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Limit cycle induced by multiplicative noise in a system of coupled Brownian motors

S. E. Mangioni* and H. S. Wié'"
!Departamento de Bica, FCEyN, Universidad Nacional de Mar del Plata, Defunes 3350, 7600 Mar del Plata, Argentina
2Grupo de Fsica Estadstica, Centro Atmico Bariloche (CNEA), 8400 San Carlos de Bariloche, Argentina
and Instituto Balseiro (CNEA and UNCuyo), 8400 San Carlos de Bariloche, Argentina
(Received 22 July 2002; published 19 May 2p03

We study a model consisting of nonlinear oscillators witlglobal periodiccoupling, andocal multiplica-
tive and additive noises. The model was shown to undergo a nonequilibrium phase transition towards a
broken-symmetry phase exhibiting noise-induced “ratchet” behavior. A previous $tdid§. Wio, S. Man-
gioni, and R. Deza, Physica D68-169 184 (2002] focused on the relationship between the character of the
hysteresis loop, the number of “homogeneous” mean-field solutions, and the shape of the stationary mean-field
probability distribution function. Here, we show—as suggested by the absence of stable solutions when the
load force is beyond a critical value—the existence of a limit cycle induced by both multiplicative noise and
global periodic coupling.
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[. INTRODUCTION spatial pattern$11], noise-induced phase transitions in ex-
tended systemfl 2], etc.

The study of dynamical systems has shown that limit Here, we discuss an extended system described by PDE’s,
cycles are ubiquitous in a wide range of physical applicationsvhere noise plays a key role in controlling and inducing a
[1,2]. From a physicist's point of view, limit cycles are limit cycle. The model that we analyze here is the one used
thought of as a way to balance the in- and out-energy flowsn Refs.[13,14 to study a ratchetlike transport mechanism
Even when these flows are not oscillatory in time, a system'&rising through a symmetry breaking, noise-induced, non-
oscillatory motion can occur, equalizing such flows over oneequilibrium phase transition. In a recent pafiE3], a system
period. An efficient pedagogical example of such a procesdVith a noise-induced phase transition, based on a model that
based on a perturbative analysis of the nonlinear van der P&t @ variant of Kuramoto’s model for coupled phase oscilla-

oscillator, can be found in Ref3]. As is well known, limit ~ tors [16]; was analyzed. In addition to the phenomenon of
cycles are robust—structurally stable under small@nomalous hysteresis, an evidence of the existence of a limit

perturbations—attractors in dissipative systems without exgyd‘f1 for a gilven par?meter region ifs also givenf. o dicall
ternal oscillationg[1,2]. Usually, limit cycles arise in dy- The model we analyze consists of a system of periodically

namical systems described by ordinary differential equationgm“'pled nonlinear phase oscillators with a multiplicative

1.2 but there are several examples where such kind o/ "0, COUPES o5elors e been e o ol
cycles also arise in partial differential equatiofl®DE) or Y y g plenty

. K . . . , esting properties such as equilibrium and nonequilibrium
extended systems, f?r mst_ance, n ,the brusselator phase transitions, coherence, synchronization, segregation,
mode for the so-called “chemical clocks#,5]. _ and clustering phenomena. In this particular model, a ratch-
Limit cycles arise also in systems with noise. Noise Orgyjike transport mechanism arises through a symmetry break-
fluctuatlong, which are present everywhere, have been 98fhg, noise-induced, nonequilibrium phase transititk8],
erally considered as a factor that destroys order. H0W9Vebroduced by the simultaneous effect of coupling between the
several investigations on nonlinear physics during the pasjscillators and the presence of a multiplicative noise. The
decades have shown numerous examples, both in zero- aggmmetry breaking does not arise in the absence of any of
higher-dimensional systems, of nonequilibrium systemshese two ingredients. In RdfL3] it was also shown that the
where noise plays an “ordering” role. In such cases, thecurrent, as a function of a load for€e produces an anoma-
transfer of concepts from equilibrium thermodynamics, inlous (clockwise hysteresis cycle. Recently we have reported
order to study phenomena away from equilibrium, is not al-that changing the multiplicative noise intens@@and/or the
ways adequate and many times is misleading. Some exoupled constari,, a transition from anomalous to normal
amples of such nonequilibrium phenomena are noisetcounterclockwise hysteresis is producefl4]. The result
induced unimodal-bimodal transitions in some zero-was obtained exploiting a mean-field approximation. The
dimensional modelg¢describing either concentrated systemstransition curve in the planeK,Q), separating the region
or uniforms field$ [6], shifts in critical point{7], stochastic ~where the hysteresis cycle is anomalous from the one where
resonance in zero-dimensional and extended sysi&r8§ it is normal, was clearly determined.
noise-delayed decay of unstable staf&6], noise-induced Here, we focus on the time behavior. We use a method for
detecting the existence of a limit cycle based on the evalua-
tion of the distance between two solutions separated by a
*Email address: smangio@mdp.edu.ar (fixed) time interval[17]. In this way, we not only show the
"Email address: wio@cab.cnea.gov.ar, wio@imedea.uib.es  existence of a limit cycle foF>F. (with F, a loading
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threshold valug but also determine its period. We also found ferential equation$SDE) in Eq. (1), which reduces to essen-

