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Localized-mode evolution in a curved planar waveguide with combined
Dirichlet and Neumann boundary conditions
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We present a theoretical study of a planar waveguide with a uniformly curved section. Opposite sides of the
channel satisfy different boundary conditions. It is shown that if the Dirichlet condition is applied to the inner
side of the strip and the Neumann one to the outer wall, then properties of such a system in many respects
resemble those with the Dirichlet requirements on both surfaces. Namely, in both cases a propagation threshold
for the curved section is smaller than its counterpart for the straight channel. As a consequence, a localized
mode exists with its energy below the propagation threshold of the straight waveguide. Analysis of such states
is presented as a function of the bend parameters. For the transport in the fundamental mode an interaction of
a quasibound level split off from the higher-lying threshold, with its degenerate continuum counterpart, causes
a dip in the transmission. Such a resonance is characterized by a location of its zero minimumEmin and the half
width G. Changing the bend angle and radius, one variesEmin andG. In particular, for some critical parameters
of the bend it is possible to turn the half width to zero, i.e., to eliminate the dip in the transmission. This
corresponds to the absence of the interaction between the split-off level and the continuum, and, consequently,
to the formation of the true bound state in the continuum. Vortex structure of the currents flowing in the
waveguide near the resonance is also shown to strongly resemble the analogous results for the Dirichlet case.
It is pointed out that the properties of the waveguide with the Neumann inner condition and the Dirichlet outer
one mimic the duct with the Neumann requirements on the two sides, since for both these cases the propagation
threshold in the curved section is greater than in the straight channel.
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I. INTRODUCTION

Since a bent waveguide is frequently met with in ma
physical applications, its properties have been a subject o
intensive investigation for more than a century. Summary
this research in quantum theory can be found in Refs.@1,2#,
in radiophysics and electrodynamics in Refs.@3–5#, in
acoustics in Ref.@6#, where many more references to th
original publications are given. Other branches of scie
where a model of the bent waveguide is applied are elem
tary particle physics@7#, quantum chemistry@8#, and chemi-
cal physics@9,10#. Mathematically, wave dynamics in a
these systems is described by the same type of the sec
order differential equation—the Helmholtz equation:

¹2C~rW !1k2C~rW !50. ~1!

For the spatially confined oscillations this equation should
complemented by the boundary conditions. If we assume
the fields do not penetrate outside of the waveguide, there
two types of them: Dirichlet one when the functionC van-
ishes at the boundariesL of the system,

CuL50, ~2!

and the Neumann one when a normal derivative ofC is zero
at the confining walls,
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For example, for the de Broglie electronic wave which s
isfies the Dirichlet conditions,k5(2m0E/\2)1/2 with m0 be-
ing a particle mass andE being its energy.C(rW) in this case
is a wave function whose square determines probability
finding a particle atrW. For the electromagnetic or acoust
waves the wave vectork is the ratio of the frequency o
oscillations v and the speed of propagation in the spa
without the boundariesc0 : k5v/c0, andC(rW) is the elec-
tromagnetic or acoustic potential through which the elect
magnetic fields or acoustic velocity and pressure are de
mined.

It is known that for the curved planar waveguide a prop
gation constant for the Dirichlet~Neumann! conditions is
smaller~larger! than in the straight part@3,11#. Accordingly,
for the Dirichlet case it is possible to have a wave propag
ing in the bend and exponentially vanishing in the straig
arms. This leads to the existence of a bound state below
fundamental threshold for the waveguide with bend@12–14#.
Levels split off from the higher-lying subbands, interfere d
structively with their continuum counterpart leading to t
steep dips in the transmission@15–17#. They are, in fact,
quasibound states with a finite lifetime. However, for som
parameters of the bend they transform into the true bo
states in the continuum; as a result, a dip in the transmis
vanishes with total propagation observable instead@17#. The-
©2003 The American Physical Society25-1
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oretical predictions of the bound states in the b
waveguides with the Dirichlet boundary conditions@12–14#
were experimentally confirmed for the single-@18# and
double-bend@19# structures.

