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Alternative interpretation of the sign reversal of secondary Bjerknes force acting
between two pulsating gas bubbles
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It is known that in a certain case, the secondary Bjerknes favbéch is a radiation force acting between
pulsating bubbleschanges, e.g., from attraction to repulsion, as the bubbles approach each other. In this paper,
a theoretical discussion of this phenomenon for two spherical bubbles is described. The present theory based on
analysis of the transition frequencies of interacting bubfésda, Phys. Lett. 2297, 210(2002] provides an
interpretation, different from previous onés.g., by Doinikov and ZavtraPhys. Fluids7, 1923(1995]), of
the phenomenon. It is shown, for example, that the reversal that occurs when one bubble is smaller and the
other is larger than a resonance size is due to the second-highest transition frequency of the smaller bubble,
which cannot be obtained using traditional natural-frequency analysis.
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I. INTRODUCTION quencieq 15]) to the sign reversal. In the present paper, we
focus our attention on this case, although it has been shown
It is known that two gas bubbles pulsating in an acoustidhat other factors, such as the nonlinearity in bubble pulsa-
field undergo an interaction force called the secondarytion [7,11-14 and the higher-order terms appearing in the
Bjerknes force[1-3]. This force is attractive when the time-averaged interaction for§8] which has been neglected
bubbles pulsate in phase with each other, while it is repulsiven previous works, can also cause the sign reversal.
otherwise; that is, the phase property of the bubbles plays an |n 1995, Doinikov and Zavtrak9], using a linear math-
important role in determining the sign of the force. In a semi-ematical model in which the multiple scattering of sound
nal paper published in 19§4], Zabolotskaya, using a linear petween bubbles is taken into account more rigorously, again
coupled oscillator model, showed theoretically that in a cery g icted the sign reversal. They also asserted that this rever-
tain case, the sign of the force may change as the bubbles, s que to the change in the natural frequencies. They

come closer to one another. This theoretical prediction Wa3ssumed that the natural frequencies of both bubbles increase

ensured by recent experiments that captured the stable, peri- . . .
odic transiational motion of two coupled bubblég, result- as the bubbles approach each other, resulting sometimes in

ing from the sign reversal of the force at a certain distancjhe sign reversal. When, for example, both bubbles are larger

between the bubbles. Zabolotskaya assumed that this si jan the resonance siee., the case ofvjp<w and wy

reversal is due to variation in the natural frequencies of the~ @) and the distance between them is large enough, they

interacting bubbles, which results in shifts of their pulsationPU!Sate in phase with each other. As the bubbles approach
phases. The theoretical formula Zabolotskaya derived t§ach other, the natural frequency of a smaller bubble may
evaluate the natural frequencies of two interacting bubbledirst, at a certain distance, rise above the driving frequency,

which corresponds to the one given previously by SHiffa ~ and in turn the bubbles’ pulsations become antiphase; the
is represented as force then changes from attractive to repulsive. When, on the

other hand, one bubble is larger and the other is smaller than
the resonance siz@.g., 5> 0> w,o) and the distance be-
w*~0, (1) tween them is large, they pulsate out of phase with each
other and the force is repulsive. As the distance between the
bubbles becomes smaller, the natural frequencies of both
whereR;y and R, are the equilibrium radii of the bubbles, bubbles may rise, and when the natural frequency of a larger
w1p and w,q are their partial naturdangulay frequenciesw ~ bubble rises above the driving frequency, the repulsive force
is the angular frequency of an external sound, Bnid the  may turn into attraction. This interpretation is supported even
distance between the centers of the bubbles. This equation more recent papeifd2,14.
predicts the existence of two natural frequencies per bubble, Although this interpretation seems to explain the sign re-
and is symmetric; namely, it exchanges 10 and 20 in theversal well, it is opposed to the prediction given by ED,
subscripts of the variables to reproduce the same equatiomhich reveals that the higher natural frequericgnverging
meaning that the two bubbles have the same natural frequets the partial natural frequency of a smaller bubble or
cies. —o [6,16]) increases but the lower or{feonverging to the
During the last decade, a number of studies regarding thpartial natural frequency of a larger bubble Br—«) de-
sign reversal of the force have been perfornigg/—14.  creases as the bubbles approach each other.
Among them, Refs[9,10,13 also considered the relevance In 2001, Harkinet al. [13] performed an extensive theo-
of the change in the natural frequencigs resonance fre- retical study concerning the translational motion of two
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acoustically coupled gas bubbles in a weak and a moderate Pt (3K —1)20/R:
driving sound field. Their theoretical model derived from wjo= \/3"1 0 (3"12 )20/Rjo
first principles supports the experimental results by Barbat PRjo

