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Solution of the time-dependent diffusion equation for layered diffusive media
by the eigenfunction method
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An exact solution of the time-dependent diffusion equation for the case of a two- and a three-layered finite
diffusive medium is proposed. The method is based on the decomposition of the fluence rate in a series of
eigenfunctions and upon the solution of the consequent transcendental equation for the eigenvalues obtained
from the boundary conditions. Comparisons among the solution of the diffusion equation and the results of
Monte Carlo simulations show the correctness of the proposed model.
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I. INTRODUCTION

The problem of light propagation through random me
bounded by parallel planes has been a subject of interes
decades because many physical systems are likely to be
resented in this way@1,2#. The radiative transfer equatio
~RTE! @1–3# that is derived in transport theory has be
widely studied because usually it is simpler than the eq
tions derived in the analytical theory@2#, and its predictions
have been tested in many situations of interest. However
RTE is a complex integro-differential equation that is usua
solved by resorting to some numerical methods or to so
approximations. Applications of the RTE to the study of lig
propagation in a sequence of turbid slabs can also be fo
in the literature@1,2,4,5# because many physical system
~e.g., atmosphere, biological tissues! are better described i
we consider a layered structure. However, to date, almos
the studies involving the RTE were concerned with a pla
wave source and a steady state propagation. Moreover
approximate solutions of the RTE proposed in the literat
require much computational effort and are not straightf
ward to be used. If we consider the diffusion approximat
@2,3# to the RTE, analytical solutions for homogeneous m
dia have been obtained also for the time domain~TD! @6# and
the frequency domain~FD! @7# diffusion equation~DE! and
for pointlike sources. The time domain and the frequen
domain Green’s functions of DE in different geometries c
be found in Ref.@8#.

When the nature of randomness is such that diffusion c
ditions hold, it is possible to use the DE to describe lig
propagation@2#. In the recent years, there has been an
hanced interest to study the problem of light propagation
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layered random media, also for its applications in the field
tissue optics. In fact, many biological tissues are likely to
described by a sequence of diffusive layers having differ
optical parameters and more accurate clinical informat
can be gained from such a modeling of tissues. Some aut
@9–11# investigated the limitations of mathematical mode
that do not take into account the layered structure of tissu
Several studies for layered media have been carried ou
ther in the continuous wave~CW! domain@12–20# or in the
FD @15,21–25# by using different methods: analytical solu
tion of DE, random walk, Monte Carlo~MC! method, and
finite element method. In these papers, the authors prov
different formulas only for infinitely extended slabs, and
most cases for a medium composed of a finite slab on to
a semi-infinite medium. Although interesting results we
found, the proposed methods suffer from several drawba
numerical methods are usually time consuming, and the a
lytical solutions of DE proposed in most of the CW and F
studies are not expressed in a closed form, and nume
integration of an inverse space-transverse Fourier transf
is usually required. It might be impractical to implement i
version procedures for thein situ or in vivo determination of
the optical properties based on these models.

By using different methods also in TD, some studies ha
been carried out@14,26–30#. The particular interest for time
domain investigations is focused mainly to find correct a
efficient methods to calculate the Green’s function of a s
tem and to implement fast and reliable inversion procedu
However, despite the important role that analytical solutio
of the time domain DE have, only a few studies presen
useful expressions for layered media. Dayanet al. @14# found
approximate expressions of the Green’s function for the c
of a slab on top of a semi-infinite medium. In the work
Kienle et al. @27#, explicit time domain formula for the
Green’s functions were not given and numerical calculatio
of inverse space-transverse and inverse time Fourier tr
form were required. Tualleet al. @28# used an extension o
the method of images to calculate the real space Gre
function for a layered medium. However, the expressio
even for a simplified medium composed by one layer on
of a semi-infinite medium, were obtained after several di

g,
,
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cult mathematical steps. Martelliet al. @30# used approxi-
mate boundary conditions to solve the time-dependent
with the eigenfunction method. Early studies that used
similar method are the works of Takatani and Graham@12#
and Schmittet al. @13#, however both of them were con
cerned with the steady state DE.

The many papers on the topic of light propagation in la
ered random media testify that there is no general agreem
about the choice of the mathematical procedures to ob
relatively simple equations that can be easily integrated
that can lead to useful and straightforward expressions
immediate interpretation. In this work, we present a f
method to solve the time-dependent DE for a layered fin
medium. We provide an exact expression of the Gree
function, which is easily calculated by using the eigenfun
tion method. The proposed method is an extension of
one used in a previous paper@30#, but here exact boundar
conditions are considered. The key point of the method is
solution of a transcendental equation for the eigenvalues
can be accomplished with classical methods in a short t
~within few seconds by using a Pentium IV 1.8 GHz!. We
stress the importance of imaginary roots of the transcend
tal equation that to the best of our knowledge, were not m
tioned by previous authors. We have found that without
cluding the imaginary roots of the transcendental equat
the calculation of the Green’s function cannot be carried
correctly. The information obtained in this preliminary st
is used to calculate in a short time a wide set of Gree
functions at different source-detector distances. We can
that all the information relevant for the problem is contain
only in the set of eigenvalues. The expression of the Gre
function and its mathematical dependence on the opt
properties of the medium is quite straightforward and eas
be interpreted; time integration and Fourier transform of
Green’s function can be easily carried out to yield exact
pressions in CW and FD. An evidence of the correctnes
our model is provided by comparison with MC results.

We also notice that the other models quoted above w
proposed for more restricted geometries. For example,
common element is the requirement that the layered med
is laterally infinitely extended. Here, we provide the soluti
for a layered parallelepiped; however, we remark that ot
finite layered geometries~e.g., cylindrical! can be solved
with the same method. The formulas have been obtained
using the extrapolated boundary condition~EBC! @31# at the
upper and lower surfaces of the parallelepiped and the
boundary condition~ZBC! @6# at the lateral surfaces of th
parallelepiped. Rigorous boundary conditions have b
used between the diffusive layers. Moreover, although
expressions are found for a pointlike source, expressions
an isotropic line source can also be easily derived. In App
dix D, the exact theory of a three-layered medium is a
described.

We have implemented a fitting procedure based on
formulas presented for the retrieval of the optical proper
of the medium starting from a single measurement of refl
tance. Fitting procedures on measurements simulated by
results have been carried out. The convergence of the pr
dure and the retrieval of the optical properties could be
05662
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tained in few minutes. This result testifies the potentiality
the formulas for the inverse problem devoted to the rec
struction of the optical properties of an unknown medium

In Sec. II and in Appendixes A–E the theory of the wo
is described. In Sec. III, comparisons between the analyt
theory and MC results are presented. Conclusions are g
in Sec. IV.