On the other hand, the properties of a straight wavegu
with the miscellaneous combination of mixed Dirichlet a
Neumann boundary conditions on one or two walls w
calculated recently by several authors@20–22#. It was pre-
dicted that for some configurations, such systems can sup
bound states below the fundamental propagation thresh
Bound states embedded into the continuum were found
for the straight acoustic duct with impurity@23#—Neumann
analogy of a similar situation for the Dirichlet case@24#.

In this paper, we study theoretically a curved planar wa
guide with the different boundary conditions on the oppos
confining walls. Such configuration appears as a natural g
eralization of the uniform conditions. Probably, one of t
largest examples of a physical system satisfying such di
bution of the boundary conditions is the Earth-ionosph
waveguide: it is known that for the very low frequencies t
electromagnetic wave dynamics between the Earth and
ionosphere can be approximated, in the first approximat
as a propagation between the plates with the perfect ele
~the Earth! and perfect magnetic~the ionosphere! conductors
@25,26#. We show that the bent waveguide with the Dirich
inner and Neumann outer conditions in many respects m
ics the curved channel with the pure Dirichlet conditions.
particular, it possesses bound states below the propag
threshold of the straight guide. We calculate these lev
dependence on the bend angle and radius. For the prop
tion in the fundamental mode, similar to the pure Dirich
case, a steep dip in the transmission is predicted to o
which is due to the interaction of the quasibound state s
off from the higher-lying subband, with its degenerate co
tinuum counterpart. Characteristics of this dip are thoroug
investigated; among others, it is shown that for some par
eters of the bend a half width of the resonance turns to z
which corresponds to the transformation of the quasibo
level into the true bound state in the continuum. As we ha
stated above, the same behavior is characteristic for the
richlet conditions on both sides of the strip@17#. Another
similarity between the two cases is the formation and evo
tion of the vortex structures near and at the resonance.

The paper is organized as follows. In Sec. II, our mode
presented and a necessary formulation is briefly given. S
tion III is devoted to the presentation of the calculated res
and their detailed physical interpretation for various para
eters of the bend. Summary of the results is provided
Sec. IV.

II. MODEL AND FORMULATION

We consider an infinitely long quasi-one-dimension
waveguide of widthd with a uniformly curved section o
inner radiusr0 and anglef0 ~Fig. 1!. We assume hard-wal
boundaries meaning that the fields do not penetrate out o
waveguide. On each of the sides we impose a unifo
boundary condition—either the Dirichlet or Neumann on
For brevity, a case when a Dirichlet~Neumann! condition is
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on the inner wall of the strip and the other condition on t
outer side will be called below a DN~ND! case. Accordingly,
the situation with the pure Dirichlet~Neumann! conditions
on both sides of the channel is referred to as a DD~NN!
configuration. Also, for definiteness, we will talk about th
energyE, remembering that a transition, as described abo
could be readily made to the frequenciesv. We measure all
distances in the units of the waveguide widthd and all ener-
gies in the units ofp2\2/(2m0d2). Accordingly, in these
units a wave vectork becomespE1/2, and its longitudinal
componentkn5pAE2(n11/2)2. Also, our unit of time will
be 2m0d2/(p2\).

For the scattering configuration, to the left of the bend
solution to Eq.~1! is given as~we disregard the trivialz
dependence!

C~x,y!5 (
n50

`

$An exp@ ipAE2~n11/2!2x#

1Bn exp@2 ipAE2~n11/2!2x#%xn~y!, ~4!

with

xn~y!521/2sin~n11/2!py ~5!

for the DN case, and

xn~y!521/2cos~n11/2!py ~6!

for the ND case. Local Cartesian systems of coordina
(x,y) and (x8,y8) for the straight arms are shown in Fig. 1
Functions~5! and ~6! have the corresponding eigenenergi
which determine the propagation thresholds:

FIG. 1. Picture of the curved waveguide we study in this pap
Bend radius and angle arer0 andf0, respectively. The width of the
waveguide is a constantd. On each of the confining walls a uniform
Dirichlet or Neumann boundary condition is imposed.
5-2
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En5S n1
1

2D 2

. ~7!

After the bend one has

C~x8,y8!5 (
n50

`

Cn exp@ ipAE2~n11/2!2x8#xn~y8!. ~8!

