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Harmonic oscillator with multiplicative noise: Nonmonotonic dependence on the strength
and the rate of dichotomous noise
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The output signal of a undamped linear oscillator with a random frequency subject to a periodic force shows
nonmonotonic dependence on the strength and the rate of color (stighastic resonanceThe effect is
absent for white noise.
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Stochastic resonand&R) is an interesting phenomenon noise [26] or involve no external field27], i.e., describe
exhibited by nonlinear dynamic systems driven by a combi-autonomous SR.
nation of a periodic signal and a random fof&¢ Due to its We consider a forced, underdamped linear oscillator with
many potential applications in biology, physics, and chemistandom frequency
try, along with its appeal to scientific curiosity, the number of
publications in this field is growing steadif2], which is dx X ) )
reminiscent of the “deterministic chaos” boom in the 1970— a2 +ygp TletTébIx=asinQt. 1)
1980s. Not by chance, the names of both these phenomena
consist_ o_f half-deterministic and half-random terms. In fact_, The random force(t) is a Gaussian variable with zero
determ!n!st!c chaos denot'es a random type qf 'befhgwor iMean and Ornstein-Zernike correlator
deterministic systems, while SR shows deterministiclike be-

havior in random systems. These peculiar features show that (E(D)€(t))=oexp(—Nt—ty]). 2
determinism and randomness are complementary, rather than
contradictory phenomer(a]. Fluctuations of external parametéfeequency in Eq(1)]

In the broad sense, SR means the nonmonotonic depeare expressed by multiplicative noise. The latter was widely
dence of the output signal or some function ofritoments,  introduced as a model to understand the different phenomena
autocorrelation function, power spectrum, or a signal-toin physics(on-off intermittency[28], dye laserg29], poly-
noise ratio, or dynamic parameteimn the characteristics of mers in random field30]), biology (population dynamics
noise(noise amplitude or the correlation tim@he peculiar-  [31]), economicgstock market pricef32]), and so on.
ity of SR lies in the fact that noise, which usually appears as The second-order differential equatiéh can be rewrit-

a destructive factor, may play a constructive role. Let Usen as two first-order differential equations

bring a partial list of versions of SR appearing under differ-

ent headings, which show the ordered role of noise: noise- dx

induced transition[4], noise-induced transpof5], noise- a=y, (€)
induced pattern formatiof6], noise-induced resonancgd,
noise-induced stabilizatiof8], noise-enhanced stabilif®],
noise-induced hypersensitivity10], resonance activation
[11], stochastic transport in ratchgt?], stochastic localiza-
tion [13], self-organization and dissipative structufdst],
coherent stochastic resonarjdé], fluctuation barrier kinet-
ics [16], amplification of weak signals via off-on intermit- d
tency[17], autonomous SR19], aperiodic SR 20]. —(x)=(y), (5)

It first seemed that all three ingredients—nonlinearity, pe- dt
riodic, and random forces—are necessary for the onset of
SR. However, it later became clear that SR may appear with-
out a random forcéreplaced by a chaotic signgl8]), with-
out a periodic force(autonomous SH19], aperiodic SR
[20]), or by replacing the characteristic frequency by some The new correlato(£(t)x) has to be found separately. To
fluctuation ratg 11]), and in linear system@vith multiplica-  this end, we use the well-known Furutzu-Novikov procedure
tive noise[21,22). [33], which, for exponentially correlated random functions,

SR in linear systems is the subject of the present analysi¢akes the Shapiro-Logunov forf34]

The analysis of SR in linear systems was previously re-

stricted to an overdamped oscillator with color multiplicative d(&(t)x) dx
noise(Ornstein-Zernikg22], Gaussiah23], Poissoniah24], dt 5“)& ~MEDX). ™
or compositd 25] noise. The few examples of the analyses

of SR in an underdamped oscillator either relate to additivéMultiplying Eq. (3) by &, one gets after averaging,

dy

a:_?,y—wzx—gx+asin0t, 4

which, after averaging, take the following form:

d
G ="7y- w*(x)—(&()x)+asinQt).  (6)
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dx B
£ gy | =€), ®
Inserting Eq.(8) into Eq. (7) results in
d{&(t
0 vy -newm). ©

Using the procedure analogous to K@) for the correlator
(&(t)y), one gets

d(&(t)y) dy
i :<§(‘)a> —MEDY).

