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Nondiffracting waves in anisotropic media
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Recently the physics of ballistic phonon propagation in anisotropic crystals has been studied with new
phonon-imaging methods. In this paper we consider nondiffracting waves that can propagate in anisotropic
crystals and analyze their properties that emerge specifically due to the anisotropy. We further present a
detailed generation and detection scheme for the experimental verification of the wave modes considered.
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[. INTRODUCTION terparts only have integral representations. Here we also de-
rive an approximate asymptotic representation for
The physics of solids may be divided into electronic andanisotropic NDWs, which allows a physical interpretation in
acoustic properties, owing to matter being composed of lighterms of energy propagation associated with the waves. Al-
and heavy particles, electrons, and nucleons. Rapid ele¢hough the theory developed is only valid in the regions
tronic motion governs the electromagnetic properties of crysaway from the axis of propagation, the generation of NDWs
tals, while slow motion of the atomic nuclei determines theiS naturally described using this scheme.
vibrational properties of a solid, which the regular array of These results are then applied in two different contexts.
atoms in crystals often renders anisotropic. First, we discuss effects specifically related to the anisotropy.

In recent years, remarkable progress has been achieved Tie intensities of the nondiffracting wave fields along differ-
the experimental study of ballistic heat flow and phonon€nt radial directions are shown to depend on the curvature of
scattering in nonmetallic crystals. At low temperatures, thehe slowness curve, while caust|@§ and internal diffraction
mean-free path of phonons is long and it is possible to obl8] effects are due to its local nonconvexity. We also demon-
serve the ballistic propagation of he@t normal tempera- Strate that the walk-off effect may under certain conditions
tures, phonons scatter frequently, making the flow of heat &rohibit the propagation of nondiffracting waves, since the
diffusive rather than a ballistic processNew phonon- group velocity of the individual wave components may
imaging techniquefl] are based on the detection and ana|y_sometimes poir_1t in the opposite direction relative to that of
sis of heat pulses propagating in a crystalline medium at #eam propagation.
few Kelvin and they can be used to directly demonstrate the Second, we use the asymptotic representation to design a
anisotropic effects expected from elasticity theory. transducer arrangement on a piezoelectric crystal that can be

At ultrasonic frequencieéup to tens of GHY, the propa- used to generate a nondiffracting wave field within the crys-
gation of acoustic vibrations, i.e., sound, is governed by thdal. Aperture optimization is also discussed, based on the
anisotropic crystal in a way similar to ballistic heat propaga-Propagation directions of the individual wave components.
tion at low temperatures, even at room temperatures. Hencd/e anticipate that this experimental setup would serve to
the anisotropic effects, such as beam steering, caustics, aM@rify the theoretical predictions.
internal diffraction, are observable in acoustic wave propa-

gation and they can be described in terms of the slowness- II. ANISOTROPIC NONDIFFRACTING WAVES
and group-velocity surfaces characteristic to each individual ) .
crystal; see, e.g., Reff2]. Both low-frequency acoustic waves and high-frequency

Here we consider nondiffracting wave\DWs), i.e.,, heat-flow phonons obey the elastic equations of motion,
propagation-invariant waves—originally discovered in opticscharacterized by the stiffness tensor of the crystal. These
by Durnin7 Mice”, and Eber|y in lggm]_that propagate in equations are nondiSperSive in the Iong'WaVelength I|m|t,
crystalline solids in the ultrasonic reginié]. They are not Where the wavelengtih is much larger than the average
S|mp|y wave fronts emanating from abrupt heat pu|sesy buti'nteratomic Separation. For the general theory of elastiCity
rather, they feature a unique phase velocity along theind piezoelectricity, see, for instance, R¢fs9,10.
propagation direction. Consequently, their different wave Plane waves in elastic piezoelectric media,
components remain in phase and the entire shape of the wave _
pattern remains invariant under propagation. In particular, u(r;t)=Ue'r=en, 1)
the acoustic energy is concentrated in the vicinity of the
propagation axis, while, apart from it, the acoustic intensityobey the Christoffe(eigenvalu¢ equation
decreases inversely with the distance from the axis. Nondif-

