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The phase transition in the number partitioning prob(®&®RP), i.e., the transition from a region in the space
of control parameters in which almost all instances have many solutions to a region in which almost all
instances have no solution, is investigated by examining the energy landscape of this classic optimization
problem. This is achieved by coding the information about the minimum energy paths connecting pairs of
minima into a tree structure, termed a barrier tree, the leaves and internal nodes of which represent, respec-
tively, the minima and the lowest energy saddles connecting those minima. Here we apply several measures of
shapebalance and symmetras well as of branch lengttibarrier heightsto the barrier trees that result from
the landscape of the NPP, aiming at identifying traces of the easy-hard transition. We find that it is not possible
to tell the easy regime from the hard one by visual inspection of the trees or by measuring the barrier heights.
Only thedifficulty measure, given by the maximum value of the ratio between the barrier height and the energy
surplus of local minima, succeeded in detecting traces of the phase transition in the tree. In addition, we show
that the barrier trees associated with the NPP are very similar to random trees, contrasting dramatically with
trees associated with thespin-glass and random energy models. We also examine critically a recent conjec-
ture on the equivalence between the NPP and a truncated random energy model.
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[. INTRODUCTION whereog;=+1 ifieX ando;=—1 if i ¢ X [9]. It is there-
fore natural to consideE as an energycos) landscape over
The relevance of the concepts and techniques of statisticéthe hypercube; in other words, single spin flips are a natural
physics to understanding the typical behavior of classes ofvay of defining a neighborhood relation for the NPP. For
optimization or decision problems was pointed out by manyconcreteness, we will assume from here on thatatfeare
authors already in the middle of the 198@=e, e.g., Refs. independent, identically distributed random variables that
[1,2]). However, it was only about ten years later, owingtake on integer values between 1 dndlith equal probabil-
mainly to the finding of a ubiquitous peak in computationality.
cost signaling a transition between easy and difficult in- A partition ‘B is perfectif E(3)=0 or 1 forX,;a; even or
stances of optimization problems, that the physics approacbdd, respectively. The existence of perfect partitions depends
succeeded in attracting the attention of the computer scienan the accuracy to which the numbexsare determined as
community(see, e.g., Ref$3—7]). In particular, instances in well as on the size of the probleid. The crucial control
the phase transition region are now routinely used to benchparameter here is the ratio between the number of bits to
mark algorithms and search heuristics, and so a precise locaich a; is specified and the problem size,
tion of the critical point in addition to an estimate of the
width of the transition region has gained considerable prac- logy!
tical importance. K=™N )
The specific optimization problem we consider here is the
number partitioning problertNPP), which is one of the ba- The relevance ofc can be appreciated by considering the
sic NP-complete problems that form the core of the theory obinnealed estimate of the expected number of perfect parti-
NP completeness]. NPP has an easy formulation: Given  tions, S=2"/I, so thatk=1—(log,S)/N [10]. Hence the
not necessarily distinct positive numbers, . .., ay, finda  annealed theory indicates that ferc1 there is an asymp-
subsetXC{1, ... N} such that totically exponential number of perfect partitions, while for
x>1 the probability of finding a perfect partition is expo-
nentially small. Extensive numerical simulations and statisti-
(1) cal mechanics calculations corroborate the valde1 as
the threshold separating the easy-to-solve from the hard-to-
. L solve regime$10,11].
II\?I m.'mlr.rll'z?d.' We remar(l; Itha_thN: P g,‘lan 'be regarded as a Probabilistic and statistical mechanics analyses of the
attis-like Ising spin model with Hamiltonian ground states of the Hamiltonig@) in the limit of infinite
precisionl — o, in which thea;’s can be viewed as continu-
20— P ous variables, have of course failed to detect the phase tran-
H(X)=E%(%) % 2igj7iay, @ sition (see, e.g., Refd9,12,13). The thermodynamics for

E(X)=

2 a,——z a;
jeXx

jex
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general | was “solved” under the assumption of self-
averaging of the random variablas, but that solution is not
completely satisfactory since it predicts a negative entropy
for k> k. [11]. Thus, a reliable theory for the ground states
of the NPP, probably based on the replica method, has yet tq
be obtained.