In Eq. ~4! the terms with coefficientsAn describe the
waves incident upon the bend, the terms withBn are the
modes reflected from~if E.@n11/2#2) or localized near it
~for E,@n11/2#2). In the same way, in Eq.~8! the terms
with positiveE2(n11/2)2 are the modes propagating awa
from the curved area, and those withE2(n11/2)2,0 are
the states bounded by it.

In a particular case, forAn being a Kronecker symbol
An5dnm , m50,1, . . . , due to theconservation law the fol-
lowing relation holds for the energiesE such thatE.(m
11/2)2:

(
n50

` S E2~n11/2!2

E2~m11/2!2D 1/2

~ uCnu21uBnu2!u„E2~n11/2!2
…51.

~9!

u(x) in Eq. ~9! is a step function, and terms

S E2~n11/2!2

E2~m11/2!2D 1/2

uCnu2 and S E2~n11/2!2

E2~m11/2!2D 1/2

uBnu2

are, respectively, current transmission and reflection pr
abilities between subbandsm andn.

Inside the bend, in the polar coordinate system with
pole coinciding with the center of the bend and the polar a
being the vertical junction between the straight and b
parts of the waveguide, solution of the Helmholtz equat
reads

C~r,f!5 (
n51

`

Rn~r!@Dn sin~nnf!1Fn cos~nnf!# ~10!

with Rn(r) being a radial part of the wave function:

Rn~r!5Ynn
~pE1/2r0!Jnn

~pE1/2r!

2Jnn
~pE1/2r0!Ynn

~pE1/2r! ~11!

for the DN case, and

Rn~r!5Ynn
„pE1/2~r011!…Jnn

~pE1/2r!

2Jnn
„pE1/2~r011!…Ynn

~pE1/2r! ~12!

for the ND case. HereJn(x) andYn(x) are the Bessel func
tions of the first and the second kind, respectively@27#, and
nn is thenth root of the equation

Jn~pE1/2r0!Yn8„pE1/2~r011!…2Yn~pE1/2r0!

3Jn8„pE1/2~r011!…50 ~13!
05662
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for the DN configuration, and

Jn8~pE1/2r0!Yn„pE1/2~r011!…2Yn8~pE1/2r0!

3Jn„pE1/2~r011!…50 ~14!

for the ND case. A prime denotes a derivative of the funct
with respect to its argument. The left-hand sides of Eqs.~13!
and ~14! are considered as functions of variablen, which is
the index of the Bessel functions with all other paramet
fixed. Accordingly, contrary to the system with a circul
symmetry, in our casenn are not real integers. In the wa
similar to the pure Dirichlet@3,17# or Neumann@3,6,28# con-
ditions, it can be shown that the solutions of Eqs.~13! and
~14! are discrete and countably infinite, and only a fin
number of the zeros are real, the remainder being pu
imaginary@29#. As Eq. ~10! shows, real zeros are natural
associated with the modes propagating inside the bend,
imaginary values describe the evanescent waves.

Equations~13! and~14! allow one also to define propaga
tion thresholds in a continuously curved structure. Name
putting in them the value ofn equal to zero, one finds th
energies at which a new propagating channel opens up.
have

J0~pE1/2r0!Y1„pE1/2~r011!…2Y0~pE1/2r0!

3J1„pE1/2~r011!…50 ~15!

for the DN case, and

J1~pE1/2r0!Y0„pE1/2~r011!…2Y1~pE1/2r0!

3J0„pE1/2~r011!…50 ~16!

for the ND situation. These equations are considered as fu
tions of E. For r0→0, Eq. ~15! transforms to

J1~pE1/2!50, ~17!

and Eq.~16! becomes

J0~pE1/2!50. ~18!

Equations of the type of Eqs.~15! and ~16! are well
known @27,30#. Their lowest solutions are shown in Fig. 2 a
a function of the inner radiusr0. For comparison, least so
lutions for the DD,

J0~pE1/2r0!Y0„pE1/2~r011!…2Y0~pE1/2r0!

3J0„pE1/2~r011!…50, ~19!

and NN cases,

J1~pE1/2r0!Y1„pE1/2~r011!…2Y1~pE1/2r0!