fracting waves may be of two different kinds: eith&y con- S
tinuous Bessel-beam-like waves with unique temporal fre- | > CumnkiknUm=pw?U,, )
,mn=1

guencyw or (2) pulsed propagating waves, i.e., the so-called
X waves|[5,6]. 5

While isotropic nondiffracting waves are adequately de-for eachk=1,2,3. Herec, m, is the tensor of piezoelectri-
scribed with closed-form expressions, their anisotropic couneally stiffened elastic moduli, cf. Ref10].
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In elastic solidgand piezoelectric crystalsthere exist in
general three propagating plane-wave modes along each sp
tial direction. These modes have orthogonal polarizations
(i.e., directions of displacemenand they often propagate

(b)

8

with different phase velocities. These plane-wave modes ar¢ Em
characterized with their slowness vect®@s,k/ o that point %"
in the direction of the wave vector and have the magnitude of -100

inverse phase velocity. The slownesses of the three plane

wave modes trace three closed slowness surfaces when tf il

direction of the wave vector spans over all spatial directions. o -T00, o0 00 120
A wave fieldu(r;t) in an infinite homogeneous medium is

nondiffracting provided that it propagates uniformly, i.e., in-

variant in shape along, say, taeoordinate,

-200

u(r;t)=u(x,y,z—ut). (3

The velocity of propagation is a free parameter that may be
chosen independently of the phase group velocity in the
medium or of the direction of propagati¢tl]. The vector
field u may comprise, in addition to the mechanical displace- FIG. 1. Three nondiffracting wave modes in quari. Three
mentsU;, several other components, such as electrostatiglowness surfaces cut off aj=70x 10 ® s/m, corresponding to
(magnetostaticpotential (in the quasistatic approximatign ~the phase velocity =14 286 m/s. (b) Slowness curves on the
and electromagnetic field componerits the ultrahigh fre-  (Sx,Sy) plane.(c) Longitudinal(L), (d) fast transversé=T), and(e)
quency range The spatiotemporal Fourier transform of a slow trar_lsverse(ST) beam modes. All _bleams are fundamental
nondiffracting wave, Eq(3), proves to be proportional to modes with the angular frequeney=10° s™*. Areas |Ilu§trated are
d(k,— wlv), which is both a sufficient and a necessary con-200 #Mx 200 um and the gray scale denotes the time-averaged
dition for the existence of nondiffracting wavg$,12]. kinetic energy.

only defined up to a complex constant factor by the Christ-
offel equation(2), and it should be chosen continuous along
Nondiffracting waves are superpositions of plane waveghe given slowness curve, i.e., the integration path.

that all satisfy the common conditidg= w/v. Hence all the Provided that the weight function is assumed separable,
wave components remain in phase while propagating atongA(w, ) =f(w)B(6), there are two ways to considerably
without any alteration in the wave pattern. This condition issimplify the wave expression: If the spectral péft») can
satisfied if all the wave components have the same commape integrated analytically, the frequency integral is per-
(phasg slowness along, namely,s,=1/v (note that the ori- formed first. In particular, X-wave-type spectré(w)

A. Integral representation of NDWs

entation of the crystal axes may be arbitrary andzlexis =o™e™ ““ yield

only refers to the desired direction of nondiffracting wave

propagatioh Therefore, nondiffracting modes are character- " awaio]S6)- 1] m!

ized by the intersection of the slowness surfaces with the 0 w'e "€ dw= {a_i[s(a).r_t]}erl’
s,=1/v plane, see Fig. 1. The intersection contains at most (5)

three slowness curves, each of which may be used to con-
struct a separate class of nondiffracting waves. Note thajije the entire pulse is given by
these slowness curves need not be symmetric with respect to

the s, axis, since they do not lie in a plane passing through m! B(0)U( 6)
the origin. u=J — —do. (6)
The general form of nondiffracting waves is obtained as {a—i[s(0) -r—t]}

the superposition of propagating plane way&3] that obey ) .
the nondiffraction condition, Eq(3), If the spectral integral cannot be evaluated analytically, the

pulse can be obtained by first numerically finding the mono-

) chromatic beam
u=f fA(w,0)U(6)e""[5((’)'r"]d0dw. (4)

