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Localized-mode evolution in a curved planar waveguide with combined
Dirichlet and Neumann boundary conditions
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We present a theoretical study of a planar waveguide with a uniformly curved section. Opposite sides of the
channel satisfy different boundary conditions. It is shown that if the Dirichlet condition is applied to the inner
side of the strip and the Neumann one to the outer wall, then properties of such a system in many respects
resemble those with the Dirichlet requirements on both surfaces. Namely, in both cases a propagation threshold
for the curved section is smaller than its counterpart for the straight channel. As a consequence, a localized
mode exists with its energy below the propagation threshold of the straight waveguide. Analysis of such states
is presented as a function of the bend parameters. For the transport in the fundamental mode an interaction of
a quasibound level split off from the higher-lying threshold, with its degenerate continuum counterpart, causes
a dip in the transmission. Such a resonance is characterized by a location of its zero mijpuwmd the half
width I'. Changing the bend angle and radius, one vdjgg andl". In particular, for some critical parameters
of the bend it is possible to turn the half width to zero, i.e., to eliminate the dip in the transmission. This
corresponds to the absence of the interaction between the split-off level and the continuum, and, consequently,
to the formation of the true bound state in the continuum. Vortex structure of the currents flowing in the
waveguide near the resonance is also shown to strongly resemble the analogous results for the Dirichlet case.
It is pointed out that the properties of the waveguide with the Neumann inner condition and the Dirichlet outer
one mimic the duct with the Neumann requirements on the two sides, since for both these cases the propagation
threshold in the curved section is greater than in the straight channel.
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Since a bent waveguide is frequently met with in many

physical applications, its properties have been a subject of 88, example, for the de Broglie electronic wave which sat-
intensive investigation for more than a century. Summary Otsfias the Dirichlet conditiongs= (2myE/#%2) 2 with m, be-

this research in quantum theory can be found in Rafg], ing a particle mass and being its energy&I’(F) in this case

in radiophysics and electrodynamics in Ref8-5|, in . ; . >
acoustics in Ref[6], where many more references to the is a wave function whose square determines probability of

original publications are given. Other branches of sciencdinding a particle ar. For the electromagnetic or acoustic
where a model of the bent waveguide is applied are elemerWaves the wave vectok is the ratio of the frequency of
tary particle physic§7], quantum chemistri8], and chemi- oscillations and the speed of propagation in the space
cal physics[9,10|. Mathematically, wave dynamics in all without the boundaries,: k= w/cy, andW(r) is the elec-
these systems is described by the same type of the seconilemagnetic or acoustic potential through which the electro-
order differential equation—the Helmholtz equation: magnetic fields or acoustic velocity and pressure are deter-
mined.

It is known that for the curved planar waveguide a propa-
gation constant for the DirichlefNeumann conditions is
smaller(largep than in the straight paf3,11]. Accordingly,

For the spatially confined oscillations this equation should bdor the Dirichlet case it is possible to have a wave propagat-
complemented by the boundary conditions. If we assume thang in the bend and exponentially vanishing in the straight
the fields do not penetrate outside of the waveguide, there agms. This leads to the existence of a bound state below the
two types of them: Dirichlet one when the functidhvan-  fundamental threshold for the waveguide with béha—14.
ishes at the boundarigs of the system, Levels split off from the higher-lying subbands, interfere de-
structively with their continuum counterpart leading to the
steep dips in the transmissidii5—-17. They are, in fact,
quasibound states with a finite lifetime. However, for some
parameters of the bend they transform into the true bound
and the Neumann one when a normal derivativld’ak zero  states in the continuum; as a result, a dip in the transmission
at the confining walls, vanishes with total propagation observable ins{dad. The-

V29 (1) +k2W (r)=0. (1)

W[.=0, )
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oretical predictions of the bound states in the bent
waveguides with the Dirichlet boundary conditiori2—14
were experimentally confirmed for the singlgt8] and
double-bend 19] structures.

