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Cylinder gratings in conical incidence with applications to woodpile structures
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We use our previous formulation for cylinder gratings in conical incidence to discuss the photonic band gap
properties of woodpile structures. We study scattering matrices and Bloch modes of the woodpile, and use
these to investigate the dependence of the optical properties on the number of layers. We give data on
reflectance, transmittance and absorptance of metallic woodpiles as a function of wavelength and number of
layers, using both the measured optical constants of tungsten and using a perfect conductivity idealization to
characterize the metal. For semi-infinite metallic woodpiles, we show that polarization of the incident field is
important, highlighting the role played by surface effects as opposed to lattice effects.
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[. INTRODUCTION The woodpile structure we study here is an assemblage of
circular cylinders, which may be composed of either dielec-
In our previous papdr], we developed a formulation for tric or metal. The ability to treat metallic gratings, including
stacked parallel gratings in conical incidence, using a multiperfectly conducting gratings, is a strong feature of our
pole method. In this paper, we apply the theory to the analymethod. For simplicity, we will consider the case where the
sis of the woodpile photonic crystal. This is a structure con-Unit cell of the grating contains only one cylinder, although
sisting of layers of cylindrical rods with a stacking sequencethe generalization to multiple cylinders per unit cell is
that repeats itself every four layers. Within each layer, thestraightforward and valuablel2]. A solution of the problem
rods are parallel and separated by a distdbc€he distance in terms of a single scalar potentiédf. Ref. [13]) is not
between successive layer centershisnd the rod axes in Possible due to the crossed structure of successive gratings
adjacent layers are orthogonal. To obtain a periodicity of fouigdnd the polarization coupling that occurs through the bound-
layers in the stacking direction, rods separated by one inte@ry conditions. The prescription of the scattering matrix re-
mediate layer are offset by a distanceld® in the direction ~ quires the solution of a family of conical incidence diffrac-
perpendicular to the rod axdfig. 1). A list of references tion problems for each layer associated with the dispersion
relating to the origin of the woodpile geometry may be founddirections introduced by the previous layer.
in the web bibliography of Dowling, Everitt, and Yablono- ~ We note that Li[14] has treated conical diffraction by
vitch [2]. Early theoretical studies of the woodpile were gratings composed of rectangular rods, generalizing our ear-
made by Hoet al. [3], using layers of dielectric rods of cir- lier work on a modal formulation for dielectric and metallic
cular, elliptical, or rectangular shape, byl@yet al.[4] and  lamellar gratingg15], while Centeno and Felbadd6,17]
by Sazier and Dowling[5]. consider the behavior of band gaps in photonic crystals as
The woodpile has attracted much attention since it is gunctions of polarization and conicity of the incident plane
three-dimensional structure, yet it can be fabricated usingvave. Li's formulation has been exploited in a recent work
two-dimensional lithography in a multistep process. At San-On woodpiles composed of dielectric lamellar gratings in the
dia Laboratories, Lin and Flemin$,7] have fabricated a thesis by Gralak18]. Woodpile crystals and, in particular,
structure exhibiting a band gap at the important telecommudispersion relations and band gaps in dielectric woodpiles,
nications wavelength band near Jumn. Similar crystals
have been constructed by Nodaal. [8]. z
Recently, metallic woodpile structures have been investi-
gated by Linet al.[9] and El-Kadyet al.[10]. Metallic pho-
tonic crystals with a microstructure based on spheres, with
the Drude model used for the metal, are also discussed by
Modinoset al.[11]. Metallic crystals offer advantages in size
and weight, they are easier to fabricate and the costs are
lower. There are potentially high temperature applications in
thermophotovoltaics and blackbody emission. The crystal
manufactured by Liret al. [9] has a large band gap in the
infrared region (8um to >20 um), together with an ab-
sorption peak near the band edge. A potential application of
this effect is an efficient incandescent lamp in which energy
radiation could be suppressed in the infrared and shifted into
the visible region. FIG. 1. The woodpile structure.
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were further discussed by Gralak al. [19]. Field quantities are expressed in terms of the TE and TM
In Sec. Il, we establish notation and summarize our forcomponents of the electric field with respect to the vertcal

mulation for gratings in conical incidence. In Sec. lll, we axis. In the half space above the gratirig, =[E, ;] and

develop the formulation for the specific case of the WoodpileFl‘ =[F, ], respectively, denote the TE and TM components

structure. In Sec. IV, we discuss Bloch modes of the woodof the iricoming electric field, indexed by the channel num-

pile and derive an algorithm that quantifies the dependencger s=(p,q). Similarly, El=[Ep ] and F=[F ], re-

of the transmittance, reflectance, and absorptance on thgectively, denote the TE and TM components of the outgo-

number of layers. This is an important information for thoseing electric field. In the half space below the gratifi, and

involved in the fabrication of such structures. Finally in Sec.? denote the TE and TM components of the incoming elec-