. — To[s,(0)x+s(0)y+s,z—1]
Here the @ integral extends over one or more slowness vr.to) fﬁ(ﬁ)U(e)e > do (7)

curves in thes,= 1/v-cut plane, and the integration covers
different frequency components. The arbitrary functionthat can further be integrated overin order to obtain the
A(w, 6) represents the weight of each plane-wave compoanisotropic pulse

nent. We choosé# as the arc-length parametrization of the
slowness curv@) (see Sec. Il all other contributions are
included in the weight functioA(w, 6). The polarization is

UZJ f(w)v(r,t;w)dw. (8)
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wherer, =i cose-+j cose is the radial unit vector. For large
. M1 enoughr | w, the exponential term in the integral in E41)

» ST
. oscillates rapidly, and the integral tends to zgassuming
that B(8)U(0) is sufficiently smooth Note thatB and U
4/‘ </‘ never compensate these oscillations since they are indepen-
dent of both frequency and spatial coordinates. In the
asymptotic evaluation of the integral, we look for the leading
, terms that decay comparatively slow for largd he solution
i is derived in the Appendix; it allows for the following inter-
pretation:
The main contribution to the integral for a fixed spatial
direction ¢ arises from those points on the slowness curve
0 where the normal of the curve is collinear with the chosen
direction. This is, in fact, reminiscent of the general property
FIG. 2. (Top) Longitudinal (L) and slow transverséST) pulse in anisotropic wave motion: the direction of energy propaga-
mode in quartz(Bottom) Their approaching cross sectioftsack ~ tion is along the normal of the slowness surface, and the
planes in topz>uvt). Both pulses correspond to the slowness cutsdominant contribution is due to those components that trans-
in Fig. 1. White arrows denote the propagation of the pulse patternport energy in the direction of observation.

The cross sections are directly obtained from the radial-velocity The asymptotic contributions to the wave are expressed as
curves in Fig. 4.

If the constant-frequency wave is evaluated for a reference v(r,t; o) % N0 ————B(8)U(6y)
, . . . k k
frequencyw’, all the other frequencies may be obtained sim- Tk r ol K (49 )
ply by Scalmg Xeilﬂ-/4 fw[s(f)-r— ’[ (12)
v(r,t;w):v(ir,ﬂt;w’> (9)  where the summation is taken over the points specified above
o o and x(0)=|g'(0)| is the curvature of the slowness curve.
The “=x" refers to the sign ofr, - s/ (6) in the exponential
and the nondiffracting pulses can be represented as term. It is negative for waves emanating from the axis, while
it has a positive value for waves propagating towards the

w w .. . . .
u:j f(w)v(_r’_t’w (10) riving at the beam axis from the directiap and, together,
o0 o they constitute a generalized conical wave. It may, however,
have a complicated folded form, as will be discussed in
The structure of the resulting wave is determined by theSec. lll.
shape function3( ), and each frequency component has the The above expression, E@.2), is valid for all directions
same spatial shape, only scaled by the frequency. where the denominator does not vanish, which would cause
The entire information on the governing wave equation isthe expression to diverge. Although such divergences only
contained in the plane-wave solutions and the nondiffractio®ccur in the asymptotic expressidithe original integral
property is guaranteed by confining onto teg=1/v-cut  never diverges they imply the existence of a caustic asso-
plane of the slowness surfaces. The remaining freedom ieiated with a flat point in the slowness surface, see Sec. Il B.
contained in the weight functioA(w, ). We refer to the The approximation converges rapidly for a slowly varying
special case oB(#)=1 as the fundamental mode. For illus- shape function3(6) (especially for the fundamental mode
trations of fundamental beam modes, see Fig. 1 and for thoszee Fig. 3. However, in the case that eitigeor the polar-
of the corresponding pulses, Fig. 2. ization changes rapidly along the slowness curve, conver-
gence is only achieved for large
The asymptotic form for the nondiffracting pulse is ob-
tained from Eq(8) together with the asymptotic nondiffract-
Although the integrals in Eq(4) are readily evaluated ing beam, Eq(12) above. Choosing an X wave spectrum
numerically once the slowness curves are known, the comf(w)=wMe™ % and using the integration resyit4]
putational results offer little direct physical insight into the
nature of the nondiffracting waves. Therefore, we rather de-