On the other hand, the properties of a straight waveguid
with the miscellaneous combination of mixed Dirichlet and
Neumann boundary conditions on one or two walls were
calculated recently by several authg2&0—22. It was pre-
dicted that for some configurations, such systems can suppc
bound states below the fundamental propagation threshol
Bound states embedded into the continuum were found als
for the straight acoustic duct with impurif23]—Neumann
analogy of a similar situation for the Dirichlet cas4].

In this paper, we study theoretically a curved planar wave
guide with the different boundary conditions on the opposite ’
confining walls. Such configuration appears as a natural ger
eralization of the uniform conditions. Probably, one of the
largest examples of a physical system satisfying such distri
bution of the boundary conditions is the Earth-ionosphere
waveguide: it is known that for the very low frequencies the
electromagnetic wave dynamics between the Earth and tt
ionosphere can be approximated, in the first approximatior.,
as a propagation between the plates with the perfect electric
(the Earth and perfect magnetithe |ono_s,phet_jeconduqt9rs Bend radius and angle apg and ¢, respectively. The width of the
.[25'2@' We show that the bent V.Vf"weg_u'de with the D'”Chlet waveguide is a constadt On each of the confining walls a uniform
inner and Neumann outer conditions in many respects miMpjichlet or Neumann boundary condition is imposed.
ics the curved channel with the pure Dirichlet conditions. In

particular, it possesses bound states below the propagatigs the inner wall of the strip and the other condition on the
threshold of the Straight guide. We calculate these |eVe|%uter side will be called below a DN\ID) case. ,A\Ccor'ding|y7
dependence on the bend angle and radius. For the propag@e situation with the pure DirichlefNeumani conditions
tion in the fundamental mOde, similar to the pure Dirichleton both sides of the channel is referred to as a W)
case, a steep dip in the transmission is predicted to ocCWonfiguration. Also, for definiteness, we will talk about the
which is due to the interaction of the quasibound state spliknergyE, remembering that a transition, as described above,
off from the higher-lying subband, with its degenerate con-coyld be readily made to the frequenciesWe measure all
tinuum counterpart. Characteristics of this dip are thoroughlyyistances in the units of the waveguide widtland all ener-
investigated; among others, it is shown that for some paramyies in the units ofw?42/(2myd2). Accordingly, in these
eters of the bend a half width of the resonance turns to zerqnjts a wave vectok becomesmEY? and its longitudinal
which corresponds to the transformation of the quaSibOU”‘éomponenkﬁm/m. Also, our unit of time will
level into the true bound state in the continuum. As we havg, 2mod? (m2h).
stated above, the same behavior is characteristic for the Di- £ the scattering configuration, to the left of the bend, a
richlet conditions on both sides of the stifig7]. Another . tion to Eq.(1) is given as(we disregard the triviak
similarity between the two cases is the formation and eVOI“'dependenc)e
tion of the vortex structures near and at the resonance.

The paper is organized as follows. In Sec. Il, our model is *
presented and a necessary formulation is briefly given. Sec- V¥ (x,y)= E {A exdimVE—(n+ 1/2)7x]
tion Il is devoted to the presentation of the calculated results n=0

FIG. 1. Picture of the curved waveguide we study in this paper.

and their detailed physical interpretation for various param- +B —imJE=(n+1/2)2 4
eters of the bend. Summary of the results is provided in nexd —im (n I Xxaly). (@)
Sec. IV. with

xn(Y)=2Y2sin(n+1/2) wy (5

I. MODEL AND FORMULATION

. o . . . for the DN case, and
We consider an infinitely long quasi-one-dimensional

waveguide of widthd with a uniformly curved section of xn(y)=2Y2cogn+1/2) 7wy (6)
inner radiuspy and angleg, (Fig. 1). We assume hard-wall

boundaries meaning that the fields do not penetrate out of thier the ND case. Local Cartesian systems of coordinates
waveguide. On each of the sides we impose a uniforn{x,y) and ’',y’) for the straight arms are shown in Fig. 1.
boundary condition—either the Dirichlet or Neumann one.Functions(5) and (6) have the corresponding eigenenergies
For brevity, a case when a Dirichldileumann condition is  which determine the propagation thresholds:
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After the bend one has

