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Nondiffracting waves in anisotropic media
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Recently the physics of ballistic phonon propagation in anisotropic crystals has been studied with new
phonon-imaging methods. In this paper we consider nondiffracting waves that can propagate in anisotropic
crystals and analyze their properties that emerge specifically due to the anisotropy. We further present a
detailed generation and detection scheme for the experimental verification of the wave modes considered.
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I. INTRODUCTION

The physics of solids may be divided into electronic a
acoustic properties, owing to matter being composed of li
and heavy particles, electrons, and nucleons. Rapid e
tronic motion governs the electromagnetic properties of cr
tals, while slow motion of the atomic nuclei determines t
vibrational properties of a solid, which the regular array
atoms in crystals often renders anisotropic.

In recent years, remarkable progress has been achiev
the experimental study of ballistic heat flow and phon
scattering in nonmetallic crystals. At low temperatures,
mean-free path of phonons is long and it is possible to
serve the ballistic propagation of heat~at normal tempera-
tures, phonons scatter frequently, making the flow of he
diffusive rather than a ballistic process!. New phonon-
imaging techniques@1# are based on the detection and ana
sis of heat pulses propagating in a crystalline medium a
few Kelvin and they can be used to directly demonstrate
anisotropic effects expected from elasticity theory.

At ultrasonic frequencies~up to tens of GHz!, the propa-
gation of acoustic vibrations, i.e., sound, is governed by
anisotropic crystal in a way similar to ballistic heat propag
tion at low temperatures, even at room temperatures. He
the anisotropic effects, such as beam steering, caustics
internal diffraction, are observable in acoustic wave pro
gation and they can be described in terms of the slown
and group-velocity surfaces characteristic to each individ
crystal; see, e.g., Ref.@2#.

Here we consider nondiffracting waves~NDWs!, i.e.,
propagation-invariant waves—originally discovered in opt
by Durnin, Miceli, and Eberly in 1987@3#—that propagate in
crystalline solids in the ultrasonic regime@4#. They are not
simply wave fronts emanating from abrupt heat pulses,
rather, they feature a unique phase velocity along th
propagation direction. Consequently, their different wa
components remain in phase and the entire shape of the w
pattern remains invariant under propagation. In particu
the acoustic energy is concentrated in the vicinity of
propagation axis, while, apart from it, the acoustic intens
decreases inversely with the distance from the axis. Non
fracting waves may be of two different kinds: either~1! con-
tinuous Bessel-beam-like waves with unique temporal
quencyv or ~2! pulsed propagating waves, i.e., the so-cal
X waves@5,6#.

While isotropic nondiffracting waves are adequately d
scribed with closed-form expressions, their anisotropic co
1063-651X/2003/67~5!/056609~9!/$20.00 67 0566
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terparts only have integral representations. Here we also
rive an approximate asymptotic representation
anisotropic NDWs, which allows a physical interpretation
terms of energy propagation associated with the waves.
though the theory developed is only valid in the regio
away from the axis of propagation, the generation of NDW
is naturally described using this scheme.

These results are then applied in two different contex
First, we discuss effects specifically related to the anisotro
The intensities of the nondiffracting wave fields along diffe
ent radial directions are shown to depend on the curvatur
the slowness curve, while caustics@7# and internal diffraction
@8# effects are due to its local nonconvexity. We also dem
strate that the walk-off effect may under certain conditio
prohibit the propagation of nondiffracting waves, since t
group velocity of the individual wave components m
sometimes point in the opposite direction relative to that
beam propagation.

Second, we use the asymptotic representation to desi
transducer arrangement on a piezoelectric crystal that ca
used to generate a nondiffracting wave field within the cr
tal. Aperture optimization is also discussed, based on
propagation directions of the individual wave componen
We anticipate that this experimental setup would serve
verify the theoretical predictions.

II. ANISOTROPIC NONDIFFRACTING WAVES

Both low-frequency acoustic waves and high-frequen
heat-flow phonons obey the elastic equations of moti
characterized by the stiffness tensor of the crystal. Th
equations are nondispersive in the long-wavelength lim
where the wavelengthl is much larger than the averag
interatomic separation. For the general theory of elastic
and piezoelectricity, see, for instance, Refs.@1,9,10#.