) axis. Each term in the wave expression is a plane wave ar-
dw

B. Asymptotic form of the wave field

rive an asymptotic evaluation of the integrand of E@). 'l m+ E)
Using cylindrical coordinates,=(r, ,¢,z), the nondiffract- >0 _ 2
ing beam assumes the form 0 \/—ae do= PRSI (3

V(r’t;w):eiw[szz_t]f BLOYU(O)e" - 40do,  (11) the wave assumes the analytic form
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B(6) but not on the underlying physics, which in isotropic
media gives no “preferred” directions of energy propagation.
integral (dashed ling and asymptoti¢solid line) solutions foru,, In thI_S section, we use the ?_;lsymptot_lc wave Solutl_on to
(c) slowness curve for the slow transve(&¥) wave, and(d) inte- _generahze the cone of propagatlon to anisotropic T‘Ond'ﬁ.raCt'
gral (dashed ling and asymptotic(solid line) solutions for u, . ing waves, and to derive the “natural” energy distribution
Waves represent the fundamental mode w##)=1. The domi- thereon.

nant wave components are denoted by the outer normals to the

slowness curves. A. Anisotropic wave fronts

FIG. 3. Convergence of the asymptotic approximation algng
(a) The slowness curve of the longitudin@l) wave, (b) numerical

The maximal amplitude of individual wave components

[ 2w occurs at the minimum of the denominator in Ef4). The
um(r,t)wgk r, «( 0k)ﬂ(0k)U(6k) radial vectors pointing to the maxima are given by

1 R tesz  t=7lv 15
» r m+§ L_SJ_'nLnL_SJ_'nLnL (15

X e ! _ . (19
{a—i[s(6)-r—t]ym 12 for fixed zandt. Here,s, are radial slowness vectors and

are the(radia) normals to the slowness curve. The cross-
Although indicative, this result should not be taken literally sectional shape of the nondiffracting pulse is obtained by
under the actual physical circumstances: The asymptotigllowing the slowness to vary along the associated slowness
form, Eq. (12), converges for larger, and, thus, the low- curve, see Fig. 4.
frequency spectrum in the frequency doménear zero is For constang, the field maxima first approach the axis of
invalid for arbitraryr, . However, for large values ohthe  propagation and, once having crossed it, they continue their
dominant frequencies are high and the approximation is faipropagation outwards toward infinity. The radial velocity of
for r in the pulse cone and beyond. Nonetheless, asymptotiasie field maxima is given by
of the transverse wave pattern may be explained with the use
of this approximation. ~dR; ng

Ldt s -n,

(16)

Ill. EFFECTS DUE TO ANISOTROPY . o T .
and it satisfies the group-velocity-like relation, -s, =1.

Nondiffracting waves in isotropic media feature a charac-Note that the scalar product is only taken for the radial com-
teristic cone of propagatiof6,12] that asymptotically de- ponents of the vectors. The radial velocity of the fielchad
scribes the wave propagation. For nondiffracting beams, ththe radial component of group velocity since the latter obeys
cone forms surfaces of equal phase and energy flows along,-s=Vg, -s, +V,s,=1 and since, in generay/,s,#0 the
the normal to the cone. Furthermore, the energy of the propaadial part of the inner product cannot equal unity for the
gating waves is equally distributed on the cone of constangroup velocity.
|B(0)|. As for nondiffracting pulses, the cone forms the ac- The beam amplitude of the asymptotic expression, Eq.
tual propagating wave fronts. Note that, in practice, both thé12), depends on the following two factor&) the curvature
phase and the energy intensity depend on the shape functianof the slowness curve an@) the shape functio8. The
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FIG. 5. Caustics of the slow transverse mode in quartz. The 200 200

