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An exact solution of the time-dependent diffusion equation for the case of a two- and a three-layered finite
diffusive medium is proposed. The method is based on the decomposition of the fluence rate in a series of
eigenfunctions and upon the solution of the consequent transcendental equation for the eigenvalues obtained
from the boundary conditions. Comparisons among the solution of the diffusion equation and the results of
Monte Carlo simulations show the correctness of the proposed model.
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[. INTRODUCTION layered random media, also for its applications in the field of
tissue optics. In fact, many biological tissues are likely to be

The problem of light propagation through random mediadescribed by a sequence of diffusive layers having different

bounded by parallel planes has been a subject of interest f@ptical parameters and more accurate clinical information

decades because many physical systems are likely to be ref)é_ln be gained from such a modeling of tissues. Some authors

resented in this way1,2]. The radiative transfer equation 9-11] investigated the limitations of mathematical models
(RTE) [1-3] that is derived in transport theory has beenthat do not take into account the layered structure of tissues.
Several studies for layered media have been carried out ei-

v_wdely st_udleq because u_sually it is S|mple_r than '_che_z €qUagher in the continuous wavEW) domain[12—20 or in the
tions derived in the analytical theofg], and its predictions Fp [1521-25 by using different methods: analytical solu-
have been tested in many situations of interest. However, thgon of DE, random walk, Monte CarléMC) method, and
RTE is a complex integro-differential equation that is usuallyfinite element method. In these papers, the authors provided
solved by resorting to some numerical methods or to somédifferent formulas only for infinitely extended slabs, and in
approximations. Applications of the RTE to the study of light most cases for a medium composed of a finite slab on top of
propagation in a sequence of turbid slabs can also be four@ semi-infinite medium. Although interesting results were
in the literature[1,2,4,9 because many physical systemsfound, the proposed methods suffer from several drawbacks:

(e.g., atmosphere, biological tissuese better described if numerical methods are usually time consuming, and the ana-

we consider a layered structure. However, to date, almost a'IYt'CaI solutions of DE propo_sed in most of the CW and FD
Studies are not expressed in a closed form, and numerical

the studies involving the RTE were concer_ned with a planqntegration of an inverse space-transverse Fourier transform
wave source and a steady state propagation. Moreover, the ,qally required. It might be impractical to implement in-
approximate solutions of the RTE proposed in the literaturgersion procedures for tha situ or in vivo determination of
require much computational effort and are not straightforthe optical properties based on these models.
ward to be used. If we consider the diffusion approximation By using different methods also in TD, some studies have
[2,3] to the RTE, analytical solutions for homogeneous me-been carried outl4,26—3Q. The particular interest for time
dia have been obtained also for the time donfd@iD) [6] and  domain investigations is focused mainly to find correct and
the frequency domaifFD) [7] diffusion equation(DE) and  efficient methods to calculate the Green’s function of a sys-
for pointlike sources. The time domain and the frequencytem and to implement fast and reliable inversion procedures.
domain Green’s functions of DE in different geometries canHowever, despite the important role that analytical solutions
be found in Ref[8]. of the time domain DE have, only a few studies presented
When the nature of randomness is such that diffusion contseful expressions for layered media. Dagaal. [14] found
ditions hold, it is possible to use the DE to describe lightaPProximate expressions of the Green'’s function for the case

propagation2]. In the recent years, there has been an enof @ slab on top of a semi-infinite medium. In the work of

hanced interest to study the problem of light propagation irﬁ'enle, etal. [27], explicit time domain formula for the
reen’s functions were not given and numerical calculations

of inverse space-transverse and inverse time Fourier trans-
*Email address: fabrizio.martelli@unifi.t form were requi_red. Tuallet al. [28] used an extension of
+ e ' o _ . the method of images to calculate the real space Green’s
Present address: Department of Biomedical Engineeringsnction for a layered medium. However, the expressions,
Bioengineering Center, Tufts University, 4 Colby Street, Medford,even for a simplified medium composed by one layer on top
Massachusetts 02155. of a semi-infinite medium, were obtained after several diffi-
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cult mathematical steps. Martekit al. [30] used approxi- L
mate boundary conditions to solve the time-dependent DE
with the eigenfunction method. Early studies that used a
similar method are the works of Takatani and GraHam®)

and Schmittet al. [13], however both of them were con-

cerned with the steady state DE. Q
The many papers on the topic of light propagation in lay-
ered random media testify that there is no general agreemers, Q,

about the choice of the mathematical procedures to obtair
relatively simple equations that can be easily integrated anc
that can lead to useful and straightforward expressions o |\l . D, n, :
immediate interpretation. In this work, we present a fast €= ¥ 88,1
method to solve the time-dependent DE for a layered finite i TG
medium. We provide an exact expression of the Green’s
function, which is easily calculated by using the eigenfunc- =
tion method. The proposed method is an extension of that
one used in a previous papeé0], but here exact boundary
conditions are considered. The key point of the method is th es:s, ands, are the thicknesses of the top and bottom layers
solution of a transcendental equation for the eigenvalues th Spe'C('zively;/.Llao and 4., are the absorption coefficients; ay
can k_)e accomplished with _Class'cal methods in a short timgng D, are the diffusion factors of the first and the second layer,
(within few seconds by using a Pentium IV 1.8 GH¥Ve | oqpectively.R(£1t) and T(Lt) are the reflectance and transmit-

stress thg importance of imaginary roots of the transcendensnce calculated at two arbitrary poirgsand ¢ on the upper and
tal equation that to the best of our knowledge, were not menger surfaces, respectively.

tioned by previous authors. We have found that without in-

cluding the imaginary roots of the transcendental equationained in few minutes. This result testifies the potentiality of
the calculation of the Green’s function cannot be carried outhe formulas for the inverse problem devoted to the recon-
correctly. The information obtained in this preliminary step struction of the optical properties of an unknown medium.

is used to calculate in a short time a wide set of Green’s |n Sec. Il and in Appendixes A—E the theory of the work
functions at different source-detector distances. We can say described. In Sec. Ill, comparisons between the analytical
that all the information relevant for the problem is containedtheory and MC results are presented. Conclusions are given
only in the set of eigenvalues. The expression of the Green’s, Sec. IV.

function and its mathematical dependence on the optical

properties of the medium is quite straightforward and easy to Il. THEORY

be interpreted; time integration and Fourier transform of the

Green’s function can be easily carried out to yield exact ex- The eigenfunction method offers a very useful way to
pressions in CW and FD. An evidence of the correctness o$olve partial differential equations, either of hyperbolic,
our model is provided by comparison with MC results. parabolic, or elliptic typg32-34. In this work, we are con-