II. THEORY

The eigenfunction method offers a very useful way
solve partial differential equations, either of hyperbol
parabolic, or elliptic type@32–34#. In this work, we are con-
cerned with the parabolic-type time-dependent DE, which
usually derived from the RTE@3#. The DE and, in general
parabolic equations can also be derived from very gen
principles of energy and photon flux balance within a reg
having smooth optical properties, though in general not
mogeneous, if we assume that the flux vectorJ(r,t) and the
irradiance F(r,t) are related by Fick’s law:J(r,t)5
2D(r)“F(r,t) ~Ref. @32#, pp. 163–165!. If the smoothness
requirement is not met throughout the whole region, as
the case of a sharp change in the optical properties acro
plane, the general balance principles can be used to de
matching conditions for the solutions of the parabolic eq
tions that are valid on both sides of the plane~Ref. @32#, p.
325!. In particular, we are interested in studying the tim
dependent DE for a two-layered parallelepiped for the c
of an isotropic Dirac-d source term.

Figure 1 shows the mediumV composed of two regions
V5V0øV1. In the figure,s0 and s1 are the thicknesses
ma0 andma1 are the absorption coefficients,D0 andD1 are
the diffusion coefficients, andn0 and n1 are the absolute
refractive indices of the first and second layers, respectiv
ne is the absolute refractive index of the surrounding m

FIG. 1. A two-layered parallelepiped with a laser beam impin
ing on the upper surface.L is the lateral size along bothx and y
axes;s0 and s1 are the thicknesses of the top and bottom laye
respectively;ma0 and ma1 are the absorption coefficients; andD0

and D1 are the diffusion factors of the first and the second lay
respectively.R(j,t) and T(z,t) are the reflectance and transm
tance calculated at two arbitrary pointsj and z on the upper and
lower surfaces, respectively.
3-2
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dium. The size of the medium alongx andy axes is assumed
to beL. The origin of the reference system is chosen as
point where a collimated laser beam (z axis! impinges the
medium, therefore its physical boundaries belong to
planesx56L/2, y56L/2, and z50, z5s01s1. Let us
consider at first that the source term is represented b
single isotropic point source placed inr05(0,0,z0), i.e.,
S(r,t)5d(r2r0)d(t). Later, the case of a collimated las
beam will be discussed. For the moment, we restrict
investigation to a single point source located in the first lay
The case of a single point source located in the second l
will be considered later on. The diffusion equation for t
irradiance is written as (v is the speed of the light!

F1

v
]

]t
1ma2“@D~r!“#GF~r,t !5d~r2r0!d~ t !. ~1!

Because of the discontinuities of the optical propert
across the planez5s0, we expect to find a solution of Eq
~1! having some discontinuities. The proposed method
solve the problem is an extension of the one proposed
Zauderer~Ref. @32#, pp. 335–338!. The problem must be
separated in the two layers and can be stated as an in
boundary value problem as the following:

@]/~v]t !1ma02D0¹2#F0~r,t !50,

t.0, 0<z<s0 , ~2!

@]/~v]t !1ma12D1¹2#F1~r,t !50,

t.0, s0<z<s01s1 ,

and the initial-boundary value conditions:

F0S x56
L

2
,y,z,t D5F0S x,y56

L

2
,z,t D

5F0„x,y,z522A~n!D0 ,t…50, ~3!

F1S x56
L

2
,y,z,t D5F1S x,y56

L

2
,z,t D

5F1„x,y,z5s01s112A~n!D1 ,t…

50, ~4!

F~r,t50!5vd~r2r0!. ~5!

Equation~5! represents the initial distribution of sources
the medium. Equations~3! and ~4! represent the boundar
conditions with the external medium and are based on
different assumptions: the EBC@31# has been used on th
upper and lower surfaces (z50 andz5s01s1), while the
ZBC @6,31# has been used at the lateral boundariesx
56L/2 and y56L/2. With the EBC, the fluence rate i
assumed equal to zero at an extrapolated boundary ou
the turbid medium at a distanceze52AD. The coefficient
A(n) also includes the effect of reflections due to the refr
tive index mismatchn between the medium and the su
roundings@31#. The ZBC simply assumes the fluence ra
05662
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equal to zero at the physical boundary of the medium. T
ZBC is more approximated@31#, however, its use on the
lateral boundary significantly simplifies the problem here a
dressed, since it leads the fluence rate to vanish on the la
physical boundaries of the diffusive layers. On the oth
hand, with the EBC we would obtain different lateral e
trapolated boundaries in the different layers. The bound
conditions at the lateral boundary does not affect the refl
tance and the transmittance, unless the source or the rec
is close to the boundary. In the stated problem, we h
assumed that the refractive index of the diffusive medium
constant, however the theory can be easily extended f
more general case@35#.

The matching conditions for this problem are deriv
from the continuity of the irradiance and of the photon flux
the boundaryz5s0:

F0~x,y,z5s0 ,t !5F1~x,y,z5s0 ,t !,
~6!

D0]F0~x,y,z5s0 ,t !/]z5D1]F1~x,y,z5s0 ,t !/]z.

We will search for a solution of the stated problem of t
kind

F~r,t !5H F0~r,t !5r0~r!h~ t !, 0<z<s0

F1~r,t !5r1~r!h~ t !, s0<z<s01s1 .
~7!

It is in fact obvious that the temporal evolution ofF0 andF1
must be coincident if we want that condition~6! be valid. We
will also require that the functionsr0(r) and r1(r) satisfy
conditions~3! and~4!. After substitution of expression~7! in
system~2!, we are led to the following eigenvalue problem

dh~ t !/dt52lh~ t !,

2D0¹2r0~r!1ma0r0~r!5l/vr0~r!, ~8!

2D1¹2r1~r!1ma1r1~r!5l/vr1~r!.

System~8! can also be rewritten as

dh~ t !/dt52lh~ t !,

¹2r0~r!1K0
2r0~r!50, ~9!

¹2r1~r!1K1
2r1~r!50,

whereK0
2 andK1

2 are given by the expressions

K0
25S l

v
2ma0D Y D0 , K1

25S l

v
2ma1D Y D1 . ~10!

We note that because the diffusion operator is self-adjo
and positive~Ref. @32#, pp. 171–178!, the parameterl is real
and non-negative. On the contrary, no assumption can
made on the sign ofK0

2 andK1
2, and in general the Helmholtz

equations@34# in system~9! admit solutions both for positive
and negative values of these parameters.

In order to solve the Helmholtz equations in system~9!,
we use the separation of variables method, as shown in
pendix A for the case of a homogeneous cube. The proce
3-3
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reported in Appendix A can also guide us to search for possible solutions of the Helmholtz equations in system~9!, and
therefore to find the proper eigenfunctions of the whole medium. In fact, let us assume that a complete orthonorm
eigenfunctions is given by the expression

r lmn~r!5
1

Nlmn
3H r0lmn5cos~Klx!cos~Kmy!an0 cos~Kn0z1gn0!, 0<z<s0

r1lmn5cos~Klx!cos~Kmy!an1 cos~Kn1z1gn1!, s0<z<s01s1 ,
~11!
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whereNlmn is a normalizing factor andan0 , an1 are coeffi-
cients to be determined. From the separation of variab
method, it is clear thatKl andKm are the ones found for th
homogeneous cube:

Kl5~2l 21!p/L, l 51,2,3, . . . ,
~12!