3J1„pE1/2~r011!…50, ~20!

are also shown. These last two equations for the zero ra
transform to Eqs.~18! and ~17!, respectively. It is seen tha
the solutions to Eqs.~15!, ~16!, ~19!, and ~20! for the large
radii tend to the thresholds for the straight waveguide,
expected. For the zero radius the propagation thre
5-3
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FIG. 2. Propagation threshold
in a continuously curved structur
as a function of the bend radiusr0

where curve 1 is for the DN case
curve 2 is for the ND case, curve
3 depicts the DD situation, and
curve 4 depicts the NN case
Thresholds for the straigh
waveguides are also shown whe
the lower dashed lineE50.25
corresponds to the mixed bound
ary conditions, and the upper on
E51 is for the pure Dirichlet or
Neumann case.
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old is equal to zero for the DN case, to (j 0,1/p)2

50.585 959 247 . . . for the ND and DDcases, and to
( j 1,1/p)251.487 594 64 . . . for the NN situation, where
j m,n is nth root of the functionJm(x) @27,30#. For all values
of the radius the thresholds for the DN~ND! case are smalle
~larger! than its counterpart for the straight waveguide. In
sense, this makes them similar to the pure Dirichlet~Neu-
mann! case. In particular, for the DN case it is possible
have a wave propagating in the curved section and deca
in the straight arms. As we stated above, for the pure Diri
let situation this leads to the bound states with energies
low the propagation threshold of the straight waveguide
was proved recently@31# that this is also the case for th
Neumann condition on the outer wall and the Dirichlet o
for the inner side of the strip. In this case, instead of Eq.~4!
we have evanescent modes only:

C~x,y!5 (
n50

`

An exp@pA~n11/2!22Ex#xn~y!. ~21!

Matching wave functions at the junctions, one arrives
ther to the scattering matrixS(E) or to the equation deter
mining eigenergies of the bound states. For the fundame
mode 1/4<E<9/4 the first diagonal scattering matrix el
mentS11 determines the transmissionT of the structure:

T5uS11u2. ~22!
05662
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III. RESULTS AND DISCUSSION

Since it is known@31# that for the DN case a bound sta
exists below the propagation threshold, we concentrate
this section just on this configuration of the boundary con
tions. Figure 3 shows energies of the bound state as a f
tion of the bend angle. For comparison, states for the p
Dirichlet conditions are also shown. A strong similarity b
tween these two cases is seen. Energies monotonically
crease asf0 increases. They are also smaller for the sma
radiusr0.

Wave function of the bound state forr050.001 and the
right angle is shown in Fig. 4. It is symmetric with respect
the line f5f0/2 and exponentially vanishes in the straig
arms. In each of the cross sections, a minimal value of z
at the inner wall is accompanied by the maximum at
outer surface.

Figure 3 addressed the physically interesting situation
0°<f0<180°. It is known that for the arbitrarily large
angle the multiple bound states emerge for the DD confi
ration @18,32#. The same holds true for the DN case too,
Fig. 5 shows, where energies of the alternating symme
and antisymmetric states are shown for the range 0°<f0
<900° withr050.1. Again, a strong similarity with the pur
Dirichlet conditions@32# is clearly seen. The lowest-energ
state emerges atf050°. This state is symmetric with re
spect to the middle of the bend, as it was discussed ab
The next state that is an antisymmetric one, appears from
continuum atf0.208.0°. It is followed by the next sym
metric state emerging atf0.413.8°, etc. On the quantitativ
note, we remark that for the DN case higher-lying bou
states appear at the smaller angle than for the pure Diric
5-4
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FIG. 3. Bound-state energie
for the DN ~lower curves! and DD
~upper curves! cases as a function
of the bend anglef0 for several
values of the radiusr0: the solid
line is for r050.001, the dashed
line is for r050.01, the dotted
line is for r050.1, and the dash-
dotted line is forr051.
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conditions. For example, for the latter case the first antisy
metric state appears atf0.384.0°.

For the pure Dirichlet conditions an approximation is us
which maps the processes in the bent waveguide onto
dynamics in the straight channel with the additional attr
tive potential@18,33#. In the same way, we can say that f
the mixed boundary conditions the bend creates some a
tional effective potential which is shifted to the wall with th
05662
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Dirichlet condition. It is known that a bound state exis
under these circumstances@21#. Contrary, for the ND case
the effective potential in the straight waveguide is shifted
the plate with the Neumann condition and, as a resul
bound state cannot be formed@21#.