V, we study the reflectance, transmittance, and absorptan(E ic field andE; andFy denote the TE and TM components

for tungsten woodpiles and relate these to the theoretica . D~
considerations in Sec. IV, while showing the importance o fthe outgomg electric f|eld._These TE gnd TM components
are combined as block matrices according to

surface effects not evident in the Bloch analysis.
E
- (4)

Fr

Ep
Fo

+

II. CONICAL DIFFRACTION THEORY Fo=

+

) fl_ =

In this section, we establish notation and give a self- o
contained summary of the essential features of our formula- Where necessary, we shall indicatelependence of the
tion for cylinder gratings in conical incidence, using a Ray-form e'*» by a subscripfas in]ﬂfap] or by parentheselas

leigh multipole method12,20.. Full details are given in Ref. in S(a,)]. The scattering matrix relates the outgoing fields

[1]. A major advantage of the multipole method lies in itsto the incident fields and, with a minor change of notation,
ability to treat metallic and dielectric gratings with equal we show in Ref[1] that

ease. Our calculations for metallic woodpiles use measured

values of optical constants, such as those found in [Réf. {]:D}

For comparison purposes, we shall also use an idea(jzd P

fect conductivity model. D
We. consider a single grating consisting of identical paraI—Where the matri¥S=S(a) has the form

lel cylindrical rods of radiug whose axes are separated by a P

(5

Fi
Fl

distanceD. In the chosen Cartesian coordinate system, the K [1c3cTs Ksege
cylinders are parallel to the-y plane with their axes parallel S=T71 |- X a s a a x) T. (6
to the x axis, as in the middle layer of Fig. 1. The primary kiD [IK°LT” K'LT

incidence channel is defined by the wave vector . . ) )
In Eq. (6), the identity matrix represents the scattering op-

ki=(ag,Bo,— o) ) erator in the absence of the grating, while the second term
represents the diffracted field. A short explanation of the
with wavenumberk=w/c=(a2+ B3+ v3)*2 where » is  various terms occurring in this equation follows; for a full
the angular frequency ardis the speed of light in vacuum. discussion, we refer to Refl]. In Eq. (6), kf= k?— af) and
The periodicity of the layer of cylinders introduces dis- T is the transformation

persion in they direction characterized bg'#aY, with Bq
= Bo+2mq/D. For in-plane incidence in either of the two 7 I
principal polarizations, the problemxsnvariant for a single T= T —-T! (@)
layer. However, in conical diffraction, the dependence is
e'“* while the addition of an orthogonal layer, as in a wood-which reflects the symmetry relationships between electric
pile, introduces dispersion in thedirection, leading to ax  and magnetic quantities that are imposed by Maxwell's equa-
dependence oé'“r*, with ap,=ay+27p/D. The formula-  tions. The matrice< or | denote the identity matrix of ap-
tion of the single layer scattering matrices for a 2D diffrac-propriate size. The matrix
tion problem in such configurations thus requires the solution
of the family{p} of diffraction problems, each one associated L=(M+8)71 (8

with a particulara,, direction. For convenience, we index . . . - : .

| Hicients by— 72 PUtingOw—ax  ° the scattering operator in a cylindrical harmonic basis and
plane wave coefficients by=(p,q) « 2" 9Qs=@pX incorporates the lattice geometry within the Toeplitz matrix
+ Bqy, we can write thez dependence of plane wave fields s of |attice sumg22,23 and the material properties of the

ase™ 7 where structure(refractive indices and radiivithin the matrix M.
This separation of the lattice geometry and the material prop-
ys= Vk2— Qﬁ, Se Q,={S|Q§$ k?}, 2 erties of the structure is an analytically and computationally
attractive feature that is common to all Rayleigh multipole
Ys=iVQi—Kk?, seQ.={s|Q2>k?}. (3)  methods. The matriceg® and 7° reflect a change of basis