Plane waves in elastic piezoelectric media,

u~r ;t !5Uei (k•r2vt), ~1!

obey the Christoffel~eigenvalue! equation

(
l ,m,n51

3

c̃klmnklknUm5rv2Uk , ~2!

for eachk51,2,3. Herec̃klmn is the tensor of piezoelectri
cally stiffened elastic moduli, cf. Ref.@10#.
©2003 The American Physical Society09-1
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In elastic solids~and piezoelectric crystals!, there exist in
general three propagating plane-wave modes along each
tial direction. These modes have orthogonal polarizationU
~i.e., directions of displacement! and they often propagat
with different phase velocities. These plane-wave modes
characterized with their slowness vectors,s5k/v that point
in the direction of the wave vector and have the magnitude
inverse phase velocity. The slownesses of the three pl
wave modes trace three closed slowness surfaces whe
direction of the wave vector spans over all spatial directio

A wave fieldu(r ;t) in an infinite homogeneous medium
nondiffracting provided that it propagates uniformly, i.e., i
variant in shape along, say, thez coordinate,

u~r ;t !5u~x,y,z2vt !. ~3!

The velocity of propagationv is a free parameter that may b
chosen independently of the phase~or group! velocity in the
medium or of the direction of propagation@11#. The vector
field u may comprise, in addition to the mechanical displa
mentsUi , several other components, such as electrost
~magnetostatic! potential ~in the quasistatic approximation!,
and electromagnetic field components~in the ultrahigh fre-
quency range!. The spatiotemporal Fourier transform of
nondiffracting wave, Eq.~3!, proves to be proportional to
d(kz2v/v), which is both a sufficient and a necessary co
dition for the existence of nondiffracting waves@4,12#.

A. Integral representation of NDWs

Nondiffracting waves are superpositions of plane wa
that all satisfy the common conditionkz5v/v. Hence all the
wave components remain in phase while propagating aloz
without any alteration in the wave pattern. This condition
satisfied if all the wave components have the same com
~phase! slowness alongz, namely,sz51/v ~note that the ori-
entation of the crystal axes may be arbitrary and thez axis
only refers to the desired direction of nondiffracting wa
propagation!. Therefore, nondiffracting modes are charact
ized by the intersection of the slowness surfaces with
sz51/v plane, see Fig. 1. The intersection contains at m
three slowness curves, each of which may be used to
struct a separate class of nondiffracting waves. Note
these slowness curves need not be symmetric with respe
the sz axis, since they do not lie in a plane passing throu
the origin.

The general form of nondiffracting waves is obtained
the superposition of propagating plane waves@13# that obey
the nondiffraction condition, Eq.~3!,

u5E E A~v,u!U~u!eiv[s(u)•r2t]dudv. ~4!

Here the u integral extends over one or more slowne
curves in thesz51/v-cut plane, and thev integration covers
different frequency components. The arbitrary functi
A(v,u) represents the weight of each plane-wave com
nent. We chooseu as the arc-length parametrization of th
slowness curve~s! ~see Sec. III!; all other contributions are
included in the weight functionA(v,u). The polarization is
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only defined up to a complex constant factor by the Chr
offel equation~2!, and it should be chosen continuous alo
the given slowness curve, i.e., the integration path.

Provided that the weight function is assumed separa
A(v,u)5 f (v)b(u), there are two ways to considerab
simplify the wave expression: If the spectral partf (v) can
be integrated analytically, the frequency integral is p
formed first. In particular, X-wave-type spectraf (v)
5vme2av yield

E
0

`

vme2aveiv[s(u)•r2t]dv5
m!

$a2 i @s~u!•r2t#%m11
,

~5!

while the entire pulse is given by

u5E m!b~u!U~u!

$a2 i @s~u!•r2t#%m11
du. ~6!

If the spectral integral cannot be evaluated analytically,
pulse can be obtained by first numerically finding the mon
chromatic beam

v~r ,t;v!5E b~u!U~u!eiv[sx(u)x1sy(u)y1szz2t]du ~7!

that can further be integrated overv in order to obtain the
anisotropic pulse

u5E f ~v!v~r ,t;v!dv. ~8!