Km5~2m21!p/L, m51,2,3, . . . ,

and that the conditions

K0
25Kl

21Km
2 1Kn0

2 ,
~13!

K1
25Kl

21Km
2 1Kn1

2

must be satisfied. We note that Eqs.~11! satisfy the boundary
conditions~3! and ~4!, if gn0 andgn1 are chosen as

gn052Kn0AD01p/2,
~14!

gn152Kn1~s01s112AD1!1p/2.

The matching conditions~6! applied tor0lmn andr1lmn yield
the linear system of equations foran0 andan1:

an0 sin@Kn0~s012AD0!#1an1sin@Kn1~s112AD1!#50,
~15!

an0D0Kn0 cos@Kn0~s012AD0!#

2an1D1Kn1 cos@Kn1~s112AD1!#50.

System~15! admits nontrivial solutions (an0 , an1Þ0), if
and only if the determinant vanishes. Therefore, we are le
the transcendental equation for the eigenvalues:

1

D0Kn0
tan@Kn0~s012AD0!#

52
1

D1Kn1
tan@Kn1~s112AD1!#. ~16!

We will come back to study this equation later on when
different possibilities that arise from the boundary conditio
will be clear. Let us now consider the temporal evolution
the irradiance, which is obtained by solving the first equat
in system~9!. Because there is a discrete set of eigenval
l lmn defined by Eq.~10!, we can write a general solution o
the equation forh(t) as

h lmn~ t !5h lmn~ t50!exp~2l lmnt !. ~17!
05662
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The general solution of our initial-boundary value proble
can be written as@32–34#

F~r,t !5 (
l ,m,n51

`

h lmn~ t50!r lmn~r!exp~2l lmnt !. ~18!

The initial condition~5! is used to determineh lmn(t50). It
gives

F~r,t50!5vd~r2r0!5 (
l ,m,n51

`

h lmn~ t50!r lmn~r!,

~19!

and by using the orthonormality of the eigenfunctions
have

h lmn~ t50!5„F~r,t50!,r lmn~r!…

5E
Ve

vd~r2r0!r lmn* ~r!dr, ~20!

where we have used the definition of the scalar product in
space of the continuous functions in the region of the
trapolated parallelepiped@r lmn* (r) is the complex conjugate
of r lmn(r)]. The reason why we have used the general d
nition of the scalar product valid for complex functions
that we allow for the possibility that the component along t
z axis of the solutions of the Helmholtz equations in syst
~9! is given by a combination of exponential functions. Th
possibility had to be discarded for the case of a homo
neous cube as shown in Appendix A. The expression
r lmn(r) in Eqs.~11! can include also this possibility only i
the components along thez axis are complex functions. We
remind that when the argument of a sinusoidal function
complex, we obtain a linear combination of hyperbolic fun
tions. The choice of the coefficientsan0 and an1 together
with the boundary conditions assure thatr lmn(r) is a set of
real and orthonormal functions@see Appendix B for the proo
of the orthonormality of the eigenfunctionsr lmn(r)]. Substi-
tuting expression~11! in Eq. ~20!, we have

h lmn~ t50!5vr lmn* ~r0!5van0* cos* ~Kn0z01gn0!/Nlmn .

~21!

Finally, we are able to write the solution of our initia
boundary value problem as
3-4



F~r,t !55
(

l ,m,n51

`

v cos~Klx!cos~Kmy!uan0u2 cos~Kn0z1gn0!

3cos* ~Kn0z01gn0!exp@2~K0
2D01ma0!vt#/Nlmn

2 , 0<z<s0

(
l ,m,n51

`

v cos~Klx!cos~Kmy!an0* an1 cos~Kn1z1gn1!

~22!

the

SOLUTION OF THE TIME-DEPENDENT DIFFUSION . . . PHYSICAL REVIEW E67, 056623 ~2003!
3cos* ~Kn0z01gn0!exp@2~K1
2D11ma1!vt#/Nlmn

2 , s0<z<s01s1 .

The coefficientsan0 andan1, according to system~15!, are not uniquely determined; however, their ratio is determined by
continuity of the irradiance. We can rewrite Eq.~22! as

F~r,t !55
(

l ,m,n51

`

v cos~Klx!cos~Kmy!cos~Kn0z1gn0!

3cos* ~Kn0z01gn0!exp@2~K0
2D01ma0!vt#/Ñlmn

2 , 0<z<s0

(
l ,m,n51

`

v cos~Klx!cos~Kmy!bn1 cos~Kn1z1gn1!

3cos* ~Kn0z01gn0!exp@2~K1
2D11ma1!vt#/Ñlmn

2 , s0<z<s01s1 ,

~23!
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wherebn1 and Ñlmn
2 are given by

bn15
an1

an0
5

cos~Kn0s01gn0!

cos~Kn1s01gn1!
52

sin@Kn0~s012AD0!#

sin@Kn1~s112AD1!#
,

~24!

Ñlmn
2 5Nlmn

2 /uan0u2. ~25!

Equation~23! represents the Green’s function for the par
lelepiped in Fig. 1 where the source term is placed in the fi
layer. In case,z0 belongs to the second layer the express
for the Green’s function changes and a new expression
h lmn(t50) is obtained according to Eqs.~20! and~21!. The
expression ofF(r,t) for z0.s0 is reported in Appendix C.
We point out that the position where the isotropic sou
term is placed does not affect the eigenvaluesl lmn ; there-
fore, the coefficientsKn0

2 or Kn1
2 can be obtained as solution

of the transcendental equation~16! in the same way of the
casez0,s0.

The initial-boundary value problem is thus solved af
we determine the discrete number of solutions of the tr
scendental equation~16!. As stated before, here we are loo
ing at the possibility that eitherKn0

2 or Kn1
2 , or both, are

negative; therefore,Kn0 andKn1 are imaginary numbers. W
notice that imaginary roots of the transcendental equa
~16! naturally arise whenever this particular initial-bounda
value problem is posed in two or three dimensions. Also
the one-dimensional case~Ref. @32#, pp. 335–338!, imagi-
nary roots of the transcendental equation are possible if
absorption coefficient is included in the parabolic equati
We note that this case is not treated in Ref.@32#. On the
contrary, in two or three dimensions, imaginary roots of
transcendental equation~16! are possible even for nonab
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sorbing layers. The presence of these imaginary roots to
best of our knowledge was not stressed in the literature,
spite their fundamental role in the construction of the corr
solution ~23!. In fact, it is possible to demonstrate that th
transcendental equation~16! admits always imaginary root
wheneverD0ÞD1. For the caseD05D1, imaginary roots
are found only if a minimum criterion for the change in th
absorption properties of the two layersDma.(Dma)min is
met.

Let us start to write the relationship betweenKn1
2 andKn0

2

as

Kn1
2 5

D0

D1
Kn0

2 1C, ~26!

where

C5~ma02ma1!/D11Klm
2 ~D02D1!/D1 ,

~27!