et al.[5]. In Sec. VIl of that paper, Harkigt al. also consid- ) ) ] ]

ered the influence of the change in natural frequencies on the the partial naturdkngulay frequencies of bubblg 6 is
sign of the force in order to explain the sign reversal forthe damping coefficient determined based on the damping
w10<® and w,,<w. Their explanation based on a formula characteristics of the bubbl¢s8], py; is the driving pres-
given directly by Eq/(1) is essentially the same as those bySure acting on bubblg «; is the effective polytropic expo-
Zabolotskayd4], and by Doinikov and Zavtrak,10. nent of the gas inside the bubbl&, is the static pressure;,

The authors should note here that all the previous theorets the surface tensiop, is the density of the liquid surround-
ical models mentioned above calescribe(or explain the ing the bubbles, and the overdots denote the time derivation.
sign reversal. However, thieterpretationthat we will pro- ~ The driving pressure is represented by the sup.gtind the
vide in the present paper is different from the previous onessound pressure scattered by the surrounding bubplesas

The aim of this paper is to give an alternative interpreta-
tion of the sign reversal, one that may be more accurate than
the previous ones that are based on the natural-frequency
analysis. Recently, having reexamined the linear coupled os-
cillator model used frequently to analyze the dynamics ofThe value ofpg; is determined by integrating the momen-
acoustically coupled bubblgsee Ref[16], and references tum equation for linear sound wavegp/dr=—pduldt,
therein, we found that a bubble interacting with a neighbor-coupled with the divergence-free conditiaru)/dr =0,
ing bubble has three “transition frequencies,” definedfas  wherer is the radial coordinate measured from the center of
driving frequencies for which the phase difference betweei bubble andi is the velocity along. Resultantly, the driv-
an external sound and the bubble’s pulsation becom&s  ing pressure is determined as
(or 37/2), two of which correspond to the natural frequen- \
cies[16]. Among the three transition frequencies, the lowest Rﬁo..
one decreases and the remaining two increase as the bubbles Pa,j= pex+Pk:§<¢j D_-ke"‘ ©)
approach each other. Meanwhile, f@r— only one of them ' .
converges to the partial natural frequency of the correspondyhereD; is the distance between the centers of bubples
ing bubble. Namely, the transition frequencies defined agndk.
above are asymmetric. The use of the transition frequencies |n a single-bubble casée., forN=1), Eq.(2) is reduced
would allow us an accurate understanding of the sign reverg
sal, because observing these frequencies provides more de-

N
Pd,j= Pext E Psjk-
k=1k#]j

tailed insights of the bubbles’ phase properties rather than . ) . Pex

that provided by the natural-frequency analysis. Using the e1+w10e1+51e1=—pR10. (4)
theory for the transition frequencies, we arrive at a novel

interpretation of the sign reversal. Assuming thaip,, is written in the form ofpg,= — P,sinwt

(P, is a positive constajtthe harmonic steady-state solu-
tion of Eq. (4) is given by

€;=Kg; sinfowt— ¢g;),

Il. THEORIES

In this section, we briefly review the previously ex-
pounded theories regarding the natural frequencies, the trafii
sition frequencies, and the secondary Bjerknes force.

