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Oscillatory wave fronts in chains of coupled nonlinear oscillators
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Wave front pinning and propagation in damped chains of coupled oscillators are studied. There are two
important thresholds for an applied constant stressF: for uFu,Fcd ~dynamic Peierls stress!, wave fronts fail to
propagate, forFcd,uFu,Fcs stable static and moving wave fronts coexist, and foruFu.Fcs ~static Peierls
stress! there are only stable moving wave fronts. For piecewise linear models, extending an exact method of
Atkinson and Cabrera’s to chains with damped dynamics corroborates this description. For smooth nonlineari-
ties, an approximate analytical description is found by means of the active point theory. Generically for small
or zero damping, stable wave front profiles are nonmonotone and become wavy~oscillatory! in one of their
tails.
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I. INTRODUCTION

Wave fronts and pulses play important roles in ma
physical systems. Examples abound: the motion of dislo
tions @1,2# or cracks@3# in crystalline materials, atoms ad
sorbed on a periodic substrate@4#, the motion of electric field
domains and domain walls in semiconductor superlatti
@5,6#, pulse propagation through myelinated nerves@7#, pulse
propagation through cardiac cells@8#, etc. Furthermore, thes
localized waves often play an important role in statisti
mechanics@9# or quantum field theory@10#. When wave
fronts or pulses are solutions of spatially discrete syste
they often fail to propagate unless an external force or
rameter surpasses a critical value@11#. Wave front pinning in
discrete systems may be related to such different phys
phenomena as the existence of Peierls stresses in contin
mechanics@12# or the relocation of electric field domains i
semiconductor superlattices@6#. In the continuum limit, the
width of the pinning interval~range of the external force fo
which wave fronts fail to propagate! tends to zero exponen
tially fast and many authors have calculated the critical fo
for different models in this limit@2,13–15#.

Not surprisingly, wave front motion and pinning are d
ferent depending on the dynamics describing the mode
hand. To be precise, let us consider a chain of nonlin
oscillators, diffusively coupled and subject to an exter
force F that acts as a control parameter:

m
d2un

dt2 1
dun

dt
5un1122un1un212Ag~un!1F. ~1!

Typical nonlinearitiesg(u)5V8(u) are cubic, such tha
Ag(u)2F has three zeros,U1(F/A),U2(F/A),U3(F/A)
in a certain force interval@g8„Ui(F/A)….0 for i 51,3,
g8„U2(F/A)…,0]. Moreover, g(u) is symmetric with re-
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spect to U2(0). Examples are the overdamped Frenk
Kontorova~FK! model (g5sinu) @1# and the quartic double
well potential @V5(u221)2/4# @14#. A.0 measures the
strength of the coupling andm the relative strength of inertia
and friction terms. Wave front solutionsun5w(n2ct) join
the two stable constant statesU1(F/A) and U3(F/A) ~or
vice versa! asn increases from2` to `.

Consider the extreme cases of conservative (m5`) and
overdamped dynamics (m50). In the overdamped case
wave fronts generically either move ifuFu.Fc.0 or are
pinned if uFu<Fc @11#. The depinning transition atFc was
described by Carpio and Bonilla@11# for large and moderate
values ofA, by King and Chapman@15# in the continuum
limit A→0, and by Fa´th @16# for a piecewise linearg(u). In
the conservative case and for generic cubic nonlineari
g(u), there are two critical forcesFcd and Fcs with 0
,Fcd,Fcs5Fc . Wave fronts may propagate stably foruFu
.Fcd but there are stable stationary~pinned! wave fronts if
uFu,Fc . Thus, pinned and moving wave fronts may coex
if Fcd,uFu,Fcs . The valuesFcs andFcd correspond to the
static and dynamic Peierls stresses of the literature on d
cations@2#. Atkinson and Cabrera found exact expressio
for the wave fronts corresponding to a piecewise linearg(u)
and calculated the relationship betweenF and wave front
velocity @17#. An approximate theory was found somewh
earlier by Weiner@18#. More recently, Schmidt@19# and later
authors@20,21# found exact monotone wave fronts of conse
vative or overdamped systems by constructing models w
nonlinearities such that the desired wave fronts were s
tions of the models. In particular, Flachet al. @21# showed
coexistence between moving and pinned monotone w
fronts of a discrete system with conservative dynamics
F50. On the other hand, for a sine nonlinearity andF50,
the numerical computations of Peyrard and Kruskal@22#
show that an initial profile close to the continuum sin
Gordon soliton loses energy via emission of phonons an
becomes pinned after a sufficiently long time interval. Th
also found stable moving wave fronts for small positi
F, consistent with our previous statement that, generica
Fcd.0.
©2003 The American Physical Society21-1
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A. CARPIO AND L. L. BONILLA PHYSICAL REVIEW E 67, 056621 ~2003!
In this paper, we study the wave fronts of the damp
system~1! and the transitions atFcd and Fcs . In contrast
with previous work, we find wave fronts that are nonmon
tone, presenting wavy tails at one or both sides of a transi
region in which the profilew(n2ct) jumps an amount close
to @U3(F/A)2U1(F/A)#. We call themwavy wave fronts.
These fronts with wavy profiles persist even in the conser
tive limit (m→`) @23#, and in fact Atkinson and Cabrera
wave fronts are also wavy, as these authors would h
found out had they depicted their exact expression gra
cally. In the overdamped limitm→0, Fcd→Fc and the wave
front profiles become monotone. We have thus arrived t
general picture of wave fronts in discrete chains of coup
nonlinear oscillators withm.0.