We also notice that the other models quoted above wergerned with the parabolic-type time-dependent DE, which is
proposed for more restricted geometries. For example, onesually derived from the RTE3]. The DE and, in general,
common element is the requirement that the layered mediurarabolic equations can also be derived from very general
is laterally infinitely extended. Here, we provide the solutionprinciples of energy and photon flux balance within a region
for a layered parallelepiped; however, we remark that othehaving smooth optical properties, though in general not ho-
finite layered geometriee.g., cylindrical can be solved mogeneous, if we assume that the flux vedjrt) and the
with the same method. The formulas have been obtained biyradiance ®(r,t) are related by Fick's law:J(r,t)=
using the extrapolated boundary conditi@BC) [31] at the ~ —D(r)Va®(r,t) (Ref.[32], pp. 163-16% If the smoothness
upper and lower surfaces of the parallelepiped and the zer@quirement is not met throughout the whole region, as for
boundary conditionZBC) [6] at the lateral surfaces of the the case of a sharp change in the optical properties across a
parallelepiped. Rigorous boundary conditions have beeplane, the general balance principles can be used to derive
used between the diffusive layers. Moreover, although thénatching conditions for the solutions of the parabolic equa-
expressions are found for a pointlike source, expressions fdions that are valid on both sides of the plaief. [32], p.
an isotropic line source can also be easily derived. In Appen329). In particular, we are interested in studying the time-
dix D, the exact theory of a three-layered medium is alsagdependent DE for a two-layered parallelepiped for the case
described. of an isotropic Diracé source term.

We have implemented a fitting procedure based on the Figure 1 shows the mediu} composed of two regions:
formulas presented for the retrieval of the optical properties2=Q,U€Q ;. In the figure,s, and s, are the thicknesses,
of the medium starting from a single measurement of reflecu,o and u,; are the absorption coefficientS, andD, are
tance. Fitting procedures on measurements simulated by Mthe diffusion coefficients, andi, and n, are the absolute
results have been carried out. The convergence of the proceefractive indices of the first and second layers, respectively.
dure and the retrieval of the optical properties could be obn, is the absolute refractive index of the surrounding me-

}
Receiver
+

Zy

FIG. 1. Atwo-layered parallelepiped with a laser beam imping-
ing on the upper surfacé. is the lateral size along bothandy
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dium. The size of the medium alongandy axes is assumed equal to zero at the physical boundary of the medium. The
to beL. The origin of the reference system is chosen as th&BC is more approximate@i31], however, its use on the
point where a collimated laser beam éxis) impinges the lateral boundary significantly simplifies the problem here ad-
medium, therefore its physical boundaries belong to thealressed, since it leads the fluence rate to vanish on the lateral
planesx=*L/2, y==*L/2, andz=0, z=sy+s;. Let us physical boundaries of the diffusive layers. On the other
consider at first that the source term is represented by hand, with the EBC we would obtain different lateral ex-
single isotropic point source placed ip=(0,0z,), i.e., trapolated boundaries in the different layers. The boundary
S(r,t)=6(r—rp) 8(t). Later, the case of a collimated laser conditions at the lateral boundary does not affect the reflec-
beam will be discussed. For the moment, we restrict outance and the transmittance, unless the source or the receiver
investigation to a single point source located in the first layeris close to the boundary. In the stated problem, we have
The case of a single point source located in the second lay@ssumed that the refractive index of the diffusive medium is
will be considered later on. The diffusion equation for theconstant, however the theory can be easily extended for a
irradiance is written asy( is the speed of the light more general casg5].

The matching conditions for this problem are derived
from the continuity of the irradiance and of the photon flux at

19
ot Ham VIDIOV] () =818t (1) o

v Jdt

Because of the discontinuities of the optical properties Do(X,y,2=59,t) =D 1(X,y, 2=, 1),
across the plane=s;, we expect to find a solution of Eq.
(1) having some discontinuities. The proposed method to
solve the problem is an extension of the one proposed b
Zauderer(Ref. [32], pp. 335—-338 The problem must be ind
separated in the two layers and can be stated as an initialf-

Doo"CI)O(X,y,ZZ So ,t)/ﬁZ: Dlé’q)l(X,y,Z: So ,t)/O')Z

We will search for a solution of the stated problem of the

boundary value problem as the following: D)= Do(r,t)=po(N p(t), 0=<z=<s, -
[0/(vat) + pag— DoVZ]Po(r,t)=0, ’ Gy(r,t)=p1(r)n(t), Spsz<Sp+S;.
t>0, Osz=<s,, 2 Itis in fact obvious that the temporal evolution® andd,
must be coincident if we want that conditio®) be valid. We
[9/(vat)+ pa—D,V?]P4(r,1)=0, will also require that the functiongy(r) and p4(r) satisfy
conditions(3) and(4). After substitution of expressio(Y) in
t>0, sp=<z<sy+5q, system(2), we are led to the following eigenvalue problem:
and the initial-boundary value conditions: d7n(t)/dt=—\7(t),
L L _ 2 _
<I>o<x=t§,y,z,t o, X,y:i?z,t) DoV2po(1) + aopo(1) = Mvpo(1), ®
=D 1V?p1(N)+ parpa(r) =Nvpy(r).
=dy(x,y,z=—2A(n)Dy,t)=0, (3) v A '
System(8) can also be rewritten as
L L
(bl( X= iz,y,z,t> =d,| x,y= ii’z’t dp(t)/dt=—N7(t),
=d,(X,y,z=Sp+S;+2A(N)D,t) V2po(1) +Kpo(r) =0, 9
=0, (4) V2p1(r)+KZpy(r) =0,
O(r,t=0)=0v8(r—ryp). (5  whereK3 andK? are given by the expressions

Equation(5) represents the initial distribution of sources in N 5 [N

the medium. Equation§3) and (4) represent the boundary Ko=| 5 ~Hao Do, Ki=| = kar D;. (10
conditions with the external medium and are based on two

different assumptions: the EB[31] has been used on the = We note that because the diffusion operator is self-adjoint
upper and lower surfacez€0 andz=sy+s;), while the  and positiveRef.[32], pp. 171-178 the parametex is real
ZBC [6,31] has been used at the lateral boundanes and non-negative. On the contrary, no assumption can be
==*L/2 andy=*xL/2. With the EBC, the fluence rate is made on the sign d(% andK?, and in general the Helmholtz
assumed equal to zero at an extrapolated boundary outsidguationg34] in system(9) admit solutions both for positive
the turbid medium at a distancg=2AD. The coefficient and negative values of these parameters.