FIG. 1. Three nondiffracting wave modes in quartz.~a! Three
slowness surfaces cut off atsz57031026 s/m, corresponding to
the phase velocityv514 286 m/s. ~b! Slowness curves on the
(sx ,sy) plane.~c! Longitudinal~L!, ~d! fast transverse~FT!, and~e!
slow transverse~ST! beam modes. All beams are fundamen
modes with the angular frequencyv5109 s21. Areas illustrated are
200 mm3200 mm and the gray scale denotes the time-avera
kinetic energy.
9-2
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If the constant-frequency wave is evaluated for a refere
frequencyv8, all the other frequencies may be obtained si
ply by scaling

v~r ,t;v!5vS v

v8
r ,

v

v8
t;v8D ~9!

and the nondiffracting pulses can be represented as

u5E f ~v!vS v

v8
r ,

v

v8
t;v8D dv. ~10!

The structure of the resulting wave is determined by
shape functionb(u), and each frequency component has
same spatial shape, only scaled by the frequency.

The entire information on the governing wave equation
contained in the plane-wave solutions and the nondiffrac
property is guaranteed by confining onto thesz51/v-cut
plane of the slowness surfaces. The remaining freedom
contained in the weight functionA(v,u). We refer to the
special case ofb(u)[1 as the fundamental mode. For illu
trations of fundamental beam modes, see Fig. 1 and for th
of the corresponding pulses, Fig. 2.

B. Asymptotic form of the wave field

Although the integrals in Eq.~4! are readily evaluated
numerically once the slowness curves are known, the c
putational results offer little direct physical insight into th
nature of the nondiffracting waves. Therefore, we rather
rive an asymptotic evaluation of the integrand of Eq.~7!.
Using cylindrical coordinates,r5(r' ,w,z), the nondiffract-
ing beam assumes the form

v~r ,t;v!5eiv[szz2t]E b~u!U~u!eir'v r̂'•s(u)du, ~11!

FIG. 2. ~Top! Longitudinal ~L! and slow transverse~ST! pulse
mode in quartz.~Bottom! Their approaching cross sections~back
planes in top,z.vt). Both pulses correspond to the slowness c
in Fig. 1. White arrows denote the propagation of the pulse patt
The cross sections are directly obtained from the radial-velo
curves in Fig. 4.
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wherer̂'5 î cosw1ĵ cosw is the radial unit vector. For large
enoughr'v, the exponential term in the integral in Eq.~11!
oscillates rapidly, and the integral tends to zero@assuming
that b(u)U(u) is sufficiently smooth#. Note thatb and U
never compensate these oscillations since they are inde
dent of both frequency and spatial coordinates. In
asymptotic evaluation of the integral, we look for the leadi
terms that decay comparatively slow for larger. The solution
is derived in the Appendix; it allows for the following inter
pretation:

The main contribution to the integral for a fixed spat
direction w arises from those points on the slowness cu
where the normal of the curve is collinear with the chos
direction. This is, in fact, reminiscent of the general prope
in anisotropic wave motion: the direction of energy propag
tion is along the normal of the slowness surface, and
dominant contribution is due to those components that tra
port energy in the direction of observation.

The asymptotic contributions to the wave are expresse

v~r ,t;v!' (
k:nkuur'

A 2p

vr'k~uk!
b~uk!U~uk!

3e6 ip/4eiv[s(uk)•r2t] , ~12!

where the summation is taken over the points specified ab
and k(u)5us9(u)u is the curvature of the slowness curv
The ‘‘6 ’’ refers to the sign ofr'•s'9 (uk) in the exponential
term. It is negative for waves emanating from the axis, wh
it has a positive value for waves propagating towards
axis. Each term in the wave expression is a plane wave
riving at the beam axis from the directionw and, together,
they constitute a generalized conical wave. It may, howe
have a complicated folded form, as will be discussed
Sec. III.