The rest of the paper is organized as follows. Section
considers Eq.~1! with a piecewise linearg(u). We find exact
formulas for the wave front profiles in the general damp
case following the method of Atkinson and Cabrera’s@17#.
These profiles are often wavy and they are asymptotic
stable in the damped case. It is important to obtain them
two reasons:~i! there are very few exact wave front solutio
that are nonmonotone and~ii ! in the limit of large inertia, it
is hard to discriminate numerically between wavy wa
fronts traveling with different velocities or having differen
profiles. Exact solutions make good benchmarks for num
cal methods. The results for the damped model with a
neric cubic nonlinearity are presented in Sec. III. We cal
late the static and dynamic Peierls stresses for typical va
of A and m. A characterization of these stresses is given
terms of our active point theory. Section IV contains a d
cussion of our results.

II. EXPLICIT CONSTRUCTION OF WAVE FRONT
PROFILES

Let us rescale time in Eq.~1!, so thatt5t/Am, and con-
sider a piecewise linearg(u):

d2un

dt2
1a

dun

dt
5un1122un1un212Ag~un!1F, ~2!

g~un!5H un11 for un,0,

un21 for un>0,
~3!

where a51/Am. Notice thatg(u)5u1122H(u), where
H(x)51 for x.0 andH(x)50 for x,0 is the Heaviside
unit step function. Let us consider a smooth wave front p
file un5w(x)[v(x)21, x5n2ct, moving rigidly with ve-
locity c. We center the wave front so as to havew(0)50.
Taking into account thatg(u) is an odd function and using
the front profileun(t)5w(n2ct), we can see that the fol
lowing transformations leave Eq.~2! for w(x) invariant:

~x,w,c,F !→~2x,w,2c,F !,

~x,w,c,F !→~x,2w,c,2F !,

~x,w,c,F !→~2x,2w,2c,2F !. ~4!
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Let us consider now the caseF.0, c.0, andw8(0),0,
i.e., a wave front profile that decreases in the transition
gion aboutx50. Transformations~4! yield a profile with~i!
c,0, F.0 increasing in the transition region,~ii ! c.0, F
,0 increasing in the transition region, and~iii ! c,0, F
,0 decreasing in the transition region. Thus, we find t
sgnw52sgn(xcF), g(w)5w1122H„2x sgn(cF)…, and
we can restrict ourselves to consider the caseF.0, c.0,
andw8(0),0: All other three possible cases can be obtain
from our results by using Eq.~4!; see Fig. 1. The wave fron
profile v(x)5w(x)11 satisfies

c2v9~x!2acv8~x!2@v~x11!22v~x!1v~x21!#1Av~x!

52AH„2sgn~cF!x…1F, ~5!

with v(0)51. We can calculatev(x) by using the contour
integral expression for the step function

H~2x!52
1

2p i EC

eikx

k
dk. ~6!

Here,C runs over the real axis in the complexk plane pass-
ing above the pole atk50 as in Fig. 2. Forx.0 (x,0), C
is closed by a semicircle in the upper~lower! half plane
oriented counterclockwise~clockwise!.

FIG. 1. Symmetries in the wave front solutions forA50.25,
a50, c50.5, andF50.009.

FIG. 2. Contour for the Heaviside step function~6! and the
integral formula~7! and ~8! whenaÞ0.
1-2
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OSCILLATORY WAVE FRONTS IN CHAINS OF . . . PHYSICAL REVIEW E 67, 056621 ~2003!
Then the solution of Eq.~5! is

v~x!5
F

A
2

A

p i EC

exp@ ik sgn~cF!x#dk

kL~k,a!
, ~7!

L~k,a!5A14 sin2S k

2D2k2c22 ikucua sgn~F !. ~8!

All the zeros of the functionL(k,a) given by Eq.~7! are
complex fora.0, and they correspond to exponentially l
calized modes. The nonzero poles of the integrand in Eq~7!
can be found graphically by plotting the curves ReL(k,a)
50 and ImL(k,a)50 in the complexk plane, as depicted in
Fig. 3. Whena→0, a finite number of poles tend to the re
axis, whereas infinitely many keep a nonzero imaginary p
even ata50. The poles on the real axis correspond to
diation modes, cause oscillations in the wave front tails,
their number increases asc decreases; see Figs. 4~a! and
4~b!. The purely imaginary poles of Figs. 3 and 4~c! yield the
central monotone part of the wave front profiles. Fora50,
the integration contour in Eq.~7! avoids poles on the rea
axis according to a criterion due to Atkinson and Cabr
@17#, shown in Fig. 5 and derived later in this section. W
will use Eq. ~7! and the method of residues to constru
profiles satisfyingv(x).1 for x,0 andv(x),1 for x.0.
Notice that we can obtain a complex dispersion relation
tween v5kc and k from L(k,a)50. The contour choice
and the fact thata.0 give rise to an exponential decay
v(x) to its asigned values atx56`. Whena50, the wave
fronts may exhibit undamped oscillations extending all
way to infinity.