(10

Multiplying Eq. (4) by ¢ and averaging, one obtains

dy

<§EJ=— (&) -oXe)—(Ex). @Y

Equation(11) contains the higher-order correlat@x),
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d*(x) d3(x) d?(x)
+2(\+ +(20%+ N2+ 3N y+ y2
ot (A ) e (2w y+7v9) e
d(x)
+20* N+ ) Ny + ) g

o (@ + N2+ Ny) = g)(X)

=(w?+ N2+ Ny—Q?)asin(Qt)+ (2N + y)aQ cog Ot).

(14)

We seek the solution of E¢14) in the form
)=t (Xa;

where the output signgk), is induced by an external field,
asin(Qt) and(x), is defined by internal dynamics. For pur-
poses of this discussion we ignore the possible instability of
an underdamped oscillator for fast fluctuati¢Bs].

(15

and one has to use a decoupling procedure. Another possi- L€t Us write the solutiorfx), of Eq. (14) in the form

bility is to consider the special case of the two-state Markov
procesgdichotomous noisewhich is described by correlator

(2), and&2= o For this special case, E€L1) can be rewrit-
ten as

dy )
(2)=—Hen-w¥p0-ot0. a2
Inserting Eq.(12) into Eq. (10) results in
d(&(t
EY) s ey) - w20 o9 - M(EY).
(13

We thus obtain a system of four equations: E@&s, (6),
(9), and(13), for four variables{x), (y), (£x), and(¢y).

(X)a=Asin(Qt+¢). (16)
Then, one easily finds
£24£2]"2 fofa fof
f3+1f, fifa—fofs

where
fi=(2N+y)aQ, f,=(Q%—w?—\2—\y)a,
f3=(Q%2— 0?)(Q%— w?>-\2)—o— (BN y+ ¥ Q2+ N yw?,

f4=QN+ P [2(0®>— Q%) +\y]. (18)

From these equations one can easily find the fourth-order In the absence of frictiony=0, Egs.(17) and (18) take

differential equation foxx),

[(Q2— w?—\2)2+47202]

the following forms:

1/2

and

p=tan !

For small noise strengthr, Eq. (19) reduces to Eq(8.6)

of [36] found in a different context by perturbation theory.

A 19
0= 02 (07— 2\ — o P+ AN 202 (07— 0?)2 9
20\N0 20
(02— 0?)[(02— 02 =2)2+ 40 %]— (02 - w?~\%)0
[
a
A:(wz——Qz); $=0 (21)

Prior to the analysis of Eq$19) and(20), let us consider

the limiting case of white Gaussian noise, which, according

to Eq. (2), corresponds tar— o~ and\— o with a constant

ratio. Then,

as it should be, since for white noiég) satisfies the follow-
ing equation 37]:
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FIG. 1. The amplitude\ of a stationary signal as a function of g1, 2. The amplitude of a stationary signal as a function of
the correlation raté for a=o=w=1, andy=0. The curves dis- the correlation rate\ for a=o=w=1, Q=0.5. The curves dis-

played correspond to different values of the frequency of an eXterpIayed correspond to different values of the frictigr=0.3, 0.5,

nal field 2=0.4, 0.5, 0.7, and 0.8. and 0.7.
d?(x) _ . .
+0¥(x)=asinQt. (220 <w. However, the heights of the maxima are nonmono-
dt? tonic functions of(). Indeed, the maximal value of the am-

_ _ _ plitude A for 2 =0.5 is lower than those for both=0.4 and
However, for color noise(dichotomous in the present ()=0.7, whereas the positions of the maxima are monotoni-
cas@ the output signal(19) shows nonmonotonic depen- cally shifted to highei with a rise in().

dence on the noise strength and the correlation ratad Note that the resonance amplitude of a nondamped har-
(stochastic resonancelindeed, the amplitude of the output monic oscillatof Eq. (19) with ()= w] remains restricted in
signal A reaches a maximum at the presence of colored noigeffective dampinyg
In Fig. 2 we show the influence of friction on the ampli-
o=(0%— w?)(Q%2— w’—\?). (23)  tude of a stationary signah. As expected, an increase in

damping decreases the value of the output signal.

In Fig. 1 we show the dependence of the amplitude of a Finally, we have found that SR appears in a underdamped,
stationary signalA on the correlation rate. for a=o=w forced linear oscillator with multiplicative color noise. For
=1, y=0, and different frequencieQ of the external field. ~dichotomous noise, one can easily find the higher moments
This graph shows typical SR nonmonotonic behavior forof x(t) [38] along with the first moment considered above.
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