\If(x’,y’)=nzo CrexdimVE—(n+1/22 1xa(y"). (8

In Eq. (4) the terms with coefficient®\, describe the
waves incident upon the bend, the terms wih are the
modes reflected frontif E>[n+1/2]?) or localized near it
(for E<[n+1/2]%). In the same way, in Eq8) the terms

with positiveE— (n+ 1/2)? are the modes propagating away

from the curved area, and those wih (n+1/2)?<0 are
the states bounded by it.

In a particular case, foA,, being a Kronecker symbol,
An=6ym,» m=0,1, ..., due to theonservation law the fol-
lowing relation holds for the energids such thatE>(m
+1/2)%:

g E—(n+1/2)?2
E—(m+1/2)?

n=0

112
) (ICnl?+[Bn|?) 6(E— (n+1/2)%)=1.
€)

0(x) in Eg. (9) is a step function, and terms
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for the DN configuration, and
I (mEY%p0) Y (mEY%(po+ 1))~ Y (7E2py)

X J (TEY(po+1))=0 (14)

for the ND case. A prime denotes a derivative of the function
with respect to its argument. The left-hand sides of E4R).
and(14) are considered as functions of varialblewhich is
the index of the Bessel functions with all other parameters
fixed. Accordingly, contrary to the system with a circular
symmetry, in our case, are not real integers. In the way
similar to the pure Dirichlef3,17] or Neumanr3,6,2§ con-
ditions, it can be shown that the solutions of E¢k3) and
(14) are discrete and countably infinite, and only a finite
number of the zeros are real, the remainder being purely
imaginary[29]. As Eq. (10) shows, real zeros are naturally
associated with the modes propagating inside the bend, and
imaginary values describe the evanescent waves.
Equationg13) and(14) allow one also to define propaga-
tion thresholds in a continuously curved structure. Namely,
putting in them the value of equal to zero, one finds the
energies at which a new propagating channel opens up. We
have

Jo(mEY2po) Y1 (mE X po+1)) = Yo(7Epo)

X3 (mEY4(po+1))=0 (15
(E—(n+1/2)2)1/2|c 2 E—(n+1/2)2)1/2|B :
-_— - for the DN case, and
E-(m+12?) " E-(m+1/2?2) "
. - . I1(TEY2po) Yo(mEY A po+ 1)) = Y1(mE%pg)
are, respectively, current transmission and reflection prob-
abilities between subbands andn. ><J0(7TE1’2(p0+ 1))=0 (16)

Inside the bend, in the polar coordinate system with the o . .
pole coinciding with the center of the bend and the polar axig0r the ND situation. These equations are considered as func-

being the vertical junction between the straight and bentions of E. Forpo—0, Eq.(15) transforms to

parts of the waveguide, solution of the Helmholtz equation

reads

~If<p.¢>=n§1 Ra(p)[ Dy Sin(vp) +Fcog va)]  (10)

with R,(p) being a radial part of the wave function:

Ra(p)=Y, (TEY%po)d, (wEY%p)

=3, (7E%p)Y, (wEYp) (1D
for the DN case, and
Ra(p) =Y, (mE"(po+1))3,, (wEV?p)
=3, (T po+ )Y, (7EY?p) (12

for the ND case. Herd,(x) andY ,(x) are the Bessel func-
tions of the first and the second kind, respectiVi@y|, and
v, is thenth root of the equation

J(TEY2p0)Y | (mEYH po+ 1))=Y (7EY?py)

X 3 (mEY pg+1))=0 (13

Ji(mEYH =0, (17
and Eq.(16) becomes
Jo(mEY?2)=0. (18)

Equations of the type of Eqg15) and (16) are well
known[27,30. Their lowest solutions are shown in Fig. 2 as
a function of the inner radiug,. For comparison, least so-
lutions for the DD,

