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Oscillatory wave fronts in chains of coupled nonlinear oscillators
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Wave front pinning and propagation in damped chains of coupled oscillators are studied. There are two
important thresholds for an applied constant stfeder |F|<F .4 (dynamic Peierls stregsvave fronts fail to
propagate, foiF.4<|F|<F.s stable static and moving wave fronts coexist, and|fgr>F . (static Peierls
stres$ there are only stable moving wave fronts. For piecewise linear models, extending an exact method of
Atkinson and Cabrera’s to chains with damped dynamics corroborates this description. For smooth nonlineari-
ties, an approximate analytical description is found by means of the active point theory. Generically for small
or zero damping, stable wave front profiles are nonmonotone and become(@gmillatory) in one of their
tails.
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[. INTRODUCTION spect toU,(0). Examples are the overdamped Frenkel-
Kontorova(FK) model (@=sinu) [1] and the quartic double
Wave fronts and pulses play important roles in manywell potential [V=(u?—1)%4] [14]. A>0 measures the
physical systems. Examples abound: the motion of dislocastrength of the coupling an the relative strength of inertial
tions [1,2] or cracks[3] in crystalline materials, atoms ad- and friction terms. Wave front solutiong,=w(n—c7) join
sorbed on a periodic substrd#, the motion of electric field the two stable constant states (F/A) and Us(F/A) (or
domains and domain walls in semiconductor superlattice¥iC€ versa asn increases from-c to . .
[5,6], pulse propagation through myelinated neri@s pulse Consider the extreme cases of conservative=(<) and
propagation through cardiac cefB), etc. Furthermore, these ©verdamped dynamicsn(=0). In the overdamped case,
localized waves often play an important role in statisticalVave fronts generically either move iF|>Fc>0 or are
mechanics[9] or quantum field theorf10]. When wave Pinned if |F|<F. [11]. The depinning transition & was

fronts or pulses are solutions of spatially discrete systemglescribed by Carpio and Bonilld1] for large and moderate

they often fail to propagate unless an external force or pa]\_}alues ofA, by King and Chapmaf15] in the continuum

rameter surpasses a critical va[dd]. Wave front pinning in it A—0, and by Fen[16] for a piecewise lineag(u). In
discrete systems may be related to such different physict e conservative case Qnd for generic cubic nor]llnear|t|es

: . : : u), there are two critical force$ .4 and F.s with O
phenomena as the existence of Peierls stresses in continu

. . 2 o a<F¢s=F. Wave fronts may propagate stably ]
mechanicg12] or the relocation of electric field domains in >F.4 but there are stable stationafyinned wave fronts if

semiconductor superlatticé§]. In the continuum limit, the IF|<F,. Thus, pinned and moving wave fronts may coexist
Wio!th of the pinning i_nterva(range of the external force for s ch<°||:|<|:c’s_ The values .. andF . correspond to the
which wave fronts fail to propagat¢ends to zero exponen-  giaic and dynamic Peierls stresses of the literature on dislo-
tially fast and many authors have calculated the critical forc%ations[z]. Atkinson and Cabrera found exact expressions
for different models in this limi{2,13-13. _ for the wave fronts corresponding to a piecewise lirgar)

Not surprisingly, wave front motion and pinning are dif- and calculated the relationship betweEnand wave front
ferent depending on the dynamics describing the model afe|ocity [17]. An approximate theory was found somewhat
hand. To be precise, let us consider a chain of nonlineagarlier by Weinef18]. More recently, SchmidtL9] and later
oscillators, diﬁUSively COUpIed and SUbjeCt to an externalauthorizolz:u found exact monotone wave fronts of conser-

force F that acts as a control parameter: vative or overdamped systems by constructing models with
o2 q nonlinearities such that the desired wave fronts were solu-
u u ; ;
m 2n n —n=Un+1_2Un+Un—1_Ag(un)+F- 1) tions of the models. In parpcular, Fla_@h al. [21] showed
dr dr coexistence between moving and pinned monotone wave

fronts of a discrete system with conservative dynamics and
Typical nonlinearitiesg(u)=V'(u) are cubic, such that F=0. On the other hand, for a sine nonlinearity @heO0,
Ag(u) —F has three zerod);(F/A)<U,(F/A)<U3(F/A)  the numerical computations of Peyrard and Kruska®]
in a certain force intervalg’(U;(F/A))>0 for i=1,3, show that an initial profile close to the continuum sine-
g'(U,(F/A))<0]. Moreover,g(u) is symmetric with re- Gordon soliton loses energy via emission of phonons and it
becomes pinned after a sufficiently long time interval. They
also found stable moving wave fronts for small positive
*Email address: anacarpio@mat.ucm.es F, consistent with our previous statement that, generically,
"Email address: bonilla@ing.uc3m.es F.4>0.
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In this paper, we study the wave fronts of the damped

system(1) and the transitions & .4 and F... In contrast ! !

with previous work, we find wave fronts that are nonmono- —, 95 c>0 % 05 <0

tone, presenting wavy tails at one or both sides of a transitior’% 0 T - ¥ oo T
region in which the profilev(n—c7) jumps an amount close 05 @) 05 ()

to [Us(F/A)—U4(F/A)]. We call themwavy wave fronts gy F>0 a A F>0
These fronts with wavy profiles persist even in the conserva- o 0 20  -20 0 20
tive limit (m—o0) [23], and in fact Atkinson and Cabrera’s X X
wave fronts are also wavy, as these authors would have 1

found out had they depicted their exact expression graphi- 05

cally. In the overdamped limin—0, F.4—F. and the wave 4 -F<0

front profiles become monotone. We have thus arrived to a}" 0 l

general picture of wave fronts in discrete chains of coupled -0.5

nonlinear oscillators withm>0.