The above expression, Eq.~12!, is valid for all directions
where the denominator does not vanish, which would ca
the expression to diverge. Although such divergences o
occur in the asymptotic expression~the original integral
never diverges!, they imply the existence of a caustic ass
ciated with a flat point in the slowness surface, see Sec. II
The approximation converges rapidly for a slowly varyin
shape functionb(u) ~especially for the fundamental mode!,
see Fig. 3. However, in the case that eitherb or the polar-
ization changes rapidly along the slowness curve, con
gence is only achieved for larger.

The asymptotic form for the nondiffracting pulse is o
tained from Eq.~8! together with the asymptotic nondiffrac
ing beam, Eq.~12! above. Choosing an X wave spectru
f (v)5vme2av and using the integration result@14#

E
0

` vm

Av
e2avdv5

GS m1
1

2D
am11/2

, ~13!

the wave assumes the analytic form

s
n.
y
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um~r ,t !'(
k
A 2p

r'k~uk!
b~uk!U~uk!

3e6 ip/4

GS m1
1

2D
$a2 i @s~uk!•r2t#%m11/2

. ~14!

Although indicative, this result should not be taken litera
under the actual physical circumstances: The asympt
form, Eq. ~12!, converges for largevr' and, thus, the low-
frequency spectrum in the frequency domain~near zero! is
invalid for arbitraryr' . However, for large values ofm the
dominant frequencies are high and the approximation is
for r in the pulse cone and beyond. Nonetheless, asympto
of the transverse wave pattern may be explained with the
of this approximation.

III. EFFECTS DUE TO ANISOTROPY

Nondiffracting waves in isotropic media feature a char
teristic cone of propagation@6,12# that asymptotically de-
scribes the wave propagation. For nondiffracting beams,
cone forms surfaces of equal phase and energy flows a
the normal to the cone. Furthermore, the energy of the pro
gating waves is equally distributed on the cone of cons
ub(u)u. As for nondiffracting pulses, the cone forms the a
tual propagating wave fronts. Note that, in practice, both
phase and the energy intensity depend on the shape fun

FIG. 3. Convergence of the asymptotic approximation alongy.
~a! The slowness curve of the longitudinal~L! wave,~b! numerical
integral ~dashed line! and asymptotic~solid line! solutions foruz ,
~c! slowness curve for the slow transverse~ST! wave, and~d! inte-
gral ~dashed line! and asymptotic~solid line! solutions for ux .
Waves represent the fundamental mode withb(u)[1. The domi-
nant wave components are denoted by the outer normals to
slowness curves.
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b(u) but not on the underlying physics, which in isotrop
media gives no ‘‘preferred’’ directions of energy propagatio

In this section, we use the asymptotic wave solution
generalize the cone of propagation to anisotropic nondiffra
ing waves, and to derive the ‘‘natural’’ energy distributio
thereon.

A. Anisotropic wave fronts

The maximal amplitude of individual wave componen
occurs at the minimum of the denominator in Eq.~14!. The
radial vectors pointing to the maxima are given by

R'5
t2szz

s'•n'

n'5
t2z/v
s'•n'

n' ~15!

for fixed z andt. Here,s' are radial slowness vectors andn'

are the~radial! normals to the slowness curve. The cros
sectional shape of the nondiffracting pulse is obtained
allowing the slowness to vary along the associated slown
curve, see Fig. 4.

For constantz, the field maxima first approach the axis
propagation and, once having crossed it, they continue t
propagation outwards toward infinity. The radial velocity
the field maxima is given by

V'5
dR'

dt
5

n'

s'•n'

~16!

and it satisfies the group-velocity-like relationV'•s'51.
Note that the scalar product is only taken for the radial co
ponents of the vectors. The radial velocity of the field isnot
the radial component of group velocity since the latter ob
Vg•s5Vg'•s'1Vzsz51 and since, in general,VzszÞ0 the
radial part of the inner product cannot equal unity for t
group velocity.