Jo(mEY?p0) Yo(mEM A po+ 1)) — Yo(7E%po)

X Jo(TEYH po+1))=0, (19
and NN cases,
J1(TEY%p0) Y 1(mEY%(po+ 1))~ Y1 (7EY%po)
X J1(mEYYpo+1))=0, (20

are also shown. These last two equations for the zero radius
transform to Eqs(18) and (17), respectively. It is seen that
the solutions to Eq915), (16), (19), and(20) for the large
radii tend to the thresholds for the straight waveguide, as
expected. For the zero radius the propagation thresh-
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FIG. 2. Propagation thresholds
in a continuously curved structure
as a function of the bend radipg
where curve 1 is for the DN case,
curve 2 is for the ND case, curve
3 depicts the DD situation, and
curve 4 depicts the NN case.
Thresholds for the straight
waveguides are also shown where
the lower dashed lineE=0.25
) corresponds to the mixed bound-
2 ary conditions, and the upper one

e E=1 is for the pure Dirichlet or
............................................................................. Neumann case.

0.5F". 4

old is equal to zero for the DN case, tojgf/m)? ll. RESULTS AND DISCUSSION
=0.5859592%7 ... for the ND and DDcases, and to
(j11/m)?=1.487594@ ... for the NN situation, where
j u.n is nth root of the functiond ,(x) [27,30. For all values
of the radius the thresholds for the OIND) case are smaller

Since it is known 31] that for the DN case a bound state
exists below the propagation threshold, we concentrate in
this section just on this configuration of the boundary condi-

(larged than its counterpart for the straight waveguide. In allons- Figure 3 shows energies of the bound state as a func-

sense, this makes them similar to the pure Diricliiéeu-  ton of the bend angle. For comparison, states for the pure
mann case. In particular, for the DN case it is possible toDirichlet conditions are also shown. A strong similarity be-
have a wave propagating in the curved section and decayirf§/een these two cases is seen. Energies monotonically de-
in the straight arms. As we stated above, for the pure DirichCrease agh, increases. They are also smaller for the smaller
let situation this leads to the bound states with energies begadiuspg.
low the propagation threshold of the straight waveguide. It Wave function of the bound state fpp=0.001 and the
was proved recently31] that this is also the case for the right angle is shown in Fig. 4. It is symmetric with respect to
Neumann condition on the outer wall and the Dirichlet onethe line ¢= ¢,/2 and exponentially vanishes in the straight
for the inner side of the strip. In this case, instead of ). arms. In each of the cross sections, a minimal value of zero
we have evanescent modes only: at the inner wall is accompanied by the maximum at the
outer surface.
Figure 3 addressed the physically interesting situation of
o 0°<¢y=<180°. It is known that for the arbitrarily large
y)= Jn+1/22—E _ angle the multiple bound states emerge for the DD configu-
YY) n§=:0 An X\ (N+1/2)7=Ex]xa(y). (1) ration[18,32. The same holds true for the DN case too, as
Fig. 5 shows, where energies of the alternating symmetric
and antisymmetric states are shown for the range &3
=<900° withpy=0.1. Again, a strong similarity with the pure
Dirichlet conditions[32] is clearly seen. The lowest-energy
asltate emerges ab,=0°. This state is symmetric with re-
Spect to the middle of the bend, as it was discussed above.
The next state that is an antisymmetric one, appears from the
continuum at¢y=208.0°. It is followed by the next sym-
metric state emerging ai,=413.8°, etc. On the quantitative
note, we remark that for the DN case higher-lying bound
T=[S4% (22 states appear at the smaller angle than for the pure Dirichlet