The rest of the paper is organized as follows. Section Il
considers Eq(1) with a piecewise lineag(u). We find exact
formulas for the wave front profiles in the general damped o .
case following the method of Atkinson and Cabreffd3)]. FIG. 1. Symmetries in the wave front solutions far0.25,
These profiles are often wavy and they are asymptoticallyt =0 ¢=0.5, andF=0.009.
stable in the damped case. It is important to obtain them for . ,
two reasonsti) there are very few exact wave front solutions L€t us consider now the case>0, c>0, andw’(0)<0,
that are nonmonotone ari) in the limit of large inertia, it 1-€-» & wave front profile that decreases in the transition re-
is hard to discriminate numerically between wavy wavedion aboutx=0. Transformation4) yield a profile with(i)
fronts traveling with different velocities or having different ¢<0, F>0 increasing in the transition regiofii) c>0, F
profiles. Exact solutions make good benchmarks for numeri=<0 increasing in the transition region, ar) c<0, F
cal methods. The results for the damped model with a ge=<0 decreasing in the transition region. Thus, we find that
neric cubic nonlinearity are presented in Sec. Ill. We calcuSgnW=—sgncF), g(w)=w+1—2H(—-xsgn(F)), and
late the static and dynamic Peierls stresses for typical valuede can restrict ourselves to consider the cBse0, c>0,
of A andm. A characterization of these stresses is given inandw’(0)<0: All other three possible cases can be obtained
terms of our active point theory. Section IV contains a dis-ffrom our results by using Eq4); see Fig. 1. The wave front
cussion of our results. profile v(x) =w(x) + 1 satisfies

-20

c?v"(x)— acv' (X)—[v(x+1)—2v(X)+v(x—1)]+Av(x)
Il. EXPLICIT CONSTRUCTION OF WAVE FRONT

PROFILES =2AH(—sgncF)x)+F, (5)
_ Let us rescale time in Ed1), so thatt=1//m, and con-  ith ,(0)=1. We can calculate(x) by using the contour
sider a piecewise lineag(u): integral expression for the step function
dZUn+ du, ot A E 1 [ elkx
W aﬁ_urH’l UpTUn—1 g(uy) . (2 H(—X)Z—ﬁ CTdk (6)
u,+1 for u,<O, Here,C runs over the real axis in the compl&plane pass-
g(uy) = u—1 for u,=0, ©) ing above the pole d=0 as in Fig. 2. Fox>0 (x<0), C

is closed by a semicircle in the uppépwer) half plane

where a=1/ym. Notice thatg(u)=u+1—2H(u), where oriented counterclockwisglockwise.
H(x)=1 for x>0 andH(x)=0 for x<0 is the Heaviside
unit step function. Let us consider a smooth wave front pro-
file u,=w(x)=v(x)—1, x=n—ct, moving rigidly with ve- |
locity c. We center the wave front so as to hav€0)=0. E
Taking into account thag(u) is an odd function and using :
the front profileu,(t)=w(n—ct), we can see that the fol-
lowing transformations leave EQ) for w(x) invariant:

) Imk)

(x,w,c,F)—(—x,w,—c,F),

(x,w,c,F)—(x,—w,c,—F),

FIG. 2. Contour for the Heaviside step functig®) and the
(x,w,c,F)—(—=x,—w,—c,—F). (4) integral formula(7) and(8) whena#0.
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FIG. 3. Complex poles as an intersection of the curves Fig. 4. Real poles in the conservative case-0 with A
Rel(k,a)=0 and Ini.(k,@)=0 whenc=0.2, A=0.25 and(a) « =0.25: (@ ¢=0.5, () c=0.01. Purely imaginary poles whek
=0, (b) 2=0.1, (¢) a=1. =0.25(c) c=0.5, a=1.
Then the solution of Eq5) is F A f dk
T A 7 JckL(k, @)
F A [ exdiksgncF)x]dk F 2A
0= 5= S ey ©
A i kL(k,a) A Lp.w)=0imp)>0 PLk(P,@)

where we have assumed theE>0 andv’(1)<0. The re-
K sulting functionF(c) can be calculated by computing this
L(k,a)=A+4 sinz(—) —k2c?—ik|c|asgn(F). (8)  series of residues numerically. OnEéc) is known, Eq.(7)
2 can be used to compute the wave front profiles for a pair
(c,F(c)). We shall now show how this construction works