Klm
2 5Kl

21Km
2 .

In Fig. 2 the linear relationship betweenKn1
2 and Kn0

2 is
shown forC.0 andC,0, respectively. For the caseKn0

2

,2(D1 /D0)C (C.0), or Kn0
2 ,0 (C,0), possible roots

Kn0 and Kn1 of Eq. ~16! must be imaginary numbers:Kn0
56 i uKn0u and Kn156 i uKn1u. By using the property
tanh(z)52i tan(iz), wherez is a complex number, Eq.~16!
becomes
3-5
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1

D0~6 i uKn0u!
tanh@6uKn0u~s012AD0!#

52
1

D1~6 i uKn1u!
tanh@6uKn1u~s112AD1!#. ~28!

We notice that Eq.~28! is impossible; therefore, our prob
lem cannot admit eigenvalues with bothKn0

2 andKn1
2 nega-

tive. In terms of the eigenfunctions it means that no eig
function has a component along thez axis given by a
combination of exponential functions at both sides of
discontinuityz5s0. Let us now treat separately the follow
ing two possibilitiesC.0 andC,0 to search for imaginary
roots of Eq.~16!.

a. C.0. Possible imaginary roots are found in the int
val 2(D1 /D0)C,Kn0

2 ,0. Here, we are looking at the pos
sibility that Eq.~16! is solved forKn056 i uKn0u andKn15
6uKn1u. The four different choices for the sign ofKn0 and
Kn1 yield the same equation

2
1

D0uKn0u
tanh@ uKn0u~s012AD0!#

5
1

D1uKn1u
tan@ uKn1u~s112AD1!#. ~29!

Because we are studying Eq.~29! in a limited interval ofKn0
andKn1, we notice that a necessary condition for Eq.~29! to
admit some roots is

p

2
,ACl1 , ~30!

where we have definedl 15s112AD1. A sufficient condition
for Eq. ~29! to admit some roots is

p,ACl1 . ~31!

If D0.D1, surely condition~31! will be met for infinite
choices ofKl and Km , and for each one of them Eq.~29!
admits a finite number of roots. If we definea15uKn1u l 1 and

FIG. 2. The linear relationship betweenKn1
2 andKn0

2 is shown
for C.0 ~upper line! andC,0 ~lower line!. The intersections with
the axis are also written.
05662
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M0 5 int@ACl1 /p# ~‘‘int’’ indicates the integer part of the
division!, all the possible roots are found wherea1

Pø j 51
M0

„(2 j 21)p/2,j p…ø(M0p,ACl1) for the caseM0

.0. While for the caseM050, the possible root is found
wherea1P (p/2,ACl1). It is also possible that there exis
at maximum a finite number of choices ofKl and Km for
which condition~30! is not met and therefore there are n
roots of Eq.~29!.

If D05D15D ~when C.0 it means thatma0.ma1), a
necessary condition for Eq.~29! to admit a finite number of
roots is

p

2
,AS ma02ma1

D D l 1 . ~32!

It means that the change of absorption coefficient betw
the layers must satisfy the following minimum criterio
~necessary condition!:

Dma5ma02ma1.S p

2 D 2 D

l 1
2

. ~33!

If D0,D1, the condition that we are considering,C.0,
is verified only for a finite number of choices of theKl and
Km . Again Eq.~29! has roots, if condition~31! is satisfied.

b. C,0. Possible imaginary roots are found in the inte
val 0,Kn0

2 ,2(D1 /D0)C. In this case, we are searching fo
roots of Eq. ~16! of the kind: Kn056uKn0u and Kn15
6 i uKn1u. After substitution in Eq.~16!, we obtain

1

D0uKn0u
tan@ uKn0u~s012AD0!#

52
1

D1uKn1u
tanh@ uKn1u~s112AD1!#. ~34!

Necessary and sufficient conditions for Eq.~34! to admit
some roots are

p

2
,A2S D1

D0
DCl0 , ~35!

p,A2S D1

D0
DCl0 , ~36!

respectively, where we have definedl 05s012AD0.
If D0,D1, surely condition~36! will be met for infinite

choices ofKl and Km , and for each one of them Eq.~34!
admits a finite number of roots. If we definea05uKn0u l 0

and M05 int@A2(D1 /D0)Cl0 /p#, all the possible
roots are found where a0Pø j 51

M0
„(2 j 21)p/2,j p…

ø„M0p,A2(D1 /D0)Cl0… for the caseM0.0. While for
the caseM050, the possible root is found whena0

P„p/2,A2(D1 /D0)Cl0…. It is also possible that there exis
at maximum a finite number of choices ofKl and Km for
which condition~35! is not met and therefore there are n
roots of Eq.~34!.
3-6
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If D05D15D ~it means thatma0,ma1), condition ~35!
yields a necessary condition for the change in the absorp
properties of the two layers:

Dma5~ma12ma0!.
D

l 0
2 S p

2 D 2

. ~37!

If D0.D1, the condition that we are considering,C,0,
is verified only for a finite number of choices ofKl andKm .
Again, Eq.~34! has roots, if condition~36! is satisfied.

We can summarize this study by stating that whene
D0ÞD1, the transcendental equation~16! always admits
imaginary roots for eitherKn0 or Kn1. While if D05D1,
imaginary roots of Eq.~16! are possible only ifDma
.(Dma)min , and we have determined necessary~and suffi-
cient! conditions for both casesC.0 andC,0.

Now let us treat again simultaneously the two possibilit
C.0 andC,0. If Kn0

2 .0 (C.0) or Kn0
2 .2(D1 /D0)C

(C,0), we search for real roots of the transcendental eq
tion ~16!. For this case, we have to solve Eq.~16!, and be-
cause we are studying it in an interval not bounded, we w
always find infinite roots.

Why are the imaginary roots of Eq.~16! so important? If
we scan Fig. 2 from left to right we understand that whe
ever imaginary roots exist, they might yield the lowest eige
values and, in particular, the minimum eigenvaluelmin .
This is definitely the case if, for example,Dma50, D0
.D1, and

p,ACminl 1 , ~38!

where Cmin is the value ofC calculated forKl5Km5K1
5(p/L). It is obvious that the minimum eigenvalue dom
nates in the series solution~23! ~especially, at late time!.
Therefore, a large error in the shape of the temporal profil
expected iflmin is not properly calculated.

Let us finally discuss about the normalization fac
Nlmn . Expression~22! was obtained, provided that we had
complete orthonormal set of eigenfunctions, given by E
~11!. The eigenfunctionsr lmn(r) are normalized if

15E
Ve

r lmn~r!r lmn* ~r!dr

5E
V0e

r0lmn~r!r0lmn* ~r!dr1E
V1e

r1lmn~r!r1lmn* ~r!dr,

~39!

whereV0e andV1e are the extrapolated regions ofV0 and
V1, respectively. After some calculations, we obtain

Nlmn
2 5

L2

4 H F l 0

2
2

sin~2Kn0l 0!