zero-curvature points on the slowness surféhe) imply caustics

which are observed as folds in the velocity cufues). Thick lines FIG. 6. Internal diffraction causes an interference pattern be-

denote areas of positive curvature and capital letters indicate thgyeen several wave modes that propagate along the same radial

individual caustics. direction. For the case illustrated here, the interference period of
approximately 0.19 mm is due to the difference between the waves

former is purely characteristic to the medium and the direcs, ; ands, ¢, which, together, carry most of the wave energy along

tion and velocity of propagatioiiwhich together serve to y. The interfering wave vectors aig, ; 5=246 mm* andky ,,

define the slowness curyewhile the latter describes the ex- =280 mm ! for the angular frequency=10° s™*.

citation of the wave in the Fourier domain. For isotropic

wave motion, curvature is constant and the amplitude detors V. In isotropic materials, the group velocity is always

)
s, [us/m)

pends solely on the shape function. collinear with the wave-front propagation, while in nondis-
persive materials the group velociglong the wave-front
B. Caustics and internal diffraction propagation direction equals the phase velocity. Now the lat-

ter holds but the group velocity may also contain a transverse
component with respect to the wave front. In the asymptotic

e | __region of nondiffracting waves, the group velocity has no
curvature implies an elevated level of wave amplitude. Th's_azimuthal component since it is normal to the slowness

is ca[led phonon focusing. I_f, however, the slowr_less CUIVE i$rve. Hence, the energy flow in the asymptotic range only
flat, i.e., its curvature vanishes, the asymptotic expansiop,q 5 radialr) and an axialz) component.

based on the stationary-phase approximation no longer tpq nondiffracting-wave “cone,” which constitutes the

holds. This is due to the fact that all the wave components iy ise jtself, is essentially formed by plane waves, although
the vicinity of the zero-curvature point propagate into theiterent ones in the different directions. The energy flow

same d@rection, causing an increase in the field amplitude, Qicgociated with these plane waves does not necessarily
a caustic. o , propagate along positive see Fig. 7. If the pulse is to be
Another consequence of vanishing curvature is the aPgenerated az=0 and it should propagate along positize

pearance of int_ernal diffraction. At a caustic point, the num-g; the group velocities must also posses a positive compo-
ber of contributing wave components changes abruptly. Nofpen: aiongz This is readily fulfilled for the longitudinal

mally, the curvature of the slowness is negatiweeaning e in Fig. 7 but not for the slow transverse mode.
that the scalar product between the slowness vector and its

second derivative is negativeAt the caustic points, how-
ever, the curvature changes sign; this is observed in two
ways:(1) the slowness curve is no longer convex; &Rdthe In this section, we consider a method for the experimental
radial-velocity curve develops folds, implying that severalgeneration of NDWs into elastic crystals. Within optics, there
wave modes propagate along the same radial direction, sege several methods for producing nondiffracting waves.
Fig. 5. Durnin, Miceli, and Eberly used a circular slit followed by a
Internal diffraction is sometimes observed as a clear interFourier-transforming leng3]. Axicons[15] have also been
ference pattern of the participating wave components, segsed to produce Bessel beams, first by Bungiral. [16]
Fig. 6. This is due to the fact that, for a single-frequency(already before Durnin’s woik and later by Scott and
beam, there are 1-6 plane waves with different wave nummcArdle [17], and others. Possibly the most adjustable
bers and amplitudes that propagate along the same directiomethod for generating NDWs is the use of computer-
For a pulse, this leads to a folded cone, and if the cone igenerated holograms, i.e., diffractive elemdnig]. We pro-
thick enough, the different folds may overlap, leading to mu-pose a similar arrangement, consisting of a piezoelectric
tual interference. This effect has been observed for normatansducer fabricated on the top surface of a bulk crystal.
wave fronts in crystals, see Réil].