A(n) also includes the effect of reflections due to the refrac- In order to solve the Helmholtz equations in syst€

tive index mismatchn between the medium and the sur- we use the separation of variables method, as shown in Ap-
roundings[31]. The ZBC simply assumes the fluence ratependix A for the case of a homogeneous cube. The procedure
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reported in Appendix A can also guide us to search for possible solutions of the Helmholtz equations in(Systamd
therefore to find the proper eigenfunctions of the whole medium. In fact, let us assume that a complete orthonormal set of
eigenfunctions is given by the expression

1 Poimn=COg K X)Cog K y)an0 COg KoZ+ yno), 0sz<s

rN=——x (11
Pimn Nimn P1imn= COSK X)COIKpy)an COSKn1Z+ yn1), So<zZ<Sp+Sq,

whereN,,, is a normalizing factor and,y, a,; are coeffi- The general solution of our initial-boundary value problem
cients to be determined. From the separation of variablesan be written a§32—34

method, it is clear thak, andK,, are the ones found for the
homogeneous cube:

PIO= 2 Mime(t=0)pima(NEXD~Nimal) . (18)

Ki=(2l-1)m/L, 1=123...,
(12)
Km=(2m=-1)@/L, m=123..., The initial condition(5) is used to determingy,,(t=0). It
. gives
and that the conditions
K2=KZ+K2+K2,, .
0= T Bm T o O(rt=0)=v3(1—10)= > 7ma(t=0)pima(1),
(13) I,mn=1
K2=KZ+K2+K2, (19

must be satisfied. We note that E¢El) satisfy the boundary  and by using the orthonormality of the eigenfunctions we
conditions(3) and (4), if y,, and y,; are chosen as have

= +
')’nO 2Kn0AD0 77/2’ (14) 77|mn(t:0):((I)(ritzo)1p|ml’1(r))
Yn1=— — Knl(SO+ Sl+ 2AD1) + 77/2
= f v8(r—ro)pimn(r)dr, (20
The matching condition&) applied topgmn @andpqmn Yield e
the linear system of equations fap, anda,:
where we have used the definition of the scalar product in the

A0 SIM Ko(Sp+2ADg) [ +apsin K,y1(s;+2AD;) =0, space of the continuous functions in the region of the ex-
(15  trapolated parallelepipeiti, (r) is the complex conjugate

anoD oK o Cog K o(Sg+2ADy) ] of pimn(r)]. The reason why we have used the general defi-

nition of the scalar product valid for complex functions is

—an1D1Kn; c04 Ky (81 +2AD1)]=0. that we allow for the possibility that the component along the

) . ) ) z axis of the solutions of the Helmholtz equations in system
System(15) admits nontrivial solutions &y, a,1#0), if (g)is given by a combination of exponential functions. This
and only if the determinant vanishes. Therefore, we are led tBossibiIity had to be discarded for the case of a homoge-

the transcendental equation for the eigenvalues: neous cube as shown in Appendix A. The expression of
1 pimn(r) in Egs.(11) can include also this possibility only if
—— —ta{ K o(So+2ADp)] the components along theaxis are complex functions. We

DoKno remind that when the argument of a sinusoidal function is

1 complex, we obtain a linear combination of hyperbolic func-
=— ——taffK(s;+2AD,)]. (16)  tions. The choice of the coefficients,, and a,; together
D1Kns with the boundary conditions assure thgt(r) is a set of

) . . real and orthonormal functioisee Appendix B for the proof
We will come back to study this equation later on when theqs the orthonormality of the eigenfunctiops,,(r)]. Substi-
different possibilities that arise from the boundary condltlonstuting expressior11) in Eq. (20), we have

will be clear. Let us now consider the temporal evolution of

the irradiance, which is obtained by solving the first equation N N

in system(9). Because there is a discrete set of eigenvalues 7imn(t=0)=vpin,(ro) =vag, cos' (KnoZo+ ¥no)/Nimn-
Mimn defined by Eq(10), we can write a general solution of (21

the equation fory(t) as
Finally, we are able to write the solution of our initial-

Min(1) = Pimn(t=0)exp( — Njmnt). a7 boundary value problem as
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r 0
2 v cosKx)cosKny)|ano|? 0t Knoz+ o)
X cos* (KnoZo+ ¥no)eXH — (K§Do+ pag)vtl/Niy,,  0<z<sy
®(r,t)=/{ (22)

©

> v cogKx)cog K py)akoan, coS K z+ yny)

I,mn=1

| X €08 (KnoZot Yno)eXH — (KED 1+ pan) tlING,,,  So<z=Sp+s;.

The coefficients,, anda,;, according to systerti5), are not uniquely determined; however, their ratio is determined by the

continuity of the irradiance. We can rewrite H§2) as
( )
2, v cosKx)cos Kpny)cos Knoz+ o)

I,mn=

X €08 (KnoZo+ yno)eXH — (K3Do+ mao)vt]/NZ, |, 0<z<s,

D(r,t)=1{ (23
2 0 cosKX)cosKpny)bn; COSKpyz-+ )
L X €08* (KnoZot yno)eX — (KiD 1+ pan)utl/NG,,, So<z<so+sy,
|
whereb,; andN?2, are given by sorbing layers. The presence of these im_aginary roots to the
best of our knowledge was not stressed in the literature, de-
o 2n1_ CO4KnoSot yno) _ _ SIMKno(So*2ADo)] spite their fundamental role in the construction of the correct
nm=; = =T ' solution (23). In fact, it is possible to demonstrate that the
a cogK,1Sg+ sinK,1(s;+2AD i . . .
o COKKniSo+ yn) MKna(sy 1)]24 transcendental equatiqii6) admits always imaginary roots
(24) wheneverDy#D. For the caséDy=D,, imaginary roots
~2 12 2 are found only if a minimum criterion for the change in the
Nlmn_NImn/|an0| ' (25)

absorption properties of the two layefsu,> (A xa) min 1S
met.

Equation(23) represents the Green’s function for the paral- . . .
a (23) rep P Let us start to write the relationship betweiéfy, andK?,

lelepiped in Fig. 1 where the source term is placed in the first
layer. In casez, belongs to the second layer the expressionaS
for the Green’s function changes and a new expression for
7mn(t=0) is obtained according to Eq&0) and(21). The D
expression ofb(r,t) for zo>s; is reported in Appendix C. Kﬁ1=—oKﬁo+ C, (26)
We point out that the position where the isotropic source D

term is placed does not affect the eigenvalugs,; there-
fore, the coefficient& 2, or K2, can be obtained as solutions
of the transcendental equatigh6) in the same way of the
casezy<sy.

The initial-boundary value problem is thus solved after 2
we determine the discrete number of solutions of the tran- C=(#ao~ #a1)/D1FKin(Do=D1)/Dy,
scendental equatiofi6). As stated before, here we are look- (27)
ing at the possibility that eitheK?, or K2, or both, are
negative; therefore o andK,,; are imaginary numbers. We
notice that imaginary roots of the transcendental equation
(16) naturally arise whenever this particular initial-boundary . ) . ) ) .
value problem is posed in two or three dimensions. Also inln Fig. 2 the linear relationship betwed(y; and K{, is
the one-dimensional cag®ef. [32], pp. 335-338 imagi- shown forC>0 andC<0, respectively. For the cade},
nary roots of the transcendental equation are possible if thec —(D;/Dg)C (C>0), or Kﬁ0<0 (C<0), possible roots
absorption coefficient is included in the parabolic equationK,, andK,; of Eq. (16) must be imaginary humber&,,
We note that this case is not treated in Rg2]. On the ==i|K,o and K,;==i|K,;|. By using the property
contrary, in two or three dimensions, imaginary roots of thetanh@)=—itan(iz), wherez is a complex number, E416)
transcendental equatiofi6) are possible even for nonab- becomes

where

K2 =KZ+K2 .
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'(Dl/ DO)C «Dy/ DO)C X

2
KnO

C

FIG. 2. The linear relationship betweétf, andK?, is shown
for C>0 (upper ling andC<0 (lower ling). The intersections with
the axis are also written.