) _ out for a=0, a=, and fora finite.
All the zeros of the functiorL(k,a) given by Eq.(7) are

complex fora>0, and they correspond to exponentially lo-
calized modes. The nonzero poles of the integrand in(Bqg.
can be found graphically by plotting the curvesLRk, «) It is instructive to see what happens in the conservative
=0 and InL(k,a) =0 in the complex plane, as depicted in limit «—0+. In this casel (k,0)=0 has real solutions, and
Fig. 3. Whena—0, a finite number of poles tend to the real we need a criterion to move the contaQrabove or below
axis, whereas infinitely many keep a nonzero imaginary parthe corresponding poles in integid). To obtain it, we shall
even ata=0. The poles on the real axis correspond to ra-use the notatioh (k) =L(k,0). Letk, be a real zero of (k).
diation modes, cause oscillations in the wave front tails, and he complex zero oE (k,«) that becomeg, at «=0 satis-
their number increases asdecreases; see Figs(aj# and
4(b). The purely imaginary poles of Figs. 3 an@tyyield the
central monotone part of the wave front profiles. kot 0,
the integration contour in Eq.7) avoids poles on the real
axis according to a criterion due to Atkinson and Cabrera
[17], shown in Fig. 5 and derived later in this section. We KL'(k)>0
will use Eq. (7) and the method of residues to construct
profiles satisfyingy (x)>1 for x<0 andv(x)<1 for x>0.
Notice that we can obtain a complex dispersion relation be-
tween w=kc and k from L(k,«)=0. The contour choice kL'(k)<0
and the fact thatv>0 give rise to an exponential decay of
v(X) to its asigned values at= . Whena=0, the wave
fronts may exhibit undamped oscillations extending all the
way to infinity.

The conditionv(0)=1 vyields a relationship between the  FIG. 5. Contour for the integral formul&@) and (8) in the con-
wave front velocityc and the external forcE: servative caser=0 for c>0 andF>0.

A. Conservative case.a=0

056621-3
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FIG. 6. (a) F(c) for «=0, A=0.25 as computed from formula '130 -20 -10 x 0 10 20

(11). (b) Zoom in the region of resonances fosmall.
FIG. 7. Wave front profiles forA=0.25, «a=0 and (a) ¢

fies 0=L (Ko,0)(k— ko) + L (Ko, 0)a+ - - -, which yieldsk ~ =0.23,(b) c=0.2.
""ko_ La(ko,o)a/Lk(ko,O), that iS,

totes at positive values;, ¢c;>c,>---, where bothL (k)

i ako|c|sgrF and L'(k) and vanish for positivek. We have c,
K—ko+ ! Kol CISQI ~JAl(27n) asn—o, so that the vertical asymptotes accu-
L' (ko) mulate atc=0 as suggested by Fig. 4. In fact, the velocity

—sgr(Imk)=sgr(cF)sgrickoL’ (ko)], (10) can be eliminated from the two conditiohgk)=L"(k)=0

yielding A+ 2(1—cosk)=ksink. For large values ok, this

asa—0+. We know that the contou€ in Eq. (6) lies in the ~ 9ivesk~2mn+A/(2mn), as the integen—cc. The condi-
upper(lower) half plane providedtFx>0 (cFx<0). There-  tion L'(k)=0 then yields the previous formula fey.

fore, the poles whose residues count must satigfximk The range of physical interest correspondsciecc<1

~0 ’ Then, Eq.(10) implies that we should count poles sat- (wave front velocities larger than the largest resonant veloc-

e , : : s ity but smaller than the sound spe . Let (c,,F(c
isfying xcloL"(ko)>0. The physical meaning of this crite- bé the minimum of the first an% E:gt)est br(arn\qch Ifdfnc%)
rion becomes clear if we calculate the group velocity corre- :

; PG 5 27 Then, F.q=F(c,,) yields the dynamic Peierls force, under
ing?:?rzglé[? moqréﬁoehl‘(k)z_v?kf' |e,l(d|f) E(Z si; Q[daé()l((:)o]s(:lg which the “physical” branch ofstable wave front profiles
LK +2k. 2 Th S K “’b ceases to exist. This force is smaller than the static Peierls

(k) +2ke”. Thus,vg=w’(k) obeys force, F.=A%¥((A+4)~12 for the piecewise linear model
L’ (k [27].
vg=C+ Tzsgr(ug—c)zsgr[ckL’(k)], (11 Using the radiation conditionvg—c)x>0, we have plot-
¢ ted in Figs. 1 and 7 several wave front profiles. Figu@ 1
§0hows a wave front profile fow=0, A=0.25, andF
=0.009. The wave velocity is=0.5. The profile has been
numerically approximated by computing the contour integral
(7) as the series of residues truncated to a few terms. It is
interesting to observe that the right tail of the wave front
decays fast tdJ(F/A), whereas the left tail oscillates about
U(F/A) with uniform amplitude. The reason for this behav-
ior is that for the above parameter values, there are two real
E: 2A _ (12) zeros ofL(k) at =kgy with koL'(kg)<0 that contribute a
A LwSok=0 KIL"(K)| nondecaying oscillation to the left tail. An infinitesimal
amount of friction would dampen these oscillations by con-
This formula follows straightforwardly from the fact that tributing a multiplicative factor exp-[ akyc/L’ (ko) X} to their
L(k) andkL'(k) are even functions dfea) k and symmetry amplitude. Figure @& shows a wave front profile foc
considerations. Notice that our assumptos0 has yielded =0.23. Notice the decaying small oscillation in the right tail.
F>0. The relationF(c) given by Eq.(12) is plotted in Fig.  We have still two real poles, but noe=0.23 is placed at the
6 for a valueA=0.25 (see also Fig. 3 of Refl7]). For a left of the minimum in the first branch &(c); see Fig. 6a).
given value of the external forcE, there may be several Figure 1b) shows a wave front profile foc=0.2, in the
values of admissible velocities, each corresponding to a second branch oF(c), past the first resonance. Now we
different wave front profile. Thus, different families of wave have three pairs of real poles. Two of them contribute to the
fronts (not all of them stablemay coexist for the same value oscillation in the left tail, the other one produces the oscilla-
of F. The functionF(c) presents different vertical asymp- tion in the right tail.

and we observe that the poles whose residues contribute
the solution satisfyfy—c)x>0. This was the criterion used
by Atkinson and Cabrerfl7]: All modes withv,>c must
appear ahead of the wave front>0), all those withv,
<c must appear behindk0). See Fig. 5.