The conditionv(0)51 yields a relationship between th
wave front velocityc and the external forceF:

FIG. 3. Complex poles as an intersection of the curv
ReL(k,a)50 and ImL(k,a)50 whenc50.2, A50.25 and~a! a
50, ~b! a50.1, ~c! a51.
05662
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F

A
2

A

p i EC

dk

kL~k,a!

5
F

A
2 (

L(p,a)50,Im(p).0

2A

pLk~p,a!
, ~9!

where we have assumed thatcF.0 andv8(1),0. The re-
sulting functionF(c) can be calculated by computing th
series of residues numerically. OnceF(c) is known, Eq.~7!
can be used to compute the wave front profiles for a p
„c,F(c)…. We shall now show how this construction work
out for a50, a5`, and fora finite.

A. Conservative case:aÄ0

It is instructive to see what happens in the conserva
limit a→01. In this case,L(k,0)50 has real solutions, and
we need a criterion to move the contourC above or below
the corresponding poles in integral~7!. To obtain it, we shall
use the notationL(k)5L(k,0). Letk0 be a real zero ofL(k).
The complex zero ofL(k,a) that becomesk0 at a50 satis-

FIG. 4. Real poles in the conservative casea50 with A
50.25: ~a! c50.5, ~b! c50.01. Purely imaginary poles whenA
50.25 ~c! c50.5, a51.

FIG. 5. Contour for the integral formula~7! and~8! in the con-
servative casea50 for c.0 andF.0.
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A. CARPIO AND L. L. BONILLA PHYSICAL REVIEW E 67, 056621 ~2003!
fies 05Lk(k0,0)(k2k0)1La(k0 ,0)a1•••, which yieldsk
;k02La(k0,0)a/Lk(k0,0), that is,

k;k01
iak0ucusgnF

L8~k0!

⇒sgn~ Imk!5sgn~cF!sgn@ck0L8~k0!#, ~10!

asa→01. We know that the contourC in Eq. ~6! lies in the
upper~lower! half plane providedcFx.0 (cFx,0). There-
fore, the poles whose residues count must satisfycFxImk
.0. Then, Eq.~10! implies that we should count poles sa
isfying xck0L8(k0).0. The physical meaning of this crite
rion becomes clear if we calculate the group velocity cor
sponding to modek0 . L(k)50 yields (kc)25@v(k)#25A
14 sin2(k/2). Then, 2v(k)v8(k)54 sin(k/2)cos(k/2)
5L8(k)12kc2. Thus,vg[v8(k) obeys

vg5c1
L8~k!

2kc
⇒sgn~vg2c!5sgn@ckL8~k!#, ~11!

and we observe that the poles whose residues contribu
the solution satisfy (vg2c)x.0. This was the criterion use
by Atkinson and Cabrera@17#: All modes with vg.c must
appear ahead of the wave front (x.0), all those withvg
,c must appear behind (x,0). See Fig. 5.

For c.0 anda50, condition~9! becomes@17#

F

A
5 (

L(k)50,k.0

2A

kuL8~k!u
. ~12!

This formula follows straightforwardly from the fact tha
L(k) andkL8(k) are even functions of~real! k and symmetry
considerations. Notice that our assumptionc.0 has yielded
F.0. The relationF(c) given by Eq.~12! is plotted in Fig.
6 for a valueA50.25 ~see also Fig. 3 of Ref.@17#!. For a
given value of the external forceF, there may be severa
values of admissible velocitiesc, each corresponding to
different wave front profile. Thus, different families of wav
fronts ~not all of them stable! may coexist for the same valu
of F. The functionF(c) presents different vertical asymp

FIG. 6. ~a! F(c) for a50, A50.25 as computed from formula
~11!. ~b! Zoom in the region of resonances forc small.
05662
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totes at positive valuesci , c1.c2.•••, where bothL(k)
and L8(k) and vanish for positivek. We have cn

;AA/(2pn) asn→`, so that the vertical asymptotes acc
mulate atc50 as suggested by Fig. 4. In fact, the veloc
can be eliminated from the two conditionsL(k)5L8(k)50
yielding A12(12cosk)5ksink. For large values ofk, this
givesk;2pn1A/(2pn), as the integern→`. The condi-
tion L8(k)50 then yields the previous formula forcn .

The range of physical interest corresponds toc1,c,1
~wave front velocities larger than the largest resonant ve
ity but smaller than the sound speed@17#!. Let „cm ,F(cm)…
be the minimum of the first and fastest branch ofF(c).
Then, Fcd5F(cm) yields the dynamic Peierls force, unde
which the ‘‘physical’’ branch ofstable wave front profiles
ceases to exist. This force is smaller than the static Pe
force, Fc5A3/2(A14)21/2, for the piecewise linear mode
@17#.