1
———tanif £|K,o|(So+2AD

)tant[t|Kn1|(sl+ 2AD,)]. (28)

B 1
Dy(*i|Kp

We notice that Eq(28) is impossible; therefore, our prob-

lem cannot admit eigenvalues with bdtif, andK?2, nega-

tive. In terms of the eigenfunctions it means that no eigen-

function has a component along theaxis given by a

PHYSICAL REVIEW E 67, 056623 (2003

M, = int[\/Cl; /7] (“int” indicates the integer part of the
division), all the possible roots are found where,
eU;\Azol((Zj—1)77/2,]77)U(M077,JE|1) for the caseM,
>0. While for the casev,=0, the possible root is found
wherea; e (m/2,J/Cl;). It is also possible that there exists
at maximum a finite number of choices Kf and K,, for
which condition(30) is not met and therefore there are no
roots of Eq.(29).

If Dog=D;=D (whenC>0 it means thaju,o>ua1), a
necessary condition for EG29) to admit a finite number of

roots is
m Ma0™ Ma1
—< —_— 1.
2 V( D )“

It means that the change of absorption coefficient between
the layers must satisfy the following minimum criterion
(necessary condition

(32

2D

X (33
1

aa
Apa= pao— Ma1> (E

If Dy<D;,, the condition that we are considering>0,
is verified only for a finite number of choices of tikg and
K- Again Eq.(29) has roots, if conditior{31) is satisfied.
b. C<0. Possible imaginary roots are found in the inter-
val 0< Kﬁ0< —(D1/Dg)C. In this case, we are searching for

combination of exponential functions at both sides of thefoots of Eq.(16) of the kind: Kno=*|Kpo| and Ky,=
discontinuityz=s,. Let us now treat separately the follow- *i|Kqa|. After substitution in Eq(16), we obtain

ing two possibilitiesC>0 andC<0 to search for imaginary

roots of Eq.(16).

a. C>0. Possible imaginary roots are found in the inter-
val —(D;/Dg)C< K§0<0. Here, we are looking at the pos-

sibility that Eq.(16) is solved forK o= *i|K,o| andK,;=
+|K,1|. The four different choices for the sign &f,, and
K1 Yield the same equation

1
— ———tanl{|Ko|(sg+2AD
DO|Kn0| r[| n0|( 0 0)]

tar( |[Kpnq|(s;+2AD;)]. (29

- 1
D1|Knl|

Because we are studying EQ9) in a limited interval ofK 4
andK,;, we notice that a necessary condition for E2p) to
admit some roots is

Z<cly, (30)

where we have defindd=s;+2AD;. A sufficient condition
for EqQ. (29) to admit some roots is

’7T<\/6|1

If Dg>D1, surely condition(31) will be met for infinite
choices ofK, andK,,, and for each one of them E9)
admits a finite number of roots. If we defiag=|K,1|I; and

(31)

1
———tan |K,o|(Sg+2AD
D0|Kn0| r[| nO|( 0 O)]

1
= tant |K 1| (s;+2ADy)].

- 34
D1 /Kna] (34

Necessary and sufficient conditions for E§4) to admit
some roots are

T (Dl)

E< \/ — D—O C|0, (35)
| (D1

T _(D_o C|0, (36)

respectively, where we have defineg=so+2AD,.

If Dg<D4, surely condition(36) will be met for infinite
choices ofK, andK,,, and for each one of them E(34)
admits a finite number of roots. If we defing,=|Ko|lo
and My=int[ y—(D,/Dg)Clg/#], all the possible
roots are found where age U;V':Ol((Zj —1)ml2,m)
U(Mgm,y—(D1/Dg)Cly) for the caseMy>0. While for
the caseMy=0, the possible root is found whegr,

e (m/2,/—(D1/Dg)Cly). Itis also possible that there exists
at maximum a finite number of choices &f andK,, for
which condition(35) is not met and therefore there are no
roots of Eq.(34).
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If Do=D;,=D (it means thaiu,o<ma1), condition(35  This expression of the normalization factor is valid for Eq.
yields a necessary condition for the change in the absorptio(L6) for the case wherk ,o=|K,o| andK,;=|K,;|. For the

properties of the two layers: caseKno=1i|Kno| andK,;=|K,| [Eq. (29)], we have
2 .
D |2 , L[] o sinh2[Knllo)] .
Al’“az(l’val_ﬂao)>l_2<§) - (37 Nimn= 4 { 2 + 4K o Sinf(Kpqlq)
0
; Iy sin(2Kply)
If Dy>D;, the condition that we are considerif<o0, +S'”|’F(|Kn0|lo)[§_ et (41)

is verified only for a finite number of choices Kf andK,,.
Again, Eq.(34) has roots, if condition(36) is satisfied. Finally, for the casé,o=|K,o| andK,,=i[K,| [Eq. (34)],

We can summarize this study by stating that wheneve{ye have
Dy#D,, the transcendental equatiqi6) always admits
imaginary roots for eitheK,y, or K,;. While if Dy=Dq, ) L2([1y  sin(2Kpglo)
imaginary roots of EQ.(16) are possible only ifAu, N|mn=ZH§— TAK.
>(Aua)min, @and we have determined necess@md suffi- no
cient) conditions for both caseS>0 andC<0. _ I, sinh(2|Kqq|ly)

Now let us treat again simultaneously the two possibilities —sir?(Kpol o)[g - WH . (42
C>0 andC<0. If K3,>0 (C>0) or K3,>—(D,/Dy)C nt
(C<0), we search for real roots of the transcendental equ
tion (16). For this case, we have to solve E@6), and be-
cause we are studying it in an interval not bounded, we will

sinf(|Ky|l1)

e also provide the normalization factdi, , for Eq. (23):

always find infinite roots. X2 :L_z lo  sin(2Kpolo) Si?(Knol o)

Why are the imaginary roots of E¢L6) so important? If Imn= 4| 2 4K o Sin?(K 1)
we scan Fig. 2 from left to right we understand that when-
ever imaginary roots exist, they might yield the lowest eigen- [, sin(2Kply)
values and, in particular, the minimum eigenvalug;,. X §_Tnl ' (43
This is definitely the case if, for exampléyw,=0, Dy
>D,, and _ _