Forc>0 anda=0, condition(9) becomeg17]
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-40 20 0n 20 40 60 80 FIG. 10. Results foA=0.25, =0.01. (a) Wave front profile

) B for c=0.5, (b) F(c) as computed from formulég).
FIG. 8. Dynamical stability whe=0.25, «=0. We compare

un(t) (solid line) to w(n—ct) (dot-dashed linefor (a) c=0.5, (b) B. Overdamped limit: a= o

¢c=0.23,(c) c=0.2.
The results in the overdamped linmii=0 are consistent

The dynamical stability of the constructed wave front so-with previous worl{11,15,18: there are one wave front pro-
lutions can be numerically checked by using their computedile and onec for each fixedF above a threshol& .. Wave
profile as initial data to solve Ed2) with =0 [24]. The front profiles are monotone and they resemble staircases for
results are compared at a fixed tirtre 60 to the expected c¢ small. See Fig. 9.
configurationw(n—ct) in Fig. 8. The choice=0.5 seems
to produce a stable wave front. The chote0.23(still on C. Finite damping: &>0

th_e .f'rSt ]and fallstestt brané:h (Ff(ct) t_butf to tth(_erhleft ﬁf Its The results for finite damping interpolate between the

T'(;]'?Fc)mn ' tr?gos\éizn(;)vg?armiha C;(S)I]C er\j)()r]l\)es tgw(;rggzea conservative and overdamped cases. For smathe func-

e . ' . tion F(c) and the wave front profiles are honmonotonic, al-

wave front moving faster than expected, with a speed on thﬁwou h their oscillations decay as— « ' see Fig. 10. Fid-

first branch ofF(c). Thus, our numerical results seem to re 191 Shows & Comparison byetweu;;m),for a=g'(fOI: thg

indicate that stable wave fronts have velocities on the firsf omp :

and fastest branch 67(c) with F'(c)>0, to the left of the same values as in Fig.).8We observe that, for this small

minimum soeed on this branch..>0 T'henF ~F(c,) damping, the corresponding wave fronts have the same sta-
um sp e cd™— " \mly bility properties as in the conservative case: dynamically

and stable wave fronts with"(1)<0 have speeds larger stable forc>c,, and unstable foc<c,,. Moreover, there are

than or equal t@p,. . . . . dynamic and static Peierls stresses that are different from
We have found wave front profiles with oscillatory tails each other. as in the case-0

that seem stable under small disturbances. One question that ' '

comes to mind is whether these profiles occur in models with

smooth nonlinearities. The answer is yes: See an explicit

construction in the Appendix. fﬁ

1

(a) F=0.009, t=60

-40 -20 n 0 20 40 60

(b) F=0.01, t=60

(c) F=0.029, t=60

1k \ .
-50 0 n 50 100

FIG. 11. Comparison between(t) calculated fora=0 for the
FIG. 9. Overdamped limit wheA=0.25. (a) Wave front profile =~ same values as in Fig. &olid line) andu,(t) for «=0.01 (dot-
for c=0.02, (b) F(c) as computed from formulé). dashed ling (a) F=0.009, (b) F=0.01, (c) F=0.029.
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It is interesting to ascertain the shape of the funckdgn)

because its inverse function constitutes a bifurcation diagrar

clarifying wave front depinning. In the conservative case,
F(c) has infinitely many vertical asymptotdsesonances
accumulating ac=0. As a— 0+, the conditionsL(k,«)
=Ly (k,a)=0 yield

akOC 12 i .
- _ AR iyt _
k~kot| g —aa © . 1=01, (13
x=sgr (cosky— c?)koF]. (14)

This formula shows how the double poles k, of the con-
servative case split when an infinitesimal friction is present
Then the vertical asymptotes &f(c) at c=c, give rise to
local maxima ofF(c) for small «>0. These maxima are
hard to resolve numericallysee Fig. 1(b)], but they can be
approximately calculated as follows. Only poles with posi-
tive imaginary part contribute to the sum in Ef). For these
poles, the exponential factor in E¢L3) is (y+i)/+/2, and
their contribution to the sum in Eq9) is approximately
given by

(2a) Y2A(x—1)
Kosgr cosky— c2)|koc(coskg— c?

