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Two-dimensional projections of a hypercube
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We present a method to project a hypercube of arbitrary dimension on the plane, in such a way as to
preserve, as well as possible, the distribution of distances between vertices. The method relies on a Monte
Carlo optimization procedure that minimizes the squared difference between distances in the plane and in the
hypercube, appropriately weighted. The plane projections provide a convenient way of visualization for dy-
namical processes taking place on the hypercube.
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Dynamical models where the state of a system is reprewhich characterizes how different are the distances between
sented by an ordered array of binary variables are ubiquitougairs of vertices and their projections. Our goal is to find a
in statistical physics, especially in its interdisciplinary appli- plane distribution that minimize&, thus optimizing the
cations. Perhaps the widest class of models that admit sugilane representation of the hypercube with respect to the
Boolean-like representation is constituted by binary celluladistance between pairs. We have implemented a Monte Carlo
automatd1,2]. Specific applications include biological evo- method to stochastically approach the optimal solution—the
lution at the levels of moleculd8-5], cells[6], individuals  configuration of minimum “energy’E. Starting from a ran-

[7], and specief8—-10], as well as social and socioeconomi- dom initial configuration on the plane, each point performs a
cal behaviof11,12. Moreover, genetic algorithms are typi- walk with fixed step length and directions chosen at ran-
cally applied to systems whose configuration is described bgom with uniform probability in[0,27). Each step of this
means of binary sequencgk3]. These models may involve walk produces a change in the configuration and, hence, in
large populations of interacting agents, each of them dethe distancesl;;, which implies a variatiorAE in the en-
scribed as a time-dependent array of bits, which requireergy. The new configuration is accepted with probability
assigning an evolving density to each possible binary

sequence. exp(—AE/T) if AE>O0,

While the configuration space of a binary sequence of P=14 otherwise @
lengthL is naturally represented as the set bf\@rtices of ’
an L-dimensional hypercube, its visualization can be disapand rejected with probability +p. The “temperature”T
pointingly difficult, even forL not very large. On the other parametrizes this probability and allows the usual implemen-
hand, besides a quantitative characterization of the systefation of a simulated annealing, where the procedure starts
dynamics through its collective properties, it is sometimesyith a high temperature that enables the system to explore a
desirable to rely on a geometrical depiction where the dywide range in configuration space. Progressively, the tem-
namics can be followed, for instance, on the computeperature is reduced and the system freezes in one of the
screen. The purpose of this paper is to present a method {@any local minima of the energy, typically not far away
project the vertices of a hypercube of arbitrary dimensiorfrom the global minimum if the annealing is made slowly
onto a set of points in the plane, with the condition of pre-enough.
serving (@as much as possiblehe structure of the distance  \We have carried out the described procedure both interac-
distribution on the hypercube. The motivation of this Condi-tive|y, reducing by hand the temperature while monitoring
tion is that many dynamical processes depend on the Hamhe configuration of the system on the computer screen, and
ming distance—i.e., the number of different bits—betweenautomatically, by implementing a programmed reduction of
binary sequences, and we require this feature to be well rephe temperature. Our experiments show that essentially the
resented by the Euclidean distance between the correspongame state is achieved in almost all the realizations. This
ing points in the plane projection. implies that the energy landscape, while rugged, does not

Let h;; be the Hamming distance between verticesidj  posses deep local minima that could capture the configura-
in the hypercube, and;; the Euclidean distance between tion far from the optimal one. The typical final configuration
pointsi andj in their plane projection. We define the function for L=10 (N=1024 point$ is shown in Fig. 1a). The self-

similarity of its structure is remarkable, since no such prop-
erty is present in the hypercube. Despite the appeal that this

E=>, (dj—hy)? (1)  self-similar projection may have, it turns out that such pro-

i jection is not well suited for our purpose. Vertices that are

relatively near in the hypercube result rather far away in the

projection. As an illustration, the first neighbqréh;; = 1) of

*Electronic address: abramson@cab.cnea.gov.ar a given vertex are shown in the figure. It is apparent that the

TElectronic address: zanette@cab.cnea.gov.ar Euclidean distance of some of them from the reference ver-
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FIG. 2. Distribution of distances in the hypercube, the plane
projections, and selected subsets of théaeself-similar; (b) ho-
mogeneous.

N(@d)

circle, and the arrangement of their neighbors is slightly dif-
. ferent than that of vertices mapped in the middle of the set.
We analyze below how this affects the distribution of dis-
tances.