NZ :L_2 _I_O Slnr(2|KnO||0) Slnr?(|Kn0||0)
7<\Crminl 1, (38) mn4 2 4K ol SinA(Kil 1)

where C,,i, is the value ofC calculated forK,=K,=K; > |_1_Sin(2Kn1|1) (44)
=(a/L). It is obvious that the minimum eigenvalue domi- 2 4K 1 '
nates in the series solutiof23) (especially, at late time
Therefore, a large error in the shape of the temporal profile is 2 : :
expected if\ i, is not properly calculated. ”|2mn:|‘_ I_O_ Sin(2Knolo) siff(Knolo)

Let us finally discuss about the normalization factor 42 4Kno sinkP(|Knq|11)
Nimn- Expression(22) was obtained, provided that we had a )
complete orthonormal set of eigenfunctions, given by Eq. |_1_ sinh(2[Ky|11) (45
(12). The eigenfunction,,(r) are normalized if 2 41K ] '

1:f pime(F)pt () which are valid for the cases where bdth, andK,; are
0, Imn{t) Pimn real, wherK ,o=i|K,o| andK,;=|K|, andK,o=|Ko| and
Kni=i|Kn1|, respectively.

Finally, we notice that from the expression of the irradi-
ance(23) we can calculate the reflectan&£,t) and the
transmittancd (£,t) by using the meaning of the flux vector:

:f p0|mn(r)pélmn(r)dr+f pllmn(r)pIImn(r)dr'

Oe O'1e

(39
: R(&H=I(ED(—K),
whereQ . and (). are the extrapolated regions 8f, and (46)
Q,, respectively. After some calculations, we obtain T(ZH)=3(LH)(K)
2 .
2 :L_[ P_O_ Sin(2Knol o) SIF(K 4l ) where & and £ are arbitrary points on the surfaee=0 and
mn4 (]2 4Kno i z=sy+s;, respectively, and the flux vector is given by

I, sin(2K4l,) Fick's law; k is the unit vector along axis. From Eq(23),
+sin2(Kn0I0)[—l——nll} ] (40)  We can derive the following expressions for reflectatd
2 4Ky and transmittancé48), respectively:
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» equation(16), we have all the useful information for the
R(&t)= - mzn:l vD Ko cog K x)cog K y)SIiN(vno) calculation of the Green’s functions of the system at different

source-detector distances. The roots of Edp) have been
found with a combination of bisection and Newton-Raphson
methodq41]. All the figures reported in this section refer to
(47)  a refractive indexng=n;=1.4 of the medium and to a re-
fractive index of the externai,=1.
In Fig. 3, some comparisons between N&ymbolsg and

X €08* (K noZo+ Yno)€XH — (K3Do+ iag)vtl/NE,,

[

T(g’t)zhm%:l 0D 1Ky COLKX)COLKmy)bng DE (continuous linestemporal profilesGreen’s functions
. for the reflectance are shown. They refer to a parallelepiped
X sin Kn1(So+ 1) + ¥n11c08" (KnoZo+ ¥no) with  $,=100 mm, L=140 mm, po=pa=0, i

=1 mm? w4y=05mm? (crosses and u’,=2 mm?!
(48 Ms1 Msy

(diamond$. Figures 3a)—(c) refer to a thickness of the first

The whole procedure described provides the time domaitayer So of 2, 4, 8 mm, respectively. The source-detector
Green’s function for a two-layered parallelepiped illuminateddistance is fixed ad=22 mm. Although the comparisons are
by an isotropic light source placed iy. The theory for a shown for nonabsorbing layers the temporal profiles of MC
three-layered medium is described in Appendix D. When simulation and DE can be scaled for an arbitrary value of the
collimated laser beamz(axis in Fig. 1 is impinging the absorption by using the same form{i&. We notice that the
medium, some approximations need to be introduced. Thgeometry and the values of the optical propertigs the
real source term is substituted either by a line of isotropiarange of interest for biomedical applicatiorehosen in Fig.
sources or by a single isotropic point source locatedyat 7 yield the same temporal profiles that would be obtained for
=(0,0z,) as considered in our derivation. The coordingfe a laterally infinite medium consisting of a layer of thickness
is obtained by imposing that the line of isotropic point sy on top of a semi-infinite medium.
sources and the single point source have the same first mo- In Fig. 4, the comparison for the reflectance is shown for
ment [36,37. In accordance with this assumption if the the case in which the second layer cannot be considered as
thickness of the first layer is sufficiently large, we hayge  semi-infinite. While the optical properties of the two layers
=1/(ma0t ts), Wherepd, is the reduced scattering coeffi- are the same as those in the previous figure, the source-
cient of the first layef31] and it resultsu’,=1/(3D,) [38].  detector distance isl=18 mm, the thicknesses of the top
Although the more general line source can also be treated, idnd bottom layers arg;=4 mm ands;=8 mm, respec-
this paper we restrict our investigation to the single pointtively, andL =120 mm. From the comparison of Figs. 3 and
source. In the following section, comparisons with the result#, the effect of the lower boundary on light propagation is
of MC simulations obtained for a pencil light beam show rather evident. For the curve wita,=0.5 mm*, we ob-
that the assumption introduced to model the light source irserve a slight discrepancy between the analytical and the MC
the analytical theory[zy=1/(ua0+ud)] is sufficient to  results. This effect is due to a general limitation of the DE

have an excellent agreement between simulations and anand cannot be ascribed to the theory developed. In fact, the
lytical solutions. solutions of the DE in a homogeneous slab obtained with the

EBC show similar discrepancies on the time-resolved reflec-
tance where the source-receiver distance is large compared
with the thickness of the slab.

The results shown in this section were obtained by a com- In Fig. 5, a similar comparison between MC and DE tem-
parison of the exact analytical solution of DE, for a turbid poral profiles is shown for the transmittance. The optical
two-layered parallelepiped mediuffEgs. (47) and (48)],  properties are the same as before, while the thicknesses of
with the results of MC simulations. Details about the MC canthe two layers ars,=16 mm ands;=4 mm, respectively.
be found in Refs[30,39,4Q. For MC simulations, mainly we The curves are calculated at the pafrt(0,05,+5;).
used a scattering function derived from the Mie theory for a In Fig. 6, comparisons of MC and DE reflectance are
spherical particle having size parameter (a=2mR/\, shown for the casd=22 mm, s,=4 mm, s;=100 mm,L
whereRis the radius of the sphere andthe wavelength of =140 mm, uly=pul =1 mm !, andu,o=0.01 mm* and
light) equal to 10* and a refractive index mismatch of 1.2. 4., =0 (crosses or u,;=0.01 mm* and ua,=0 (dia-