Pa 1
: . ; Ke= \/ '
A. Natural frequencies and transition frequencies poR10 (w%o_ w2)2+ ﬁwz

Let us consider the linear volume oscillation fbubble
system immersed in an incompressible liquid. Suppose that 51w
the time-dependent radid; of bubblej can be represented psi=tan ! = 2|
asR;=Rjo+e(t), and|e]|<R;o (WhereR;, ande; are the @10~ @

equilibrium radius and the deviation of the radius, respec- . ,
tively, andj=1,2, . .. N). The radius deviation can be de- From this result, one knows that the phase difference of

. . . ) ¢<1= w2 appeardor, roughly speaking, the phase reversal
termined by solving the linear oscillator modeee, e.g., takes plackonly at the natural frequency o [19], and the

Ref. [17)), resonance response occurs(@t, more correctly, nearthe
. . Py same driving frequency.
&+ wioej+ die=— pR—”, 2 For N=2, Eq.(2) is reduced to
jo
2
- . Pex R .
+t i@t oo =—— ———
where et wiet 61€ PRy RlODeZ’ ()
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Pex R%o B second pair of pa_rentheses of £f) are the same as thpse
R R.DS (6) on the left-hand side of Eq1). These results mean that in a
P20 20 double-bubble case, the phase reversal of a bubble’s pulsa-
where D=D,,=D,;. It is known that for a weak forcing tion can take place not only at its natural frequencies but also
(i.e., P,<Py), this system has third-order accuracy with re-at one other frequency. Becausg+ H,, Eq. (8) [and also
spect to 1D, although it has terms of up to first ordéhe Eq. (7)] is asymmetric, meaning that the bubbles have differ-

last term$ [13]. The harmonic steady-state solution fgris €Nt transition frequencies.
A preliminary discussion for a\-bubble system[20]

é2+ w%oez+ 52é2: -

e;=Ksin(wt—¢y), showed that a bubble in the system has upkb-2L transi-
tion frequenciesN ones of which correspond to the natural
where frequency. Namely, a bubble has an odd number of transition
b frequencies. This result can be understood as follows: Even
__a [p2.np2? in a multibubble case, a bubble’s pulsation may be in phase
K R: ArtBi, or out of phase with a driving sourf@1] when the driving
frequency is much lower or much higher, respectively, than
_ 1[B1 its natural frequencies; thus, in order to interpolate these two
$,=tan ,/.\_1 e[0.27], extremes consistently, an odd number of phase reversals is
necessary20].
with
H,F+M,G H,G—M,F B. Secondary Bjerknes force
l:W 1:W The _secondary Bjerkn_es f_orce acting bet\_Neen the bubbles
for sufficiently weak forcing is expressed with-5,13
R10R20 o — _
Folily= — 5wt MiMy, For (V3 V) 2 erk 1K, CO8 hy — o) —-——, (9)
[[r2=r4ll [ro=ral
G=L;My+L,M;, H;=L,+ %)wz, whereV; andr; are the volume and the position, respec-
tively, of bubblej, (- - -) denotes the time average, ahg
a2 o —r,4/|=D. The sign reversal of this force occurs only when
Li=wiy—w°, Ly=wy)— v, ) S
the sign of cosp,—¢,) (or of (V,V,)) changes, because
M,=810, My=30. K;>0 andK,>0. If the phase shifts resulting from the ra-

diative interaction between bubbles are neglected, this force
Exchanging 1 and 2or 10 and 20in the subscripts of these is repulsive whenv stays betweemw;, and w,,, and is at-

equations yields the expressions for bubble 2. tractive otherwisd1]. In the case where the radiative inter-
The formula for the natural frequency, E@), is derived  action is taken into consideration, the frequency within
so thatK;—o for §;—0 andé,—0. Namely, which the force is repulsive shifts toward a higher range, see,
e.g., Refs[9,10!.
R10R20 The formulas reviewed above, except for that regarding
F=LL,— D2 w?=0. the transition frequencid€qgs.(7) and(8)], are classical, and

almost the same ones have previously been used in[&ef.

