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Classical acoustic waves in damped media

E. L. Albuquerque1,* and P. W. Mauriz2
1Departamento de Fı´sica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil

2Departamento de Cieˆncias Exatas, Centro Federal de Educac¸ão Tecnolo´gica do Maranha˜o, 65025-001 Sa˜o Luı́s-MA, Brazil
~Received 19 September 2002; published 14 May 2003!

A Green function technique is employed to investigate the propagation of classical damped acoustic waves
in complex media. The calculations are based on the linear response function approach, which is very conve-
nient to deal with this kind of problem. Both the displacement and the gradient displacement Green functions
are determined. All deformations in the media are supposed to be negligible, so the motions considered here are
purely acoustic waves. The damping termg is included in a phenomenological way into the wave vector
expression. By using the fluctuation-dissipation theorem, the power spectrum of the acoustic waves is also
derived and has interesting properties, the most important of them being a possible relation with the analysis
of seismic reflection data.
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Wave propagation in complex media is a broad and in
disciplinary field of research, with many open questions t
are scientifically sound and technologically important@1,2#.
Acoustic propagation in the interfaces of structures t
model the earth, is a good example of the interdisciplin
character of this general subject. It shares a number of c
mon properties with other important topics in physics, su
as electron transport in mesoscopic systems@3# and localiza-
tion of photons@4,5# as well as phonons@6# in random me-
dia; the most important property being that they are all g
erned by wave equations. Besides, the analogies betwee
classical and quantum problems may lead to cross fertil
tion.

Another important motivation to study these structu
comes from recognizing that the localization of electro
states, one of the most active fields in condensed ma
physics, is essentially due to the wave nature of the e
tronic states and thus can be found in any wave phenome
@7,8#. Furthermore, there are distinct advantages in study
localization using a classical wave equation instead of via
quantum mechanical electronic problem. Indeed, the la
usually deals with other types of interactions, such as
spin-orbit coupling, electron-phonon coupling, and electr
electron interactions, among others, which make the prob
more complex.

Recently there has been a revival of interest in investig
ing the propagation of classical waves in complex me
@9,10#. Much of the earlier work was on the Born
approximate forward modeling formula, whose basic a
proach is to use a cascade integral operator to produ
transformation from an input dataset at finite offset to
output dataset at zero offset@11#. The first member of the
cascade is an inversion operator that creates an earth m
from the input data. The second member is a modeling
erator that creates the zero-offset data from the mode
imaged data derived from migration. The application of t
cascade operator was called seismic data mapping@12#.
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More recently, fundamental representations for the aco
tic, isotropic, and anisotropic elastic cases were develo
based on an integral representation for the wave field a
receiver point. These representations can be recast as m
ing formulas for reflection from a transparent interface
exploiting the Kirchoff approximation, which expresses t
unknown scattered field and its normal derivative in terms
the incident field. The result is called the Kirchoff-Helmhol
integral. Where the Born representation is linear in the p
turbation of the medium parameters, the Kirchoff-Helmho
representation is linear in the reflection coefficients, whi
in turn, are nonlinear functions of the medium perturbati
@13#.

As an extension of these previous works, Schleicheret al.
@14# used another mathematical model, based on a geom
cal ray approximation~GRA! Green function formalism.
Usually, the GRA Green function is expressed as a funct
of the phase velocities and the relative geometrical-sprea
factor. This geometrical factor may be computed from mix
second-order travel time derivatives with respect to
phase-front coordinates, which are normal to the pha
velocity vectors. Instead, to take into account general an
tropic effects, they preferred to work with a GRA that
expressed by the group velocities and a relative geometr
spreading factor of the acoustic wave.

It is the aim of this work to treat the classical problem
the propagation of acoustic waves in damped media con
ering a Green function formalism based on thefrequency
distributionsof the acoustic waves’s spectra. The frequen
distribution of the acoustic waves are mainly determined
the power spectra of the thermally induced fluctuations in
degrees of freedom of the many scatterers found in the
dium @16#. Instead of using the so-called recursive Gre
function technique based on the Dyson equation, freque
used to describe electronic conductance in mesoscopic
tems@15#, we believe that these power spectra, or correlat
functions, are most conveniently calculated by using Gre
functions within the linear response function theory@17#.
Taking into account the imaginary part of these Green fu
tions, the required power spectra are obtained via
fluctuation-dissipation theorem@18#.
©2003 The American Physical Society01-1
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The propagation theory is mostly concerned with a m
dium of indefinite extent, where no thought needs to be gi
to the effects of sample boundaries. The frequency com
nents present in the spectra are then the frequencies of
excitations, which extend uniformly through the mediu
However, to make the propagation problem more realistic
is necessary to take into account at least one boundary o
medium, where surface excitations may exist with amp
tudes that fall off exponentially with distances from th
sample surfaces. In the geometry considered in this w
with a single flat surface, the power spectrum shows
appearance of a surface wave excitation, named after R
leigh, with interesting properties.