)|l/2'

To this expression, we should add its complex conjugate,
contribution to the sum in Eq9) due to the pole-kg. If we
keep only these contributions in E(), thereby assuming
that the considered maximum &f(c) is large,Fy>1, we
obtain

\/§A2a71/2

[ko| ¥ c(cosko—c?)[ ¥

|Ful (15)

Now, in the conservative case,~A/(27n) and kg
~2mn+A/l(27n) as the integen— . Then the right side
of Eq. (15 becomes proportional to,. Whenn is so large
thatc, is no longer large compared t&, other terms of the
sum contribute appreciably 6 in formula (9). We conjec-
ture that these contributions add fqg,

2
|FM| —Fes~ \/;Asmcn v Cn

so that the maxima oF(c) accumulate neac=0 as the
integern— . We have depicted schematically the resulting
F(c) and the bifurcation diagram af versusF in Fig. 12.
Corresponding to the infinitely many local extrema in Fig.
12(a), there are infinitely many limit pointésaddle-node bi-
furcationg in Fig. 12b). Our numerical results indicate that
only the branch of wave fronts with larger velocities in the
physical intervak,,<c and|F|>F_4 are stable. This can be
understood from the factorization theorems in R28]. Ac-

JA

2@n’ (16)

cording to these theorems, one eigenvalue of the linear sta-
bility problem corresponding to the solution branches in the

PHYSICAL REVIEW E 67, 056621 (2003
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F

FIG. 12. () Schematic functior(c) for small >0 showing
infinitely many maxima accumulating a&=0 andF=F. (b) The
bifurcation diagram of wave front velocity versis there are infi-
nitely many limit points(saddle-node bifurcatiopsorresponding
to the extrema of(c) in the intervalF .q<F<Fq.

the branch that coalesces with it at the limit pdint Fq is
unstable. This branch coalesces with another one at another
limit point with largerF, and, there, a different eigenvalue of
the linear stability problem changes sign from negative to
Positive. If this is so, the new branch is also unstable and all
other wave front solution branches in Fig.(2could also

be unstable. For larger values af the wave front profiles
become monotone, the oscillation amplitudesFifc) de-
crease and become difficult to appreciate; see Fig. 13. The
transition from one parameter range to the other one occurs
when the contribution from poles with small imaginary part
in Eq. (9) becomes relevant.

I1l. WAVY WAVE FRONTS FOR GENERIC CUBIC
NONLINEARITIES

For generic smooth cubic nonlinearitigéu), we cannot
construct the wave front profiles by using contour integrals.
However, we can extend our previous theory of the active

15 0.25 e i
- **
*
0.2
1 *
*
= ©0.15
2 05 w *
*
0.1
*
0 . (b)
(@ *
0.05
%% 20 20 40 0 1 2

0
X

bifurcation diagram changes sign at limit points. If we use FIG. 13. Results foA=0.25, a=1. (a) Wave front profile for

that the branch of wave fronts with larger velocity is stable,

¢=0.5, (b) F(c) as computed from formuléo).
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FIG. 14. Results for the Frenkel-Kontorova model with 0 0'5 1 Gg%ﬂ%msﬂﬂﬂ é= ﬁgﬂa‘%‘fh . 255
=10: (@) dynamic (solid line) versus static(dot-dashed ling T F ' F '

thresholds as functions aef; (b) numerical velocities as functions ) ) o )

of F for decreasing values af: 3 (circles, 1.5 (square} 1 (aster- FIG. 16. (a) FunctionF(c) for the piecewise lineag(u) with

isk9), 0.7 (triangles, 0.57 (crossek A=0.25 anda=0. (b) Velocity versus applied stress fa(u)

=sinu with A=10 anda=1.4 (squares and a=0.57 (triangles.

. ... (c) Velocity versus applied stress fg{u)=u(u?—1) with A=10
points [11] for threshold phenomena to the case of ﬂmteanda:l_0 (squaresanda 0.1 (triangles.

damping. Thus, we shall present numerical resultqfela-
tively) large A showing that wave fronts are similar to those yse againU")(F/A) and U®)(F/A). The numerical solu-

for piecewise lineag(u). NearF., we shall use the theory tionsu,(t) evolve to a traveling wavae,(t)=w(n—ct) with
of active points to interpret numerical results. a profile and speed adjusted to the new valu& gbrovided
F is larger than the dynamical threshoily. Below that
A. Numerical results value, the waves are pinned. The behavioc okarF .4 can
. . ) . be guessed from the known fact that the functiqc) has a

Figures 14 and 15 show the dynamic and static Peierl§,inimum F 4 on its fastest branch at=c,, for piecewise
stresses and the wave front velocity for the damped FK a”;:1ear g(u)'csee Fig. 6. Near this minimSn’PvF ot ¥(c
cubic models, respectively. We have constructed the travel- . )2 witr’1 y>0, as indicated in Fig. ]@_’ Thi; yields
ing wave fronts by solving numerically E¢) in large lat- (c—mc )~[(F—F :j)/y]yz a scaling that can be seen in
tices. ForF>ch,1we choose as initial data a static steplike Figs. ml&b) and 1060), cor,responding to smooth(u). The
proflle:, Un(0)=UM(F/A) if =0, uy(0)= U(l))(F/A) if n numbery can be fitted by taking careful numerical measure-
<(03)’ Un(0)=0 Vn. We use the stable zeres (F/A) and  ments neaF . This seems to provide a good fitting over an
U')(F/A) as boundary conditions for large|. The numeri-  iytaryal of stresses that increasescasiecreases. For larger
cal solutionuy(t) evolves very fast to a traveling wave giciion values, taking values df farther fromF .4 produces
up(t) =w(n—ct) with a fixed constant value for the speed 4 petter fit to a scaling with the same exponent 1/2 but with
For F below the static threshold, we choose as initial data thejifrerent y; see the squares in Figs.(bBand 16c).
traveling solutions already found. As boundary condition, we 5 ,r numerical measurements of the speeds Rgaseem
to indicate tha{except in the overdamped limit=0) there
is a critical nonzero speeg,,>0 below which front propa-

