions in the available ener
channels, tends to backscatter much more energy to the
face than that is typical of 3D beds. There are two ways
improve the model to better mimic the properties of 3D be
~i! by incorporating restitution between layers and~ii ! by
varying p appropriately as a function of position to approx
mately account for changes in layer compression as a fu
tion of depth, inhomogeneities in the medium, etc. We d
cuss the effects of these improvements in our model bel

Introducing a tunable parameterq (,1) to account for
restitutional losses at each interaction~as also the spreadin
away of energy in 3D!, which works to dissipate energy
allows us to tuneEmax

bs ; at each step, a fraction (5q) of the
total energy of the two interacting masses is removed. It w
observed@see Figs. 2~a! and 2~b!# thatEmax

bs decreases expo
nentially with q; it drops by an order of magnitude asq is
varied from 0.1 to 0.5.

Now, we consider the richness of the model by explori
various distributions ofp and their effect on the patterns o
ebs(t). We will only discuss the results using the plots
Ebs(t) which are, first, easier analyzed, because of the lo

FIG. 2. Growth patterns ofEbs(t) with an inverse square law
type variation inp. In ~a! and~b!, equipartition and exchange mod
els, respectively, are shown forp decreasing towards the bottom; i
~c! and~d!, similarly, for p increasing towards the bottom. Note th
they ranges in~c! and~d! are extremely small compared to those
~a! and ~b!. The effect of introducing a dissipation parameterq is
shown in~a! and ~b!.
1-3
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rithmic growth pattern in the initial stages. Second,Ebs(t),
being an integrated quantity, is, perhaps, more suited
comparison with experimental results. Hence, we will p
these graphs on a semilog basis for the study, with time
being taken logarithmically.

DISTRIBUTIONS OF p AND CORRESPONDING
PATTERNS IN GROWTH OF Ebs

„t…

With a uniform distribution ofp’s (p constant across th
layers!, analysis of the equipartition model shows that t
growth is, qualitatively, symmetric with respect top50.5;
Emax

bs is the highest forp50.5, and falls off whenpÞ0.5.
Clearly, the equipartition model is working best when t
initial impulse itself is transmitted down the chain with equ
sharing of the energy between the leading layer and the
one in the chain. On the other hand, the curves are
symmetric, on either side ofp50.5, around the midvalue o
the respective ranges, i.e., around 0.25 and 0.75. The l
symmetry is with respect to the initial growth rates. T
curves are concave~lesser than average logarithmic grow
rate!, in the initial stages, on the semilog plots forp,0.25
(p.0.75) and convex~larger than average logarithmi
growth rate! for p.0.25 (p,0.75). This symmetry is natu
ral because of the symmetry introduced by the exchang
roles betweenp and (12p) as p is varied. We get the bes
~approximate! logarithmic growth, in the initial stages, fo
p50.25 (p50.75).

In the exchange case, there is no such symmetry. It
monotonous behavior withEbs(t) requiring many more
cycles to saturate, the lower thep value is, and saturating
faster, the higher thep value is. In the latter case, if thep
value is sufficiently high,Emax

bs can be attained almost in th
first cycle. This is understandable, since the undispersed
ergy bundles that travel up and down the chain, but for
losses at the two ends, are smaller~larger! in size whenp is
smaller~larger!.

We may letp decrease towards the bottom and vice ver
In the equipartition case, if we impose a linear decrease~in-
crease!, the graphs are convex~concave! in the initial stages
and the variation in the amount of decrease~increase! shows
variation in convexity~concavity!. This is due to the longe
presence of energy in the upper layers, with higher~lower! p
values. Similarly, for the exchange model as well, stee
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initial growth is achieved for higherp’s in the top layers and
vice versa. We may impose other rates of decrease~increase!
such as exponential, inverse square law, etc., but the b
charateristic of the convexity~concavity! of the equipartition
graph and steepness of the exchange graph being dictate
the presence of larger~smaller! p’s in the upper layers will
remain the same; only it will be more pronounced with larg
rates of decrease~increase! such as exponential or invers
square law, etc. In Figs. 2~a! and 2~b!, we have shown results
for a case wherep’s decrease in an inverse square law ma
ner towards the bottom for the equipartition and exchan
models, respectively; note the high values ofEmax

bs . Figures
2~c! and~d! show the results, similarly, for a case where t
p’s increase towards the bottom; note that, ifp’s in the upper
layers are extremely small~of the order of, say, 1023), Emax

bs

is going to be extremely small (,1023) in both models.
If we let p’s vary randomly, we get a combination of th

effects discussed earlier and the model is sensitive to dif
ent realizations of the random distribution ofp’s, a desirable
feature for a simple phenomenological model for a high
heterogeneous medium such as soil. We have also che
our results with longer chains. It is clear that the cyclicity
the exchange model will change with the length of the cha
the cyclicity is twice the length of the chain because we
only monitoring the energy at one end. This introduces,
example, a longer plateau length at each step of the stairc
in certain situations. However,Emax

bs remains the same in th
case of a constantp across the layers. In the equipartitio
case,Emax

bs does change slightly; however, the convex
~concavity! patterns in the plots, which depend on thep val-
ues, are not changed, only they get more accentuated.

In summary, it can be stated that our 1D model is robu
and, at the same time, sensitive to changes in the distribu
of p across the layers. The model qualitatively reproduces
time evolution of average energy of the surface grains o
complex, heterogeneous medium such as granular beds
lowing the generation of a normal impulse at the bed surfa
The model promises to be a useful tool for further resea
on this important topic.
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