Generally, the aforementioned phase transition is defined
as a transition from a region in the space of control param-
eters in which almost all instances have many solutions to g
region in which almost all instances have no soluti8].
Hence, the investigations have relied mainly on exhaustive
search procedures, such as branch-and-bound algorithm:
that guarantee the finding of the global optima, or on statis-
tical mechanics calculations of the expected properties, such @) (b)
as the entropy, of the ground states. In this contribution we g 1. Typical barrier trees fota) the number partitioning
seek evidence of this easy-hard transition in the structure Qfioplem with infinite precision numbers afio) the truncated ran-
the cost landscape of the optimization problem, focusing oRjom energy modefrandom cost problejrfor N=10.
the distribution of optima and on the distribution of cost
barriers between these optima. To this end, we code the in- . I .
formation about the paths of minimal cost leading to differ—ri?r?cc::e Spnogﬁetrgtng:)nnt(ac)tilég(l)thli ?it]%itgble syavéth
ent optima in a tree structure, termed thearier tree of the y 9y ' y '
cost landscape. The leaves of this tree represent the local
optima and the internal nodes the lowest cost saddles con- B(x)=min{E[X,y]—E(X)| y:E(y)<E(x)}. (5)
necting those optima. Barrier trees have been widely used to
study proteif14—16, RNA[17,18, and spin-glas§19—-22 ) ) ) ) o
landscapes. Since a direct evaluation of E¢}) would require the explicit

We find that the structure of the landscape, as measuregPnstruction of all possible paths it does not provide a fea-
by the local minima and their connecting saddle pointsSible algorithm for determininge[x,y] even if N is small
shows surprisingly little difference in the easy and hard renough to allow an exhaustive survey of the landscape. The
gimes. The sharp transition between these two regimes ¥alues ofE[X,y] andB(x) can, however, be retrieved from
revealed only by thelifficulty of the landscape, a parameter the barrier tree of the landscape. The algorithm for con-
measuring the maximum ratio of energy barrier to energystructing these barrier trees is presentedllin 1§ (see also
gain for the escape from a metastable state, which is directiffef. [20] for a detailed account of the algorithm in the spin-
related to the optimal speed of convergence of simulate@lass contejt It is implemented in th@ARRIERS program,
annealing[23—27. We stress that our goal here is not to which constructs the tree from a sorted list of energy values
locate the transition point, which can be achieved by simplyof all spin configurations in the landscape. In a barrier tree,
|ooking at the value of the g|oba| energy minimum in anthe leaves of the tree represent the local minima, and the
ensemble of randomly generated instan@iasthis sense, a internal nodes represent the saddles, with the barrier sizes
barrier tree always contains the information on whether th@iven by the length of the branches connecting the local
given instance is easy or hardbut to seek evidences of the Minima to their corresponding saddles. Figure 1 illustrates
easy and hard regimes in other global statistical properties dypical barrier trees for the problems considered in this pa-
the energy landscape. Furthermore, we examine a remarREer-
able conjecture about the equivalence between the infinite
accuracy version of the NPP and the random cost problem
[28], and show that, despite the equivalence at the level of

the energy distributions, their barrier trees are completely The depthD and difficulty ¢ of a landscape are measures
different. of the landscape structure that are directly related to the per-
formance of simulated annealiri@3—27. The depthof a
Il. BARRIER TREES landscape is defined as the maximum barrier hei@ht,
=maxB(x), where the maximum is taken over nonglobal
The energy of the lowest saddle point separating two locaiinima only. In particular, it can be shown that simulated

