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Classical acoustic waves in damped media
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A Green function technique is employed to investigate the propagation of classical damped acoustic waves
in complex media. The calculations are based on the linear response function approach, which is very conve-
nient to deal with this kind of problem. Both the displacement and the gradient displacement Green functions
are determined. All deformations in the media are supposed to be negligible, so the motions considered here are
purely acoustic waves. The damping tenmis included in a phenomenological way into the wave vector
expression. By using the fluctuation-dissipation theorem, the power spectrum of the acoustic waves is also
derived and has interesting properties, the most important of them being a possible relation with the analysis
of seismic reflection data.
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Wave propagation in complex media is a broad and inter- More recently, fundamental representations for the acous-
disciplinary field of research, with many open questions thatic, isotropic, and anisotropic elastic cases were developed
are scientifically sound and technologically importghi2]. based on an integral representation for the wave field at a
Acoustic propagation in the interfaces of structures thateceiver point. These representations can be recast as model-
model the earth, is a good example of the interdisciplinarying formulas for reflection from a transparent interface by
character of this general subject. It shares a number of conmexploiting the Kirchoff approximation, which expresses the
mon properties with other important topics in physics, suchunknown scattered field and its normal derivative in terms of
as electron transport in mesoscopic systg8jsnd localiza-  the incident field. The result is called the Kirchoff-Helmholtz
tion of photong4,5] as well as phononkg] in random me- integral. Where the Born representation is linear in the per-
dia; the most important property being that they are all govturbation of the medium parameters, the Kirchoff-Helmholtz
erned by wave equations. Besides, the analogies between thepresentation is linear in the reflection coefficients, which,
classical and quantum problems may lead to cross fertilizain turn, are nonlinear functions of the medium perturbation
tion. [13].

Another important motivation to study these structures As an extension of these previous works, Schleichel.
comes from recognizing that the localization of electronic[14] used another mathematical model, based on a geometri-
states, one of the most active fields in condensed matteyal ray approximation(GRA) Green function formalism.
physics, is essentially due to the wave nature of the eledJsually, the GRA Green function is expressed as a function
tronic states and thus can be found in any wave phenomenaf the phase velocities and the relative geometrical-spreading
[7,8]. Furthermore, there are distinct advantages in studyin@actor. This geometrical factor may be computed from mixed
localization using a classical wave equation instead of via theecond-order travel time derivatives with respect to the
quantum mechanical electronic problem. Indeed, the lattephase-front coordinates, which are normal to the phase-
usually deals with other types of interactions, such as the&elocity vectors. Instead, to take into account general aniso-
spin-orbit coupling, electron-phonon coupling, and electron4ropic effects, they preferred to work with a GRA that is
electron interactions, among others, which make the probleraxpressed by the group velocities and a relative geometrical-
more complex. spreading factor of the acoustic wave.

Recently there has been a revival of interest in investigat- It is the aim of this work to treat the classical problem of
ing the propagation of classical waves in complex mediahe propagation of acoustic waves in damped media consid-
[9,10. Much of the earlier work was on the Born- ering a Green function formalism based on tinequency
approximate forward modeling formula, whose basic ap-distributionsof the acoustic waves’s spectra. The frequency
proach is to use a cascade integral operator to produce distribution of the acoustic waves are mainly determined by
transformation from an input dataset at finite offset to anthe power spectra of the thermally induced fluctuations in the
output dataset at zero offsgtl]. The first member of the degrees of freedom of the many scatterers found in the me-
cascade is an inversion operator that creates an earth mod#ium [16]. Instead of using the so-called recursive Green
from the input data. The second member is a modeling opfunction technique based on the Dyson equation, frequently
erator that creates the zero-offset data from the model aused to describe electronic conductance in mesoscopic sys-
imaged data derived from migration. The application of thistems[15], we believe that these power spectra, or correlation
cascade operator was called seismic data maggdiah functions, are most conveniently calculated by using Green

functions within the linear response function thedfy7].
Taking into account the imaginary part of these Green func-
*Corresponding author. FAX:-55-84-2153791. Email address: tions, the required power spectra are obtained via the
eudenilson@dfte.ufrn.br fluctuation-dissipation theorefi8].
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made more realistic by the assumption of branch and wave
z vector dependent relaxation times.

We now determine the Green functions by a classical lin-
ear response methdd7]. The expressions to be derived are
valid for any polarization, provided the appropriate velocity
is replaced. In this sense, the displacement Green functions

Vacusii are obtained by calculating the effect of a fictitious external
applied point force
% F.exp—iwt)d(z—2"), (2

which is parallel to the axis and applied to a poit in the
medium. Hered(z—2') is the Dirac delta function of the
argument shown. The interaction energy between the force
and thez component of the displacement is given by Hooke’s
law, i.e.,

Elastic Medium Hine=— UZ(Z, )Fexpl— iwt). ©)]