Next, we turn to the scattering case. Figure 6 shows
transmissionT as a function of energyE for r050.001 and
f05180°. Immediately after the lower threshold, from ze
FIG. 4. Wave function~nor-
malized to its maximum! of the
bound state forr050.001 and the
right angle.
5-5
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FIG. 5. Bound-state energie
as a function of the anglef0 for
r050.1. Symmetric states are
shown by the solid lines, and th
antisymmetric ones by the dashe
curves.
n
er
nt
c

he
p

rve
ro
he
b-
lt of

ve-
the transmission rapidly grows with energy. However, co
trary to the pure Dirichlet case, one or several Breit-Wign
like resonances show up immediately after the fundame
threshold. Location, width, and number of these resonan
are determined by the bend parametersr0 and f0. We at-
tribute them to the propagating wave interaction with t
effective potential of the bend in the presence of the up
05662
-
-
al
es

er

Neumann plate. Second, similar to the DD case, we obse
a steep dip in the transmission with the minimum of ze
close to the first excited threshold. This dip is due to t
splitting off of a quasibound level from the higher-lying su
band. Mathematically, these states are formed as a resu
the fact that the higher-lying solutions of Eqs.~15! and ~19!
are smaller than their counterparts for the straight wa
is
-

FIG. 6. TransmissionT as a
function of the energyE for r0

50.001 and f05180°. Reso-
nance near the upper threshold
characterized by its zero transmis
sion locationEmin and the half-
width G.
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FIG. 7. EnergiesEmin as a
function of the bend anglef0 for
several values of the radiusr0.
The convention of Fig. 3 is as
sumed.
ns
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guide. Imposing a bend, one mixes longitudinal and tra
verse motions in the waveguide that causes an intersub
interaction. As a result, an interference of this level with
degenerate continuum counterpart leads to the formatio
the characteristic resonance with the energy of the zero m
mumEmin and the half widthG. These two quantities form a
complex energy of the quasibound state:
05662
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Eqb5Emin2 iG/2. ~23!

They are shown in Figs. 7 and 8, respectively. It is obser
that the energiesEmin , at which a complete interferenc
blockade is achieved, decrease with the bend angle grow
However, contrary to the pure Dirichlet conditions@17#, for
g.
FIG. 8. Half-widths G as a
function of the bend anglef0 for
several values of the radiusr0.
The same nomenclature as in Fi
3 is used. Curve forr051 has
three zero minima on thef0 axis
~excluding pointf050).
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FIG. 9. TransmissionT as a
function of the energyE for r0

50.1 andf05101.9076°. There
is no dip in the transmission fo
these critical parameters of th
bend.
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the
some angle ranges the specific processes of the wave i
ference for the mixed conditions lead to the situation wh
the energy of the minimum increases if the bend radiusr0
decreases. The half widthG, such as for the DD case@17#,
for the small and moderate angles increases from zero
f0, reaches maximum, decreases to the minimum ofzero,
after which the whole situation is repeated again. Zero va
of the half width means that the dip in the transmission v
ishes with a full propagation being observable instead. T
is shown in Fig. 9 where the transmissionT is plotted versus
energyE for r050.1 andf05101.9076°, i.e., when the cor
respondingG turns to zero in Fig. 8. Since a lifetime of
quasibound statet is determined byG as

t5
1

G
, ~24!

a zero value of the half width means that the correspond
level has an infinite lifetime, i.e., it turns for these critic
parameters of the bend into the true bound state in the
tinuum. Due to the resonant interference phenomena in
bend, such a state does not decay since it does not int
with its degenerate continuum counterpart. As a result,
wave function in the straight arms does not have a pl
wave component, as it was the case for the quasibound le
exhibiting fading exponents only. Thus, bound states in
continuum, which were discussed for the first time soon a
the formulation of quantum mechanics@34# and studied for
the different physical systems with uniform Dirichle
@24,35–37,12,17# or Neumann@23# cases, are complemente
05662
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by the new member—the curved planar waveguide with
Dirichlet inner and Neumann outer boundary conditions.