A good characterization of the projections, and a quanti-
tative way for comparing them, is the distribution of dis-
tances in each set. In the hypercube the distribution of dis-
tances to a vertex is the same for every vertex, and in fact is

FIG. 1. Two plane projections of a ten-dimensional hypercube:analytically found to be a binomial distribution. In the two-
(a) using the energy defined in EA); (b) using the energy defined dimensional projections there is a different distribution for
in Eg. (3). Lines join _the projection_s of a randomly chosen vertex of a5ch point of the set. In Figs(& and Zb), we show nor-
the hypercube and its nearest neighbors. malized distributions of distances for the self-similar and the

. ) . homogeneous projections, respectively. In both figures, the
tex is comparable with the size of the system. Moreovery|ack circles show the distribution of the distance to any
many other vertices which should be farther away from verygrtex in the hypercube. Even though the distances form a
texi are, in fact, much closer. _ .. discrete set, we show lines connecting the points to ease the

One way to solve thI.S difficulty is to modlfy_the def|n|t|_on reading of the graph. The other three curves shown in each
of E, such that near neighbors have more weight than distanist correspond to the plane projections. The black squares
neighbors. In fact, the enerdyl) overemphasizes the effect qrrespond to an average over all the points in the sets. Tri-
of large distances. The weights can be chosen in a variety Qfpgles show averages performed on either the 10% of the
ways, even as new tunable parameters in the optimizatiofgints that form the external corona of the projection, or the
process5]. We have implemented the following simple al- 104 of jts more central points. For the points of these sub-

ternative, with fixed weights, sets, still, all the distances to other points of the whole set are
5 taken into account in the distributions.

E=> (dii_hii) _ 3) The most immediate observation regarding Fig. 2 is the

= hi; difference between the distributions in the two projections.

The self-similar projection displays rugged distributions that
The final configuration, which we will term “homogeneous,” reflect the hierarchical geometrical arrangement of the
is shown in Fig. 1b). Neighbor vertices of a vertexnow  points. In the homogeneous projection, instead, the distribu-
result mapped onto points that surround the painvhich  tions are smooth, as in the hypercube. To this extent, the
makes this projection much more satisfying. Certainly, how-homogeneous projection can be said to represent more accu-
ever, some vertices result mapped near the border of theately the distribution of distances present in the hypercube.
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The distribution averaged over the whole set appears, how- 6
ever, skewed towards smaller distances, with a maximum
aroundd=3, instead of the most represented distahce
=5 of the hypercube. Interestingly, Fig(2 shows that the 4
outer 10% points considerably correct this skew. In other
words, a point near the border of the circular array of the
projection has a distribution of distances to the other points
in the set, which is rather similar to the distribution of a
vertex of the hypercube. b
An appraisal of the plane projections of the hypercube in 0
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a dynamical context results from their application of a diffu- 0 100 200
sion process. Let us suppose that, at each time step, a random 6 ' '

walker jumps from a vertex of the hypercube to one its 5
neighbors with equal probability. The average distabce

from the initial site, as a function of time, is shown in Figs. 4

3(a) and 3b) as black circles. The inset in both figures dis- = 3

plays the same curve in double logarithmic scales, showing 5’

an initial behavior of the fornD(t)~t'? like in a regular 2

random walk in Euclidean space, followed by a saturation as | BF o hopercube

the hypercube space is fully explored. The average distance F iigzzf;f;fr‘l i o

as measured on the plane is shown in Figa) 8nd 3b) for 0 . L .

the self-similar and the homogeneous projections, respec- 0 100 200
tively. As expected from the distance distribution discussed t

above, the results for the plane projections depend on ) . . e
whether the initial point of the walker is at the border or at,_ F'C: 3 Average displacement as a function of time for diffusion
the center of the set. These two cases are shown in Figs. 3 in the hypercube and its plane projections. For the plane projec-
and 3b) as trian Ies. ointina upward and downward. res 'ecyons, diffusion starting from a point in the border and a point near
tively. From thig dyr?amicagll pr(J)int of view interior,poinris the center are shown separatdlg) self-similar; (b) homogeneous.

. .. . The straight lines in the insets have a slope of 1/2.
behave equally bad in both projections. The most faithful g P

representation of the process in a plane projection is the one

given by one of the border points of the homogeneous Sé?rojection that maps verteR to a point at the border of the
[Fig. 3b), up triangled Diffusion starting at these points plane set. This is easily done by generating a projection at

behaves similarly as from points of the hypercube, both iI_g:mdom and identifying one of the points at the border first.

the short and in the long time regimes, as seen in the ”ne%uppose th'at one such pom'@; T.hen, each vertekof.the

and the logarithmic plots. ypercube is mapped to a point in the plane projection as
Our main goal of obtaining a sensible plane projection of

the hypercube with the purpose of visualizing a dynamical I=(leP)eQ, 4

process has been achieved, to an acceptable extent, by the

homogeneous projection. Suppose that a dynamical phenomthere® stands for the bitwise exclusiver (XOR) operator.

enon is taking place in a neighborhood of vertexof a  The projection obtained in this way provides a nice plane

hypercubical phase space. We need to build a homogeneouisualization substrate for the process.
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