This applied force produces displacement in botmdz
FIG. 1. The boundary between the elastic mediu @) and directions, whose magnitudes are determined by insertion of

the adjacent vacuum mediura%0). Hereq, is the common wave Ed- (2) into the right-hand side of Ed1), i.e.,

vectorx component and the supscrimsandT mean longitudinal pd2U; 13t2— 191 [ (Ciia/2) (AU 13F |+ U, 191 ]
and transverse modes, respectively. ) !
=F,exp —iwt)8(z—2'). (4)

The propagation theory is mostly concerned with a me-
dium of indefinite extent, where no thought needs to be given Assuming a harmonic time variation for the displacement
to the effects of sample boundaries. The frequency compdi.e., 3°u;/dt*= — w?u;), the particular integral solution of
nents present in the spectra are then the frequencies of bulke z component of the displacement in H¢) is
excitations, which extend uniformly through the medium. - ] )
However, to make the propagation problem more realistic, it u,(0,2)=(iF J2pw?) [ expiq |z—2'])
is necessary to take into account at least one boundary of the 2 : ,
medium, w%ere surface excitations may exist with gmpli— *(ax/an)expliariz=2')], ®)
tudes that fall off exponentially with distances from the
sample surfaces. In the geometry considered in this work,
with a single flat surface, the power spectrum shows the qL,T=(|(i|2—q§)1’2={[w2/va(1—iwy)]z—qf}l’z, (6)
appearance of a surface wave excitation, named after Ray-
leigh, with interesting properties. gy being the common wave vector component, and the
We consider a semi-infinite medium occupying the0  subscripts. and T mean longitudinal and transverse modes,
region, with an interface parallel to tixg/ plane and vacuum respectively.
above it(see Fig. 1L The equation of motion for the propa-  The homogeneougr complementary functionsolution
gation of an acoustic wave in such an elastic medium can bef the z component of the displacement in E@) can be
written as[19] given by

here

pé’zui/0t2—é’/&rj[(Cin/Z)((?uk/&n+é’u|/z?rk)]ZO, uz(drz):Aqu_iqLZ)+BeXF:(_iqTZ)’ (7)

D
whereA andB are constants to be found through the usual
wherep is the density of the mediumy; is theith compo-  boundary conditions, i.e., the continuity of taeomponent
nent of the displacement vector, and the summation convenys the displacementi(g,z) and the stress,, atz=0.

tion is used. AlscCjy is the fourth-order elastic tensor, and  The Green functions are now obtained by the application
ijkl can be any Cartesian axis, i.&,y, or z of the linear response theory. In view of the standard form

Acoustic waves in elastic media can suffer spatial and/o{3) of the interaction energy, the displacement Green func-
temporal damping. It is sufficient for the present calculationtjon is simply equal to

to introduce the damping phenomenologically. With Carte-

sian superscripts removed, the str&sgtrain(s) relation is <<Uz(2);uz(2')*>>w=Uz(ayz)/Fz, (8
replaced byS=Cs+Cy(ds/dt). The second term on the

right introduces a relaxation timeg into the strain caused by where((- - -)),, is Zubarev’s forn{20] to express the Fourier

a time-varying stress. Its insertion into the equation of motransformed Green function of the arguments shown. The
tion (1) produces wave vector versus frequency relation ofdisplacement gradient Green function can be easily found
form g?=w?/v?(1—iwy). The phenomenology can be using
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FIG. 2. The power spectrum for the damped acoustic waves o
propagating in an elastic medium, as a function of the dimension- FIG- 3. The frequency dependence of the longitudinal and trans-
less termo/vd, . verse wave vectors: solid line curves represent the real components;

broken line curves are the imaginary parts. The thin vertical line
<<uzz(z);uzz(zl)*>>w:’92/‘92‘92,«“2(2);Uz(z,)*»w- shows the Rayleigh surface wave.
© ing effects are more pronounced in this region. The spectrum

The acoustic power spectrum at the interfaze- Q) can  increases proportional to the damping teyrasw/v 0y goes

now be determined by using the fluctuation-dissipation theofrom 1 to 1.4, with amplitudes equal to 0.32 fpr=0.01, to
rem at high temperature, i.e., 0.96 fory=0.05, and to 1.28 fofy=0.1(see the left inset in

) . Fig. 2). In the 1.4 w/v1g,<1.85 range, the influence of the
([u(0)[%) = (ke T/ @) IM{(U,(0);u,(0)*)),. (10  damping is reduced, and the power spectrum increases pro-
portional toy 1. It is easy to see the existence of two points

Therefore, using Eqd5), (7), and(8), where the power spectrum is independent of the damping
KT wv3a2 term. The first point is situated at/v+q,=1.4 and the sec-
(lu(0)]?),,= Bs ZRQ{ o quczk 5| ond one atw/vq,=1.85.
putdy [ 4v705dLdrt (0= 2070y) The first part of the spectrum, corresponding @0

(1) <vpqqy, is the dominant one, and it is shown shaded for
=0 in Fig. 2. Here botly, andqy are purely imaginary, and
the factor inside the large brackets (fl) is also purely
imaginary. However, the denominator

In Egs.(10) and(11), Im and Re means the imaginary and
real part of the arguments shown.