Using the radiation condition (vg2c)x.0, we have plot-
ted in Figs. 1 and 7 several wave front profiles. Figure 1~a!
shows a wave front profile fora50, A50.25, and F
50.009. The wave velocity isc50.5. The profile has been
numerically approximated by computing the contour integ
~7! as the series of residues truncated to a few terms.
interesting to observe that the right tail of the wave fro
decays fast toU1(F/A), whereas the left tail oscillates abou
U3(F/A) with uniform amplitude. The reason for this beha
ior is that for the above parameter values, there are two
zeros ofL(k) at 6k0 with k0L8(k0),0 that contribute a
nondecaying oscillation to the left tail. An infinitesima
amount of friction would dampen these oscillations by co
tributing a multiplicative factor exp$2@ak0c/L8(k0)#x% to their
amplitude. Figure 7~a! shows a wave front profile forc
50.23. Notice the decaying small oscillation in the right ta
We have still two real poles, but nowc50.23 is placed at the
left of the minimum in the first branch ofF(c); see Fig. 6~a!.
Figure 7~b! shows a wave front profile forc50.2, in the
second branch ofF(c), past the first resonance. Now w
have three pairs of real poles. Two of them contribute to
oscillation in the left tail, the other one produces the oscil
tion in the right tail.

FIG. 7. Wave front profiles forA50.25, a50 and ~a! c
50.23, ~b! c50.2.
1-4
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OSCILLATORY WAVE FRONTS IN CHAINS OF . . . PHYSICAL REVIEW E 67, 056621 ~2003!
The dynamical stability of the constructed wave front s
lutions can be numerically checked by using their compu
profile as initial data to solve Eq.~2! with a50 @24#. The
results are compared at a fixed timet560 to the expected
configurationw(n2ct) in Fig. 8. The choicec50.5 seems
to produce a stable wave front. The choicec50.23 @still on
the first and fastest branch ofF(c) but to the left of its
minimum#, evolves towards a static front. The choicec
50.2 @on the second branch ofF(c)], evolves towards a
wave front moving faster than expected, with a speed on
first branch ofF(c). Thus, our numerical results seem
indicate that stable wave fronts have velocities on the fi
and fastest branch ofF(c) with F8(c).0, to the left of the
minimum speed on this branch,cm.0. ThenFcd5F(cm),
and stable wave fronts withv8(1),0 have speeds large
than or equal tocm .

We have found wave front profiles with oscillatory tai
that seem stable under small disturbances. One question
comes to mind is whether these profiles occur in models w
smooth nonlinearities. The answer is yes: See an exp
construction in the Appendix.

FIG. 9. Overdamped limit whenA50.25. ~a! Wave front profile
for c50.02, ~b! F(c) as computed from formula~9!.

FIG. 8. Dynamical stability whenA50.25, a50. We compare
un(t) ~solid line! to w(n2ct) ~dot-dashed line! for ~a! c50.5, ~b!
c50.23, ~c! c50.2.
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B. Overdamped limit: aÄ`

The results in the overdamped limitm50 are consistent
with previous work@11,15,16#: there are one wave front pro
file and onec for each fixedF above a thresholdFc . Wave
front profiles are monotone and they resemble staircases
c small. See Fig. 9.

C. Finite damping: aÌ0

The results for finite damping interpolate between t
conservative and overdamped cases. For smalla, the func-
tion F(c) and the wave front profiles are nonmonotonic,
though their oscillations decay asn→6`; see Fig. 10. Fig-
ure 11 shows a comparison betweenun(t) for a50 ~for the
same values as in Fig. 8!. We observe that, for this sma
damping, the corresponding wave fronts have the same
bility properties as in the conservative case: dynamica
stable forc.cm and unstable forc,cm . Moreover, there are
dynamic and static Peierls stresses that are different f
each other, as in the casea50.

FIG. 10. Results forA50.25, a50.01. ~a! Wave front profile
for c50.5, ~b! F(c) as computed from formula~9!.

FIG. 11. Comparison betweenun(t) calculated fora50 for the
same values as in Fig. 8~solid line! and un(t) for a50.01 ~dot-
dashed line!. ~a! F50.009, ~b! F50.01, ~c! F50.029.
1-5
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A. CARPIO AND L. L. BONILLA PHYSICAL REVIEW E 67, 056621 ~2003!
It is interesting to ascertain the shape of the functionF(c)
because its inverse function constitutes a bifurcation diag
clarifying wave front depinning. In the conservative ca
F(c) has infinitely many vertical asymptotes~resonances!
accumulating atc50. As a→01, the conditionsL(k,a)
5Lk(k,a)50 yield

k;k01U ak0c

cosk02c2U1/2

ei (p/4)x1 ip l , l 50,1, ~13!

x5sgn@~cosk02c2!k0F#. ~14!

This formula shows how the double polesk5k0 of the con-
servative case split when an infinitesimal friction is prese
Then the vertical asymptotes ofF(c) at c5cn give rise to
local maxima ofF(c) for small a.0. These maxima are
hard to resolve numerically@see Fig. 10~b!#, but they can be
approximately calculated as follows. Only poles with po
tive imaginary part contribute to the sum in Eq.~9!. For these
poles, the exponential factor in Eq.~13! is (x1 i )/A2, and
their contribution to the sum in Eq.~9! is approximately
given by

~2a!21/2A~x2 i !

k0sgn~cosk02c2!uk0c~cosk02c2!u1/2
.