Matching wave functions at the junctions, one arrives ei-
ther to the scattering matri$(E) or to the equation deter-
mining eigenergies of the bound states. For the fundament
mode 1/4<E<9/4 the first diagonal scattering matrix ele-
mentS,; determines the transmissidnof the structure:
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0.9F -
0.8 -
0.7F -
FIG. 3. Bound-state energies
for the DN (lower curve$ and DD
0.6 7 (upper curvepscases as a function
w of the bend anglep, for several
05k ) values of the radiug,: the solid

line is for pg=0.001, the dashed
line is for py=0.01, the dotted
0.4 . line is for pp=0.1, and the dash-
dotted line is forpg=1.
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0.1 1 1 L 1 1 L 1 1
0

20 40 60 80 100 120 140 160 180

conditions. For example, for the latter case the first antisymbirichlet condition. It is known that a bound state exists
metric state appears aft,=384.0°. under these circumstancg®l]. Contrary, for the ND case
For the pure Dirichlet conditions an approximation is usedthe effective potential in the straight waveguide is shifted to
which maps the processes in the bent waveguide onto thie plate with the Neumann condition and, as a result, a
dynamics in the straight channel with the additional attractound state cannot be formgal].
tive potential[18,33. In the same way, we can say that for ~ Next, we turn to the scattering case. Figure 6 shows the
the mixed boundary conditions the bend creates some addiransmissionT as a function of energf for po=0.001 and
tional effective potential which is shifted to the wall with the ¢,=180°. Immediately after the lower threshold, from zero
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0.25 T T
0.2F
FIG. 5. Bound-state energies
as a function of the angle for
w po=0.1. Symmetric states are
shown by the solid lines, and the
antisymmetric ones by the dashed
curves.
0.15F
01 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900

%

the transmission rapidly grows with energy. However, con-Neumann plate. Second, similar to the DD case, we observe
trary to the pure Dirichlet case, one or several Breit-Wigner-a steep dip in the transmission with the minimum of zero
like resonances show up immediately after the fundamentadlose to the first excited threshold. This dip is due to the
threshold. Location, width, and number of these resonancesplitting off of a quasibound level from the higher-lying sub-
are determined by the bend parametggsand ¢,. We at-  band. Mathematically, these states are formed as a result of
tribute them to the propagating wave interaction with thethe fact that the higher-lying solutions of Eq45) and (19)
effective potential of the bend in the presence of the uppeare smaller than their counterparts for the straight wave-

1 T T f —— ; ¥ T T
0.9 .
0.8 8
07| .
0.6 7 FIG. 6. TransmissionT as a
function of the energyE for pg
- 05k I i =0.001 and ¢,=180°. Reso-
nance near the upper threshold is
characterized by its zero transmis-
04r ] sion locationE,,;, and the half-
width T".
0.3 1
0.2 .
01 1
o 1 1 1 1 1 1 1 1 1 1
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 g 22

E min
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2.24

222

2.2

2.18
c FIG. 7. EnergieskE,;, as a
w216 function of the bend angle, for
several values of the radius,.
214 The convention of Fig. 3 is as-
sumed.
2,12
2.1
2.08F .
0 20 40 60 80 100 120 140 160 180
%
guide. Imposing a bend, one mixes longitudinal and trans- Eqb=Emin—iT/2. (23

verse motions in the waveguide that causes an intersubband

interaction. As a result, an interference of this level with its

degenerate continuum counterpart leads to the formation dfhey are shown in Figs. 7 and 8, respectively. It is observed
the characteristic resonance with the energy of the zero minthat the energie€,,;,, at which a complete interference
mumE,,;, and the half widtH". These two quantities form a blockade is achieved, decrease with the bend angle growing.
complex energy of the quasibound state: However, contrary to the pure Dirichlet conditiofik7], for

0.035

0.03

0.025

0.02 FIG. 8. Half-widthsT' as a

function of the bend anglé, for
= several values of the radiug,.