We now discuss our analytical results in detail by apply-
ing them to the propagation of acoustic waves in a semi- A=4v305q, 091+ (0?—20%93)? (12
infinite medium in which the ratio| /vy=2. This corre-
sponds to a medium whose Poisson’s ratis equal to 1/3. has a zero in this frequency range, the condition for a zero

Figure 2 shows the power spectrum, as described by theeing the standard equation used to derive the frequeRcy
dimensionless term inside the bracket in ELl), versus the and velocityvg of the Rayleigh surface waves, whose propa-
reduced dimensionless frequenayv1gy. In the inset of gation in a semi-infinite and isotropic medium with inhomo-
this figure, it is possible to see the dependence of the powegeneities was recently reportg2il]. Using the mathematical
spectrum on damping term as well as on frequency. Thédentity
spectrum, regarding its frequency range, can be divided into Co—1_ :
three regions(see Fig. 3 for detai)s In the third region, (xFig) "=P(Lk)+im(x), (13
which lies in thew/v+q,>2 range, both the longitudinal and \ye have that the Rayleigh mode has amplitude equal to
the transverse wave vectogg and g are real, in the ab-  (without damping
sence of any damping term, and the spectrum has a continu-
ous distribution. The damping effect is negligible in this re-
gion. For vig,<w<wv qy, gt is still real but q_ is
imaginary(in the absence of the damping he spectrum is
characterized by another conti.nuous di;tri_buti_on, which eXyith xg=vr/vy. Therefore, the Rayleigh mode can be de-
tends from 1 to 2 along the horizontal axis in Fig. 2. The tWog(iped by as-function, whose strength is given by its coef-

continua fall to zero ai»=vqy andw=v 0y, respectively.  ficjent in Eq.(14). Considering a damping factar, we can
The zero surface-fluctuation spectra at these frequencies rggq

sult from cancellation of the surface-displacement contribu-
tion of the incident and reflected acoustic waves. The damp- S(x—xg)=y[ m(x—|xg|) 2+ y?] 1 (15)

-1

)1/2 da
dx

I'=mxg(1— %3 S(X—Xg) (14)

X:XR
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acquisition that the design of acquisition parameters is domi-
nated by the need to suppress them. Current processing
methods of eliminating such surface waves from seismic
records include frequency filtering, which may be conve-
niently tailored using the frequency-dependent power spec-
trum presented in Figs. 3 and 4.

Moreover, there are basically two sources of information
about the seismic wave’s propagation: travel times and am-
plitudes. The travel times of the various wave fronts in the
wave field generally provide information about the low
spatial-frequency componentthe backgroundof the me-
dium parameters, which can be described by correlations
functions of the types related by the displacement, and dis-
placement gradient Fourier transformed Green functions de-
fined in Eq.(8) and(9). The amplitudes of the wave fronts,
on the other hand, are most sensitive to the high spatial-

FIG. 4. Power spectrum for the damped Rayleigh surface wavérequency component&he reflectivity. The two types of
contribution, as a function of the dimensionless tesho q, . information sample different aspects of the medium. For this

case, the acoustic power spectrum may give the appropriate
a’wformation, since it enables us to find a specifically chosen

reflection term without the necessity of calculating other pa-

rameters that might be considered noise in a real situation

values ofy (0.01, 0.02, and 0.03For smally, the Lorent- ; . . o
zian is tall and narrow; ag increases, the Lorentzian broad- (fogg;t;nce, the presence of the Rayleigh singularity in the

ens and its height decreases, keeping the surface area undeis . .
In summary, we have considered a rather simple model

neath constant, for the propagation of acoustic waves in damped media,

The main motivation for writing this paper lies in the looking for a better understanding of the unwanted noise in
current inability to fully understand the unwanted noise be—,[he se?smic record. To have our r%odel more realistically de-
havior of seismic waves in damped media, which is very : y

; . . o : . -scribe this problem, it is necessary to consider the presence
important in the analysis of seismic reflection deta]. Seis ?]f all singularities (not only the Rayleigh type described

mic sources generate various types of surface waves, whi . ; . ;
in turn are a common source of these noises, depending %ere in the Earth’s material properties that carry the waves.

the near-surface environment and nature and position of th s means the_ introductiqn of algebraic singularities,.not
source 22]. Surface waves composed of dispersive Rayleighs?.wc’thf dlﬁere(jntlab|e'tﬁj?ctlﬁnls, and therefo;e thehCOHS:[Ir?er—
waves (as those treated hgrewhose different frequency a'odn% ame |u|me| i rr]aca measuremerr,, such as those
components travel at different velocities leading to complexs’tu led previously for light waves propagatitit4, 23,
wavetrains, can dominate near-source traces on seismic This research was partially financed by grants from

recordg[23]. They are such a problem in land seismic recordCNPq, CT-Petro, and Capes-Prod&utazilian agencies
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and henceforth the Rayleigh mode can have the Lorentzi
profile centered at»/v+g,=0.88, shown in Fig. 4 for three
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