from plane waves into cylindrical harmonics, aief and
Let us begin by restricting ourselves to conical diffraction of IC° represent the inverse transformation. The indeesids
fields with a specifieck dependence of'“r*. refer to a generalization of the symmetric and antisymmetric
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problems discussed in RdfL3]. While the plane wave dif-
fraction problem is best formulated in terms of TE and TM
modes, the multipole scattering problem, as developed irRi, 71
Ref.[1], is best handled in terms of principal Cartesian field PF+
components parallel to the cylinder axes. These two repre
sentations are related by the matkx h
Equation (6) makes no assumptions about the physical
symmetry of the scattering elements of the grating. However, Ft
as shown in Ref[1], the termsiC°L F?2 and IC2L TS van- Ro, T
ish for gratings having an up-down symmetry, in which case
the system decouples completely into a symmetric and ar
antisymmetric probleni13].
We can also derive terms for the reflection and transmis- FIG. 2. A pair of up-down symmetric gratings.
sion scattering matrices. L&R, and R, respectively, de-
note reflection scattering matrices for incidence above anth numerical implementations, we need to choose a mini-
below the grating and leZ, andZ;, denote the correspond- mum number of channels that ensures accuracy. As discussed
ing transmission scattering matrices. Clearly the mariaf  in Sec. IIl, this entails truncation of the mati$and permu-

F

SAAAAAANN N NNAPNAAAAAAARAR R AARAAAAAAAAAAARR AN/
EROXRIRRIRRIRILRKRIKIRIRIRIIRRRRIRIRIRKRIRRRRKRS

Fb

Eq. (6) can be expressed in the form tation of the remaining entries, effectively changing the inci-
. dent field order given above. Typically, 21 cylindrical har-
T, Ry monics are included in calculations, together with plane
- R, T,/ ©  wave orders betweer 5 and 5 in both directions, and re-
’ flectance and transmittance results are accurate to six figures
so that [1]. Absorptance results are deduced using conservation of
energy for structures with loss, while for dielectric and per-
Fo T. Ru|[F, fectly conducting structures the conservation of energy is
F: R, T } F +|: (10 guaranteed by the structure of the formulati@d].
A comparison between Eq&) and (10) thus yields explicit IIl. THE WOODPILE STRUCTURE

expressions for the transmission and reflection matrices.

T ; " In order to obtain reflection and transmission scatterin
When the grating is up-down symmetric, we fifid13] g

matrices for the woodpile structure, we first derive the scat-
tering matrices for the basic unit, namely, a pair of crossed

o s s _ g2 a gratings. We then use a well-established algoriftir@] to
Ra=Rs f AICLT - KLTHX, (1] form a stack of such crossed pairs.
A. Crossed cylinder gratings
T.=7,=I— X(ICLTH+KALTHX. (12

k2

2 As mentioned in Sec. Il, the plane wave diffracted orders

in a pair of crossed gratings are a doubly infinite set, indexed
We now consider the familyp} of diffraction problems by pairs (,q) corresponding to diffraction in the plane of
associated with all possible, directions. This is a two- €ach grating. Hereg enumerates the diffracted orders of the
dimensional-grid environment and we compute a family ofgrating with generators parallel to theaxis, whilep enu-
1D-grating scattering matrices each of which is associatefherates the orders of the orthogonal grating. For either grat-

with a direction«,. We fill the 2D-grid matrix to get a ing, there is dispersion in only one direction and thus the 2D
scattering matrix3 of the form scattering matrix for a single grating is essentially a block

diagonal matrix with each block being the scattering matrix
. - for a 1D problem indexed over, say, channglsand driven
' with incidence parameters corresponding to chapraflthe
S(a-y) O 0 orthogonal grating.
0 S(ay) 0 . (13 As a necessary preliminary, _consider an arbitrary pair of
0 0 S(ay) up-down symmetric planar gratings, separated by a distance
L h. The incident field i (F,) "(F,")T]", the diffracted field
| e is[(Fp)(FS)'T, and the downgoing and upgoing fields
. between the grating pair atE ~ and F ", respectively(Fig
In Eq.(13), itis assumed the® acts on incident fields that  2).

m
Il

follow the natural order Let R; and 7], j=1,2, respectively, denote reflection
B . B . B . and transmission scattering matrices for the tpp 1) and
Fra o F e Flag T lag T 1ap F g bottom (=2) up-down symmetric gratings. Since the

(14 phases of the plane waves are referenced with respect to the
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center of each grating, an arbitrary plane wave propagating The primary channel isdy, 89, — vg)- If the physical pa-
between the gratings experiences a shift in phase afametergrefractive index, diameter and position of the cyl-

exp(y,h). The propagation of a plane wave figlimay thus

be written as PF where P=diadP,P] and P
=diad exp(y,h)]. We have
F =T, F +R,PF", (15
Fr=T,F +R,PF, (16)
Fo=T,PF +R,F,, (g
Fo=TPF +R,F, . (18)

Elimination of 7/ and F" from Egs.(15)—(18) yields

-1

Fo| |72 Of|P O I -RP
Fs 0 T|]l0 P||-R,P T
T, Ol|[F, 0 R,[F/
~ |1 = - 19
0 T|F R, O |[F,

The matrix inversion in Eq.19) may be performed using the
easily checked matrix identity

(Z-AB) !