As mentioned already, this equation predicts the existence (ﬁ‘s will be shown in the following section, however, the fol-

up to two natural frequencies in a double-bubble system. 10Wing investigation based on E?) coupled with Eq.(9)

The transition frequencies of bubble 1 are determined Sgives an interpretation of the sign reversal different from the
that ¢, becomesm/2 (or 37/2). Because 2+ G20 [16] previous ones described using only the natural frequencies.

the resulting formula for deriving the transition frequencies

of bubble 1 is lll. RESULTS AND DISCUSSION
H,F+M,G=0. (7) In this section, we investigate the relationship between the
. ] transition frequencies and the sign of the secondary Bjerknes
Assumings;—0 andd,—0 reduces this to force by using some examples. The first example is the case

of Rjg=2 mm andR,,=5 mm, which corresponds to a case
L @wz Ll R10R20w4 —0. ® used in Ref[10]. We assume that the bubbles are filled with
2''D =2 p2 ' a gas having a specific heat ratio 1.4, and the sur-
rounding material is water o=0.0728 N/m, p
As was proven in Refl16], this equation predicts the exis- =1000 kg/mf, Po=1 atm, and the speed of sounc
tence of up to three transition frequencies per bubble. Fur=1500 m/s). For the damping coefficient, we adopt that
thermore, as pointed out in the same paper, the terms in thesed for radiation and thermal losses:

H]_F:
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FIG. 1. Transition frequencies, (rad/9 and
w, (rad/9 for R;;=2 mm, R,,=5 mm, and the
reduced damping, normalized ly (rad/9. The
dashed lines show the transition frequencies that
do not cause the resonance.

In order to clarify the following discussion, we first
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where the thermal damping coefficigy, ; and the effective
polytropic exponenic; are determined9,18,23 by

o2
_jo
5m,j*7w dipj »

K=y

(1+ dfh,j)( 1+ 3(11(:132;;?2);;??)()”1
with
dinj=3(y—1)
y X(sinhX+sinX) —2(coshX — cosX)
X2(coshX —cosX) + 3(y—1)X(sinhX—sinX) '

X:Rjo(zw/)(e)llz,

where we sejg=2x10"° m?s L.

present results for the idealized condition&®#0 by reset-
ting 6;— 6;/100, and subsequently provide results given by
the direct use of Eq10). Figure 1 shows the transition fre-
guencies of the bubbles,; andw,, calculated using Eq7)
with the reduced damping, normalized by, (= w, for D
—). In those figures] denotes the normalized distance
defined ad =D/(R;p+Ry0). As mentioned previously, we
can observe three transition frequencies, only one of which
converges taw;, of the corresponding bubble fbr-. The
second-highest transition frequency of bubble 2 is almost
equal to the highest one of bubble 1; thus, the highest one of
bubble 2 is higher than that of bubble 1. The second-highest
one of bubble 1 and the highest one of bubble 2 do not cause
the resonance respongks.

The dashed curves displayed in Figa2show ¢, ¢,
and cosp,— ¢»,), respectively, as functions df Here the
driving frequency is assumed to be=1.01w4q, i.€., slightly
abovew. (In the present study, the driving frequency is set
asw=~ w1y Or W=~ wyq, SO that the sign reversal takes place at
a sufficiently largd where the accuracy of Eq&) and(6) is
guaranteed As mentioned in Sec. |, it is known already that

(@) = 1.01 &y (b) @=1.03 a,,
21 2F
¢ /7 ¢/
151 15}
1 - 1 .
0.5 . 0.5 ::
oF . 2+
; ; . FIG. 2. ¢.l7, ¢/, and
%/ 7 : : sk % cosp,—¢,) for (8 w=1.0lwqq
(rad/9 and (b) w=1.03w,q (rad/
1 s), as functions ofl. The dashed
curves and the solid lines show
05 03 - the results given using the reduced
ok . . . ok . . . damping and the real damping, re-
i\ ] spectively.
cos(g,—d,) cos(4—d.)
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FIG. 3. Same as in Fig. 1, but for the real