It is not surprising that the critical parameters at which t
bound states in the continuum are formed are different fr
the DD distribution@17#. For example, instead of four tru
bound states in the continuum for the latter case withr0

51, we observe only three such levels for 0°<f<180°.
However, all the pertaining discussion about their dep
dence onr0 and f0 and a comparative analysis betwe
these levels and the states split off from the fundame
mode remain valid in the considered case as well.

As a final example, we calculate a current density dis
bution for our system. For the case of the electron propa

tion the current densityjW is proportional to Im(C¹W C* )
@38#. The same holds true for the acoustic ducts when

mean sound energy flux is considered:qW 5p8vW with the pres-

surep85 ivr0C* , acoustic velocityvW 5¹W C and r0 being
here a density of the air@39#. Similar expressions for the
Poynting vector involvingC and its complex conjugate ar
valid for the electromagnetic waves too. Figure 10 plots
current densities for the parameters of the bend from Fig
and several energiesE. When the energy is far away from th
resonance value, one observes a longitudinal perfect lam
flow both in the straight arms as well as in the bend. For e
of the cross sections, the current has a zero minimum on
inner wall and reaches maximum at the Neumann surfa
When the energy comes closer toEmin , vortices start to form
in the bend and its immediate neighborhood. For example
Fig. 10~a! which corresponds to the transmissionT
50.9942, the transverse component ofjW which was zero for
the smaller energies is clearly observable near and inside
5-8
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FIG. 10. Spatial distribution of

the current density jW for r0

50.001, f05180°, and several
values of the energyE: ~a! E
51.9, ~b! E52.0827, ~c! E
52.084, ~d! E52.245. Since the
bend radius is very small, the dis
tance between two parallel inne
walls is not seen in the figure
Larger arrows denote higher cur
rents. For each of the figures th
currents are normalized with re
spect to their largest value.
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curved section. Far away from the bend, the current still
a longitudinal component only. As we come closer to t
resonant region, vortices develop in the waveguide. For
ample, Fig. 10~b! shows a vortex structure for the transm
sion T54.881631026 just to the left from the resonanc
dip. Seeding of the vortices into the current density patter
a result of the strong intersubband interaction which a
transverse components to the particle flow. Magnitude of
current in the vortices is of a few orders of magnitude lar
than for the nonresonant values. Similar vortices for the p
Dirichlet boundary conditions were calculated before for
straight nonuniform@24,40–42# as well as for the bent wave
guide without@43,44# and with the impurities@45,37#. For
our structure, similar to the clean@10,43,46# and embedded
dot bent waveguide@37# for the DD case, the abrupt chang
of the rotation of the vortices is observable after passing
minimum transmission. For example, Fig. 10~c! showsjW for
T55.39931023 just to the right from the minimum. Com
pared to Fig. 10~b!, the rotation of the vortices has chang
to the opposite direction, which is retained for the high
transmissions when the vortices gradually resolve with
energies growing@Fig. 10~d!#. Formation and evolution o
the vortices is a vivid example of the mixing by the bend
the different subbands and coupling of the longitudinal a
transverse motion, which take place near the resonance

IV. CONCLUDING REMARKS

We have considered theoretically a curved planar wa
guide with the different boundary conditions on the oppos
sides of the strip. The main result of our study consists in
fact that when the Dirichlet condition is applied to the inn
boundary and the Neumann requirement to the outer surf
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properties of the system are an almost exact replica of
wave behavior for the channel with the Dirichlet conditio
on both sides. These similarities include the following: t
existence of the bound state below the fundamental prop
tion threshold of the straight channel; interaction of the q
sibound level in the fundamental propagation mode with
degenerate continuum counterpart, which causes a chara
istic resonant profile; transformation, for some critical ge
metrical parameters of the bend, of this quasibound level
the true bound state in the continuum accompanied by
deletion of the dip which is substituted by the resonant t
neling through the bend; formation and evolution of the v
tex structure for both configurations of the boundary con
tions. Mathematically, this strong similarity stems from t
fact that the solutions of the transcendental equations for
curved section for both cases are smaller than their coun
parts in the straight channel, which physically means tha
is possible to have a wave propagating in the bend and
ponentially vanishing in the straight arms.