- od] . . i
. R ot gation cannot be sustained. In the coexistence rediep,
g 28 _035 o <F<F.s, shown in Figs. 14 and 15, both the traveling wave
> & o3 o o7 fronts and the static wave fronts are dynamically stable. The
248 = " wave front profiles for different damping values and the cu-
o I bic g(u) are depicted in Fig. 17. These profiles oscillate
246 0.2 - more and more as the damping coefficient decreases. For
015 B sufficiently large«, the wave front profiles are monotone
244 and become similar to those calculated in the overdamped
0.1 A limit [11]. F.4 and F are almost equal. Similarly, a&
242 @1 o.05f (b) o° decreases and we approach the continuum limit, the gap be-
, ) ol tween static and dynamical thresholds is difficult to appreci-
0 2 4 6 g HINBIT 25 ate.
“ F There is an important difference between models with a

FIG. 15. Same as Fig. 14 for the model with a quartic potential.periodic nonlinearity such as FK and models with a cubic

In (b) the values ofr are 3(circles, 1 (square} 0.7 (asterisky 0.3 g(u). In both cases, wave fronts can be constructed numeri-
(triangles, 0.2 (crossey 0.1 (diamonds. cally for sufficiently large values of the damping. Fér
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1 15 dzvo dUO 2
1 +a——~a(F—F.) +buv§, (19
05 — 05 dt? dt
;C O :C 0
-051 (a)a=3 051 (b)o=1 =1+ 1 + >0 (20)
: ) Ag' (Uy(F./A))  Ag (Us(Fc/A)
1 RrTa—— T 5 e g’ (Us(Fc/A)) g’ (Us(Fc/A))
t t
A
15 15 b=—=g"(ug) >0, (22)
1 1 2
= 05 = 05 , .
s = where we have used-2Ag’(ug) =0, Eg.(18) and ignored
0 0 higher order terms. This equation has two distinguished lim-
05 (0)a=0.3 051 (d)a=0.15 its a<(F—F)¥<1 anda>(F—F.)Y* In the latter case,
abr - s 100 s . 200 we can ignore the inertia in Eq19). The resulting reduced

1 1 equation is exactly that analyzed in REL1] except for a
trivial rescaling of the time. The solution of that equation
blows up at timest(—tgy)~* wal[2Jab(F—F.)] (ty is an
arbitrary constant Then the wave front velocity is approxi-
mately given by the reciprocal of the interval between two
consecutive blowup times, namely,

FIG. 17. Wave front profiles for the quartic potential as seen
from the trajectory of a single point,(t): (a) «=3, (b) a=1.5, (c)
a=0.3, (d) =0.15.

=10, wave fronts of the cubic model can be numerically

found at least fore=0.08, whereas those of the FK model Vab(F—F,)
are found easily for larger damping;>0.5. For smaller C=——— (22)

values of the damping, the amplitude of the wave front os-
cillatory tails becomes so large that the FK wave front profile

tends to jump between different periods of the nonlinearity,Aﬂe.r blowu.p, the wave.front _prof|le Is reconstructed _by in-
moving staircases are thus generated serting an inner layer, in whichy(t) obeys Eq.(17) with
' F=F., and it jumps from a neighborhood af(F./A) to

z3(F/A) [11].

If a<(F—F.)Y*<1, we can ignore friction in Eq(19)

To get approximate formulas for the wave front profile thereby obtaining a conservative dynamical system,(IE9).
and velocity in the strongly discrete limif>1, we can with «=0, as our reduced equation. Its trajectories also
resort to the active point theofyl1]. In this limit, there is  blowup and the wave front velocity can be straightforwardly
one active point, sayly(t), and all others obey eithar, calculated as
~U4(F/A) (for n>0) oru,~U3(F/A) (for n<0). We as-
sume that the wave front we will construct h&s>0, c
=0, andw’(0)<0, as in the preceding section. According

B. Active point theory

w

ab(F—FC))l"‘ ab(F—FC))l’4

3 3
to Eq.(2), the active point satisfies the approximate equation c= = > . (23
1 1
&, dto Ul o]+ usl ) = 200— Ag(ug) +F V2 *
e Tear Yl a) tYs| &) T2l g(uo) +F.

(17) where K(l/\/§)=l.854 075 is the complete elliptic integral
of the first kind with modulek= 1/y/2 [26]. Contrary to the
This equation has three stationary solutions ForF., ~ overdamped case, a consistent inner layer connecting blow-
2, (FIA)<7,(F . /A)<zs(F./A), (z, andz, are stable and ingup trajectories of the reduced equatlgn anq trajgctones of
Z, is unstablg and only one stable stationary solutipnfor Eq. (17) for F=F, andaz_O doe_s not exist. This points out
F>F.s. The critical fieldF .= F .5 is such that the expansion to a breakdown of the active point theory @s»0+, which

of the right hand side of Eq17) about the two coalescing is consistent with our conjectured bifurcation diagram in Fig.
: ; ; / _ 12(b) for the piecewise linear model. Assuming that Fig.