To this expression, we should add its complex conjugat
contribution to the sum in Eq.~9! due to the pole2k0. If we
keep only these contributions in Eq.~9!, thereby assuming
that the considered maximum ofF(c) is large,FM@1, we
obtain

uFMu;
A2A2a21/2

uk0u3/2uc~cosk02c2!u1/2
. ~15!

Now, in the conservative case,cn;AA/(2pn) and k0
;2pn1A/(2pn) as the integern→`. Then the right side
of Eq. ~15! becomes proportional tocn . Whenn is so large
thatcn is no longer large compared toAa, other terms of the
sum contribute appreciably toF in formula ~9!. We conjec-
ture that these contributions add toFcs ,

uFMu2Fcs;A2

a
A5/4cn , cn;

AA

2pn
, ~16!

so that the maxima ofF(c) accumulate nearc50 as the
integern→`. We have depicted schematically the resulti
F(c) and the bifurcation diagram ofc versusF in Fig. 12.
Corresponding to the infinitely many local extrema in F
12~a!, there are infinitely many limit points~saddle-node bi-
furcations! in Fig. 12~b!. Our numerical results indicate tha
only the branch of wave fronts with larger velocities in t
physical intervalcm,c anduFu.Fcd are stable. This can b
understood from the factorization theorems in Ref.@25#. Ac-
cording to these theorems, one eigenvalue of the linear
bility problem corresponding to the solution branches in
bifurcation diagram changes sign at limit points. If we u
that the branch of wave fronts with larger velocity is stab
05662
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the branch that coalesces with it at the limit pointF5Fcd is
unstable. This branch coalesces with another one at ano
limit point with largerF, and, there, a different eigenvalue o
the linear stability problem changes sign from negative
positive. If this is so, the new branch is also unstable and
other wave front solution branches in Fig. 12~b! could also
be unstable. For larger values ofa, the wave front profiles
become monotone, the oscillation amplitudes inF(c) de-
crease and become difficult to appreciate; see Fig. 13.
transition from one parameter range to the other one oc
when the contribution from poles with small imaginary pa
in Eq. ~9! becomes relevant.

III. WAVY WAVE FRONTS FOR GENERIC CUBIC
NONLINEARITIES

For generic smooth cubic nonlinearitiesg(u), we cannot
construct the wave front profiles by using contour integra
However, we can extend our previous theory of the act

FIG. 12. ~a! Schematic functionF(c) for small a.0 showing
infinitely many maxima accumulating atc50 andF5Fcs . ~b! The
bifurcation diagram of wave front velocity versusF: there are infi-
nitely many limit points~saddle-node bifurcations! corresponding
to the extrema ofF(c) in the intervalFcd,F,Fcs .

FIG. 13. Results forA50.25, a51. ~a! Wave front profile for
c50.5, ~b! F(c) as computed from formula~9!.
1-6
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OSCILLATORY WAVE FRONTS IN CHAINS OF . . . PHYSICAL REVIEW E 67, 056621 ~2003!
points @11# for threshold phenomena to the case of fin
damping. Thus, we shall present numerical results for~rela-
tively! largeA showing that wave fronts are similar to tho
for piecewise linearg(u). NearFc , we shall use the theory
of active points to interpret numerical results.

A. Numerical results

Figures 14 and 15 show the dynamic and static Pei
stresses and the wave front velocity for the damped FK
cubic models, respectively. We have constructed the tra
ing wave fronts by solving numerically Eq.~2! in large lat-
tices. ForF.Fcs , we choose as initial data a static stepli
profile: un(0)5U (1)(F/A) if n>0, un(0)5U (3)(F/A) if n
,0, un8(0)50 ;n. We use the stable zerosU (1)(F/A) and
U (3)(F/A) as boundary conditions for largeunu. The numeri-
cal solution un(t) evolves very fast to a traveling wav
un(t)5w(n2ct) with a fixed constant value for the speedc.
For F below the static threshold, we choose as initial data
traveling solutions already found. As boundary condition,

FIG. 14. Results for the Frenkel-Kontorova model withA
510: ~a! dynamic ~solid line! versus static~dot-dashed line!
thresholds as functions ofa; ~b! numerical velocities as function
of F for decreasing values ofa: 3 ~circles!, 1.5 ~squares!, 1 ~aster-
isks!, 0.7 ~triangles!, 0.57 ~crosses!.