the time dependence of the probability distribution functiontially one Markovian SDE for the single stochastic process

along the cycle and calculate the order parameter of the(t)

model vst, clearly showing the limit cycle. Next, we gain .

insight into its origin through the study of the large coupling X=R(X)+3(X) (1), )

limit (Ko— ). Finally, we draw some conclusions. with (hereafter, the primes will indicate derivatives with re-
spect tox)

R(X)=—=V'(X)+F =K (x)= —sinx(1+K,C,,+4Acosx)
For completeness, we present a brief description of our
model, which is similar to the one used in Ref$3] and +KoSycosx+F @®
[14]. We consider a set of globally coupled stochastic diﬁer'(whereKm(x)z K o[ Cprsinx—S,cosx]) and
ential equationgto be interpreted in the sense of Stratonov-
ich) for N degrees of freedorfphases X;(t), S(X)=V2{T+Q[W'(x)]*

Il. THE MODEL, MEAN FIELD, AND THE METHOD USED

N : : 2
. AU, 1 =\2{T+Q[sinx+ 2Asin 2x]?}. 9)
Xi=— — +\2T&() - = > KXi—X). (1)
' X ' N =1 b The Fokker-Planck equatiofFPE associated with the

SDE in Eq.(7) (in Stratonovich’s sengds
This model can be visualize@t least for some parameter a0 ( >

valuesg as a set of overdamped interacting pendulums. The 1 )
second term in Eq(1) considers the effect of thermal fluc- HP(X, D=0y —|RO)+5S(X)S'(x) |P(x,1)
tuations: T is the temperature of the environment and the
i(t) are additive Gaussian white noises with 1
i + S0 S0P (10

(&(1))=0, (&V)§(t"))=3g;o(t—t"). )
) _ i whereP(x,t) is the probability distribution functiofPDF).

The last term in Eq(1) represents the interaction force be- |, Ref. [14] we have shown that in the so-called “inter-
tween the oscillators. It is assumed to fulfil{(x—y)  action driven regime’(IDR)—where the hysteretic cycle is
=—K(y—x) and to be a periodic function of—y with  anomalous—and for each value, in addition to the two
periodL=27. We adop{13,14 stationary stable solutions with the corresponding values of

K(x)=Kgsinx, Ko>0 3) current there are three other unstable ones. Two of them

0 b merge with the two stable ones, yielding a closed curve of

The potentialU;(x,t) consists of a static paN(x) and a current \{sF: Beyond a critical(absolute valug of th_e load
fluctuating one. The Gaussian white noisgét), with zero forpe F, indicated byF., these s_table .solutlon_s disappear.
mean and variance 1, are introduced in a multiplicative way! NiS does not happen for the “noise driven regime’—where
(with intensity Q) through a functiolW(x). In addition; a the hysteretic cycle is normal—where for edelvalue, one

load forceF, producing an additional bias, is considered: ~Stationary stable solution existfor small[F| even two sta-
tionary stable solutions and an unstable one gxist

U;(x,t) =V(X) +W(X)2Q ;(t) — Fx. (4) It is worth remarking here that the absence of a stationary
stable solution, beyond the critical val&g in the IDR, sug-

In addition to the interactiorK(x—y), V(x) and W(x) gest the possibility that a limit cycle exists. Already in Ref.
are also assumed to be periodic and, furthermore, to be symi13], in a strong coupling analysi&hat is considering the
metric: V(x) =V(—x) and W(x) =W(—x). This last aspect limit K,—), it was indicated that for very largg=| the
indicates that there is no built-in ratchet effect. The form weprobability distribution function approaches a periodic long
choose 113,14 time behavior.