stationary solutions has zero linear termy 2g'(ug) =0, . : . i 4

and y g'(to) 12(b) is also the bifurcation diagram of models with smooth

nonlinearities, a succession of infinitely many saddle-node
bifurcations(that accumulate at=0, F=F_.g) connect the
+F,. (18  branch of stable wave fronts and that of stationary front so-
lutions betweerF 4 and F.s. If this is the case, seeking a
description in terms of standard normal forms as BE®)
For F sligthly aboveF ., ug(t)=ug(A,F.) +v(t) obeys the and scaling is rather hopeless. Not surprisingly, the suspi-
following equation: cious scaling(23) is hard to check numericalljthe stable

Fe Fe
2U0+Ag(UO)""U1 K +U3 K

056621-8
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2

FIG. 18. Phase plane of E(L7) with the cubic nonlinearity for
A=10, a=0.5, andF=2.45.

branch of moving wave fronts endskat F 4<F.), whereas
scaling (22) can be easily checked={4,~F. in the over-
damped limig [11].

Let us now come back to E¢L7) to explain the coexist-
ence of moving and stationary wave fronts fBry<F
<F.. In Fig. 18, we have depicted the phase plane assoc
ated with Eq.(17) for the cubic nonlinearityg(u)=u(u?

PHYSICAL REVIEW E 67, 056621 (2003

0.2
2.4 So.15
@
8 2 0.1
Y ~F |1 %
(@ |= cha(a) 005 (b)
2 1 2 3 % 1 2 3
o o
(e)]
1 2 3

FIG. 19. Comparison ofF .q4,=F., andF.4 as functions of the
dampinga for A=10 and(a) the cubic nonlinearity(b) its relative
error, (c) the FK nonlinearity, andd) its relative error.

pated by the friction term and the trajectory surpasses the
maximum of W(ug) with nonzero velocity. Then the trajec-
tory falls in the basin of the right minimum of the potential,
performing a damped oscillation about it before reaching
(z3(F/A),0). Onceug(t) has reached a neighborhood of the
gecond spiral pointy_4(t) takes its place and performes a
similar motion. The resulting trajectory is depicted in Fig.

—1). The profiles in Fig. 17 correspond to one active point20(b). The solution of the complete syste(®) is shown in

jumping from a neighborhood df);(F/A) to a neighbor-
hood ofU3(F/A). The right hand side of Eq17) has three
zeros in the interval]U,(F/A),U3(F/A)] for F<Fcl, cor-

responding to two stable spiral points or cenigréF/A),0),
i=1,3, and one saddle poitt,(F/A),0). At F= F, two of

the zeros coalesce and f(Fr>FC1 only the spiral point

(z3(F/A),0) remains. Forr>0, there is a new critical value
of F, F¢,, such that the initial daturU,(F/A),0), which is

close to the spiral poinz,(F/A),0), may evolve to the other
stable spiral poini(zz(F/A),0) for Fe(FCZ,Fcl); see Fig.
18. The trajectory leaving a neighborhood @ (F/A),0)
and enteringzz(F/A),0) defines the wave front profile. For
F<F.,, the initial datum (U;(F/A),0) evolves toward
(z4(F/A),0) and no wave front is generated. This, yields
an approximation to the dynamical Peierls striésg. Figure
19 compare$-, to F.q4, which has been calculated numeri-
cally by solving the complete systef®). Notice that our
approximation worsens as decreases towards zero indicat-
ing breakdown of the one active point approximation. We
shall explain below why this is so.

The dynamic critical Peierls stress can be intuitively

explained as follows. The potential energy associated

with the nonlinearity h(u)=2ug+Ag(ug) —F—U(F/A)
—U3(F/A) on the righthand side of Eq17) is depicted in
Fig. 20@). An initial condition (U,(F/A),0) is close to the
left minimum of W(u,). If the energy corresponding to the
initial condition is slightly higher than that of the left mini-
mum, the solution of Eq(17) evolves toward it because of

Fig. 21. The wave front velocity is approximately given by
the reciprocal of the timey(t) takes to jump frone,(F/A)

to z3(F/A). Notice that the oscillations aboag(F/A) per-
sist for a longer time ag decreases and may have finite
amplitude. Then, we cannot approximate sufficiently well
u,(t) by the constant valud ;(F/A) for small values of the
friction and the one active point approximation breaks down.
This explains the discrepancies in Fig. 19 for smallSince
the difference[U3(F/A)—U(F/A)] is larger for the FK

2 1.5
1
1t
0
0.5
31 =
:,O
0 E
-2
-3 -0.5
(b)
4l @ §
-1 0 1 0 10 20

t

FIG. 20. (a) Potential energyV(u) corresponding to the cubic
nonlinearity h(u)=2ug+Ag(ug) —F—U(F/A)—U3(F/A) with
A=10 andF=2.45. (b) Trajectories of Eq(17) with initial condi-
tion (U,(F/A),0), joining (z;(F/A),0) and (z3(F/A),0) for A

friction. On the other hand, larger energies cannot be dissi=10, «=0.5, andF=2.45.

056621-9



A. CARPIO AND L. L. BONILLA PHYSICAL REVIEW E 67, 056621 (2003

15F ' ' ' ' ' ] node bifurcationsbetween branches of wave front solutions
in the diagram of Fig. 1®).

In the literaturg[19,21], wave fronts with monotone pro-
files have been constructed for undamped models. For ex-
ample, Schmidf19] showed thatv(x) =tanhx, x=n+1/2,

_ 0% ! is a wave front solution for Eq(2) with a=F=0, A=1,
= and a potential V(u)=—3u?4—u*/8—(sinh1)2n(1
o ] —utantfl) with g(u)=V’(u). For this modelF.s>0 [21].