0.015 The same nomenclature as in Fig.
3 is used. Curve fopg=1 has
three zero minima on the, axis
(excluding point¢y=0).

0.01

0.005
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1 T T T ] 1
09 .
0.8 ]
07| .
0.6 ] L
FIG. 9. Transmissionl as a
function of the energyE for pg
=05 7 =0.1 and ¢,=101.9076°. There
is no dip in the transmission for
04 4 these critical parameters of the
bend.
0.3 ]
0.2 ]
01 E
0 1 1 1 1 1 1 1 1 1 1
0.2 04 0.6 0.8 1 1.2 14 1.6 18 2 22
E

some angle ranges the specific processes of the wave intdsy the new member—the curved planar waveguide with the
ference for the mixed conditions lead to the situation wherDirichlet inner and Neumann outer boundary conditions.
the energy of the minimum increases if the bend ragigls It is not surprising that the critical parameters at which the
decreases. The half width, such as for the DD cadd7],  bound states in the continuum are formed are different from
for the small and moderate angles increases from zero witthe DD distribution[17]. For example, instead of four true
¢o, reaches maximum, decreases to the minimunzes  pound states in the continuum for the latter case wigh
after which the whole situation is repeated again. Zero value-1, we observe only three such levels for<0&<=180°.

of the half width means that the dip in the transmission Vanyowever, all the pertaining discussion about their depen-
@shes with a full propagation being pbse(vable instead. Thigiance onp, and ¢, and a comparative analysis between
is shown in Fig. 9 where the transmlsirdips plotted Versus  yhose jevels and the states split off from the fundamental
energyE for po=0.1 and,=101.9076°, i.e., when the cor- e remain valid in the considered case as well.
requndlngF turns to zero in Fig. 8. Since a lifetime of a As a final example, we calculate a current density distri-
quasibound state is determined by" as bution for our system. For the case of the electron propaga-

tion the current densityj is proportional to ImEV¥*)

[38]. The same holds true for the acoustic ducts when the
mean sound energy flux is consideréd: p’J with the pres-
surep’ =iwpy¥*, acoustic velocityy=V¥ and p, being

here a density of the air39]. Similar expressions for the

a zero value of the half width means that the corresponding’oynting vector involving¥ and its complex conjugate are
level has an infinite lifetime, i.e., it turns for these critical Valid for the electromagnetic waves too. Figure 10 plots the
parameters of the bend into the true bound state in the corgurrent densities for the parameters of the bend from Fig. 6
tinuum. Due to the resonant interference phenomena in th@nd several energi€s When the energy is far away from the
bend, such a state does not decay since it does not interd@sonance value, one observes a longitudinal perfect laminar
with its degenerate continuum counterpart. As a result, it§low both in the straight arms as well as in the bend. For each
wave function in the straight arms does not have a plané’f the cross sections, the current has a zero minimum on the
wave component, as it was the case for the quasibound levdlner wall and reaches maximum at the Neumann surface.
exhibiting fading exponents only. Thus, bound states in théVhen the energy comes closerlg,,, vortices start to form
continuum, which were discussed for the first time soon aftet? the bend and its immediate neighborhood. For example, in
the formulation of quantum mechanif34] and studied for Fig. 10@ which corresponds to the transmissioh

the different physical systems with uniform Dirichlet =0.9942, the transverse componen{ afhich was zero for
[24,35-37,12,1]for Neumanri23] cases, are complemented the smaller energies is clearly observable near and inside the

(24)
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FIG. 10. Spatial distribution of