The asymmetry factog resulted to be 510 2. However, mond$. We remind that because the scattering properties of
we stress that whenever we fixed the valuesugfin the the layers are identical, the approximate theory developed in
different layers, no significant differences were observed bea previous worlf{30] becomes exact and the results of the

tween MC results obtained for different combinations oftwo theories converge. However, the improvements of the
scattering functions and scattering coefficients. We point ouéxact theory are clear from Fig. 7 where a comparison
that by using our MC code, we could select different scatteramong an MC temporal profile and the results of the ap-
ing functions in the different layers. The program for the proximate and exact theories is shown for the case of reflec-
solution of the DE is organized according to the details givertance. Also shown in the same figure is the temporal profile
in the preceding section. It is worth to remind that once a sebbtained by using only the real roots of the transcendental
of eigenvalues is calculated by solving the transcendentatquation(16). It is clear that the imaginary roots of the tran-

xexf — (K3D1+ pan) vtl/Nf -

Ill. RESULTS
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T T
+ MC y'=05mm" 10 - - . -
X MC“M.=2m_1 x MCp,' =05mm’
DE M o MCy,' =2mm’
DE
Ko =1mm’ p,=p,=0
—~10° s,=2mm; s, =100 mm
] o L=140mm F’é‘
q-E . x=2mmy,=0 o 10°
= E
' x
+33 +
. L=120mm
LIS x:=18mn;y:=0
+¥ x
10‘90 1@ T T T T 10'9 . . . X%
@ 2000 3000 1000 5000 0 500 1000 1500 2000
)
ts) t(ps)
' + MC y,'=05mm’ FIG. 4. Reflectance calculated with MC simulatiogiggmbolg
o MC pm'=2rnrn'1 and with the solution of DEcontinuous linesfor the case of a
parallelepiped havingsg=4 mm, s;=8 mm, L=120 mm, w4
. et o o =pa1=0, uo=1mm?i ul=05mm?! (crosses and ul
10° [ £ '85_41"'":‘;"3’ 5“'100“'"'“0 =2 mm ! (diamonds. The source-detector distance is 18 mm.
< 0~ 1T
] L=140mm
) x=2mmy, =0 =0.5 mnm L.
E, - A few remarks are made about the program for the calcu-
o ! o lation of the DE temporal profiles and about the convergence

(®)

R (mmi®ps)

©

of the series in Eqs47) and (48). If we examine the pro-
posed method and the structure of the transcendental equa-
tion (16), we realize that the search of the eigenvalues is
mainly affected by the geometry of the medium. In fact, the
lateral size of the mediurh is related to the “density” of the
eigenvalue¥, andK,,, and the thicknesses of the layesg,
ands;, are connected with the period of the tangent in Eq.
(16). All the excellent comparisons presented in this work
were obtained by using between 15 and 25 eigenvatyes
andK,, for thex andy axis, respectively, and for each com-
bination K,, K,,) we searched for real roots and possible

+ MC ' =05mm’
o MCp, =2mm’
DE

107

Ho =1 mm’ = p, =0
§,=16mm; s, =4 mm

FIG. 3. Reflectance calculated with MC simulatioisgmbols
and with the solution of DEcontinuous lines for the case of a
parallelepiped havings;=100 mm, L=140 mm, u,0=pa1=0,
wlo=1mm?l ul =05 mni?! (crossel andul;=2 mm ! (dia-
monds. Parts(a)—(c) refer to the thickness of the first laygy of 2,
4, 8 mm, respectively. The source-detector distance is 22 mm.

L=100 mm
x{:O;yc=0

1000

t(ps)

FIG. 5. Transmittance calculated with MC simulatiofsym-

scendental equatiof16) are fundamental for the correct cal- pols) and with the solution of DEcontinuous linesfor the case of
culation of formulai47) and (48) The tempora| prOfI|es are g para||e|epiped havingoz 16 mm, Sl:4 mm, L=100 mm, wao

calculated at a source-detector distadee22 mm for a me-
dium having sp=4 mm, s;=100 mm, L=140 mm, w4
=0.004 mm?, u,;=0.03 mm, wlo=1 mm-

1

, and ug

=pa=0, plo=1mm?l ul=05mn?! (crosses and uml;
=2 mm ! (diamond$. The curves are calculated at the poifit
:(0,050+31).
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' + MC =001 mmy, =0 layers are significanfcly differer_nt. The computation time of a
10°- set Qf eigenvalues is proportional to the number of roots
required for the convergence of the series in H4¥) and
(48). For the cases examined, a set of eigenvalues was cal-
culated in a time always less & s byusing a Pentium IV
-.z 1.8 GHz.
"‘E 10° - IV. CONCLUSIONS
© = t=1 mm R | An exact expression for the time domain Green'’s function
;b_fﬁm s,=100mm solution of the diffusion equation in a layered-parallelepiped
L=140mm has been obtained making use of the eigenfunction method.
o x=2mmy,=0 The proposed method is an extension of the one used in a
10" T y T 7 previous papef30]. With respect to the previous work, cor-
0 1000 2000 3000 4000 5000

rect boundary conditions between the diffusive layers have
t(ps) been used and a finite geometry has been considered. The
key point of the method described in this paper is the solu-
tion of a transcendental equati@tb) for the eigenvalues that
can be accomplished in a short time with classical methods.
We stress the importance of imaginary roots of the transcen-
dental equation that, to the best of our knowledge, were not
addressed by previous investigators. We have found that
without including the imaginary roots of the transcendental
equation, the calculation of the Green’s function suffers from
the lack of significant terms and consequently the description
provided by the formulas can be greatly distorted. The cor-
rectness of the analytical expressions for the Green’s func-
tions of a layered parallelepiped has been investigated by
comparisons with the results of MC simulations. The results
Qave shown that the analytical solutions are in agreement

FIG. 6. Reflectance calculated with MC simulatioisgmbols
and with the solution of DEcontinuous linesfor the case of a
parallelepiped havingy=4 mm, s;=100 mm, L=140 mm, u.,
=pl=1 mm? and u,0=0.01 mm?! and u.,=0 (crosses or
ta1=0.01 mm ! andu,,=0 (diamonds$. The source-detector dis-
tanced is 22 mm.

imaginary roots of the transcendental equatib® by using
standard methodgt1]. About the indiced and m the con-
vergence of the series in Eqel7) and (48) depends on the
lateral dimension of the mediuin For smaller values of,

a lower number of eigenvaluds, and K,, are required to
reach a good convergence. The number of réggsandK ,;
along thez axis necessary to reach the convergence of th
series in Eqs(47) and(48) ranged between 5 and 35 for all with the_ MC res_ults. e .

the figures. Fewer terms are required when the thicknesses of The ”.‘fo”‘?a“on on th? diffusive layered medium can be.
the two layers are comparakfigsually less than J0whereas summarized in a set of eigenvalues that can be calculated in

more roots are necessary when the thicknesses of the wplime .Of about 1 s. A" the quantmt_as of phys_|cal mteregt n
any point of the medium are described by this set of eigen-

values. In particular, the Green's functions at different
source-detector distances can be calculated in a very short
time. The expression of the Green’s function and its math-
ematical dependence from the optical properties of the me-
dium is quite straightforward and has an easy interpretation.
Moreover, the time integration and the Fourier transform of

s,=4mm; s, =100 mm
L=140mm

x.=2mmy, =0

Ko =1mm’ ' =05mm’