4Kn0
Gsin2~Kn1l 1!

1sin2~Kn0l 0!F l 1

2
2

sin~2Kn1l 1!

4Kn1
G J . ~40!
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This expression of the normalization factor is valid for E
~16! for the case whereKn05uKn0u andKn15uKn1u. For the
caseKn05 i uKn0u andKn15uKn1u @Eq. ~29!#, we have

Nlmn
2 5

L2

4 H F2
l 0

2
1

sinh~2uKn0u l 0!

4uKn0u Gsin2~Kn1l 1!

1sinh2~ uKn0u l 0!F l 1

2
2

sin~2Kn1l 1!

4Kn1
G J . ~41!

Finally, for the caseKn05uKn0u andKn15 i uKn1u @Eq. ~34!#,
we have

Nlmn
2 5

L2

4 H F l 0

2
2

sin~2Kn0l 0!

4Kn0
Gsinh2~ uKn1u l 1!

2sin2~Kn0l 0!F l 1

2
2

sinh~2uKn1u l 1!

4uKn1u G J . ~42!

We also provide the normalization factorsÑlmn
2 for Eq. ~23!:

Ñlmn
2 5

L2

4 H l 0

2
2

sin~2Kn0l 0!

4Kn0
1

sin2~Kn0l 0!

sin2~Kn1l 1!

3F l 1

2
2

sin~2Kn1l 1!

4Kn1
G J , ~43!

Ñlmn
2 5

L2

4 H 2
l 0

2
1

sinh~2uKn0u l 0!

4uKn0u
1

sinh2~ uKn0u l 0!

sin2~Kn1l 1!

3F l 1

2
2

sin~2Kn1l 1!

4Kn1
G J , ~44!

Ñlmn
2 5

L2

4 H l 0

2
2

sin~2Kn0l 0!

4Kn0
2

sin2~Kn0l 0!

sinh2~ uKn1u l 1!

3F l 1

2
2

sinh~2uKn1u l 1!

4uKn1u G J , ~45!

which are valid for the cases where bothKn0 and Kn1 are
real, whenKn05 i uKn0u andKn15uKn1u, andKn05uKn0u and
Kn15 i uKn1u, respectively.

Finally, we notice that from the expression of the irrad
ance ~23! we can calculate the reflectanceR(j,t) and the
transmittanceT(z,t) by using the meaning of the flux vecto

R~j,t !5J~j,t !~2k!,
~46!

T~z,t !5J~z,t !~k!,

wherej and z are arbitrary points on the surfacez50 and
z5s01s1, respectively, and the flux vector is given b
Fick’s law; k is the unit vector alongz axis. From Eq.~23!,
we can derive the following expressions for reflectance~47!
and transmittance~48!, respectively:
3-7
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R~j,t !52 (
l ,m,n51

`

vD0Kn0 cos~Klx!cos~Kmy!sin~gn0!

3cos* ~Kn0z01gn0!exp@2~K0
2D01ma0!vt#/Ñlmn

2

~47!

T~z,t !5 (
l ,m,n51

`

vD1Kn1 cos~Klx!cos~Kmy!bn1

3sin@Kn1~s01s1!1gn1#cos* ~Kn0z01gn0!

3exp@2~K1
2D11ma1!vt#/Ñlmn

2 . ~48!

The whole procedure described provides the time dom
Green’s function for a two-layered parallelepiped illuminat
by an isotropic light source placed inz0. The theory for a
three-layered medium is described in Appendix D. Whe
collimated laser beam (z axis in Fig. 1! is impinging the
medium, some approximations need to be introduced.
real source term is substituted either by a line of isotro
sources or by a single isotropic point source located ar0
5(0,0,z0) as considered in our derivation. The coordinatez0
is obtained by imposing that the line of isotropic poi
sources and the single point source have the same first
ment @36,37#. In accordance with this assumption if th
thickness of the first layer is sufficiently large, we havez0

51/(ma01ms08 ), wherems08 is the reduced scattering coeffi
cient of the first layer@31# and it resultsms08 51/(3D0) @38#.
Although the more general line source can also be treate
this paper we restrict our investigation to the single po
source. In the following section, comparisons with the res
of MC simulations obtained for a pencil light beam sho
that the assumption introduced to model the light source
the analytical theory@z051/(ma01ms08 )# is sufficient to
have an excellent agreement between simulations and
lytical solutions.

III. RESULTS

The results shown in this section were obtained by a co
parison of the exact analytical solution of DE, for a turb
two-layered parallelepiped medium@Eqs. ~47! and ~48!#,
with the results of MC simulations. Details about the MC c
be found in Refs.@30,39,40#. For MC simulations, mainly we
used a scattering function derived from the Mie theory fo
spherical particle having size parametera (a52pR/l,
whereR is the radius of the sphere andl the wavelength of
light! equal to 1024 and a refractive index mismatch of 1.
The asymmetry factorg resulted to be 531028. However,
we stress that whenever we fixed the values ofms8 in the
different layers, no significant differences were observed
tween MC results obtained for different combinations
scattering functions and scattering coefficients. We point
that by using our MC code, we could select different scat
ing functions in the different layers. The program for t
solution of the DE is organized according to the details giv
in the preceding section. It is worth to remind that once a
of eigenvalues is calculated by solving the transcende
05662
in

a

e
c

o-

in
t
s

in

na-

-

a

e-
f
ut
r-

n
et
al

equation~16!, we have all the useful information for th
calculation of the Green’s functions of the system at differ
source-detector distances. The roots of Eq.~16! have been
found with a combination of bisection and Newton-Raphs
methods@41#. All the figures reported in this section refer t
a refractive indexn05n151.4 of the medium and to a re
fractive index of the externalne51.

In Fig. 3, some comparisons between MC~symbols! and
DE ~continuous lines! temporal profiles~Green’s functions!
for the reflectance are shown. They refer to a parallelepi
with s15100 mm, L5140 mm, ma05ma150, ms08
51 mm21, ms18 50.5 mm21 ~crosses! and ms18 52 mm21

~diamonds!. Figures 3~a!–~c! refer to a thickness of the firs
layer s0 of 2, 4, 8 mm, respectively. The source-detec
distance is fixed atd522 mm. Although the comparisons ar
shown for nonabsorbing layers the temporal profiles of M
simulation and DE can be scaled for an arbitrary value of
absorption by using the same formula@8#. We notice that the
geometry and the values of the optical properties~in the
range of interest for biomedical applications! chosen in Fig.
7 yield the same temporal profiles that would be obtained
a laterally infinite medium consisting of a layer of thickne
s0 on top of a semi-infinite medium.