As we mentioned in the Introduction, different bounda
conditions on the opposite sides are not a purely theore
exotics; namely, it is the natural Earth-ionosphere wavegu
which roughly obeys such demands. We believe that
other structures where the results predicted here can be
fied are nanoelectronic or radio waveguides where the us
made of the properties of the ferrites@47# or superconductors
@48#.

It was also shown that for the ND case no bound st
exists @31#, similar to the pure Neumann conditions. Sin
we were interested in the localized modes and their evo
tion, we did not present here transmission characteristics
this case. However, the strong similarity between the ND a
NN configurations, outlined in Sec. II, convincingly sugges
5-9
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that they will be similar to the acoustic ducts@28,6#—in the
same way as the DN case reminds the pure Dirichlet co
tions. The bound state in the continuum may exist in
straight NN waveguide when the obstacle is inserted int
@23#. The same is true for the pure Dirichlet case@24#. Math-
ematically, an insertion of the scatterer into the wavegu
leads to the additional term2V(rW)C(rW) in the left-hand side
of Eq. ~1!, where for the existence of the localized mode
the continuumV(rW) should be negative~attractive interac-
tion! for the DD case and positive~repulsive force! for the
NN case. First theoretical and experimental study of
wave propagation in the curved NN channel with obsta
was performed about a quarter of century ago@49,50#.
to

e,

,

in
-

g
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Though those who conducted that research do not men
this explicitly, we see from their results that they found Fa
resonances@51# in the spectrum. For the pure Dirichlet cas
such resonances emerge and evolve as a result of the i

action of the negativeV(rW) and the bend@37#. In the wake of
the knowledge of the existence of bound states in the ac
tic duct with the repulsive impurity@23#, we deduce that a
curved planar NN waveguide with obstacle exhibits Fa
resonances due to the transformation of the true bound s
in the continuum into the quasibound level. What happen
the bent waveguide with combined boundary conditions a
embedded obstacle remains to be answered.
k,

.S.

m.

l.

,

p-

.

B

@1# P. Duclos and P. Exner, Rev. Math. Phys.7, 73 ~1995!.
@2# J.T. Londergan, J.P. Carini, and D.P. Murdock,Binding and

Scattering in Two-Dimensional Systems: Applications
Quantum Wires, Waveguides, and Photonic Crystals~Springer-
Verlag, Berlin, 1999!.

@3# J.A. Cochran and R.G. Pecina, Radio Sci.1, 679 ~1966!.
@4# L. Lewin, D.C. Chang, and E.F. Kuester,Electromagnetic

Waves and Curved Structures~Peter Peregrinus, Stevenag
UK, 1977!.

@5# B.Z. Katsenelenbaum, L. Mercader del Rı´o, M. Pereyaslavets
M. Sorolla Ayza, and M. Thumm,Theory of Nonuniform
Waveguides~IEE, London, 1998!.

@6# W. Rostafinski,Monograph on Propagation of Sound Waves
Curved Ducts~NASA Scientific and Technical Information Di
vision, Washington, DC, 1991!.

@7# F. Lenz, J.T. Londergan, E.J. Moniz, R. Rosenfelder, M. Stin
and K. Yazaki, Ann. Phys.~N.Y.! 170, 65 ~1986!.

@8# H. Eyring, J.E. Walter, and G.E. Kimball,Quantum Chemistry
~Wiley, New York, 1944!, Chap. 16.

@9# K.T. Tang, B. Kleinman, and M. Karplus, J. Chem. Phys.50,
1119 ~1969!.

@10# J.O. Hirschfelder and K.T. Tang, J. Chem. Phys.64, 760
~1976!.