FIG. 15. Same as Fig. 14 for the model with a quartic potent
In ~b! the values ofa are 3~circles!, 1 ~squares!, 0.7~asterisks!, 0.3
~triangles!, 0.2 ~crosses!, 0.1 ~diamonds!.
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use againU (1)(F/A) and U (3)(F/A). The numerical solu-
tionsun(t) evolve to a traveling waveun(t)5w(n2ct) with
a profile and speed adjusted to the new value ofF, provided
F is larger than the dynamical thresholdFcd . Below that
value, the waves are pinned. The behavior ofc nearFcd can
be guessed from the known fact that the functionF(c) has a
minimum Fcd on its fastest branch atc5cm for piecewise
linear g(u); see Fig. 6. Near this minimum,F;Fcd1g(c
2cm)2 with g.0, as indicated in Fig. 16~a!. This yields
(c2cm);@(F2Fcd)/g#1/2, a scaling that can be seen
Figs. 16~b! and 16~c!, corresponding to smoothg(u). The
numberg can be fitted by taking careful numerical measu
ments nearFcd . This seems to provide a good fitting over a
interval of stresses that increases asa decreases. For large
friction values, taking values ofF farther fromFcd produces
a better fit to a scaling with the same exponent 1/2 but w
different g; see the squares in Figs. 16~b! and 16~c!.

Our numerical measurements of the speeds nearFcd seem
to indicate that~except in the overdamped limitm50) there
is a critical nonzero speedcm.0 below which front propa-
gation cannot be sustained. In the coexistence region,Fcd
,F,Fcs , shown in Figs. 14 and 15, both the traveling wa
fronts and the static wave fronts are dynamically stable. T
wave front profiles for different damping values and the c
bic g(u) are depicted in Fig. 17. These profiles oscilla
more and more as the damping coefficient decreases.
sufficiently largea, the wave front profiles are monoton
and become similar to those calculated in the overdam
limit @11#. Fcd and Fcs are almost equal. Similarly, asA
decreases and we approach the continuum limit, the gap
tween static and dynamical thresholds is difficult to appre
ate.

There is an important difference between models with
periodic nonlinearity such as FK and models with a cu
g(u). In both cases, wave fronts can be constructed num
cally for sufficiently large values of the damping. ForA

l.

FIG. 16. ~a! FunctionF(c) for the piecewise linearg(u) with
A50.25 anda50. ~b! Velocity versus applied stress forg(u)
5sinu with A510 anda51.4 ~squares! and a50.57 ~triangles!.
~c! Velocity versus applied stress forg(u)5u(u221) with A510
anda51.0 ~squares! anda50.1 ~triangles!.
1-7
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510, wave fronts of the cubic model can be numerica
found at least fora>0.08, whereas those of the FK mod
are found easily for larger damping,a.0.5. For smaller
values of the damping, the amplitude of the wave front
cillatory tails becomes so large that the FK wave front pro
tends to jump between different periods of the nonlinear
moving staircases are thus generated.

B. Active point theory

To get approximate formulas for the wave front profi
and velocity in the strongly discrete limit,A@1, we can
resort to the active point theory@11#. In this limit, there is
one active point, sayu0(t), and all others obey eitherun
;U1(F/A) ~for n.0) or un;U3(F/A) ~for n,0). We as-
sume that the wave front we will construct hasF.0, c
>0, andw8(0),0, as in the preceding section. Accordin
to Eq.~2!, the active point satisfies the approximate equat

d2u0

dt2
1a

du0

dt
'U1S F

AD1U3S F

AD22u02Ag~u0!1F.

~17!

This equation has three stationary solutions forF,Fcs ,
z1(Fc /A),z2(Fc /A),z3(Fc /A), (z1 andz3 are stable and
z2 is unstable!, and only one stable stationary solutionz3 for
F.Fcs . The critical fieldFc5Fcs is such that the expansio
of the right hand side of Eq.~17! about the two coalescing
stationary solutions has zero linear term, 21Ag8(u0)50,
and

2u01Ag~u0!;U1S Fc

A D1U3S Fc

A D1Fc . ~18!

For F sligthly aboveFc , u0(t)5u0(A,Fc)1v0(t) obeys the
following equation:

FIG. 17. Wave front profiles for the quartic potential as se
from the trajectory of a single pointun(t): ~a! a53, ~b! a51.5, ~c!
a50.3, ~d! a50.15.
05662
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;

n

d2v0

dt2
1a

dv0

dt
'a~F2Fc!1bv0

2 , ~19!

a511
1

Ag8„U1~Fc /A!…
1

1

Ag8„U3~Fc /A!…
.0, ~20!

b52
A

2
g9~u0!.0, ~21!

where we have used 21Ag8(u0)50, Eq. ~18! and ignored
higher order terms. This equation has two distinguished l
its a!(F2Fc)

1/4!1 anda@(F2Fc)
1/4. In the latter case,

we can ignore the inertia in Eq.~19!. The resulting reduced
equation is exactly that analyzed in Ref.@11# except for a
trivial rescaling of the time. The solution of that equatio
blows up at times (t2t0);6pa/@2Aab(F2Fc)# (t0 is an
arbitrary constant!. Then the wave front velocity is approxi
mately given by the reciprocal of the interval between tw
consecutive blowup times, namely,

c5
Aab~F2Fc!

pa
. ~22!

After blowup, the wave front profile is reconstructed by i
serting an inner layer, in whichu0(t) obeys Eq.~17! with
F5Fc , and it jumps from a neighborhood ofz1(Fc /A) to
z3(Fc /A) @11#.

If a!(F2Fc)
1/4!1, we can ignore friction in Eq.~19!

thereby obtaining a conservative dynamical system, Eq.~19!
with a50, as our reduced equation. Its trajectories a
blowup and the wave front velocity can be straightforward
calculated as

c5

S ab~F2Fc!