In Fig. 4, the comparison for the reflectance is shown
the case in which the second layer cannot be considere
semi-infinite. While the optical properties of the two laye
are the same as those in the previous figure, the sou
detector distance isd518 mm, the thicknesses of the to
and bottom layers ares054 mm ands158 mm, respec-
tively, andL5120 mm. From the comparison of Figs. 3 an
4, the effect of the lower boundary on light propagation
rather evident. For the curve withms18 50.5 mm21, we ob-
serve a slight discrepancy between the analytical and the
results. This effect is due to a general limitation of the D
and cannot be ascribed to the theory developed. In fact,
solutions of the DE in a homogeneous slab obtained with
EBC show similar discrepancies on the time-resolved refl
tance where the source-receiver distance is large comp
with the thickness of the slab.

In Fig. 5, a similar comparison between MC and DE te
poral profiles is shown for the transmittance. The opti
properties are the same as before, while the thicknesse
the two layers ares0516 mm ands154 mm, respectively.
The curves are calculated at the pointz5(0,0,s01s1).

In Fig. 6, comparisons of MC and DE reflectance a
shown for the cased522 mm, s054 mm, s15100 mm,L
5140 mm,ms08 5ms18 51 mm21, andma050.01 mm21 and
ma150 ~crosses! or ma150.01 mm21 and ma050 ~dia-
monds!. We remind that because the scattering properties
the layers are identical, the approximate theory develope
a previous work@30# becomes exact and the results of t
two theories converge. However, the improvements of
exact theory are clear from Fig. 7 where a comparis
among an MC temporal profile and the results of the
proximate and exact theories is shown for the case of refl
tance. Also shown in the same figure is the temporal pro
obtained by using only the real roots of the transcende
equation~16!. It is clear that the imaginary roots of the tran
3-8
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scendental equation~16! are fundamental for the correct ca
culation of formulas~47! and~48!. The temporal profiles are
calculated at a source-detector distanced522 mm for a me-
dium having s054 mm, s15100 mm, L5140 mm, ma0

50.004 mm21, ma150.03 mm21, ms08 51 mm21, andms18

FIG. 3. Reflectance calculated with MC simulations~symbols!
and with the solution of DE~continuous lines! for the case of a
parallelepiped havings15100 mm, L5140 mm, ma05ma150,
ms08 51 mm21, ms18 50.5 mm21 ~crosses!, andms18 52 mm21 ~dia-
monds!. Parts~a!–~c! refer to the thickness of the first layers0 of 2,
4, 8 mm, respectively. The source-detector distance is 22 mm.
05662
50.5 mm21.
A few remarks are made about the program for the cal

lation of the DE temporal profiles and about the converge
of the series in Eqs.~47! and ~48!. If we examine the pro-
posed method and the structure of the transcendental e
tion ~16!, we realize that the search of the eigenvalues
mainly affected by the geometry of the medium. In fact, t
lateral size of the mediumL is related to the ‘‘density’’ of the
eigenvaluesKl andKm , and the thicknesses of the layers,s0
ands1, are connected with the period of the tangent in E
~16!. All the excellent comparisons presented in this wo
were obtained by using between 15 and 25 eigenvaluesKl
andKm for the x andy axis, respectively, and for each com
bination (Kl , Km) we searched for real roots and possib

FIG. 4. Reflectance calculated with MC simulations~symbols!
and with the solution of DE~continuous lines! for the case of a
parallelepiped havings054 mm, s158 mm, L5120 mm, ma0

5ma150, ms08 51 mm21, ms18 50.5 mm21 ~crosses!, and ms18
52 mm21 ~diamonds!. The source-detector distance is 18 mm.

FIG. 5. Transmittance calculated with MC simulations~sym-
bols! and with the solution of DE~continuous lines! for the case of
a parallelepiped havings0516 mm, s154 mm, L5100 mm,ma0

5ma150, ms08 51 mm21, ms18 50.5 mm21 ~crosses!, and ms18
52 mm21 ~diamonds!. The curves are calculated at the pointz
5(0,0,s01s1).
3-9
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imaginary roots of the transcendental equation~16! by using
standard methods@41#. About the indicesl and m the con-
vergence of the series in Eqs.~47! and ~48! depends on the
lateral dimension of the mediumL. For smaller values ofL,
a lower number of eigenvaluesKl and Km are required to
reach a good convergence. The number of rootsKn0 andKn1
along thez axis necessary to reach the convergence of
series in Eqs.~47! and~48! ranged between 5 and 35 for a
the figures. Fewer terms are required when the thickness
the two layers are comparable~usually less than 10!, whereas
more roots are necessary when the thicknesses of the

FIG. 6. Reflectance calculated with MC simulations~symbols!
and with the solution of DE~continuous lines! for the case of a
parallelepiped havings054 mm, s15100 mm, L5140 mm, ms08
5ms18 51 mm21, and ma050.01 mm21 and ma150 ~crosses! or
ma150.01 mm21 andma050 ~diamonds!. The source-detector dis
tanced is 22 mm.

FIG. 7. Reflectance calculated with MC simulations~diamonds!
and with the exact solution of DE~thick continuous line! for the
case of a parallelepiped havings054 mm, s15100 mm, L
5140 mm,ma050.004 mm21, ma150.03 mm21, ms08 51 mm21,
and ms18 50.5 mm21. The temporal profiles are calculated at
source-detector distanced522 mm. Also shown are the solution o
DE calculated with only the real roots of the transcendental eq
tion ~broken line! and the solution of DE calculated with the a
proximate theory~thin continuous line!.
05662
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layers are significantly different. The computation time o
set of eigenvalues is proportional to the number of ro
required for the convergence of the series in Eqs.~47! and
~48!. For the cases examined, a set of eigenvalues was
culated in a time always less than 2 s byusing a Pentium IV
1.8 GHz.

IV. CONCLUSIONS

An exact expression for the time domain Green’s funct
solution of the diffusion equation in a layered-parallelepip
has been obtained making use of the eigenfunction meth
The proposed method is an extension of the one used
previous paper@30#. With respect to the previous work, co
rect boundary conditions between the diffusive layers h
been used and a finite geometry has been considered.
key point of the method described in this paper is the so
tion of a transcendental equation~16! for the eigenvalues tha
can be accomplished in a short time with classical metho
We stress the importance of imaginary roots of the transc
dental equation that, to the best of our knowledge, were
addressed by previous investigators. We have found
without including the imaginary roots of the transcenden
equation, the calculation of the Green’s function suffers fro
the lack of significant terms and consequently the descrip
provided by the formulas can be greatly distorted. The c
rectness of the analytical expressions for the Green’s fu
tions of a layered parallelepiped has been investigated
comparisons with the results of MC simulations. The resu
have shown that the analytical solutions are in agreem
with the MC results.