I, = 0.004 mm"; ., =0.03 mm”

10-11
0

500
t(ps)

1000

1500

the Green’s function can be easily carried out to yield ana-
Iytical expressions for the CW and for the frequency domain.
The formulas were obtained by using the EE1] at the
upper and lower surfaces of the parallelepiped, but also the
more correct partial current boundary conditi®®CBQ [42]
can be used without any particular problem. The few changes
between EBC and PCBC are provided in Appendix E. Rig-
orous boundary conditions were used between the diffusive
layers. The more approximated ZB6] was instead used at
the lateral surfaces of the parallelepiped, since it simplifies

the lateral boundary condition and makes easier to derive the
and with the exact solution of DEhick continuous ling for the ~ @nalytical solution for the investigated geometry. The choice
case of a parallelepiped having,=4 mm, s,=100 mm, L  Of the boundary condition at the lateral boundary does not
=140 MM, pao=0.004 Mm%, up=0.03 mml, ulo=1 mmt,  significantly affect the reflectance or the transmittance, un-
and ul,=0.5 mnT L. The temporal profiles are calculated at a l€SS the source or the receiver is near to the boundary.
source-detector distance=22 mm. Also shown are the solution of ~ In this paper, we have shown an explicit derivation of the
DE calculated with only the real roots of the transcendental equaformulas for a two- and a three-layered parallelepiped, but
tion (broken ling and the solution of DE calculated with the ap- the proposed procedure can be extended to a higher number

proximate theorythin continuous ling of layers. It is expected that the complexity of the calcula-

FIG. 7. Reflectance calculated with MC simulatiqdsamond$
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tions required to obtain the Green’s function is going to in- 19
crease with the number of layers considered. We have pro- [; 5+M3—DV2}®(r,t)=0, t>0 (A2)
vided the solution for a layered parallelepiped, but we
remark that other finite layered geometriesy., cylindrical L L
can be easily solved with the same method. CD(XZ i—,y,z,t) =d| x,y= i—,Z,t)
Despite the important role played by analytical solutions 2 2
of the time domain DE, only a few studies presented useful =d(x,y,z=04)
expressions for layered media. On the topic of light propa-
gation through layered random media, there is the lack of =d(x,y,z=L,t)=0, (A3)
rigorous, simple, and explicit analytical expressions that are
straightforward to be used for describing photon migration in O(r,t=0)=vd(r—ro), (A4)

here we have assumed that ZBC is valid throughout the
boundary of the cube, ang=(0,0z,). We will search for a
solution of the kind

proposed were developed for more restricted geometries. F
example, one common element of other models is the r
guirement that the layered medium is laterally infinitely ex-
tended. This paper is intended to provide a flexible and gen- _

eral method for studying light propagation in finite layered erH=p(nn(®). (AS)
media able to overcome some of the drawbacks of othegubstituting Eq(A5) in Eq. (A2), we get

published theories.

layered geometries. We also notice that models previous‘lﬁl

In order to see the performance of the analytical solutions dn(t)/dt=—An(t),
for the retrieval of the optical properties of the medium we ) 5 (AB6)
have performed a preliminary investigation by implementing V<p(r)+Kp(r)=0,

a fitting procedure based on the formulas presented. We haveh K2 ()] D
carried out fitting procedures on measurements simulatel eLe ; _();] ”_h'“aé.ﬁ " 2 . .
with MC results. The convergence of the procedure and the 1€ fact that the diffusion operatpr-DV®+ u,] is posi-

retrieval of the optical properties was obtained in a few min-IVe and self-adjoint implies that=0; however, the Helm-

. . . 2
utes. These preliminary results show the potentiality of thdltZ €quation in systertA6) admits roots also foK*<0.
formulas to be used in the inverse problem for reconstructiod "€ Helmholtz equation can be solved by separation of the
of the optical properties of an unknown medium. variables method. We will search for a solution
Finally, we would like to point out that the method pro- _

’ ) . . ) r=fx)f fn(2). A7
posed to solve the DE in the time domain could find several PN =H()Tm(y)Tn(2) (A7)
applications for all those physical phenomena that are clasafter substitution of Eq(A7) in the Helmholtz equation in
sifiable as a diffusion process. For_instance., we mentipn theystem(A6), we obtain
heat transfer through isotropic solid materials for which a

similar mathematical approach can be used. d?f,/(f,dx?)=—KZ,
2 2y k2
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under Grant No. MM02163721. Let us consider, for example, the second equation in system

(A8). We will treat separately the two caskd >0 andK?
<0 as follows.

APPENDIX A: SOLUTION FOR A (a) K2>0: For this case, the general solution of the equa-
HOMOGENEOUS CUBE tion is

As an example of the eigenfunction method, let us con- _
sider a homogeneous scattering and absorbing cube having fn(Y)=Am cOS Ky + ym). (A9)
sideL. We can consider Fig. 1 for the reference system ang¢condition (A3) is satisfied, for example, ifK,,=(2m
geometry 6,+s;=L). The time-dependent diffusion equa- _— 1)w/L, m=1,2,3,... A, arbitrary, andy,,= 0.
tion for a Diracs source term is (b) K2<0: For this case, the general solution is

fn(Y)=Anexp(pmy) +Bmexp(—pmy), (A10)

where A, and B,, must be determined from the boundary
conditions and the parametpy, verifies p2,=—K2,. How-
This problem is equivalent to the following initial-boundary ever, condition(A3) can never be satisfied by EGA10),
value problem: unlessp,,=0 andA,,=—B,,, and obviously this solution

10 ,
S or THa= DV () =a(r=ro)a(t). (A1)
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must be discarded. The same arguments apply for the funq— * 2 (K* )21 — i *
tions f; andf, in Egs.(A8). We notice that for the function &= (anoay o)/ [Kfio~ (K,0)*]L — Ko cOgl oK) sin(l oK, )
f,, the constant phase tergp, is y,= 7/2. Finally, it is easy +K?, o sin(1 oK ng) o 10K )]
to verify that the functions

+(an1a:,1)/[Kﬁ1—(K’,:,1)2]

3/2 . *
Pimn(1) = (E) [cog K x)cog K ny)cog K z+ m/2)], X[ KmeosliKnysin(li K )
(A11) +K%,sin(l;Kpp)cog 1K, )T (B2)

with K, Ky, K, given b . . .
s Bms Bn d 4 On the basis of the system of Eq45) and its conjugate

system, and on the basis of the relationship betWéﬁrand
Ki=(2I=-1)=/L, 1=123..., K2, [see Eq.(26)] and its conjugate we can prove that ex-
pression(B2) vanishes. In fact, we have

Kn=(2m—-1)m/L, m=123..., (A12)

D
2 _~20-,2
Ky,=nw/L, n=123..., Knl_(K:'l)z_Dl[KnO_(K:'o)Z]! (B3)

constitute a complete orthonormal set of eigenfunctions for
the cube. In order to find the time-dependent solution in Eqgs. a0 DoKpo
(A6), we can apply the same arguments used in Sec. Il. Fi- cogl1Kp)= an mcos{loKno), (B4)
nally, we are led to the following solution of our initial-
boundary value problem:
*

a
© . 0 . *
sin(1,K%, ;) = — ——sin(IoKZ, o), (B5)
O(rH)=(21L)° > v cogKx) cogKpy) T "o
I,mn=1
X cosgK,z+ 7/2) cog K zg+ 7/2)

. Ano .
X expf — (K2D + pa)ut]. (A13) sin(l K = — a—:lsm(loKno), (B6)

APPENDIX B: ORTHONORMALITY . .