3 D 1/4

2A2KS 1

A2
D 5

A2pS ab~F2Fc!

3 D 1/4

FGS 1

4D G 2 , ~23!

whereK(1/A2)51.854 075 is the complete elliptic integra
of the first kind with modulek51/A2 @26#. Contrary to the
overdamped case, a consistent inner layer connecting b
ingup trajectories of the reduced equation and trajectorie
Eq. ~17! for F5Fc anda50 does not exist. This points ou
to a breakdown of the active point theory asa→01, which
is consistent with our conjectured bifurcation diagram in F
12~b! for the piecewise linear model. Assuming that F
12~b! is also the bifurcation diagram of models with smoo
nonlinearities, a succession of infinitely many saddle-no
bifurcations~that accumulate atc50, F5Fcs) connect the
branch of stable wave fronts and that of stationary front
lutions betweenFcd and Fcs . If this is the case, seeking
description in terms of standard normal forms as Eq.~19!
and scaling is rather hopeless. Not surprisingly, the su
cious scaling~23! is hard to check numerically~the stable

n

1-8
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branch of moving wave fronts ends atF5Fcd,Fc), whereas
scaling ~22! can be easily checked (Fcd'Fc in the over-
damped limit! @11#.

Let us now come back to Eq.~17! to explain the coexist-
ence of moving and stationary wave fronts forFcd,F
,Fc . In Fig. 18, we have depicted the phase plane ass
ated with Eq.~17! for the cubic nonlinearityg(u)5u(u2

21). The profiles in Fig. 17 correspond to one active po
jumping from a neighborhood ofU1(F/A) to a neighbor-
hood ofU3(F/A). The right hand side of Eq.~17! has three
zeros in the interval@U1(F/A),U3(F/A)# for F,Fc1

, cor-

responding to two stable spiral points or centers„zi(F/A),0…,
i 51,3, and one saddle point„z2(F/A),0…. At F5Fc1

two of

the zeros coalesce and forF.Fc1
only the spiral point

„z3(F/A),0… remains. Fora.0, there is a new critical value
of F, Fc2

, such that the initial datum„U1(F/A),0…, which is

close to the spiral point„z1(F/A),0…, may evolve to the othe
stable spiral point„z3(F/A),0… for FP(Fc2

,Fc1
); see Fig.

18. The trajectory leaving a neighborhood of„z1(F/A),0…
and entering„z3(F/A),0… defines the wave front profile. Fo
F,Fc2, the initial datum „U1(F/A),0… evolves toward
„z1(F/A),0… and no wave front is generated. Thus,Fc2 yields
an approximation to the dynamical Peierls stressFcd . Figure
19 comparesFc2 to Fcd , which has been calculated nume
cally by solving the complete system~2!. Notice that our
approximation worsens asa decreases towards zero indica
ing breakdown of the one active point approximation. W
shall explain below why this is so.

The dynamic critical Peierls stress can be intuitive
explained as follows. The potential energy associa
with the nonlinearity h(u)52u01Ag(u0)2F2U1(F/A)
2U3(F/A) on the righthand side of Eq.~17! is depicted in
Fig. 20~a!. An initial condition „U1(F/A),0… is close to the
left minimum of W(u0). If the energy corresponding to th
initial condition is slightly higher than that of the left min
mum, the solution of Eq.~17! evolves toward it because o
friction. On the other hand, larger energies cannot be di

FIG. 18. Phase plane of Eq.~17! with the cubic nonlinearity for
A510, a50.5, andF52.45.
05662
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pated by the friction term and the trajectory surpasses
maximum ofW(u0) with nonzero velocity. Then the trajec
tory falls in the basin of the right minimum of the potentia
performing a damped oscillation about it before reach
„z3(F/A),0…. Onceu0(t) has reached a neighborhood of th
second spiral point,u21(t) takes its place and performes
similar motion. The resulting trajectory is depicted in Fi
20~b!. The solution of the complete system~2! is shown in
Fig. 21. The wave front velocity is approximately given b
the reciprocal of the timeu0(t) takes to jump fromz1(F/A)
to z3(F/A). Notice that the oscillations aboutz3(F/A) per-
sist for a longer time asa decreases and may have fini
amplitude. Then, we cannot approximate sufficiently w
u1(t) by the constant valueU3(F/A) for small values of the
friction and the one active point approximation breaks dow
This explains the discrepancies in Fig. 19 for smalla. Since
the difference@U3(F/A)2U1(F/A)# is larger for the FK

FIG. 19. Comparison ofFcda[Fc2 andFcd as functions of the
dampinga for A510 and~a! the cubic nonlinearity,~b! its relative
error, ~c! the FK nonlinearity, and~d! its relative error.

FIG. 20. ~a! Potential energyW(u) corresponding to the cubic
nonlinearity h(u)52u01Ag(u0)2F2U1(F/A)2U3(F/A) with
A510 andF52.45. ~b! Trajectories of Eq.~17! with initial condi-
tion „U1(F/A),0…, joining „z1(F/A),0… and „z3(F/A),0… for A
510, a50.5, andF52.45.
1-9
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than for the cubic nonlinearity, the approximationu1(t)
'U3(F/A) is better for the FK nonlinearity as shown
Fig. 19.