The information on the diffusive layered medium can
summarized in a set of eigenvalues that can be calculate
a time of about 1 s. All the quantities of physical interest
any point of the medium are described by this set of eig
values. In particular, the Green’s functions at differe
source-detector distances can be calculated in a very s
time. The expression of the Green’s function and its ma
ematical dependence from the optical properties of the
dium is quite straightforward and has an easy interpretat
Moreover, the time integration and the Fourier transform
the Green’s function can be easily carried out to yield a
lytical expressions for the CW and for the frequency doma

The formulas were obtained by using the EBC@31# at the
upper and lower surfaces of the parallelepiped, but also
more correct partial current boundary condition~PCBC! @42#
can be used without any particular problem. The few chan
between EBC and PCBC are provided in Appendix E. R
orous boundary conditions were used between the diffus
layers. The more approximated ZBC@6# was instead used a
the lateral surfaces of the parallelepiped, since it simplifi
the lateral boundary condition and makes easier to derive
analytical solution for the investigated geometry. The cho
of the boundary condition at the lateral boundary does
significantly affect the reflectance or the transmittance,
less the source or the receiver is near to the boundary.

In this paper, we have shown an explicit derivation of t
formulas for a two- and a three-layered parallelepiped,
the proposed procedure can be extended to a higher num
of layers. It is expected that the complexity of the calcu

a-
3-10
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tions required to obtain the Green’s function is going to
crease with the number of layers considered. We have
vided the solution for a layered parallelepiped, but
remark that other finite layered geometries~e.g., cylindrical!
can be easily solved with the same method.

Despite the important role played by analytical solutio
of the time domain DE, only a few studies presented use
expressions for layered media. On the topic of light pro
gation through layered random media, there is the lack
rigorous, simple, and explicit analytical expressions that
straightforward to be used for describing photon migration
layered geometries. We also notice that models previou
proposed were developed for more restricted geometries.
example, one common element of other models is the
quirement that the layered medium is laterally infinitely e
tended. This paper is intended to provide a flexible and g
eral method for studying light propagation in finite layer
media able to overcome some of the drawbacks of o
published theories.

In order to see the performance of the analytical soluti
for the retrieval of the optical properties of the medium w
have performed a preliminary investigation by implement
a fitting procedure based on the formulas presented. We h
carried out fitting procedures on measurements simula
with MC results. The convergence of the procedure and
retrieval of the optical properties was obtained in a few m
utes. These preliminary results show the potentiality of
formulas to be used in the inverse problem for reconstruc
of the optical properties of an unknown medium.

Finally, we would like to point out that the method pro
posed to solve the DE in the time domain could find seve
applications for all those physical phenomena that are c
sifiable as a diffusion process. For instance, we mention
heat transfer through isotropic solid materials for which
similar mathematical approach can be used.
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APPENDIX A: SOLUTION FOR A
HOMOGENEOUS CUBE

As an example of the eigenfunction method, let us c
sider a homogeneous scattering and absorbing cube ha
sideL. We can consider Fig. 1 for the reference system
geometry (s01s15L). The time-dependent diffusion equa
tion for a Dirac-d source term is

F1

v
]

]t
1ma2D¹2GF~r,t !5d~r2r0!d~ t !. ~A1!

This problem is equivalent to the following initial-bounda
value problem:
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F1

v
]

]t
1ma2D¹2GF~r,t !50, t.0 ~A2!

FS x56
L

2
,y,z,t D5FS x,y56

L

2
,z,t D

5F~x,y,z50,t !

5F~x,y,z5L,t !50, ~A3!

F~r,t50!5vd~r2r0!, ~A4!

where we have assumed that ZBC is valid throughout
boundary of the cube, andr05(0,0,z0). We will search for a
solution of the kind

F~r,t !5r~r!h~ t !. ~A5!

Substituting Eq.~A5! in Eq. ~A2!, we get

dh~ t !/dt52lh~ t !,
~A6!

¹2r~r!1K2r~r!50,

whereK25(l/v2ma)/D.
The fact that the diffusion operator@2D¹21ma# is posi-

tive and self-adjoint implies thatl>0; however, the Helm-
holtz equation in system~A6! admits roots also forK2,0.
The Helmholtz equation can be solved by separation of
variables method. We will search for a solution

r~r!5 f l~x! f m~y! f n~z!. ~A7!

After substitution of Eq.~A7! in the Helmholtz equation in
system~A6!, we obtain

d2f l /~ f ldx2!52Kl
2 ,

d2f m /~ f mdy2!52Km
2 , ~A8!

d2f n /~ f ndz2!52Kn
2 ,

where K25Kl
21Km

2 1Kn
2 . The three equations in system

~A8! are formally identical and we can study one of the
Let us consider, for example, the second equation in sys
~A8!. We will treat separately the two casesKm

2 .0 andKm
2

,0 as follows.
~a! Km

2 .0: For this case, the general solution of the equ
tion is

f m~y!5Am cos~Kmy1gm!. ~A9!

Condition ~A3! is satisfied, for example, ifKm5(2m
21)p/L, m51,2,3,. . . ,Am arbitrary, andgm50.

~b! Km
2 ,0: For this case, the general solution is

f m~y!5Am exp~pmy!1Bm exp~2pmy!, ~A10!

where Am and Bm must be determined from the bounda
conditions and the parameterpm verifies pm

2 52Km
2 . How-

ever, condition~A3! can never be satisfied by Eq.~A10!,
unlesspm50 and Am52Bm , and obviously this solution
3-11
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must be discarded. The same arguments apply for the f
tions f l and f n in Eqs.~A8!. We notice that for the function
f n, the constant phase termgn is gn5p/2. Finally, it is easy
to verify that the functions

r lmn~r!5S 2

L D 3/2

@cos~Klx!cos~Kmy!cos~Knz1p/2!#,

~A11!

with Kl , Km , Kn given by

Kl5~2l 21!p/L, l 51,2,3, . . . ,

Km5~2m21!p/L, m51,2,3, . . . , ~A12!

Kn5np/L, n51,2,3, . . . ,

constitute a complete orthonormal set of eigenfunctions
the cube. In order to find the time-dependent solution in E
~A6!, we can apply the same arguments used in Sec. II.
nally, we are led to the following solution of our initial
boundary value problem:

F~r,t !5~2/L !3 (
l ,m,n51

`

v cos~Klx! cos~Kmy!

3cos~Knz1p/2! cos~Knz01p/2!

3exp@2~K2D1ma!vt#. ~A13!

APPENDIX B: ORTHONORMALITY
OF THE EIGENFUNCTIONS

The orthonormality of two eigenfunctionsr lmn(r) and
r l 8m8n8(r) ~11! can be easily proved for the caselÞ l 8 or
mÞm8; however, whenl 5 l 8 and m5m8 but nÞn8, it re-
quires more calculations. We refer our proof to the solut
for a two-layered medium. In the proof for the coefficientsl 0
and l 1, we use the definition in Sec. II. What we have
prove is that

E
22AD0

s0
an0 cos~Kn0z1gn0!an80

* cos* ~Kn80z1gn80!dz

1E
s0

s01 l 1
an1 cos~Kn1z1gn1!an81

*

3cos* ~Kn81z1gn81!dz5I 50. ~B1!