I A‘l_
| -B(Z-AB) !

- A(Z-BA) !
B T

(Z-BA) !

(20

inders of the grating are fixed, then the matfin Eq. (13)

depends only o andk;:

S=S(w,k;). (25)

In the xyz system, the wave vectdr, has the representation
aoX+ BoY— Yoz, While in thex'y’z’ system it has the rep-
resentationu(x’ + B4y’ — vz, where

ap=PBo, Bo=—a0, Yo0= Yoo (26)
It follows that
, 2pm
ap:BO+T:Bpa
, 2qm
ﬁq=—a0+T=—a,q,
Ypg= Y-a.p- (27)

These equations allow us to obtain the scattering matrix for
the bottom grating, expressed in terms>dfy'z’. This is
done by formal replacement ai;, by «,, B, by B, and

Ypq DY y,;q in expressior(25) for S. The expressions for the
top and bottom scattering matrices assume the natural chan-
nel order(14) in their respective coordinate systems. How-
ever, these orderings are physically different in that channels
(p,q) and (p,q)’ represent different plane waves in general.

Let RS and T, denote the reflection and transmission scat-From equations(27), we see that the wave vectw")i’

tering matrices of the composite structure witk a denot-
ing incidence from above ang=b denoting incidence from
below the structure. TheR, T3, Ry, and T, satisfy an
equation analogous to EGL0). Comparison of Eqg10) and
(19), together with the use of EqR0), yields the resultf13]

RE=R1+ T, PR,P(I-R,/PR,P) T, (21
T;Z rTzP(I_ 7:\,,1’P7~?¢2’P)71§—11 (22)
RE=R,+ Ty PR P(I-R,PR,P) 1T, (29

Ti=T,P(I-R,PR,P) 'T,. (24)

The basic woodpile unit is a crossed grating pair consist-
ing of two layers of cylinders at right angles to each other.

We take a primary system, denoted>yz, in which the top

grating is in thex-y plane and the cylinders in this layer are
parallel to thex axis. We introduce a secondary coordinate

system, denoted by'y’'z’, with x'=y, y'=-x, and z’

=2z. In this system, cylinders in the bottom layer are parallel
to the x’ axis. In what follows, primed quantities for the
bottom grating are assumed to be taken with reference to
while unprimed quantities for the top grating are

AV L

x'y'z',
taken with reference tayz

+,8&)A/’i y")qi', representing channep(q)’, is identical to

the wave vectolr_ X+ By = v_q 2, representing channel
(—q,p), so that channelsp(q)’ and (—q,p) are physically
identical. Similarly, channelsp(q) and (@,—p)’ are identi-

cal. Consequently, if we wish to use the same channel order
in both the scattering matrices, it is necessary to appropri-
ately reorder the entries in orfer both of these scattering
matrices.

For computational purposes, we order the channels
{(p,q)} by the values ofyf,q and then restrict ourselves to a
finite subset off y3,:—*<p,q<=}, namely, those values
of yf,q which correspond to propagating orden%&> 0), as
well as enough evanescent orderysf) <0) to ensure the
required convergence. We thus have a definite order of chan-
nels (@1,94), - - . ,(Pn,q,) and our reordering of matrix ele-
ments must change the order of the entries for the top and
bottom scattering matrices to ensure that this order is the
input and output order for both of them.

We can use these scattering matrices and Exig—(24)
to obtain reflection and transmission matrices for the pair of
crossed gratings.

B. Grating stacks

Using a pair of crossed gratings as our basic structure, we
can form a stack of such gratings, using a procedure similar
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to that given in Ref[13]. Equationg21)—(24) refer to phase AZ
origins on the horizontal plane of symmetry of each grating.
We shall denote reflection and transmission matrices referret
to these phase origins by a superscripted zero. In forming
stacks of such pairs, it is advantageous to incorporate into the
reflection and transmission matrices both the mafixde-
scribing the propagation between layers, and the ma®ijx
describing the horizontal shift between successive pairs. This
has the effect of encapsulating each grating pair in a sym-
metric layer of total thicknesk. We find[1,25]

T, Rb} 79 RY

=QP PQ, (29 X X X X X X
R, T, R(aO) 7-E)0)

Where FIG. 3. Projection of the geometry of the unit cell onto the
plane. The crosses denote lattice points, where the middle layer is
9—1/2 0 pL2 displaced into the plane of the page by a distaD¢2.
Q= { 1/2} P [ 1/2} ' (29
0 Q o P bs;=2me,/s, and define a 3D reducddzoneV; by

Vi ={k=Kkyb;+k/by+k,bze R%, (36)