The beam amplitude of the asymptotic expression,
~12!, depends on the following two factors:~1! the curvature
k of the slowness curve and~2! the shape functionb. The

he

FIG. 4. Three slowness curves and the corresponding rad
velocity curves for quartz. Only the ST mode features noncon
slowness and, consequently, its velocity curve exhibits folds a
ciated with wave-front caustics. The radial-velocity curves read
provide the drifting cross sections (z,vt); the approaching cross
sections in Fig. 2 are obtained after inversion (x→2x,y→2y).
9-4
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NONDIFFRACTING WAVES IN ANISOTROPIC MEDIA PHYSICAL REVIEW E67, 056609 ~2003!
former is purely characteristic to the medium and the dir
tion and velocity of propagation~which together serve to
define the slowness curve!, while the latter describes the ex
citation of the wave in the Fourier domain. For isotrop
wave motion, curvature is constant and the amplitude
pends solely on the shape function.

B. Caustics and internal diffraction

The wave amplitude is proportional toub(u)u/Ak(u) and,
hence, a small curvature of the slowness~i.e., large radius of
curvature! implies an elevated level of wave amplitude. Th
is called phonon focusing. If, however, the slowness curv
flat, i.e., its curvature vanishes, the asymptotic expans
based on the stationary-phase approximation no lon
holds. This is due to the fact that all the wave component
the vicinity of the zero-curvature point propagate into t
same direction, causing an increase in the field amplitude
a caustic.

Another consequence of vanishing curvature is the
pearance of internal diffraction. At a caustic point, the nu
ber of contributing wave components changes abruptly. N
mally, the curvature of the slowness is negative~meaning
that the scalar product between the slowness vector an
second derivative is negative!. At the caustic points, how
ever, the curvature changes sign; this is observed in
ways:~1! the slowness curve is no longer convex; and~2! the
radial-velocity curve develops folds, implying that seve
wave modes propagate along the same radial direction,
Fig. 5.

Internal diffraction is sometimes observed as a clear in
ference pattern of the participating wave components,
Fig. 6. This is due to the fact that, for a single-frequen
beam, there are 1–6 plane waves with different wave nu
bers and amplitudes that propagate along the same direc
For a pulse, this leads to a folded cone, and if the con
thick enough, the different folds may overlap, leading to m
tual interference. This effect has been observed for nor
wave fronts in crystals, see Ref.@1#.

C. Energy propagation

Apart from the factorr'
21/2, the asymptotic expression

Eq. ~12!, consists of plane waves whose directions of ene
transport are given by the corresponding group-velocity v

FIG. 5. Caustics of the slow transverse mode in quartz. T
zero-curvature points on the slowness surface~lhs! imply caustics
which are observed as folds in the velocity curve~rhs!. Thick lines
denote areas of positive curvature and capital letters indicate
individual caustics.
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tors V. In isotropic materials, the group velocity is alway
collinear with the wave-front propagation, while in nondi
persive materials the group velocityalong the wave-front
propagation direction equals the phase velocity. Now the
ter holds but the group velocity may also contain a transve
component with respect to the wave front. In the asympto
region of nondiffracting waves, the group velocity has
azimuthal component since it is normal to the slowne
curve. Hence, the energy flow in the asymptotic range o
has a radial~r! and an axial~z! component.

The nondiffracting-wave ‘‘cone,’’ which constitutes th
pulse itself, is essentially formed by plane waves, althou
different ones in the different directions. The energy flo
associated with these plane waves does not necess
propagate along positivez, see Fig. 7. If the pulse is to b
generated atz50 and it should propagate along positivez,
all the group velocities must also posses a positive com
nent alongz. This is readily fulfilled for the longitudinal
mode in Fig. 7 but not for the slow transverse mode.

IV. ACOUSTIC GENERATION OF NDWs

In this section, we consider a method for the experimen
generation of NDWs into elastic crystals. Within optics, the
are several methods for producing nondiffracting wav
Durnin, Miceli, and Eberly used a circular slit followed by
Fourier-transforming lens@3#. Axicons @15# have also been
used to produce Bessel beams, first by Bunkinet al. @16#
~already before Durnin’s work!, and later by Scott and
McArdle @17#, and others. Possibly the most adjustab
method for generating NDWs is the use of comput
generated holograms, i.e., diffractive elements@18#. We pro-
pose a similar arrangement, consisting of a piezoelec
transducer fabricated on the top surface of a bulk crysta