IIl. DEPTH AND DIFFICULTY

minimax andy is annealing converges almost surely to a ground state if and
only if the cooling schedulel, satisfiesX,- exp(—D/T,)
E[X,y]= min maxE(z), (4) = [23]. The difficulty of the landscape is a dimensionless
pelbyy zep guantity defined as

whereP,, is the set of all pathe connectingx andy by a
series of successive spin flip49,29. The barrier height The source code is available at http://www.thi.univie.ac.at/
B(x) of a metastable state is the minimum height of a ~ivo/RNA/Barriers/
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FIG. 2. (a) Data collapse of the rescaled average logarithmic 0.020L , I . L . ! . I

difficulty (\) as function of the rescaled accuracy—1)N for 20 -10 0 10 20

problem sizesN=12,14,16,18, and 20(b) Detailed data for &
—1)N=5 (@), 0 (W), and—5 (©) confirm the existence of the  FiG. 3. Average fraction of local minimé@n)/2\ as a function of
scaling function for largeN. the rescaled accuracy kC1)N for (top to bottom N
=12, 14, 16, 18, and 20. Each symbol is the result of an average
B(x) over 200 landscapes and the horizontal lines are the theoretical
=max —E(x)—E(min) , (6) predictions for the limit — oo,

whereE(min) is the global energy minimum and, as before, tracting N from both sides yields.~(«x—1)N in the easy
the maximum is taken over local minima only. The difficulty regime. In the hard regime we can hope to cancel only the
y is directly related to the optimal speed of convergence ofeadingN bits in the optimal configuration; thus we expect a
simulated annealing. It is more convenient to work with theground state energi,,,~1/2", while the maximum barrier
scaled quantity height is agairO(1), yielding logy~N, which is then inde-
B Ny pendent ofx. Of course, these crude estimates miss polyno-

A =logx(4/27) =log,¢—N () mial corrections such as the facthi’? that appears in the

instead. rigorous computation of the ground state endr)g]. Note,

We m niow 10 the evaluaionof he effcts on the deptfueLer, Bl e e Eonsiirnd le, Lo, Ve ot
and difficulty measures of a change in the accuracy of th y 109 P

?or more careful estimates of lgg(x) as well. As the values

a;'s for a fixed problem size. We find that, as in many other A A .
tree measures discussed in the next section, the depth me(g_lmpvary significantly among different landscapes with the

sureD is independent of the accuracy of tags. The effects same values of anq N, it is not possible to obtain suffi-
on the difficulty measure, on the other hand, are striking.c'en.tly accuratel estimates Qf) that would reveal such cor-
Explicitly, in Fig. 2, where each symbol represents the resulf SC1ONS unambiguously.
of an average over 100 landscapes, we show that there is a
scaling relation between the average difficulty and the accu-
racy of number representatiof\) converges to a unique
function of («x—1)N for large N. This scaling function in- Since a barrier tree embodies all the relevant quantitative
creases linearly fok <1 and approaches a constant value ofinformation about the multivalley structure of an energy
about —2.0 for k>1. Hence(\) viewed as a function of landscape, it seems natural to ask if there is any trace of the
x—1 exhibits a singularity ak=1 since it increases linearly easy-hard phase transition in the shape of the barrier trees of
with a slope proportional toN as long ask<<1 and tends the NPP landscapes.
toward a constant value fox>1. Therefore the rescaled Before introducing the standard measures of tree shapes
difficulty reflects the phase transition reported in previouswe will consider the effect of the accuratyn probably the
analyses of the NPP, which have focused on the singulamhain characteristic of a tree, namely, its number of leaves or
behavior of the probability of a perfect partitipm0,11]. miniman. In fact, it is tempting to associate the difficulty of