Q=diad e %%»y:0]  p=diad e "], (31) ,
wherek, e[ 0,7/s,], k, €[0K,], andk,e[0,7/s,]. Itis easy
and wheres,=s,=D/2. to see that this reduced zone is completely equivalent to
Suppose a stack of pairs of crossed gratings is charac- the usual Brillouin zone for the structure in the sense that if

terized by reflection and transmission matricgg andZ; P is a point in one of these zones, then eitRewill also be

for incidence from above the structure and correspondingf the other zone or differ from some poit in the other

matricesR, andT, for incidence from below. To this stack, Z0n€ by a reciprocal lattice vector. '

we add another pair of crossed gratings, characterized by the e remark that the woodpile may also be considered as a

reflection and transmission matric®, , T;, R, and7;,. face-centered tetragondict) lattice symmetry with lattice
Using a similar procedure to that described in Sec. Il A, weVeCtors €;=2s,8,, €=5.&+5,6,1+5,6,, and e;=s,g
find that the resulting structure sf+ 1 pairs has reflection —Sy&+S,€,. In the special cas®/h=242, that iss,/s,
and transmission matrices given by =./2, the lattice is face-centered culicc). However, the
bct aspect is more suited to our formulation.
RIMN=R+TLRIAZT-R,RY) T, (32 Crucial to the characterization of field propagation in the
bulk of the woodpile is the elaboration of its eigenstates or
TSH=T3ZT-R,RY) 73, (33  Bloch modes, which form a complete basis in which to ex-

pand all field term$26]. These modes are derived via plane
RI=R+TSRN(ZT-RIRy) TS, (34  wave representations of the field immediately above and be-
low any layer[1,25|
Tf’,”:Tb(I— RZ’Rb)*lTE. (35) In the nomenclature of Sec. Il, we denote fields incident
from above and below a grating layer by partitioned vectors
of plane wave coefficientd,” and outgoing fields by parti-
tioned vectorsF ; [Eq. (5)]. In this section, our basic unit is
The woodpile photonic crystal is a semi-infinite structure,a pair of crossed cylindrical gratings, comprising a single
with surface layers and a bulk structure. Here we concentratglanar layer of lattice points. It is convenient to wrife;
on the bulk structure, which may be regarded as having and £ , respectively, for the incoming fields above and
body-centered tetragongéict) lattice symmetry[5], together  pejow the layer, where these fields are now referred to the

with a basis consisting of a pair of crossed rods. Each pair %hase origins aP, andP, (Fig. 3. The outgoing fieldsF ;

crossed gratings gives a single planar layer of lattice point ‘above the layerand F 3 (below the laverare expressed in
The primitive lattice vectors of this 2D layer asg=2s,e, S( yo 2 ( ver b

. ; terms of the interaction of the incident fields with the basic
and a,=2s,g,, wheres,=s,=D/2. Stacking of pairs of layer through the equations
crossed gratings is done by means of the primitive translation

IV. BAND STRUCTURE

vectoraz=s,e,+s,e,+s,e,, wheres,=2h. y - +

The vectorsbliezrexlsx andb,=me,/s, are the 2D re- F1=RaF 1 T F >, (37)
ciprocal lattice vectors corresponding to the 2D lattice vec- B B .
torsa; anda,. The Wigner-Seitz cell associated with this 2D Fo=T,F 1 +RyF; . (38)
reciprocal lattice structure is the surface Brillouin zdaé] The Bloch condition for field quasiperiodicity in the di-

and has the full symmetry of a single grating layer. Definerectionas imposes the constraint
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Fo=uF; with p=exp—ike-as), (39 0.8 [ p—— ST
wherek, denotes the Bloch vector, and, following REZ5], 0.6
this constraint may be formulated as the eigenvalue problern :
Fi Fi &
1 1 -~ 04
T{ +|TH + | (40) e
-7:1 -7:1 X M
in which 0.2 ny4r
T.-RyT, ' Ra RoTy! 0
T= 41 r r
|: _T};lRa T];:L ( ) X M

Ko
is the interlayer translation operator. | i i ional proiecti f the band
The modes of the crystal are the eigenstates of the matrix F'tG' 4 g(:o or ]f_’n_t'”ed.T‘{VO't _mensugn_? projicﬁ'o_';ho t ?. da!“ |
operatorT and we must solve Eq40) wherey is the eigen- S ucture of an ininite: dielectric woodprie crystal. 1he cyinarica
. . rods have radii of 0.Jum and refractive index 3.6, the pitdh is
value (or Bloch factoj and the corresponding eigenstates ) .
. . . . 0.711 um, and the separatiombetween layers is 0.24m.
define the modes, which, at the interlayer boundaries, are
given by plane wave expansions referred to above. Whe

dealing with exact, untruncated field representations, only

finite number of the modes are propagating states, that is d e_whlte region correspo_ndlng_ to the absence of any propa-
them |2|=1 (which can only occur in lossless systems gating states. Clearly evident is a range of frequencies for

while an unbounded number are evanescent yyith< 1 or which there are no propagating states. This feature is a com-

|u|>1. In practice, the field expansions must be truncate(?kate band gap, in which propagation at all such frequencies