A. Transducer arrangement

We consider the design of a piezoelectric transducer
erating in the asymptotic region of a nondiffracting bea
Taken a beam that has no regions of internal diffraction, i
its radial-velocity curve has no folds and there is only o

e

he
FIG. 6. Internal diffraction causes an interference pattern

tween several wave modes that propagate along the same r
direction. For the case illustrated here, the interference period
approximately 0.19 mm is due to the difference between the wa
s1,3 ands4,6, which, together, carry most of the wave energy alo
y. The interfering wave vectors areky,1,35246 mm21 and ky,2,4

5280 mm21 for the angular frequencyv5109 s21.
9-5
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J. SALO AND M. M. SALOMAA PHYSICAL REVIEW E 67, 056609 ~2003!
wave mode along each direction that moves towards the a
For simplicity, we take this radial direction as the positivex
axis.

Thus, the plane wave hassz51/v, V'x,0, and V'y
50. Both sx and sy are obtained uniquely from th
asymptotic field solution. The field on the substrate surf
exhibits a periodicity determined by the wave vec
(kx,0 ,ky,0)5(vsx ,vsy) and, therefore, the transducer mu
also have the same period. However, the realization o
continuous-profile transducer that is described by one sin
wave vector is practically impossible and the structure
signed for the transducer must in practice be quantized
individual electrodes. This leads to interdigital-type tran
ducers~IDTs! @19,20#.

Since the transducer displays the spatial period co
sponding to (kx,0 ,ky,0), the excited elastic wave has an equ
periodicity. Therefore, the wave contains Fourier comp
nents forkx,m5mvsx and ky,m5mvsx , wherem assumes
integer values. The field is then represented as

u~x,z!5 (
m52`

`

(
n51

4

Am,nUm,nei (kx,mx1ky,my1kz,m,nz).

~17!

FIG. 7. Nondiffracting pulses of L and ST modes in the meri
onal (y,z) plane. Wave energy in anisotropic crystals does
propagate perpendicular to the wave fronts. While in the L mo
~top! the group velocities of both wave components have posi
velocity along z, this does not hold for the ST mode~bottom!.
Although the wave pattern in the latter propagates along positivz,
part of the wave energy is transported into the opposite direct
Hence, the wave may not be launched from a transducer place
z50. In the ST mode, there are actually six modes present,
same as indicated in Fig. 3. Here the negativeVz component is
denoted by bold arrows.
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Here, m enumerates the different Fourier modes, whilen
refers to the four different wave modes: L, FT, ST, and E
~an evanescent electromagnetic mode, see Ref.@21#!, each of
which may have a differentkz,m,n . Here Am,n are the
complex-valued weights of each wave mode andUm,n are
their polarization vectors. This representation is analogou
the optical Rayleigh expansion@22# that is widely used in the
analysis of diffractive gratings. We point out here that for
fixed kx , there exist actuallyeight different modes. Four of
these are discarded since they either propagate energy a
positive z or they grow exponentially along negativez ~the
beam generated into the bulk is taken to propagate al
2z), see Fig. 8. A straightforward and very useful algorith
for finding these modes has been published by Peach in
@21#.

Although the field expansion in Eq.~17! contains an infi-
nite number of modes, the field is to be designed such t
ideally, only a minimul number of modes with realsz are
actually generated. The most likely ‘‘extra modes’’ to appe
are those withm50 and m521. The former always has
three propagating modes but it is quite easily avoided
requiring that the average potential and the net charge on
surface remain zero. The latter has the same length for
surface wave vector as the desired mode and it has, su
quently, often a realkz . If a transducer layout exhibits inver
sion symmetry, them561 modes are generated with equ
weight, although the underlying anisotropy may still modi
their relative amplitudes.