the current density] for p,
=0.001, ¢,=180°, and several
values of the energyE: (a) E
=19, (b) E=2.0827, (c) E
=2.084, (d) E=2.245. Since the
bend radius is very small, the dis-
tance between two parallel inner
walls is not seen in the figure.
Larger arrows denote higher cur-
rents. For each of the figures the
currents are normalized with re-
spect to their largest value.
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curved section. Far away from the bend, the current still haproperties of the system are an almost exact replica of the
a longitudinal component only. As we come closer to thewave behavior for the channel with the Dirichlet conditions
resonant region, vortices develop in the waveguide. For exen both sides. These similarities include the following: the
ample, Fig. 1(b) shows a vortex structure for the transmis- existence of the bound state below the fundamental propaga-
sion T=4.8816<10° just to the left from the resonance tion threshold of the straight channel; interaction of the qua-
dip. Seeding of the vortices into the current density pattern isibound level in the fundamental propagation mode with its
a result of the strong intersubband interaction which addglegenerate continuum counterpart, which causes a character-
transverse components to the particle flow. Magnitude of thestic resonant profile; transformation, for some critical geo-
current in the vortices is of a few orders of magnitude largemetrical parameters of the bend, of this quasibound level into
than for the nonresonant values. Similar vortices for the puréhe true bound state in the continuum accompanied by the
Dirichlet boundary conditions were calculated before for thedeletion of the dip which is substituted by the resonant tun-
straight nonunifornj24,40—-42 as well as for the bent wave- neling through the bend; formation and evolution of the vor-
guide without[43,44 and with the impuritie§45,37. For  tex structure for both configurations of the boundary condi-
our structure, similar to the cleda0,43,46 and embedded- tions. Mathematically, this strong similarity stems from the
dot bent waveguidg37] for the DD case, the abrupt change fact that the solutions of the transcendental equations for the
of the rotation of the vortices is observable after passing theurved section for both cases are smaller than their counter-
minimum transmission. For example, Fig.(&pshowsf for  parts in the straight channel, which physically means that it
T=5.399<10 2 just to the right from the minimum. Com- is possible to have a wave propagating in the bend and ex-
pared to Fig. 1(b), the rotation of the vortices has changed ponentially vanishing in the straight arms.
to the opposite direction, which is retained for the higher As we mentioned in the Introduction, different boundary
transmissions when the vortices gradually resolve with theonditions on the opposite sides are not a purely theoretical
energies growindFig. 10d)]. Formation and evolution of exotics; namely, it is the natural Earth-ionosphere waveguide
the vortices is a vivid example of the mixing by the bend ofwhich roughly obeys such demands. We believe that the
the different subbands and coupling of the longitudinal andbdther structures where the results predicted here can be veri-
transverse motion, which take place near the resonances. fied are nanoelectronic or radio waveguides where the use is
made of the properties of the ferritg$7] or superconductors
IV. CONCLUDING REMARKS [48].
It was also shown that for the ND case no bound state

We have considered theoretically a curved planar waveexists[31], similar to the pure Neumann conditions. Since
guide with the different boundary conditions on the oppositewe were interested in the localized modes and their evolu-
sides of the strip. The main result of our study consists in theéion, we did not present here transmission characteristics for
fact that when the Dirichlet condition is applied to the innerthis case. However, the strong similarity between the ND and
boundary and the Neumann requirement to the outer surfacsN configurations, outlined in Sec. I, convincingly suggests
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that they will be similar to the acoustic dud8,6]—in the

PHYSICAL REVIEW E 67, 056625 (2003

Though those who conducted that research do not mention

same way as the DN case reminds the pure Dirichlet condithis explicitly, we see from their results that they found Fano
tions. The bound state in the continuum may exist in theresonancef51] in the spectrum. For the pure Dirichlet case
straight NN waveguide when the obstacle is inserted into isuch resonances emerge and evolve as a result of the inter-

[23]. The same is true for the pure Dirichlet c424]. Math-

ematically, an insertion of the scatterer into the waveguid
leads to the additional term V(r)¥(r) in the left-hand side

action of the negativy(F) and the bend37]. In the wake of
Ghe knowledge of the existence of bound states in the acous-
tic duct with the repulsive impurity23], we deduce that a

of Eq. (1), where for the existence of the localized mode ing;red planar NN waveguide with obstacle exhibits Fano

the ContinuumV(F) should be negativéattractive interac-

tion) for the DD case and positiv@epulsive forcg for the

resonances due to the transformation of the true bound state
in the continuum into the quasibound level. What happens in

NN case. First theoretical and experimental study of thehe hent waveguide with combined boundary conditions and
wave propagation in the curved NN channel with obstaclesmpedded obstacle remains to be answered.

was performed about a quarter of century ag®,50.
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