The wave amplitude is proportional {8(6)|/\/x(6) and,
hence, a small curvature of the slown@ss., large radius of

IV. ACOUSTIC GENERATION OF NDWs

A. Transducer arrangement

C Energylzropagatlon We consider the design of a piezoelectric transducer op-

Apart from the factorr | =, the asymptotic expression, erating in the asymptotic region of a nondiffracting beam.
Eq. (12), consists of plane waves whose directions of energylaken a beam that has no regions of internal diffraction, i.e.,
transport are given by the corresponding group-velocity vecits radial-velocity curve has no folds and there is only one
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Sylus/m]
0

-200 200

FIG. 8. Structure of the slowness surface in quartz. Comglex
values as a function d, for s,=0. Here Reg,) are shown with
solid lines and Im¢,) with dashed lines. Thick lines propagdte
evanescealong negative and thin lines along positive All gen-
erated modes are encircled and the entire beam is here taken to
propagate along the direction of negatixe

FIG. 7. Nondiffracting pulses of L and ST modes in the meridi- Here, m enumerates the different Fourier modes, while
onal (y,z) plane. Wave energy in anisotropic crystals does notrefers to the four different wave modes: L, FT, ST, and EM
propagate perpendicular to the wave fronts. While in the L mode(an evanescent electromagnetic mode, see[R&f), each of
(top) the group velocities of both wave components have positiquhiCh may have a differenk,,,. Here A, are the
velocity alongz, this does not hold for the ST modéottom). complex-valued weights of each wave modé and, are
Although the wave pattern in the latter propagates along positive their polarization vectors. This representation is anglogous to
part of the wave energy is transported into the opposite directiont.he optical Rayleigh expénsicﬁz] that is widely used in the
Hence, the wave may not be launched from a transducer placed at \vsis of diffracti fi Wi int out h that f
z=0. In the ST mode, there are actually six modes present, th nalysis of diffractive gratings. We point out here that for a

same as indicated in Fig. 3. Here the negat{ecomponent is ixed Ky, the_zre exist af:tuallyeight(_jiﬁerent modes. Four of
denoted by bold arrows. these are discarded since they either propagate energy along

positive z or they grow exponentially along negatizgthe

wave mode along each direction that moves towards the axibeam generated into the bulk is taken to propagate along
For simplicity, we take this radial direction as the posite —z), see Fig. 8. A straightforward and very useful algorithm
axis. for finding these modes has been published by Peach in Ref.

Thus, the plane wave has,=1/, V,,<0, andV,, [21].
=0. Both s, and s, are obtained uniquely from the  Ajthough the field expansion in E§17) contains an infi-
asymptotic field solution. The field on the substrate surfaceite number of modes, the field is to be designed such that,
exhibits a per|0d|C|ty determined by the wave VeCtoridea”y, 0n|y a minimul number of modes with reag are
(Kx0.Ky,0 = (wsy,ws,) and, therefore, the transducer must actually generated. The most likely “extra modes” to appear
a|SO haVe the same peI’IOd. HOWeVer, the reallzatlon Of gre those withm=0 andm=—1. The former a|WayS has
contmuous—pr_oflle tra_nsduc_er that_ls described by one singlghree propagating modes but it is quite easily avoided by
wave vector is practically impossible and the structure derequiring that the average potential and the net charge on the
signed for the transducer must in practice be quantized intgurface remain zero. The latter has the same length for the
individual electrodes. This leads to Interdlgltal-type trans-surface wave vector as the desired mode and it haS, subse-
ducers(IDTs) [19,20. _ _ _ quently, often a reak, . If a transducer layout exhibits inver-

Since the transducer displays the spatial period corresion symmetry, then=+1 modes are generated with equal

sponding to Ky,0.ky,0), the excited elastic wave has an equalyeight, although the underlying anisotropy may still modify
periodicity. Therefore, the wave contains Fourier compo+heir relative amplitudes.

nents fork, m=mas, and ky,n=mws,, wherem assumes In the simplest of transducer schemes, a time-oscillating
integer values. The field is then represented as electric potential pattern is produced on a free surface of a
. 4 piezoelectric crystal usingnfinitely) thin metal electrodes.
u(x,z)= A U e (gmxtky my+kymn2) In this case, all three stress components along the surface
(x.2) m;x n§=:1 mnEmn normal must vanish for all the Fourier modes separately.