In order to analyze the existence of a limit cycle, we
exploit a method used in Reff17]. It is based on the mea-
surement of the distance between different solutions of a
system and evaluating its evolution in time. The approach
applied in Ref.[17] uses a generalization of the known
Kullback-Leibler information functiorj18], which is based
1 N on the nonextensive thermostatistics proposed by Tsallis
—> K(Xi—X;)=Ko[Ci(t)sinX;—Si(t)cosX;]. (6)  [19]. Within such a formalism, the exponential and logarith-
N =1 mic functions are generalized according to the following

V(X)=W(X)=—cosx—A cos X. (5)

We introduce a mean-field approximation similar to the
one used in Ref[14]. The interparticle interaction term in
Eqg. (1) can be cast in the form

For N—oo, we may approximate Ed6) in the Curie-Weiss definitions[ 17

form, replacing Ci(t)=N"'Z;cosX(t) and S(t) expy(X)=[1+(1—q)x]/~9,
ENflEjsian(t) by C,=(cosX;) and S,,=(sinX;), respec- -

tively. As usual, bothC,, and S,, should be determined by x -1

self-consistency. This decouples the system of stochastic dif- Ing(>)= 1—-q (D
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The distance can be measured between an evolved initie "0
condition and a known stable stationary solution, or between
two solutions at different timegseparated by a time interval
A 7 which is fixed along the whole calculatiprin this work,
we choose the latter. In RdflL7], the following definition for
the distance between two solutions of a reaction-diffusion o
equation was adopte@alid for both indicated criteria

I

q 0,4 -
lq(PtJrAraPt):_f PriaAXt+A7)
| Pt ], 1 ]
>< F—
" pxtran ¢ 12
00 T T T T T T T T T T T 1

whereP represent dprobabilitylike) distribution (necessary 0 5 i 15 20 25 30
to use the information theory formalignevaluated at and t
t+ A7, according to the criterion that we have chosen. We
used this definition of distance and evaluatg(P; » -,Py), FIG. 1. 14(Ptsa,,Py) (divided by its maximumvs timet for

using for P the PDF obtained by solving the FPE, Ef0). @ A=0.15,T=2, K,=10, Q=3, andF= 1.5 (for this set of param-
We adoptedy=2, since it is the value for which the sensi- eters there is no stationary stable solution

bility of the method seems to be a maxim{it¥]. The FPE

was numerically solved with a Runge-Kuta method, using aasymptotic strong coupling analysis. That is, we consider
time step 6t=6.25x10 ' and a space intervaléx Ko—, P—8(x—xp), hence Eq(13) transforms into
=0.02944. We have tested that variations in both stéps, 1

and 6x, produce no changes in our results. Remembering Lo = /

that C,, and S, should be determined self-consistently, at Xim=R0m) + ZS(X”‘)S (Xm)- (14
each time step both were calculated with the modified PDF.

As our initial condition we adopted one stationary solutionA simple calculation shows

for F<F, calculated as in Refl14]. The integral in Eq(12)

was calculated simultaneously. Furthermore, we also ob- kmz —sinxy[ 1+ 4A cosx,][1— Q cosx,,

tainedv ,—the particle mean velocity— )
—4AQ(1-2 sirfx,,)]+F. (15)

1
— 4 t
ROO+ ZS(X)S (X) [P2X.CnSm), This equation can be analyzed considering an effective po-
(13  tentialU(xy), given by

) L/2
vm={(X)= ffuzdx

which is adopted as the order parameter like in RE4]. U (X)) =V (Xm) — QW' 2(X) /12— F Xy, (16)

IIl. RESULTS
A. Numerical results

Figure 1 showsl 4(P;,,,,P;) (normalized to its maxi-
mum) vst for A=0.15,T=2, K;=10,Q=3, andF=1.5(a
set of parameters for which a stationary stable solution does
not exist: see Fig. 6 in Refl4]). We observe thal, is a
periodic function of time. This form seems to be typical for
limit cycles as shown in Ref17], the period corresponding
to the distance between peaks. In Fig. 2, for the same paranr
eter values, we depict the PDF at different times along the
complete cycle, where the behavior resembles a wave. Ir
Fig. 3, we show ,, and S, vs t. They have a time periodic
behavior, not as in the case<F., wherev,, (¥0) andS,,
(#0) are both constants in time. We have also verified that
the transition to the limit cycle occurs justfag (in this case
F.=1.2).