@11# C.P. Bates, Bell Syst. Tech. J.49, 2259~1969!.
@12# R.L. Schult, D.G. Ravenhall, and H.W. Wyld, Phys. Rev. B39,

5476 ~1989!.
@13# P. Exner, Phys. Lett. A141, 213 ~1989!; P. Exner and P. S˘eba,

J. Math. Phys.30, 2574~1989!; P. Exner, P. S˘eba, and P. S˘ tov-
ic̆ek, Czech. J. Phys., Sect. B39, 1181 ~1989!; Phys. Lett. A
150, 179 ~1990!; M.S. Ashbough and P. Exner,ibid. 150, 183
~1990!; P. Exner, J. Math. Phys.34, 23 ~1993!; J. Phys. A28,
5323 ~1995!; P. Duclos, P. Exner, and D. Krejc˘ir̆ ı́k, Ukr. Fiz.
Zh. 45, 595 ~2000! @Ukr. J. Phys.45, 595 ~2000!#; Commun.
Math. Phys.223, 13 ~2001!; P. Exner and D. Krejc˘ir̆ ı́k, J. Phys.
A 34, 5969~2001!.

@14# J. Goldstone and R.L. Jaffe, Phys. Rev. B45, 14100~1992!.
@15# F. Sols and M. Macucci, Phys. Rev. B41, 11887~1990!.
@16# K. Vacek, H. Kasai, and A. Okiji, J. Phys. Soc. Jpn.61, 27

~1992!; K. Vacek, A. Okiji, and H. Kasai, Phys. Rev. B47,
3695 ~1993!.

@17# O. Olendski and L. Mikhailovska, Phys. Rev. B66, 035331
~2002!.
l,

@18# J.P. Carini, J.T. Londergan, K. Mullen, and D.P. Murdoc
Phys. Rev. B46, 15538~1992!; 48, 4503~1993!.

@19# J.P. Carini, J.T. Londergan, D.P. Murdock, D. Trinkle, and C
Yung, Phys. Rev. B55, 9842~1997!.

@20# W. Bulla, F. Gesztezy, W. Renger, and B. Simon, Proc. A
Math. Soc.125, 1487~1997!.

@21# E.B. Davies and L. Parnovski, Q. J. Mech. Appl. Math.51, 477
~1998!.

@22# J. Dittrich and J. Kr˘ı́z̆, J. Math. Phys.43, 3892~2002!.
@23# D.V. Evans, C.M. Linton, and F. Ursell, Q. J. Mech. App

Math. 46, 253 ~1993!; D.V. Evans, M. Levitin, and D. Vassil-
iev, J. Fluid Mech.261, 21 ~1994!.

@24# J.U. Nöckel, Phys. Rev. B46, 15348~1992!.
@25# K. Davies, Ionospheric Radio~Peter Peregrinus, London

1991!.
@26# S.F. Mahmoud,Electromagnetic Waveguides: Theory and A

plications ~Peter Peregrinus, London, 1991!.
@27# Handbook of Mathematical Functions, edited by M.

Abramowitz and I.A. Stegun~Dover, New York, 1964!.
@28# A. Cummings, J. Sound Vib.35, 451 ~1974!; W.C. Osborne,

ibid. 45, 39 ~1976!; S. Félix and V. Pagneux, J. Acoust. Soc
Am. 110, 1329~2001!.

@29# J.A. Cochran, J. Soc. Ind. Appl. Math.12, 580 ~1964!.
@30# E. Jahnke, F. Emde, and F. Lo¨sch,Tables of Higher Functions

~McGraw-Hill, New York, 1960!.
@31# J. Dittrich and J. Kr˘ı́z̆, J. Phys. A35, L269 ~2002!.
@32# K. Lin and R.L. Jaffe, Phys. Rev. B54, 5750~1996!.
@33# D.W.L. Sprung, H. Wu, and J. Martorell, J. Appl. Phys.71, 515

~1992!; H. Wu, D.W.L. Sprung, and J. Martorell, Phys. Rev.
45, 11 960~1992!.

@34# J. von Neumann and E. Wigner, Z. Phys.30, 465 ~1929!.
@35# F.H. Stillinger and D.R. Herrick, Phys. Rev. A11, 446 ~1975!;

H. Friedrich and D. Wintgen,ibid. 31, 3964~1985!; 32, 3231
~1985!.

@36# C.S. Kim and A.M. Satanin, Zh. E´ksp. Teor. Fiz.115, 211
~1999! @JETP88, 118 ~1999!#; C.S. Kim, A.M. Satanin, Y.S.
Joe, and R.M. Cosby, Phys. Rev. B60, 10 962 ~1999!; Zh.
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