OF THE EIGENFUNCTIONS . an0 DoKyirg N

cog 4K, )= —— = COg oK (). (B7)

The orthonormality of two eigenfunctiong,,(r) and ayq DiKprg
pirme (1) (11) can be easily proved for the cabe&l’ or
m#m’; however, wherd =1" andm=m’ butn#n’, it re-
quires more calculations. We refer our proof to the solution TO obtain Eq.(B3), we have used the property*()?
for a two-layered medium. In the proof for the coefficielys = (z°)* and the fact tha€C=C' [see Eq.(26)]. By substi-

andl,, we use the definition in Sec. Il. What we have to tuting expression$B3)—(B7) in the second term of expres-
prove is that sion (B2), we obtain the result.

We note that expressiaB2) is valid only if n#n’, and
this hypothesis is necessary to prove the orthonormality of

JSO o COL K 102+ Yno)@n, o COS (Kyyr0Z+ ypro)dz the eigenfunctions. However, expressiB2) can also be
~2ADg used for the case=n’ (that is, for the normalization of the
SN eigenfunctionsif we treatK,, andK,; as continuous vari-
+f an €0 Kn1z+ yn1)ay, ables and we calculate the limit fé€,o— +K,, and K,
%0 —=*K?, . The double sign depends on the fact thd},
X €os" (Kpr1Z+ ypr1)dz=1=0. (B1)  andK},, can be either real or imaginary numbers. In this

way we will find the normalization factors given in Sec. Il
Making use of the Schwarz reflection princigRef.[34],  [see Eqs(40)—(45)]. We point out that the key point of dem-
p. 391 applied to the cosine function, that is, &@&®  onstration is the boundary condition between the diffusive
=cos*), wherez is a complex variable, of general proper- layers. In other words, the orthonormality is guaranteed by
ties of the trigonometric functions and of the definition of the boundary conditions assumed. Following a similar ap-
vno @nd y,1 [see Eq.(14)] the integrals in Eq(B1) can be proach it is also possible to prove the orthonormality of the
calculated as solution for a three-layered medium.
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APPENDIX C: SOLUTION WITH zy>s,

The Green'’s function for a two-layered parallelepiped when the source term is placed in the second laggr, dg€.iS

f ©
| g:l v cog KX)o K 1Y) cos K noZ+ ¥no)
X b*, cos (Kn1zo+ yn1)extd — (K3Do+ mag)vt]/NZ, ., 0<z<s,
d(r,t)=/{ (CY)

o

2 v cog K x)cog K y) b1 COg K12+ yny)

I,mn=1

| X by 08" (Knazo+ yn)exd — (KID 1+ pan)vtl/Nffy, So=z=3p+s;.
The expression ofxl,zmn changes according to Eq&C1) and(39).

APPENDIX D: SOLUTION FOR A THREE-LAYERED PARALLELEPIPED

Let us consider a parallelepiped medium composed by three layers. Referring to Fig. 1 the planes across which the optical
properties are discontinuous are s, andz=sy+s;. The total thickness of the mediumss-sy+s;+ s, and the lateral size
is L. The optical properties of the three layers arg, Dg, ma1, D1, andu,,, D, for the top, medium, and bottom layers
respectively. For the solution of this problem we can apply the same method as described in Sec. Il. We have to solve the DE
in three regions and apply the ZBC on the lateral surface and the EBC on the bases of the parallelepiped, respectively;
moreover, the continuity of the irradiance and of the photon flux must be applied at the plaggandz=sy+s,. After the
separation of variables, we search for solutiégigenfunctions of the problenof the three Helmholtz equations of the kind

Poimn=COg K|X)Cog K y)an0 COg KpoZ+ yno), 0sz<s,

plmn(r):N X { P1imn= COLK X)COLKnY)ans COSKn1Z+ yp1), SoSZ<Sp+s; (D1)
Imn
p2imn= COSK X)COI K py)anz COS Koz + yp2), SotS1<z<Sp+S;+S;.

The ZBC applied at the lateral boundary yields the same set K%: K,2+ Kr2n+ Kﬁl,
of eigenvalueX, andK,, found in the previous casg2),
while the EBC applied to the top and bottom bases yields

K2=K2+K2+K2,.
Yro=2K 10ADo+ /2, (D2) 20 m n2

Yn2= ~ Kna(So+ 81+ 8,+ 2AD) + 7/ 2. Therefore, we can solve systefd3) for the variablesK

E th tinuity of the irradi d the photon fl tand vn1- The normalization of the eigenfunctions is carried
rom the continuity of the irradiance and the photon 1iux at,,t i the same way described previously. Applications of the
the planesz=sy; and z=s,+s;, we derive the following

f d | o eigenfunctions method for a three-layered slab have been
system of transcendental equations: already presented within the approximate thel@g].

DKo tan(KoSo+ vno) =D 1Kps tan(Ky,1Sp+ ¥n1),

(D3) APPENDIX E: SOLUTION WITH THE PCBC
D;Knitan Kni(So+ 1) + ¥nil o _ _
A two-layered medium is considerédgee Fig. 1 Instead

=DKpz tar Kna(So+81) + ¥l of using the EBC at the surface=0 andz=s,+s;, the
] N PCBC can be use2]. To use the PCBC, Eq14) should
Moreover, we derive the condition be substituted by

KEDo+ tag=KiD1+ tar=K3Do+ ptap,  (D4)
2 102 12 ' Yno= —arctan1/(2ADoK o) ],
whereKg,K7,K5 are defined by the formulas (E1)
K=K+ Kt Ko, (DS) Ym=—Kni(Sg+ ;) +arctaf 1/(2AD1 K1) ]
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The fluence rate in the diffusive layers is derived with the R(&ED)=[1/(2A)]D (&),
same procedure as described in Sec. I, provided the expres- (E2)
sions for the normalization factor, Eq€.0—-45, are updated T =[1/(2A)]D (L 1).

to the PCBC. The expressions for the reflectance and the
transmittance are obtained from the expressions for the flifhe same procedure can also be used for a three-layered
ence rate and from the PCB@2] according to equations ~ medium.
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