PDF

B. Asymptotic strong coupling analysis FIG. 2. PDF(P) vs x for a different timet following the com-

In order to understand the origin of the previous resultsplete cycle(starting att=2.83, and evaluated eachir=0.2444).
and gain some insight about them, we have performed amhe parameters, T, Ky, Q, andF as in Fig. 1.
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FIG. 3. v, and S, vs timet. The parameterd, T, K,, Q,
andF as in Fig. 1. The thick line is fov, and the thin line is for

Sy

FIG. 5. U vs x, just below and abov&.=1.2. Also the case
F=0 is shown. The parameters ake=0.15,K,=10, andQ=3. It
is observed that in the first casE €< F.) the potential has at least a
minimum, while for the second one both possible minima are
washed out. The solid line indicates the case just abovéF.
=1.2), the dotted indicates the caBe<F., and dashed one the
(17) caseF=0.

that allows us to rewrite Eq14) as

U (Xm)
Xp=——"".
IX
out. The latter happens just when the transition to the oscil-
lating regime occurs. It is worth remarking here thatKf
—oo, the hysteresis cycle is anomalous and closed, and a
critical load force establishing a threshold for a limit cycle

‘transition always exists.

Figure 4 shows the solution of E@15), X, vs t, for both
situations: just below and above;. It was observed that
while for F<F., after a transient, the solution becomes sta
tionary, forF>F_ it becomes oscillatory. In the first case,

is constant in time but it does not imply,,=0 because, it IV. CONCLUSIONS
should be calculated witB,,=sin(x)#0, not as in the case
with x,,. Figure 5 shows the effective potentlalvs x,, for
the same cases, and also for0. It is apparent that in the
first case E<F.), the potential has only one minimum
while for the second one, both possible minima are washe

Several papers have reported on research where, by
changing a control parameter, a transition to a limit cycle
occurg 20]. However, studies on the existence of limit cycles

nder (or induced by the influence of noise are scarce
15,21,23. Such an aspect was analyzed here, where we
have studied a system of periodically coupled nonlinear os-
cillators with multiplicative white noises, yielding a ratchet-
like transport mechanism through a symmetry-breaking,
noise-induced, nonequilibrium phase transitjd3,14]. The
model includes a load forcE, used as a control parameter,
so that the graph of current ¥sshows a hysteretic behavior.

In Ref. [14] we have found that in the IDR the cycle is
anomalous, yielding a closed curve currentFvsvhen the
stationary stable solutions merge with two of the three un-
stable ones. FoF>F (force value at which a stable solu-
tion merges with an unstable ondhere are no stationary
stable solutions. Here, we have shown, by analyzing the time
evolution of the distance between different solutions, that at
. , F=F. a transition to a limit cycle occurs. Such a distance

6 8 10 shows, forF>F, a typical periodic behavior providing evi-
t dence for a limit cycld17]. Focusing on the analysis of the
time behavior, we have shown the evolution of both the PDF

FIG. 4. Solution of Eq(15) X,, vs t, for both situations, just and the current, showing in both cases the time periodieity
below and abové ,=1.2. The parameters, T, Ko, andQ as in  time evolution of the PDF resembling a wavén order to
Fig. 1. We observe that while foF<F., after a transient, the understand the origin of this transition, we have made a
solution becomes stationary, fbr>F. it is oscillatory. The param-  “strong coupling” limit analysis. It indicates that the minima
eters areK,=10 andQ=3. The solid line indicates the cage  of the effective potential are “washed out” &sis increased
>F. and the dashed line the caBe<F,. and all the stationary stable solution are removed with them.
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As indicated in the Introduction, limit cycles balance the and a global periodic coupling. However, when the noise or
in- and out- energy flows—even when these flows are notoupling are not present, such a transition does not happen.
oscillatory in time—through a system’s oscillatory motion This is a different feature of these systems showing a ratch-
that equalizes such flows over one period. In the presendtlike transport mechanism arising through a symmetry-
case, we have found a limit cycle in a dynamical systenpreaking, noise-induced, nonequilibrium phase transition.
described by PDE’s, where the energy inflow is provided bya|so, it is another example where the presence of a multipli-

both the load forcé= and the noise terms, while energy is cative noise contributes to build up some form of order.
lost (as the system is an overdamped opmportionally to

the particle’s velocity. A remarkable aspect is the fact that it
is the multlphcat_lve noise intensity Whl_ch_ is the parameter ACKNOWLEDGMENTS
controlling the bifurcation towards the limit cycle.
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among many possible othe¢rave have found a transition viewing the manuscript. Partial support from ANPCyT, Ar-
towards a limit cycle induced by both, a multiplicative noise gentina, is gratefully acknowledged.
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