IV. DISCUSSION

We have studied wave front solutions in chains of nonl
ear oscillators with inertia and damping. Two analytic
methods have been used to construct the wave fronts
their velocities. For piecewise linear models, exact formu
can be found for the wave fronts and the relation betw
their velocity and the applied stressF as Atkinson and Ca-
brera did already in 1965 for the conservative case@17#.
Different from these authors, we have also studied the ca
of finite and infinite damping. We have depicted the result
wave front profiles for all damping values and found th
they may have oscillatory tails. For zero damping, these t
oscillate with nondecaying amplitude asn→`, which means
that a new definition of wave front is needed@23#. We have
shown numerically that nonmonotone wave fronts with
cillatory tails ~wavy wave fronts! may be stable for certain
intervals of applied stresses. We have found stable mov
wave fronts foruFu.Fcd.0 ~the dynamic Peierls stress!,
and these fronts coexist with stable static wave fronts for
intervalFcd,uFu,Fcs (Fcs is the static Peierls stress; stat
wave fronts exist for 0<uFu,Fcs).

We have also conjectured that the global bifurcation d
gram for wave front depinning in the presence of inertia a
damping is generically as in Fig. 12~b!. Then there are infi-
nitely many saddle-node bifurcations between wave fr
branches in the intervalFcd,uFu,Fcs , accumulating atc
50 andF5Fcs , with Fcd.0. The basis for this conjectur
are our results for the piecewise linear model, which
think are generic also for models with smooth nonlinearit
given our numerical results for them. The functionF(c) in
the piecewise linear model has infinitely many vertical
ymptotes~resonances! for zero damping that accumulate a
c→0 and~we suppose! F→Fcs . These resonances becom
local maxima ofF(c) as a small damping is added to th
model. Maxima and minima ofF(c) are limit points~saddle-

FIG. 21. Numerical solutionsun(t) of Eq. ~2! with the cubic
nonlinearity forA510, a50.5, andF55.9.
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node bifurcations! between branches of wave front solutio
in the diagram of Fig. 12~b!.

In the literature@19,21#, wave fronts with monotone pro
files have been constructed for undamped models. For
ample, Schmidt@19# showed thatw(x)5tanhx, x5n1t/2,
is a wave front solution for Eq.~2! with a5F50, A51,
and a potential V(u)523u2/42u4/82(sinh 1)22ln(1
2u2tanh21) with g(u)5V8(u). For this model,Fcs.0 @21#.
Solving numerically this model forFÞ0, wave fronts with
one oscillatory tail onx.0 are found forF.0, similar to
those in Fig. 1~b!. For F,0, wave fronts with one oscilla-
tory tail onx,0 are found instead; see Fig. 1~c!. Both types
of fronts haveucu.1/2. This shows that wavy wave front
are generic and that Schmidt’s monotone wave front i
nongeneric limiting case separating branches of wavy w
fronts and corresponding toFcd50. A possible bifurcation
diagramucu vs.F for this example could be that in Fig. 12~b!
with Fcs.0, Fcd50, anducmu51/2: numerical solution of
the model seems to be consistent with a bifurcation diag
having a limit point atF50, ucu51/2, and with reflection
symmetry with respect to theucu axis (ucu in the diagram is
even inF).
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APPENDIX: NONLINEAR MODEL HAVING AN EXPLICIT
WAVY WAVE FRONT PROFILE

It is fairly easy to find smoothg(u) having wave front
solutions with undamped oscillatory tails provided their d
namics is conservative. Let us choose a profile of the for

w~x!5H 211k1eax, x<0

11k2cos~bx1c!, x>0.

This profile is continuous if211k1511k2cosc, differen-
tiable if k1a52k2b sind, and twice differentiable ifk1a2

52k2b2cosc. We set c5tan21(b/a), k152/(11a2/b2),
and k252k1a/(b sinc). The only restriction ona and b is
b1tan21(b/a),p/2, a,b.0 to ensure that cos(bx1c) is
monotone in 0,x,1. The profilew(x) satisfies

wxx5H a2~w11! for w,k121,

2b2~w11! for w.k121,

w~x11!22w~x!1w~x21!5 f „w~x!…,
1-10
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with

f ~w!55
2~w11!~cosha21!, w,w1

~w11!e2a1Y22w ~w1 ,w2!

k2cos~W1b!1k1e(a/b)(W2b2c)22w ~w2 ,w3!

2~w21!~cosb21!, w.w3 .
K,

o

te
2
i
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Here, W5k2
21cos21(w21), Y5k2cos$ba21ln@(w11)/k1#1b

1c%, w15e2ak121, w25k121, andw35k2cos(b1c)21.
The continuous functionf (w) is convex but, for a certain
interval of values ofc2, the functiongc(u)5c2uxx2 f (u)
has three zeros and is strongly asymmetric. For these va
of c, the systemd2un /dt25un1122un1un212gc(un) has
a traveling wave solutionun(t)5w(n2ct).
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