. : : nd in all possible directions is suppressed. It is the presence
for computational purposes, thus leading to the solution of of these complete band gaps that enables the flow of light to

finite-dimensional algebraic eigenvalue problem. It is the . . . ;
propagating stateg=e k0% that are of greatest interest. be preC|seI_y controlle(_j and guided, through the introduction
of defects into the lattice.

Their importance lies in their capacity to carry energy over
arbitrary distances within the crystal. Band gaps are charac-
terized by the complete absence of propagating states, thus The effect of the number of layers

removing the mechanism of energy transmission through the A< giscussed in Ref$1,25), the eigenvalues are divided

crystal. All of the states are then evanescent, which leads t.. torward and backward propagating states, with each for-
fields decaying in one direction or the other. As we shallarq state paired with a backward state. For evanescent
show, this decay is given asymptotically by a power laWstates, which carry no energy, those with eigenvéjuie< 1

||¢, where¢ is the number of layers traversed by the mode o regarded as forward propagating, while those With
andu is the eigenvqlue of the dqminant mode. . >1 are regarded as backward propagating.

The method outlined above involving the matix is For states which carry energy, the treatment is more deli-
theoretically exact, but of limited practical use, due to NU-cate requiring a calculation of the downgoing flE .
merical instabilities which arise in the inversion of the trans—-l-hos'e states WitlE.>0 are regarded as forward propagat-
mission scattering matrices, necessary for the evaluation %g while those withEr<0 are backward propagating
T. The calculation of eigenvalues and eigenvectors from ch1 25] F
(40) thus suffers from ill conditioning that causes cata- ,With all modes partitioned as above, we recast@a) in
strophic numerical errors with increasing matrix dimension.,[he form '

These errors manifest themselves particularly in the case of

3D problems, such as the woodpile, for which the plane TE=EQA, (42)
wave orders are doubly dimensioned. These problems may

be avoided by an alternative formulatigthe R matrix for-
mulation), details of which are given in Reffl,19].

In Fig. 4, we show a projected band diagram of an infinite
woodpile. The vertical axis is proportional to the wavenum-
ber, while the horizontal axis traverses the irreducible part of
the projected Brillouin zone, shown in the inset to the figure.
For the woodpile, the projected Brillouin zone is a square ) » o
and, from symmetry arguments, one need consider only th&he left and right partlt!ons of 'Fhe block structurgd maffix
irreducible octant labeleiXM in Fig. 4. Each point on the and the diagonal matrices =diad x;] and A’ =diad x;]
perimeter of the path thus determines ar, (8;) pair for  that constitute the left and right partitions Af correspond,
which we solve the eigenvalue problem to yiddg,. The respectively, to the forward and backward propagation prob-
density of shading in the diagram is in direct proportion tolems. Herelui|<1 and|u{|=1.

e number of propagating states for thig,(8,) pair, with

where

F_F.

F= ,
F.F,

S
and A= 0 Al (43
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Now consider a 2 layer structure consisting d@f crossed
pairs of gratings. At theith pair (O<=n=<<) the field may be
written as a linear combination of eigenstates:

FF
F.F,

F-
:F'Jr

C.

. (49

A" 0 C
0 (A,),(g,n)

for constant vector€€_ and C, . We denote the incident

field from above bys, the reflected field at the surface by,

and the transmitted field at the bottom of the structuré by
Then, puttingn=0 in Eq. (44), we have

i Alpm]

2|5 C - A)~fc 45
= _+ ") .
0 T S P (O (45)
Similarly, puttingn=+¢ in Eq. (44) yields
el | ane_+| e 46
= + ,
0 N F; + ( )

assuming that there is no incident field from below the struc-
ture. After some matrix manipulation, we find that

5 Alpm]

FIG. 5. (Color online Four layer woodpile, showing absorp-
tance, reflectance, and transmittaibeck, thin, and dashed curves,
(47) respectively as a function of wavelengtk. The incidence is ver-
_ , p ) g -1 tical, with the electric field perpendicular to the top layer of rods
t=(Z-R'"R)PIII-R(P)RP'] 6 (49 (above and parallel to it(below). The rod diameters are 1/6m,
the pitch is 4.2um, and the center-to-center layer spacing is
1.7 um. The arrows show the Rayleigh wavelengths.