06|\ - damping.
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the sign reversal can take place where wqg> w5 Or w19  if w~wqy, the amplitude of the sound wave emitted by
>w>wy; the present setting corresponds to the formerbubble 1 measured & can be greater than the amplitude of
case. We can observe one and two sharp shifts,and ¢, Pex- IN this situation, bubble 2 is driven by a sound wave
respectively. Atl=~3, both ¢; and ¢, shift almost simulta- whose oscillation phase is delayed by almastrom that of
neously, but the sign reversal does not occur because th®,. This results ing,>m, because the pulsation phase of
phase differenceb,— ¢, is hardly changed. At=13, only  bubble 2 delays further from that of the sound wave.
¢, shifts, resulting in the sign reversal. In the former case, We show here the results given by using Ef) in order
the phase shifts are caused by the natural frequencies. As examine the influences of the damping effects on the sign
mentioned previously, whed;~0, both the bubbles have reversal and phase shifts. Figure 3 shows the recalculated
(almos} the same natural frequencies. Thus, simultaneougransition frequencies. As already discus$&fl], when the
phase shift appears. The changedsf in the latter case is damping effects are not negligible, the bubbles have only one
apparently due to the highest transition frequency of bubbléransition frequency in the largeregion. The solid curves
2, which cannot be obtained by the traditional natural-displayed in Fig. 2 showp,, ¢,, and cos¢,—¢,) for w
frequency analysis. Namely, this sign reversal cannot be in=1.0lw,;, and w=1.03w,,. Their tendencies are similar to
terpreted by using only the natural frequencies. those given with the reduced damping, although their profiles
We should note here that, to compute the phase defays are smoothed significantlisuch a smoothing of the phase
and ¢,, we used the “atan2y(,b)” function in the C lan- change by the damping effects is well known for a single-
guage, which returns tafd(b/a) e[ — m, 7], and, further- bubble caseand the points at which the sign reversal takes

more, adopted the operation place are shifted slightly; the positions of these points are, in
. the case ofw=1.0lwq,, I~13.59 for §; and |~14.57 for
_ | atan2Aj,Bj)+2m if atan2A;,Bj)<0 6;/100, and, in the case @f=1.03wy,, |~12.66 fors; and
#i= atanZ A, ,B;) otherwise, |~12.48 for6;/100. Moreoverg, for = 1.0lw,4 does not

exceed 3r/2 (the minimum value ofw, larger thanw, is
in order to obtain results fdre>1 which are consistent with 1.027%w,0); even so, the sign reversal occurs at almost the
the established knowledge of single-bubble dynamics, e.gsame point as that given with;/100, away from the point
¢j~m whenw>wj, and §;=~0 (j=1 or 2). where ¢, = /2. This result may be interpreted as the “ves-

The dashed curves displayed in FigbRshow results for tige” of the highest transition frequency of the larger bubble
0=1.03w,0 (=0.413w4y), i.e., for w;g>w>wy. In this having given rise to this sign reversal. Detailed theoretical
case, we can observe only one sharp shifipgfat =12,  discussions for the slight shift infor cos($,—¢,)=0 due to
causing the sign reversal. This shift ¢f, is due to the the damping effects will be provided in a future paper.
second-highest transition frequency of bubblgthis fre- Next, we show results for smaller bubbleR,f=1 um
quency also not corresponding to the natural frequgrmys  andRy,=4 um). The value for viscous loss is used for the
cause the lowest transition frequencies of both the bubbledamping coefficients, i.e.,
decrease akdecreases.

These results reveal that in the above cases, the transition

frequencies other than the natural frequencies cause the sign o= 4'U; , (11
reversal of the secondary Bjerknes force. This conclusion is PRjo

obviously different from the previous interpretations de-

scribed by means of the natural frequendi®®,10,13. where the viscosity of water=1.002x 102 kg/(ms). Be-