A simple annealing-like argument to explain the behaviora problem with the number of local minim@rapg in its
of the difficulty depicted in Fig. 2 goes as follows. In the energy landscape representation. Surprisingly, however, we
easy regime we have more partitiofgin configurations find that the average fraction of local minima does not
than different combinations of numbers, and thus the globathange withl as soon a$>N, i.e., as soon as it becomes
optimum will probably be a perfect partition, i.€,;,=0 or  unlikely that adjacent configurations have the same energy
1, while the lowest metastable state will halze=2 or 3.  (see Fig. 3. For very small values off the number of local
The height of the barrier separating them, however, is esseptima depends strongly on how degenerate neighbors are
tially the energy of a random configuration, i.eB(x) treated(data not shown The important point here is that the
=0O(l), and the maximum barrier height will be among the fraction of minima stays constant across the easy-hard tran-
largest numbers in the system, i.e.,déerlog,l. Hence, sub-  sition and, in particular, it is given by the formula

IV. MEASURES OF BARRIER TREE SHAPES
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<n>/2N:mN—3/2’ (8) 10’1§"|"|"|"§ 10t—’§"|"|"|"g AL

o f 7 wio>[o——000000000—0] v 3|6 Og0eetees—¢ |

which was obtained in the limit of infinite accurafy3]. 10°F s | eyl | m———— 1
Now we consider five measures of tree shape that were [ 3 3 [0-%0s00000e-¢]
originally used to study phylogenetic treésee, e.g., Refs. 1055 03 'o!oll ‘9506 1%s 03 'o!({ 0506 %8 03 'o!oll 0506

[30,31)) for the barrier trees resulting from NPP landscapes. b
These measures provide statistical information about the @ (b) ©

shape of the barrier tree, mainly its symmetry or balance, and F|G. 4. None of the measures of the tree shape shown here
ignore the branch lengths, i.e., the height of the barriers bereflects the easy-hard transition of the NRB: imblanceC, (b)
tween minima, which were the object of the depth and diffi-inverse subtree heigh;, and(c) weighted leaf heighB,. The data
cult measures. Recently, we showed that these measures doe N=12(V),14(A),16(¢),18(W), and 20@) are averages
capable of distinguishing betweg@rspin models with differ- ~ over 100 landscapes.

ent values op [22].

Let d(i,j) be the graph-theoretical distance between twdenaths, as is done in the de;p_th measure. The only effective
nodes of the tree, i.e., the number of edges along the pafRéasure involves a _nontr|V|aI balance between branch
that connects them. Furthermore, we denote the root of thien9ths and leaf energies.
tree by. The heightof a leafk is h,=d(Z,k). Equiva-
lently, h, is the number of internal nodes between leaind V. TRUNCATED RANDOM ENERGY MODEL

the root (inclusive). For each interior nodewe have two A very interesting though poorly explored finding con-
subtrees withr; ands; leaves, respectively. We assume  cerns the equivalence between the NPP in the limit of infinite
=s;. The subtree heightof an interior nodei is m;  precision, where tha; become real random variables distrib-
=max.7,d(i,k), where the maximum is taken over all uted uniformly in the unit interval, and the symmetrized
leavesk in the subtred; belowi, i.e., the subtree of which  truncated random energy mod&EM) or random cost prob-
is the root. lem[28]. In particular, for large problem sizes the energies of
With this notation we may define the following five char- two or more distinct configuratiom§10f the NPP become sta-
acteristic values for the shape of a binary rooted trap; tistically independent and thd =27~ distinct energies val-
H=1/h=[_,h, is theaverage heighof a leaf in the tree(2) ues for unconstrained partitions are distributed according to

o= \/(lln)Eﬂzl(hk—H)2 is the standard deviation of the 2 E2

leaf height;(3) C=[2/n(n—3)+2]2{‘;11(ri—si) is a mea- P(E)=—exr{ S —
sure for the imbalance of trees with n>2; (4) B; V27N 2p1N
=3 .p1/m; is the average inverse subtree height, where the o i )
sum is taken over ai—2 internal nodes excluding the root  Whereux=(a%=1/3 is the second moment of tiag in the

- and (5) B,=S_,2 "h, is an alternatively weighted cor_responding numb_er partitio_ning pro_blem. Hence the bold
g/erage(le)af ﬁeigﬁtﬁl k! Vely welg claim that the NPP is essentially equivalent to a truncated