We consider a semi-infinite medium occupying thez,0
region, with an interface parallel to thexy plane and vacuum
above it~see Fig. 1!. The equation of motion for the propa
gation of an acoustic wave in such an elastic medium can
written as@19#

r]2ui /]t22]/]r j@~Ci jkl /2!~]uk /]r l1]ul /]r k!#50,
~1!

wherer is the density of the medium,ui is the i th compo-
nent of the displacement vector, and the summation conv
tion is used. AlsoCi jkl is the fourth-order elastic tensor, an
i jkl can be any Cartesian axis, i.e.,x, y, or z.

Acoustic waves in elastic media can suffer spatial and
temporal damping. It is sufficient for the present calculat
to introduce the damping phenomenologically. With Car
sian superscripts removed, the stress(S)-strain(s) relation is
replaced byS5Cs1Cg(ds/dt). The second term on th
right introduces a relaxation timeg into the strain caused b
a time-varying stress. Its insertion into the equation of m
tion ~1! produces wave vector versus frequency relation
form q25v2/v2(12 ivg). The phenomenology can b

FIG. 1. The boundary between the elastic medium (z,0) and
the adjacent vacuum medium (z.0). Hereqx is the common wave
vector x component and the subscriptsL and T mean longitudinal
and transverse modes, respectively.
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made more realistic by the assumption of branch and w
vector dependent relaxation times.

We now determine the Green functions by a classical
ear response method@17#. The expressions to be derived a
valid for any polarization, provided the appropriate veloc
is replaced. In this sense, the displacement Green funct
are obtained by calculating the effect of a fictitious exter
applied point force

Fzexp~2 ivt !d~z2z8!, ~2!

which is parallel to thez axis and applied to a pointz8 in the
medium. Hered(z2z8) is the Dirac delta function of the
argument shown. The interaction energy between the fo
and thez component of the displacement is given by Hook
law, i.e.,

Hint52uz~z8!Fzexp~2 ivt !. ~3!

This applied force produces displacement in bothx andz
directions, whose magnitudes are determined by insertio
Eq. ~2! into the right-hand side of Eq.~1!, i.e.,

r]2ui /]t22]/]r j@~Ci jkl /2!~]uk /]r l1]ul /]r k!#

5Fzexp~2 ivt !d~z2z8!. ~4!

Assuming a harmonic time variation for the displaceme
~i.e., ]2ui /]t252v2ui), the particular integral solution o
the z component of the displacement in Eq.~4! is

uz~qW ,z!5~ iF z/2rv2!@qLexp~ iqLuz2z8u!

1~qx
2/qT!exp~ iqTuz2z8u!#, ~5!

where

qL,T5~ uqW u22qx
2!1/25$@v2/vL,T

2 ~12 ivg!#22qx
2%1/2, ~6!

qx being the common wave vectorx component, and the
subscriptsL andT mean longitudinal and transverse mode
respectively.

The homogeneous~or complementary function! solution
of the z component of the displacement in Eq.~4! can be
given by

uz~qW ,z!5A exp~2 iqLz!1B exp~2 iqTz!, ~7!

whereA and B are constants to be found through the us
boundary conditions, i.e., the continuity of thez component
of the displacementu(qW ,z) and the stressSzz at z50.

The Green functions are now obtained by the applicat
of the linear response theory. In view of the standard fo
~3! of the interaction energy, the displacement Green fu
tion is simply equal to

^^uz~z!;uz~z8!* &&v5uz~qW ,z!/Fz , ~8!

where^^•••&&v is Zubarev’s form@20# to express the Fourie
transformed Green function of the arguments shown. T
displacement gradient Green function can be easily fo
using
1-2
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^^uzz~z!;uzz~z8!* &&v5]2/]z]z8^^uz~z!;uz~z8!* &&v .
~9!

The acoustic power spectrum at the interface (z50) can
now be determined by using the fluctuation-dissipation th
rem at high temperature, i.e.,

^uuz~0!u2&v5~kBT/pv!Im^^uz~0!;uz~0!* &&v . ~10!

Therefore, using Eqs.~5!, ~7!, and~8!,

^uuz~0!u2&v5
kBT

prvT
3qx

2
ReF vvT

3qx
2qL

4vT
4qx

2qLqT1~v222vT
2qx

2!2G .

~11!

In Eqs. ~10! and ~11!, Im and Re means the imaginary an
real part of the arguments shown.

We now discuss our analytical results in detail by app
ing them to the propagation of acoustic waves in a se
infinite medium in which the ratiovL /vT52. This corre-
sponds to a medium whose Poisson’s ratios is equal to 1/3.