It is interesting to point out that in the case wheve cause the thermal effect is neglecteds y=1.4. Figure 4
> w0 wyy and w~w,y, the phase delay of the larger shows the transition frequencies, and Fig. 5 shows ¢,
bubble was sometimes greater thafisee Fig. 28)]. Sucha and cosf;—¢,) for w=1.0lw;;, and w=1.03wy
result cannot be given by a single-bubble model that predicté=0.201w,,) with §;/100 (the dashed curvgsand §; (the
a phase delay of up te. This may be explained as follows: solid curve$. The qualitative natures of these results are
When o> w,0> wyg is true andl is sufficiently large, both quite similar with the previous ones; thus, additional discus-
bubbles pulsate out of phase with,, emitting sound waves sion may not be necessary. Using this example, we perform
whose phases are also out of phase pith As| decreases, here a comparative study of the theoretical results with the
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086} - FIG. 4. Transition frequencies, (rad/9 and
w, (rad/9 for Rijg=1 um, Ryy=4 um, and the

0.4 L\\ B real damping, normalized by, (rad/s.
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numerical results in order to confirm the former’s correct-ciently large period after the transients have decayed.
ness. In the numerical experiment, we employ the coupleqjormalizing (RZR,R3R,) by R2 RZ max(Ry(t)
Rayleigh-Plesset-Noltingk-Neppiras-Poritsky (RPNNP —Ryg))max(Ry(t)—Rog) @?/2 yields the numerical approxi-

equationssee, e.g., Re(.16)); mation of cos; — ¢,), where maxR;(t)—R;o|) indicates the
3 1 1 p d . pulsation amplitude of bubblggiven numerically. The am-
RiR;+ ER%— —Pwi=——| Pext ) dt(Rng)}, plitude of the external sound is setfg=0.01P. In Fig. 6,
P p the numerical and the theoretical results are displayed in
3 1 1 b d _ piles. These results are in egcellent agreement, confirming
R,R,+ ERg* ~Pw2=——| Pext 5 dt(RiRl)}’ the correctness of the theoretical rg;ults given gbove. In the
P p same figure, we have shown additionally sgn(V,)) for

P,=0.2P, (the dot$ and 0.9, (the dash-dotted curvem

where order to briefly investigate nonlinear effects on the sign re-
20\ [Rig|3* 20 4MR' vgrsal, wherg sgi)=1 for X>0 and_ sgnk)=—1 pther—
Puw,j = ( Po+ ) (J) ———-—1-p,. wise. In plotting these results, we omitted the data in the case
' Rio/ | Ry R R whereR;(t) + R,(t)>D was observed during the computa-

ion. As is clearly shown, increasing the driving pressure

This s_ystem of nonlinear differential equations are SOIVeqt'educes the distance for which the sign reversal takes place.
numerically through the use of the fourth-order Runge-KuttaThis result appears to be consistent with the well-known

method in whichRy, Ry, Ry, andR, are used as dependent nonlinear phenomenon that a strong driving pressure de-
variables, andRZR,R3R,) [=(V,V,) in Eq. (9)] is then  creases a bubblelgffectivel resonance frequency, see, e.g.,
calculated. The time average is performed during a suffiRefs.[2,3]. (Imagine that the transition frequencies shown,

(@) w=1.01 @, (b) @=1.03 w,,
[ ¢, /7 .

150 i 15] FIG. 5. ¢,/m, ¢,lm and

: K cosp,—¢,) for (8 w=1.0lwqq
(rad/9 and (b) w=1.03w,, (rad/
0.5 0.5 s). The dashed curves denote the
results for the reduced damping.

Of 1 1 1 ok ] 1 1
T costo-8) 1
cos(2—¢, { cos(¢,—

05} : 0.5} (¢1 ¢2)

0 e 0
05 /:: o \

L E— prepeesmreee” # , 1t . R [epeirirr

1 3 10 30 100 1 3 10 30 100
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. _ _“’j_1 81_0’1_0_ 1 wi1 03 @ FIG. 6. Comparison between the theoretical
I | Theoretical and the numerical results. The lines and the
o5f- | . 05 | °  Numerical circles denote the theoretical and the numerical
0 ! : P sead N 1 -: results, respectively, of cag(—¢,) fo_r_ ®
sl I Theoretical | o] \ \\\ =1.01w,q .(rqd/s) and 1.0%,q (rad/9. Addition-
I : o Numerical - ally, sgn(V,V,)) for P,/P,=0.2 (the dot$ and
N S ) s = . Pl el sl il 0.5 (the dash-dotted curveare plotted for a brief
1 3 10 30 100 1 3 10 30 100