The physical meaning dfl and o, is clear. We mention REM [28]. The main application of Eq9) is the derivation

only that for random tree®.g., trees produced by the neutral Of the probability Sensny of the_m_|n|mum energfn using

genealogical proce$82]) the expected value df increases trite arguments of extreme stafistit28],

as Inn. In addition,oy=0 for a completely symmetric tree. N _ ,

The imbalance measul@ assigns a weight proportional to P(Emin) =MP(0)exd =MP(0)Eqinl, (10

the number of leaves to each one of the two subtrees brancpm which the expected minimum energy follows trivially,

ing out of an internal node. These weight differences are then

averaged and normalized over all internal nodes of the tree. (Emin) =273 N-Y2 =N (11

The value ofC increases from 0 for a completely symmetric

tree to 1 for a completely asymmetric tree. The statiBjc  in agreement with the known numeriddl3] and analytical

looks at the longest possible patf from each internal node [11] results for the NPP.

i to any of the leaves in its subtree. The statigcis based However, in order for the equivalence at the level of the

on an index of information content. For highly asymmetric energy distribution between the NPP and the truncated REM

trees, such as those produced Bgpin landscapef22], it to have any use in guiding the design of search heuristics for

will quickly converge to the valu&,=2. BothB, andB, the NPP, it is important that other features of the two prob-

have smaller values for increasingly asymmetric trees. lems, such as their multivalley structures, are similar too. In
Somewhat surprisingly, none of these measures exhibits fact, a glance at Fig. 1 is already sufficient to reveal the deep

nontrivial dependence o, as shown in Fig. 4 for the mea- structural difference between the barrier trees of these prob-

suresC, B4, andB,. The other quantitiesl and oy behave lems, and the remainder of this section is aimed at quantify-

analogously but have a larger scatter for lakg&herefore it  ing these differences.

is impossible to tell the easy from the hard regime by visual The expected number of minima can be easily calculated

inspection of the barrier tree or by simply measuring brancHor any random energy model with finite probability density

)®(E), (€)
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wmnis e sa s cIEIETAE . mat mall et e Since the equivalence between NPP and the truncated
10";— A A b A A _ 45 3 REM discussed above was proved only in the case of infinite

g 3 10F E precision numbersi.e., k—), it provides no clues about
10" 1 b ] the easy-hard phase transition that takes place=at. Nev-

) _25 Iz ertheless, it is natural to ask if the integer counterpart of the
0 g ERRdS I truncated REM, obtained by considering the integer-valued
0 i 3 3 > energiesE’ =|E|, whereE is drawn from the distributio9)

E /M with w., replaced byu,=1(1+1)(2l+1)/6, exhibits a phase
gl viod ol vod ol 00 bl vl vl ol oo ] transition. This can easily be answered by calculating the

10 10 733 10* 10° 10" 10 123 10* 10 probability that a partition is perfedi.e., E;,;,=0 or 1),
which is given by
FIG. 5. Tree balance measur@sandH as functions of the tree
sizen for the symmetrized truncated REMA(, the NPP @), and K B
random trees ¢ ). The solid lines are numerical fittings Pper= OdEmin p(Emin) =1—exp(—2¢§), (13
=0.4n and C=0.6+0.1InIln (h) for the REM, and H=-1

+2In (n) andC=5/n for the NPP and random trees. whereg= 2N/(27TMIN)1/2' Although one clearly recovers the

i easy Pper~1) and the hard R,.~0)regimes depending
over the real§33,34. The argument goes as follows. Fix an Whe?ﬁr(fer the ratio (Io)/N isps/rery small or very large,

arbitrary spin configurationr= (0,07, ...,on) and CON-  egnactively, there is definitely no phase transition separating
sider all itsN neighbors. Since we assign to each spin conypam

figuration a random energy value drawn from the continuous
distribution (9) we conclude thati) all theseN+ 1 energies