Figure 2 shows the power spectrum, as described by
dimensionless term inside the bracket in Eq.~11!, versus the
reduced dimensionless frequencyv/vTqx . In the inset of
this figure, it is possible to see the dependence of the po
spectrum on damping term as well as on frequency. T
spectrum, regarding its frequency range, can be divided
three regions~see Fig. 3 for details!. In the third region,
which lies in thev/vTqx.2 range, both the longitudinal an
the transverse wave vectorsqL and qT are real, in the ab-
sence of any damping term, and the spectrum has a con
ous distribution. The damping effect is negligible in this r
gion. For vTqx,v,vLqx , qT is still real but qL is
imaginary~in the absence of the damping!. The spectrum is
characterized by another continuous distribution, which
tends from 1 to 2 along the horizontal axis in Fig. 2. The t
continua fall to zero atv5vTqx andv5vLqx , respectively.
The zero surface-fluctuation spectra at these frequencie
sult from cancellation of the surface-displacement contri
tion of the incident and reflected acoustic waves. The da

FIG. 2. The power spectrum for the damped acoustic wa
propagating in an elastic medium, as a function of the dimens
less termv/vTqx .
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ing effects are more pronounced in this region. The spect
increases proportional to the damping termg asv/vTqx goes
from 1 to 1.4, with amplitudes equal to 0.32 forg50.01, to
0.96 forg50.05, and to 1.28 forg50.1 ~see the left inset in
Fig. 2!. In the 1.4,v/vTqx,1.85 range, the influence of th
damping is reduced, and the power spectrum increases
portional tog21. It is easy to see the existence of two poin
where the power spectrum is independent of the damp
term. The first point is situated atv/vTqx51.4 and the sec-
ond one atv/vTqx51.85.

The first part of the spectrum, corresponding tov
,vTqx , is the dominant one, and it is shown shaded forg
50 in Fig. 2. Here bothqL andqT are purely imaginary, and
the factor inside the large brackets of~11! is also purely
imaginary. However, the denominator

D54vT
4qx

2qLqT1~v222vT
2qx

2!2 ~12!

has a zero in this frequency range, the condition for a z
being the standard equation used to derive the frequencyvR
and velocityvR of the Rayleigh surface waves, whose prop
gation in a semi-infinite and isotropic medium with inhom
geneities was recently reported@21#. Using the mathematica
identity

~x1 i«!215P~1/x!1 ipd~x!, ~13!

we have that the Rayleigh mode has amplitude equa
~without damping!

G5pxR~12xR
2 !1/2UdD

dxU
x5xR

21

d~x2xR! ~14!

with xR5vR /vT . Therefore, the Rayleigh mode can be d
scribed by ad-function, whose strength is given by its coe
ficient in Eq.~14!. Considering a damping factorg, we can
use

d~x2xR!5g@p~x2uxRu!21g2#21 ~15!

s
- FIG. 3. The frequency dependence of the longitudinal and tra
verse wave vectors: solid line curves represent the real compon
broken line curves are the imaginary parts. The thin vertical l
shows the Rayleigh surface wave.
1-3
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and henceforth the Rayleigh mode can have the Lorent
profile centered atv/vTqx>0.88, shown in Fig. 4 for three
values ofg ~0.01, 0.02, and 0.03!. For smallg, the Lorent-
zian is tall and narrow; asg increases, the Lorentzian broa
ens and its height decreases, keeping the surface area u
neath constant.

The main motivation for writing this paper lies in th
current inability to fully understand the unwanted noise b
havior of seismic waves in damped media, which is ve
important in the analysis of seismic reflection data@12#. Seis-
mic sources generate various types of surface waves, w
in turn are a common source of these noises, dependin
the near-surface environment and nature and position of
source@22#. Surface waves composed of dispersive Rayle
waves ~as those treated here!, whose different frequency
components travel at different velocities leading to comp
wavetrains, can dominate near-source traces on sei
records@23#. They are such a problem in land seismic reco

FIG. 4. Power spectrum for the damped Rayleigh surface w
contribution, as a function of the dimensionless termv/vTqx .
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acquisition that the design of acquisition parameters is do
nated by the need to suppress them. Current proces
methods of eliminating such surface waves from seism
records include frequency filtering, which may be conv
niently tailored using the frequency-dependent power sp
trum presented in Figs. 3 and 4.

Moreover, there are basically two sources of informati
about the seismic wave’s propagation: travel times and
plitudes. The travel times of the various wave fronts in t
wave field generally provide information about the lo
spatial-frequency components~the background! of the me-
dium parameters, which can be described by correlati
functions of the types related by the displacement, and
placement gradient Fourier transformed Green functions
fined in Eq.~8! and ~9!. The amplitudes of the wave fronts
on the other hand, are most sensitive to the high spa
frequency components~the reflectivity!. The two types of
information sample different aspects of the medium. For t
case, the acoustic power spectrum may give the approp
information, since it enables us to find a specifically chos
reflection term without the necessity of calculating other p
rameters that might be considered noise in a real situa
~for instance, the presence of the Rayleigh singularity in
spectrum!.

In summary, we have considered a rather simple mo
for the propagation of acoustic waves in damped med
looking for a better understanding of the unwanted noise
the seismic record. To have our model more realistically
scribe this problem, it is necessary to consider the prese
of all singularities ~not only the Rayleigh type describe
here! in the Earth’s material properties that carry the wav
This means the introduction of algebraic singularities, n
smooth differentiable functions, and therefore the consid
ation of a medium with fractal measurement, such as th
studied previously for light waves propagation@24,25#.

This research was partially financed by grants fro
CNPq, CT-Petro, and Capes-Procad~Brazilian agencies!.
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