Solving numerically this model foF #0, wave fronts with
one oscillatory tail onrx>0 are found forF>0, similar to

05 g . .
those in Fig. 1b). For F<0, wave fronts with one oscilla-
tory tail onx<0 are found instead; see Figcl Both types

1o 20 30 20 50 50 70 of fronts have|c|>1/2. This shows that wavy wave fronts
t are generic and that Schmidt's monotone wave front is a
FIG. 21. Numerical solutionsi (t) of Eq. (2) with the cubic ~"CNgeneric limiting case separating branches of wavy wave

nonlinearity forA=10, a=0.5, andF =5.9. fr_onts and corresponcjing #®.4=0. A possible _bifu_rcation
diagram|c| vs.F for this example could be that in Fig. (8

with F.s>0, F.4=0, and|c|=1/2: numerical solution of
the model seems to be consistent with a bifurcation diagram
having a limit point atF=0, |c|=1/2, and with reflection
symmetry with respect to thig| axis (c| in the diagram is
even inF).

than for the cubic nonlinearity, the approximatian(t)
~Uj3(F/A) is better for the FK nonlinearity as shown in
Fig. 19.

IV. DISCUSSION ACKNOWLEDGMENTS

We h'?ll;’et studle.;jhw.avet.front (sjol(tjmons_ In cq_ams of nlotr_mnl- This work has been supported by the Spanish MCyT
ear osciiators with ihertia and damping. tWo anailicaly, ., qh Grant No. BFM2002-04127-C02, by the Third Re-
methods have been used to construct the wave fronts al

. o . - onal Research Program of the Autonomous Region of
their velocities. For piecewise linear models, exact formula adrid (Strategic Groups Action and by the European
can be found for the wave fronts and the relation between, .0 \\der Grant No. HPRN-CT-2002-00282.
their velocity and the applied strefsas Atkinson and Ca-
brera did already in 1965 for the conservative cf&é|.

Diff'elfent from l.:h'ese authprs, we have aISC') studied the C.a.S%:PENDlx: NONLINEAR MODEL HAVING AN EXPLICIT

of finite and infinite damping. We have depicted the resulting WAVY WAVE FRONT PROFILE

wave front profiles for all damping values and found that

they may have oscillatory tails. For zero damping, these tails It is fairly easy to find smoottg(u) having wave front
oscillate with nondecaying amplitude as- o, which means solutions with undamped oscillatory tails provided their dy-
that a new definition of wave front is needg2B]. We have namics is conservative. Let us choose a profile of the form
shown numerically that nonmonotone wave fronts with os-

cillatory tails (wavy wave frontsmay be stable for certain

intervals of applied stresses. We have found stable moving 14 ke “<0

wave fronts for|F|>F.4>0 (the dynamic Peierls stress W(X)= = -

and these fronts coexist with stable static wave fronts for an 1+k,cogbx+c), x=0.

interval F < |F|<F.s (F¢s is the static Peierls stress; static

wave fronts exist for &|F|<F.g). _ o ) _ _

We have also conjectured that the global bifurcation dia-ThiS Profile is continuous if-1+k; =1+ k,cosc, d|fferer12-
gram for wave front depinning in the presence of inertia andiable |f2kla= —kzbsind, and twice differentiable 2|1k12a
damping is generically as in Fig. @8. Then there are infi- = —Kzb“cosc. We setc=tan “(b/a), k,=2/(1+a’/b%),
nitely many saddle-node bifurcations between wave fronfnd I‘2_:1_ kja/(bsinc). The only restriction ora andb is
branches in the intervaf4<|F|<F, accumulating ac ~ P+tan “(b/a)<m/2, a,b>0 to ensure that cosg+c) is
=0 andF =F, with F¢>0. The basis for this conjecture Monotone in 8<x<1. The profilew(x) satisfies
are our results for the piecewise linear model, which we
think are generic also for models with smooth nonlinearities
given our numerical results for them. The functib(c) in a’(w+1) for w<k;—1,
the piecewise linear model has |nf|_n|tely many vertical as- Wyx= —b2(w+1) for w>k,—1,
ymptotes(resonancesfor zero damping that accumulate as
c—0 and(we supposeF— F... These resonances become
local maxima ofF(c) as a small damping is added to the
model. Maxima and minima df(c) are limit points(saddle- w(x+1)—2w(x)+w(x—1)=f(w(x)),
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with

2(w+1)(cosha—1),

(w+1l)e a+Y—-2w (W, W)

k,cog W+ b) + k,e@DYW=b=0) _2w  (w,,w3)
2(w—1)(cosb—1),

w<w;
f(w)=

W>Ws.

PHYSICAL REVIEW E 67, 056621 (2003

Here, W=k, *cos {(w—1), Y=k,cogba Yn[(w-+1)k,]+b

+c}, wy=e ?k;—1, wo=k;—1, andws=k,cosp+c)—1.

The continuous functiorf(w) is convex but, for a certain
interval of values ofc?, the functiongg(u)=c2u,— f(u)

has three zeros and is strongly asymmetric. For these values
of ¢, the systend?u,/dt?=up, ;—2u,+U,_;—g.(u,) has

a traveling wave solution,,(t)=w(n—ct).
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