(170  There are four wave modes availaljle FT, ST, and EM,
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and the condition of vanishing stresses can always be ful-
filled by a suitable combination of them. Hence the field is
expressed as

(

) 4 .\\
u(xvz): 2 Z‘mE Wm,nUm,nei(kx’mx+ky’my+kz'm’n2) \
m= —® n=1 )

(18)

where wy, , are weights such that the surface stresses of
Sh_ Wi U € Cemky.mY) vanish for eachm. This com-
bined mode may have an arbitrary amplitude, but it requires
a specific electric potential and charge distribution on the
substrate surface. The transducer must be designed to pro-
vide these. Note that this scheme ignores all elastic proper- (b)
ties of the transducer elements and it assumes a mechanically
free interface between the crystal substrate and air. Transduc-
ers with electrodes of finite thickness can be analyzed nu-
merically and the essential difference is that the resultant
combination of L, FT, ST, and EM modes changes. This has
been achieved, for instance, by Koskela, Plessky, and Salo-
maa for surface-acoustic wave transducers, see[Ref. ] 5200 pm
We note that the generation of surface-acoustic waves

(SAWSs) using IDTs is well understood and they have a very ©
important role in rf filter technologies. In SAW filters, how- M
ever, the desired wave modes are always evanescent and the ——

e : B SR
excitation of bulk-acoustic waveg8AWSs) only leads to un- ; J,q'lgT /sﬂ} o ST ST\‘FT\ -
wanted energy losses. IDTs have also been used for BAW € S “
excitation(see, for instance, Reff24,25, and the brief dis- N
cussion in the Appendix F of Ref26]), but they have not _ FIG_. 9. (a Skgtch of a transduce_r for exciting an L-mode non-
yet found important commercial applications. In the termi_dﬁfraotmg beam in ql_Jartz. Here white denotes the grounded elec-
nology of SAW technology, the transducers considered ir{rodes, gray the dr|V|ng electrodes, and the black areas _are free
this subsection are called leaky-SAWSAW) transducers substrate surface. Bondings of the electrodes must be supplied sepa-

. .. rately. (b) The entire radiation pattern of the transducer as observ-
that Ieak_ wave energy Into the_ bUI.k.Of the_ crystal. The dlf'able on the opposite crystal surfa¢e). Nondiffracting L mode(in
ference is that, instead of minimizing this leakage, thes

- . . Ghe centerand spurious modes generated at the Q) plane of the
transducers are optimized for the generation of certain bu”ﬁ'ansducer. Dashed lines represent the beam within an extended
modes. crystal wafer where the region of nondiffracting beam pattem
circled in the middle of the figupes located inside the bulk. Each
B. Aperture optimization mode propagates in the direction specified by the associated group
velocity.

. 500 um

Although, ideally, nondiffracting waves have an infinite
beam length, the aperture size limits it to a finite value. In an
isotropic medium, the wave emanating from the edge of avhere the waves can be detected. The aperture is parametric
circular aperture, at the distand® from the beam axis, in the sense that this may be scaled arbitrarily depending in
moves to the beam axis at the anglecalled the cone angle the thickness of the quartz substrate. Note that it is indepen-
of the beam. It crosses the axiszat R cot/. A similar effect ~ dent of frequency, which only affects the scaling of the trans-
takes place in anisotropic media except that there exists nducer structure within. Propagation of the generated field
uniform cone angle in this case. All directions have differentmodes is here considered within the limits of geometrical
plane wavegor several plane waves in the regions of inter-optics and all diffraction effects are discarded.
nal diffraction that carry energy at different angles. Hence,
each direction has an individual “radius” of apertuRf ¢)

=Ztan{(¢), whereg is the azimuthal angle on the crystal C. Detection of NDWs
surface and/(¢)=arctany,/V,) is the group-velocity angle ) _ _ _ )