Making use of the Schwarz reflection principle~Ref. @34#,
p. 391! applied to the cosine function, that is, cos*(z)
5cos(z* ), wherez is a complex variable, of general prope
ties of the trigonometric functions and of the definition
gn0 andgn1 @see Eq.~14!# the integrals in Eq.~B1! can be
calculated as
05662
c-

r
s.
i-

n

I 5~an0an80
* !/@Kn0

2 2~Kn80
* !2#@2Kn0 cos~ l 0Kn0!sin~ l 0Kn80

* !

1Kn80
* sin~ l 0Kn0!cos~ l 0Kn80

* !#

1~an1an81
* !/@Kn1

2 2~Kn81
* !2#

3@2Kn1cos~ l 1Kn1!sin~ l 1Kn81
* !

1Kn81
* sin~ l 1Kn1!cos~ l 1Kn81

* !#. ~B2!

On the basis of the system of Eqs.~15! and its conjugate
system, and on the basis of the relationship betweenKn1

2 and
Kn0

2 @see Eq.~26!# and its conjugate we can prove that e
pression~B2! vanishes. In fact, we have

Kn1
2 2~Kn81

* !25
D0

D1
@Kn0

2 2~Kn80
* !2#, ~B3!

cos~ l 1Kn1!5
an0

an1

D0Kn0

D1Kn1
cos~ l 0Kn0!, ~B4!

sin~ l 1Kn81
* !52

an80
*

an81
*

sin~ l 0Kn80
* !, ~B5!

sin~ l 1Kn1!52
an0

an1
sin~ l 0Kn0!, ~B6!

cos~ l 1Kn81
* !5

an80
*

an81
*

D0Kn80
*

D1Kn81
*

cos~ l 0Kn80
* !. ~B7!

To obtain Eq.~B3!, we have used the property (z* )2

5(z2)* and the fact thatC5C8 @see Eq.~26!#. By substi-
tuting expressions~B3!–~B7! in the second term of expres
sion ~B2!, we obtain the result.

We note that expression~B2! is valid only if nÞn8, and
this hypothesis is necessary to prove the orthonormality
the eigenfunctions. However, expression~B2! can also be
used for the casen5n8 ~that is, for the normalization of the
eigenfunctions! if we treatKn0 andKn1 as continuous vari-
ables and we calculate the limit forKn0→6Kn80

* and Kn1

→6Kn81
* . The double sign depends on the fact thatKn80

*

and Kn81
* can be either real or imaginary numbers. In th

way we will find the normalization factors given in Sec.
@see Eqs.~40!–~45!#. We point out that the key point of dem
onstration is the boundary condition between the diffus
layers. In other words, the orthonormality is guaranteed
the boundary conditions assumed. Following a similar
proach it is also possible to prove the orthonormality of t
solution for a three-layered medium.
3-12
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APPENDIX C: SOLUTION WITH z0Ìs0

The Green’s function for a two-layered parallelepiped when the source term is placed in the second layer, i.e.,z0.s0, is

F~r,t !55
(

l ,m,n51

`

v cos~Klx!cos~Kmy!cos~Kn0z1gn0!

3 bn1* cos* ~Kn1z01gn1!exp@2~K0
2D01ma0!vt#/Ñlmn

2 , 0<z<s0

(
l ,m,n51

`

v cos~Klx!cos~Kmy!bn1 cos~Kn1z1gn1!

3bn1* cos* ~Kn1z01gn1!exp@2~K1
2D11ma1!vt#/Ñlmn

2 , s0<z<s01s1 .

~C1!

The expression ofÑlmn
2 changes according to Eqs.~C1! and ~39!.

APPENDIX D: SOLUTION FOR A THREE-LAYERED PARALLELEPIPED

Let us consider a parallelepiped medium composed by three layers. Referring to Fig. 1 the planes across which th
properties are discontinuous arez5s0 andz5s01s1. The total thickness of the medium iss5s01s11s2 and the lateral size
is L. The optical properties of the three layers arema0 , D0 , ma1 , D1, andma2 , D2 for the top, medium, and bottom layer
respectively. For the solution of this problem we can apply the same method as described in Sec. II. We have to solv
in three regions and apply the ZBC on the lateral surface and the EBC on the bases of the parallelepiped, resp
moreover, the continuity of the irradiance and of the photon flux must be applied at the planesz5s0 andz5s01s1. After the
separation of variables, we search for solutions~eigenfunctions of the problem! of the three Helmholtz equations of the kin

r lmn~r!5
1

Nlmn
3H r0lmn5cos~Klx!cos~Kmy!an0 cos~Kn0z1gn0!, 0<z<s0

r1lmn5cos~Klx!cos~Kmy!an1 cos~Kn1z1gn1!, s0<z<s01s1

r2lmn5cos~Klx!cos~Kmy!an2 cos~Kn2z1gn2!, s01s1<z<s01s11s2 .

~D1!
s

s

a
d

the
een
The ZBC applied at the lateral boundary yields the same
of eigenvaluesKl and Km found in the previous case~12!,
while the EBC applied to the top and bottom bases yield

gn052Kn0AD01p/2, ~D2!

gn252Kn2~s01s11s212AD2!1p/2.

From the continuity of the irradiance and the photon flux
the planesz5s0 and z5s01s1, we derive the following
system of transcendental equations:

D0Kn0 tan~Kn0s01gn0!5D1Kn1 tan~Kn1s01gn1!,
~D3!

D1Kn1tan@Kn1~s01s1!1gn1#

5D2Kn2 tan@Kn2~s01s1!1gn2#.

Moreover, we derive the condition

K0
2D01ma05K1

2D11ma15K2
2D21ma2 , ~D4!

whereK0
2 ,K1

2 ,K2
2 are defined by the formulas

K0
25Kl

21Km
2 1Kn0

2 , ~D5!
05662
et

t

K1
25Kl

21Km
2 1Kn1

2 ,

K2
25Kl

21Km
2 1Kn2

2 .

Therefore, we can solve system~D3! for the variablesKn0
andgn1. The normalization of the eigenfunctions is carrie
out in the same way described previously. Applications of
eigenfunctions method for a three-layered slab have b
already presented within the approximate theory@30#.

APPENDIX E: SOLUTION WITH THE PCBC

A two-layered medium is considered~see Fig. 1!. Instead
of using the EBC at the surfacez50 and z5s01s1, the
PCBC can be used@42#. To use the PCBC, Eq.~14! should
be substituted by

gn052arctan@1/~2AD0Kn0!#,
~E1!

gn152Kn1~s01s1!1arctan@1/~2AD1Kn1!#.
3-13
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The fluence rate in the diffusive layers is derived with t
same procedure as described in Sec. II, provided the exp
sions for the normalization factor, Eqs.~40–45!, are updated
to the PCBC. The expressions for the reflectance and
transmittance are obtained from the expressions for the
ence rate and from the PCBC@42# according to equations
e
d,

n

ar

t.

,

p

Y.

m

p

05662
s-

he
u-

R~j,t !5@1/~2A!#F~j,t !,
~E2!

T~z,t !5@1/~2A!#F~z,t !.

The same procedure can also be used for a three-lay
medium.
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