r=[R-—(PYRPIZT-R (P)RP 6

where

— -1 _ -1
R=F.F_° P=F_AF_, (49) This is because our input parameters are all frequency de-

pendent, so in order to model phenomena over a range of
frequencies, we need only loop over all frequencies, while
changing the input datésuch as complex refractive index
for each new frequency. We have modeled grids composed
t,=(F_.—R'E)AYF"to), 51 of tu_ngsten, for whlch_ the frequency—dgpendent refractlye in-
= -FOA(F79) G dex is taken from Palik21]. This enters into our formulation
which shows explicitly that the asymptotic behavior of the Vi@ the matrixA4, introduced in Sec. II. , _
transmittance with increasing is governed by its dominant ' "€ photonic crystals that have been fabricated at Sandia
eigenvalue and that the field intensity decay$a3¢ within Laboratoried 9] are tungsten woodpile structures consisting
a band gap. of rectangular rods, with a filling fraction of 28%. In Ref.
For a semi-infinite structure with each layer having anl9) comparisons were made between experiment and theory
arbitrarily small amount of loss, we hatg=0, while for all for unpolarized incident radiation and some differences were

R =F (F)™ Y P=F.(A)XF);' (50

In a band gap,P’)‘—0as{—ox, so

structures, whether lossy or n@4] evident. For comparison purposes, we have modeled a struc-
’ ’ ture consisting of circular rods also with a filling fraction of
r.=F.F_'6=R.6, (52)  28% (Fig. 5). As distinct from the results in Ref9], we

show results for normally incident radiation for both polar-
where Rm:FJrF:l is the Scattering matrix for an infinite izations of the incident beam. This is of interest since the
woodpile. surface structure of the woodpile is not polarization insensi-
tive, even though its bulk structure is. One interesting feature
V. METALLIC GRATINGS of Fig. 5 is that the reflectance, transmittance, and absorp-
tance of the four layer woodpile agree well for both polar-
Recently, metallic photonic crystals have been fabricatedizations for wavelengths longer than the grid period. At very
at Sandia Laboratorief®]. However, investigation of their long wavelengths, that for thel| case where the magnetic
photonic band gap properties, especially in the infrared anfield is oriented parallel to the rods in the top layer, there is a
visible spectrum can be challenging because metals afdewer reflectance than the orthogortglpolarization. This is
strongly dispersive and absorbing in these regions. A strongasily understood on the basis of average dielectric constant:
advantage of the multipole theory we have developed is thaor H| we average the inverse dielectric consfé], giving
it is able to accommodate metallic gratings without difficulty. a lower result than folE; polarization, where the normal
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FIG. 6. (Color onling As Fig. 5, but for 40 layers.

FIG. 8. Semi-infinite tungsten woodpile as in Fig. 7 compared
average of dielectric constant is calculated. For both the powith a perfect conductor of the same physical dimensions, showing
larizations, there is a narrow plasmon absorption peak nedgflectance as a function of wavelength(..m) for vertical inci-

7 um, causing a drop in reflectance there. A second, moré@ence with the incident electric_ vector perpendicular to the top layer

pronounced drop in reflectance occurs at the first RayleigRf rods(above and paraliel to itbelow).

wavelength of the woodpila =D. At shorter wavelengths,

there are significant differences in the reflectance, transmitand on the long wavelength side of the first Rayleigh wave-

tance, and absorptance for the two polarizations. Hje length. Even this region of enhanced transmittance must dis-

curve exhibits a more ragged variation of reflectance withappear with the addition of more layers, as a consequence of

wavelength, in keeping with previous work on diffraction the lossy nature of each layer of the woodpile. The polariza-

anomalies in metallic inductive grid28]. tion differences for wavelengths below the first Wood
The difference between surface effects and bulk effects isnomaly are similar in character for forty layers to the four

made more evident in Fig. 6, where we show reflectancelayer case.

transmittance, and absorptance for 40 layer woodpiles. Note Figure 7 also shows the effect of polarization of the inci-

that the transmittance is now only appreciable in a narrowdent beam for a different cylinder radius from Figs. 5 and 6,

and also for semi-infinite stacks. For this case, the woodpile

Reflectance
1 — logsoT
A N b ‘ ; = Aum]
0.8 3\ /4. 20.
Al \ ; -20 1 \*
0640 LT v
' -40
0.4
-60
0.2
-80
0 - AMum
2 3 5 7 10 15 20 fum] -100