are distinct with probability 1; andi) E(o) is the smallest VI. CONCLUSION

of theN+1 numbers with a probability of I+ 1). Hence Phase transitions in physical systems are characterized by
o is a local minimum with probability 1§+1) and so the the appearance of singularities in some observables, known
fraction of local minima is as the order parameters of the system, such as, e.g., the gas
density in the boiling transition. In the case of mean-field
(MI2N=1/(N+1), (12 spin-glass models the order parameter directly reflects the

hierarchical organization of pure states in a complex multi-

which, for largeN, is larger than the result for the NPSee  valley structurd 2]. Therefore one expects that some features
Eq. (8)] by a factor of the order oR*2. of that structure must undergo abrupt changes when the criti-

In Fig. 5 we present the tree siza)(dependence of the cal point is approached. Unfortunately, the vast majority of
barrier tree measures andH for the NPP and the symme- the phase transitions take place at finite temperature, while a
trized truncated REM. A useful standard here, also shown imlirect study of the landscape properties of spin-glass models
this figure, is the random trees, generated as follows. Firshased on natural quantities, such as saddle points and
createn nodes(the leaves and put them in a seA. Next, minima, is feasible at zero temperature only. In that sense,
remove two random nodesandy from A, create a new node the easy-hard phase transitions in optimization problgths
z, and makex andy its two children, and puz in the setA. in general, and in the number partitioning probléh®,11]
Repeat this procedure until there is only one node lefAin considered here, provide a unique chance to study how the
which will be the root of the tree. Random trees are impor-onset of the phase transition affects the organization of the
tant from the biological viewpoint because they arise from ametastable states of a disordered spin system.
neutral genealogical proce$82]. The symmetrized trun- Somewhat surprisingly, we find that almost all features of
cated REM presents the same scaling romas thep-spin  the landscape, which we have properly mapped into a tree
models, namelyH ~n andC~Inin(n) within the range oh  structure through th@ARRIERS program, are insensitive to
considered22]. Of course, sinc€ €[0,1], this scaling can- the onset of the easy-hard phase transition that takes place
not be valid forn—«, but the double logarithmic depen- when the number of bits needed to specify a numder
dence guarantees its validity for a very large range of treequals the problem size, i.e<=(log,l)/N=1. Interestingly,
sizes. Actually, as far as the five statistics introduced in Semnly one of the measures studied, premonitorily terrdiéd
IV are concerned, there are no significant differences beficulty in the mathematical literature of simulated annealing
tween the symmetrized truncated REM and the standarfR4], exhibits a singular behavior at the critical point. As a
REM, both models producing then extremely unbalancedesult, the quality of the optima found by simulated anneal-
trees. These measures, however, differ dramatically betweeng will probably depend strongly on whether the control
the NPP and all previous spin-glass models analy22j parameters set the instance in the easy 1) or hard
Surprisingly, the NPP barrier trees are practically indistin->1) regime.
guishable from random trees and, in particular, the tree mea- An important by-product of our study of the NPP land-
sures obey the same scaling relation with the tree size, scape is the finding that the resulting barrier trees are very
~In(n) andC~1/n. Hence, these trees, in stark contrast withsimilar to random trees, and so they become completely bal-
the p-spin model and REM batrrier trees, become more andnced(symmetrig in the limit of large system sizel or,
more balanced as increases. equivalently, large tree sizas These trees contrast drasti-
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cally with the barrier trees resulting from thespin-glass, techniques to produce good solutions to this optimization
the random energy, or the symmetrized truncated randorproblem.

energy landscapes, which become completely unbalanced in

that limit. In this context, we note that, although there is an ACKNOWLEDGMENTS

equivalence at the level of the energy distribution between Thanks to Christoph Flamm at the University of Vienna,
the NPP and the truncated random energy model, the statigustria, for his help with theBARRIERS program. This re-
tical properties of their energy landscapes are very differenisearch was supported by Fundace Amparo éPesquisa do
and probably so are the performances of local search heurig€stado de S@Paulo(FAPESB, Project No. 99/09644-9. The
tics in finding near-global solutions to these problems. Actuwork of J.F.F. is supported in part by CNPq and W.H. is
ally, the similarity of the NPP barrier trees with random treessupported by FAPESP. P.F.S. gratefully acknowledges the
may be part of the explanation for the failure of local searchhospitality of the Instituto de Bica de Sa Carlos.