; / investigation of nonlinear effects.

e.g., in Fig. 1 decrease but the driving frequency holdsdoes not show that a kind of characteristic frequency exists
which might shorten the distance f6=0.) More detailed in the frequency region betweeab,, and w,y. The present
and concrete discussions on the nonlinear effects will be pratheory explains the sign reversal in this case as taking place
vided in a future paper. around| at which w;=w is true[see Fig. 7c), where we

To summarize our discussion, we compare the present irassume for simplicity that the damping effect is negligjple
terpretation with the previous ones. Figure@)7shows the and is consistent with the theory for natural frequencies be-
dependency of natural frequencies lprassumed by Doini- cause the transition frequencies include the natural frequen-
kov and Zavtra9,10]. Their assumption explains the sign cies.
reversal occurring where ;o> 0> w,q, for example, as tak-
ing place aroundlat whichw,= w is true. Yet, as mentioned,
their assumption is inconsistent with the theoretical results
regarding natural frequencies given previoydy6] [see Fig. We have investigated the influences of change in the tran-
7(b)]. On the other hand, it is difficult to determine by only sition frequencies of gas bubbles, resulting from their radia-
observing the natural frequencies that the sign reversal cative interaction, on the sign of the secondary Bjerknes force.
take place forwi>w>w,y, because the classical theory The most important point suggested in this paper is that the

IV. CONCLUSION

(a) Natural frequencies [D-Z's assumption]

12
W, / 0y @,/ @y
1} i
0.8} i
0.6
0al T
. FIG. 7. Characteristic frequencies of two
1.2 (b) Natural frequenmes [Theory] coupled bubbles and different interpretations of
x @y /@y @y / Wy the sign reversal. The dashed lines show a typical
1k i driving frequency lying betweemq and wyg,
where wqp>w,y IS assumed. Doinikov and
o8k i Zavtrak assumed that the natural frequencies of
both the bubbles increase as the bubbles approach
06l i each other(a). Assuming this, the sign reversal
______________________________________________________________________________ for ;0> 0> wyo Seems to be explained. This as-
0.4 sumption is, however, inconsistent with the clas-
. . \ \ L L sical theory for natural frequencie&). The
present theory can explain this reversal without
(c) Transition frequencies [Theory] such an inconsistendig).
1.2
@, / @y Wy / Byo
1} i

1 3 10 30 100 1 3 10 30 100
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transition frequencies that cannot be derived by the naturakrequencies of bubbles, and the bubble radii are several tens
frequency analysis cause the sign reversal in the cases of micrometers. This result reveals implicitly that the math-
both w>w5> w59 and w5>w>w,y. This interpretation ematical model proposed in R¢®], which takes into ac-
has not been proposed previously. The present results alsount the shape deviation of the bubbles, predicts such a
show that the theory given in Reff16] for evaluating the strong increase of the transition frequencies of closely
transition frequencies of interacting bubbles is a reasonableoupled large bubbles that this increase cannot be explained
tool for accurately understanding the mechanism of this reby the classical model for coupled oscillators used here.
versal. In a paper currently in preparatif#8], we will use  Derivation of the transition frequencies of Doinikov and
the direct numerical simulation techniqii24,25 to verify ~ Zavtrak's model would be an interesting subject for future
the present theoretical results. study.

Lastly, we make further remarks regarding the results de-
scribed in Ref[10]. In that paper, the frequency of the ex- ACKNOWLEDGMENTS
ternal sound {=w/27) was assumed to bé=63 kHz,
which is 60 times higher than the partial resonance frequency This work was supported by the Ministry of Education,
of a bubble ofR,=3 mm (1.094 kH2; nevertheless, the re- Culture, Sports, Science, and Technology of Ja@4onbu-
versal was observed at a very snialln Ref.[9], the driving ~ Kagaku-Shounder an IT research program “Frontier Simu-
frequency is assumed to be comparable to the partial naturédtion Software for Industrial Science.”
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