FIG. 7. Semi-infinite tungsten woodpile, showing reflectance as  FIG. 9. (Color onling Tungsten woodpile, showing logarithm of
a function of wavelength. (um) for vertical incidence. The solid transmittance for 20, 30, 40, 50 layers. The plotted dot points show
curve is the case where the incident electric field vector is orthogospacings of 20 lju| determined by the dominant eigenvalpe
nal to the top layer of rods, while the dashed curve is the case wheghere|u|=0.534 549 wher\ =3.5 and|u|=0.098 242 1 when
the incident electric field vector is parallel to the top layer of rods.=15. The rod diameters are L2, the pitch is 4.2um, and the
The solid line at the top of the graph is the reflectance of bulkcenter-to-center layer spacing is Judn. The incidence is trans-
tungsten. The rod diameters are LB, the pitch is 4.2um, and  verse magnetic and conical with wave vector in the direction of the
the center-to-center layer spacing is LBh. unit vectoru= 0.358+ 0.268/+ 0.894.
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FIG. 11. (Color online The tungsten woodpile of Fig. 10, show-

ing logarithm of transmittance as a function of increasing layer

FIG. 10. (Color onling Tungsten woodpile, showing logarithm ymber at a wavelength of &m. The initial decay represents a
of transmittance for 10, 20, 30, 40, 50 layers as a function of waveg|och mode with eigenvalue of absolute value 0.695 544 and Bloch
length\ (.m). The rod diameters are 1,2m, the pitch is 4.2um,  coefficient 3.215 19, while the asymptotic decay is due to the Bloch
and the center-to-center layer spacing is Ar8. The incidence is  mode with the dominant eigenvalue having absolute value

vertical, with the electric field orthogonal to the top layer of rods. g 957 053, but with the small coefficient of 0.095 947 8.
The nonuniform decrease in transmittance gt for each addi-

tional set of 10 layers is evideriSee the text for further discus-

sion. sufficiently many layers have been added will the asymptotic

attenuation become apparent. This behavior is shown in Figs.

transmittance is zero, the reflectance is calculated from EcLO and 11.
(52), and the absorptance is the complement of the reflec-
tance. Note th_at the plasmon abso_rptipn peaks neam? VI. CONCLUSION
differ substantially for the two polarizations, demonstrating
conclusively that they manifest surface rather than bulk plas- In this paper, we have given a theoretical account of the
mon effects. The fact that the plasmon absorption peak fowoodpile photonic crystal, including the derivation of ex-
H polarization is wider and deeper than that gy, again is plicit analytic expressions for the reflectance, transmittance,
in keeping with theoretical and experimental studies on meand absorptance of a structure with either a finite or an infi-
tallic crossed gratingg28,29. nite number of layers. In the case of a finite structure, we

In Fig. 8 we compare tungsten woodpiles and woodpilehave shown how the transmittance, reflectance, and absorp-
made of perfectly conducting cylinders. The perfect conductance for a given number of layers depends on the eigenval-
tivity case is treated by modifying the boundary conditionsues and Bloch coefficients of the layer transfer matripf
that occur in the matrixM of Eq. (8), a further illustration  Ed. (41). Our treatment enables us to analyze both dielectric
of the versatility of the multipole method. The polarization and metallic woodpiles, including the case of perfect conduc-
effects for the perfect conductor are similar to those for tunglivity, where in the metallic case we are able to use measured
sten. A notable feature in Fig. 8 is the difference in the widthvalues of optical constants.
of the reflection dip near um for the two polarizations. Our theory enables us to generate numerical results such
Note that for both the polarizations the reflectance drop ocas band diagrams of dielectric woodpiles and graphs of re-
curs well on the long wavelength side of the first Rayleighflectance, transmittance, and absorptance of both dielectric
wavelength, even for the infinite conductance case. As foand metallic woodpiles. Numerical studies have demon-
the latter, one would expect the surface plasmon resonanédrated polarization dependence for metallic woodpiles,
for a structure with shallow modulation to coincide with the showing that the surface layer of a woodpile crystal plays an
Rayleigh wavelength, this illustrates the dominant role of thémportant role in the observed effect, and emphasizing the
woodpile geometry in determining the position of the dip. importance of studying the polarization dependence of the

As we showed in Sec. IV, the asymptotic behavior of theoptical properties of woodpiles, even for normally incident
transmittance with increasing is governed by its dominant radiation.
eigenvalue and that the field intensity decay$8$¢ within
a band gap. This is clearly shown in Fig. 9, where each
additional group of 10 layers causes the transmission to drop
by a factor determined by the dominant eigenvalue. On the The support of the Australian Research Council for the
other hand, if a particular Bloch mode has a large coefficientCenter of Excellence for Ultra-high-bandwidth Devices for
the initial attenuation is dominated by this mode. Only afterOptical SystemgCUDOS is acknowledged.
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