[1] P. W. Anderson, Physica 240, 405(1986. [17] C. Flamm, W. Fontana, I. L. Hofacker, and P. Schuster, FINA
[2] M. Mézard, G. Parisi, and M. A. Virasor@pin Glass Theory 325(2000.
and BeyondWorld Scientific, Singapore, 1987 [18] C. Flamm, I. L. Hofacker, P. F. Stadler, and M. T. Wolfinger, Z.
[3] S. Kirkpatrick and B. Selman, Scien@64, 1297 (1994). Phys. Chem(Munich) 216, 155 (2002.
[4] T. Hogg, B. A. Huberman, and C. P. Williams, Artif. Intefi1, [19] K. Nemoto, J. Phys. R1, L287 (1988.
1 (1996. [20] F. F. Ferreira, J. F. Fontanari, and P. F. Stadler, J. Phy8 A
[5] B. Hayes, Am. Sci85, 108(1997). 8635(2000.
[6] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L'[21] J. F. Fontanari and P. F. Stadler, J. PhyS5A1509(2002.
Troyansky, NaturéLondon 400, 133(1999. [22] W. Hordijk, J. F. Fontanari, and P. F. Stadler, J. Phys36a

[7] (2)6;\/Igr(t|2nooRD Monasson, and R. Zecchina, Theor. Comput. Sci. 3671(2003.
’ 23] B. Hajek, Math. Op. Resl3, 311(1988.
[8] M. R. Garey and D. S. Johnso@pmputers and Intractability: %24} o C?a]tini A?m Pch))bzg 1109(1é92 3
A Guide to the Theory of NP-CompletendéEseeman, New [25] W. Kern, Discrete Appl. Matha3, 115(1993

York, 1979. .
9 [26] J. Ryan, Discrete Appl. Mattg6, 75 (1995.

[9] Y. Fu, inLectures in the Science of Complexiglited by D. L. i simulated i lorith d K hai
Stein (Addison-Wesley, Reading, MA, 1989 [27] O. Catoni,Simulated annealing algorithms and Markov chains

[10] I. P. Gent and T. Walsh, Comput. Intelligentd, 430 (1998. with rare transition Seminaire de Probabilities XXXIII, Lec-
[11] S. Mertens, Phys. Rev. LeB1, 4281(1998. ture Notes in Math Vol. 1709Springer, Berlin, 1999p. 69.
[12] N. Karmarkar, R. M. Karp, G. S. Lueker, and A. M. Odlyzko, [28] S. Mertens, Phys. Rev. Le@4, 1347(2000.
J. Appl. Probab23, 626 (1986). [29] A. M. Vertechi and M. A. Virasoro, J. Phy¢rance 50, 2325
[13] F. F. Ferreira and J. F. Fontanari, J. Phys31A 3417 (1998; (1989.
Physica A269, 58 (1999. [30] K-T. Shao and R. R. Sokal, Syst. Zo@l9, 266 (1990.
[14] O. M. Becker and M. Karplus, J. Chem. Phyk06 1495  [31] M. Kirkpatrick and M. Slatkin, EvolutionLawrence, Kang.
(1997. 47, 1171(1993.
[15] D. J. Wales, M. A. Miller, and T. R. Walsh, Natufeondon [32] J. Felsensteirinferring PhylogeniegSinauer Associates, Sun-
394, 758(1998. derland, MA, 2002
[16] P. Garstecki, T. X. Hoang, and M. Cieplak, Phys. Rew6@  [33] B. Derrida, Phys. Rev. B4, 2613(1981).
3219(1999. [34] D. J. Gross and M. Mgard, Nucl. Phys. B240, 431(1984.

056701-6