In Fig. 9 there is illustrated a transducer that is designe@olid is the first part of the experimental research, while the
to produce an L-mode beam in quaf7]. The interdigital ~ detection of the wave is the second task. One way of detect-
transducer unavoidably produces one extra L mode, two FIng NDWs is the use of interferometric scanning on the back
modes, and two ST modes. Therefore, the aperture is déace of the crysta[28,29. This allows the detection of the
signed such that these do not overlap the intended nondisurface-normal oscillation with axy resolution~1 pm and
fracting beam in the center of the opposing crystal surfacemplitude thresholé=0.1 nm.
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Another way to observe nondiffracting beams in crystalsgramg have been widely used in optics, the presence of an-
is to use the frequency-shift holographic methi@D]. A  isotropy and several acoustic modes leads to a much more
transparent crystal is illuminated through one of the side sureomplicated situation, and numerical modeling is required
faces and the light is scattered from the beam due to théor the optimization of the local transducer structure.
photoelastic effect. A holographic recording of the transmit- Experimental research on anisotropic elastic wave propa-
ted light can then be used to yield tomographic cuts of theyation has recently benefitted from new imaging methods.

beam pattern within the bulk crystal. The generation and detection of nondiffracting wave modes
is a new challenge for experimental research; we hope that
V. DISCUSSION our results will stimulate further experiments.
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The transducer proposed above is suited for the detection APPENDIX: OSCILLATORY INTEGRAL
of the transverse wave pattern on the opposite surface of the ) ) )
crystal, so as to confirm the formation of the intended non- Consider an integral on a closed curve, parametrized by
diffracting wave. On the other hand, probably a more char¥» and given a$34]
acteristic phenomenon occurs inside the bulk crystal where ,
the acoustic energy is focused to the propagation axis. If the [ =f f(0)e'“?("dg, (A1)
crystal features nonlinear behavior, such effects should only
take place in the regions of high amplitude; nondiffractingwhere ¢ is real. The contribution of a small intervab,
waves would therefore allow the study of nonlinear acoustic- ¢, g, + €] of the integration path, centered @ is
effects, such as harmonic generation or soliton formation
[31], that only occur in a limited region inside the crystal. L, %f(ﬁo)ei“‘m")fe eia[§¢’(00)+§2¢”((}0)/2]d§_
They may also be conceived of being useful for studying 0:€ —€
novel effects in piezoelastic crystals, such as acoustic (A2)
memory [32] or dispersively backward propagating waves . ) ) ] o )
[33]. A very high acoustic power may even cause irreversible>nCe the integral is dominated ky=0, it is highly oscilla-
structural changes to occur on the propagation axis while thiry, except for¢’=0. If ¢'=0, the value of the integral is
formation of the focal line is only weakly affected by the @PProximately

nonlinearity since the wave amplitude away from the axis is
L . . . € . o *® . o . 2
much lower. Similarly, acousto-optic coupling is also en- J glat’d /ngmf el ¢ 2qe=gtimhy [ —
hanced where the acoustic amplitude is high, thus allowing /-« o0 al¢”|

the optical detection of effects arising near the focal line. (A3)

where “x " refers to the sign ofep”(6,). We have changed
the integration variable tg=[ y(#/a|¢"|)]t. The integra-

We have considered nondiffracting wave propagation irtion limits have been extended frof-e,e] to [ —,x]
anisotropic crystals and analyzed the physical properties dfince for sufficiently larger, the main contribution arises
nondiffracting waves based on their asymptotic representarom an infinitesimal interval around the origin. #’+0,
tion. This has lead to a straightforward interpretation in termshe oscillating integrand averages to zero. Therefore, the total
of plane waves that have well-defined wave vectors andontribution of eachp”+0 is

group velocities. The asymptotic representation also reveals
i i i -di i T . .
phonon focusing, caustic, and internal-diffraction effects that o )lf(ﬁo)euw(ao)e:wm. (A%)
a 0

Conclusions

occur in anisotropic materials. =

We have also considered the excitation of nondiffracting
waves using an interdigital-type transducer that may be deFhis result is valid for a large enough parametent should
signed using the asymptotic properties of the specific bearhe noted that a rapidly changirigd) or a low absolute value
form. Although similar devicegcomputer-generated holo- of |¢”(6)| requires a very large value of.
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