In the simplest of transducer schemes, a time-oscillat
electric potential pattern is produced on a free surface o
piezoelectric crystal using~infinitely! thin metal electrodes
In this case, all three stress components along the sur
normal must vanish for all the Fourier modes separat
There are four wave modes available~L, FT, ST, and EM!,

t
e
e

n.
at
e

FIG. 8. Structure of the slowness surface in quartz. Complexsz

values as a function ofsx for sy50. Here Re(sz) are shown with
solid lines and Im(sz) with dashed lines. Thick lines propagate~or
evanesce! along negativez and thin lines along positivez. All gen-
erated modes are encircled and the entire beam is here take
propagate along the direction of negativez.
9-6
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and the condition of vanishing stresses can always be
filled by a suitable combination of them. Hence the field
expressed as

u~x,z!5 (
m52`

`

Ãm(
n51

4

wm,nUm,nei (kx,mx1ky,my1kz,m,nz)

~18!

where wm,n are weights such that the surface stresses
(n51

4 wm,nUm,nei (kx,mx1ky,my) vanish for eachm. This com-
bined mode may have an arbitrary amplitude, but it requ
a specific electric potential and charge distribution on
substrate surface. The transducer must be designed to
vide these. Note that this scheme ignores all elastic pro
ties of the transducer elements and it assumes a mechan
free interface between the crystal substrate and air. Trans
ers with electrodes of finite thickness can be analyzed
merically and the essential difference is that the resul
combination of L, FT, ST, and EM modes changes. This
been achieved, for instance, by Koskela, Plessky, and S
maa for surface-acoustic wave transducers, see Ref.@23#.

We note that the generation of surface-acoustic wa
~SAWs! using IDTs is well understood and they have a ve
important role in rf filter technologies. In SAW filters, how
ever, the desired wave modes are always evanescent an
excitation of bulk-acoustic waves~BAWs! only leads to un-
wanted energy losses. IDTs have also been used for B
excitation~see, for instance, Refs.@24,25#, and the brief dis-
cussion in the Appendix F of Ref.@26#!, but they have not
yet found important commercial applications. In the term
nology of SAW technology, the transducers considered
this subsection are called leaky-SAW~LSAW! transducers
that leak wave energy into the bulk of the crystal. The d
ference is that, instead of minimizing this leakage, th
transducers are optimized for the generation of certain b
modes.

B. Aperture optimization

Although, ideally, nondiffracting waves have an infini
beam length, the aperture size limits it to a finite value. In
isotropic medium, the wave emanating from the edge o
circular aperture, at the distanceR from the beam axis,
moves to the beam axis at the anglez, called the cone angle
of the beam. It crosses the axis atZ5R cotz. A similar effect
takes place in anisotropic media except that there exists
uniform cone angle in this case. All directions have differe
plane waves~or several plane waves in the regions of inte
nal diffraction! that carry energy at different angles. Henc
each direction has an individual ‘‘radius’’ of apertureR(w)
5Z tanz(w), wherew is the azimuthal angle on the cryst
surface andz(w)5arctan(Vr /Vz) is the group-velocity angle
for the plane wave entering from that direction.

In Fig. 9 there is illustrated a transducer that is design
to produce an L-mode beam in quartz@27#. The interdigital
transducer unavoidably produces one extra L mode, two
modes, and two ST modes. Therefore, the aperture is
signed such that these do not overlap the intended non
fracting beam in the center of the opposing crystal surf
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where the waves can be detected. The aperture is param
in the sense that this may be scaled arbitrarily dependin
the thickness of the quartz substrate. Note that it is indep
dent of frequency, which only affects the scaling of the tra
ducer structure within. Propagation of the generated fi
modes is here considered within the limits of geometri
optics and all diffraction effects are discarded.

C. Detection of NDWs

The generation of a nondiffracting wave into a crystalli
solid is the first part of the experimental research, while
detection of the wave is the second task. One way of det
ing NDWs is the use of interferometric scanning on the ba
face of the crystal@28,29#. This allows the detection of the
surface-normal oscillation with anxy resolution'1 mm and
amplitude threshold'0.1 nm.

FIG. 9. ~a! Sketch of a transducer for exciting an L-mode no
diffracting beam in quartz. Here white denotes the grounded e
trodes, gray the driving electrodes, and the black areas are
substrate surface. Bondings of the electrodes must be supplied
rately. ~b! The entire radiation pattern of the transducer as obse
able on the opposite crystal surface.~c! Nondiffracting L mode~in
the center! and spurious modes generated at the (y50) plane of the
transducer. Dashed lines represent the beam within an exte
crystal wafer where the region of nondiffracting beam pattern~en-
circled in the middle of the figure! is located inside the bulk. Each
mode propagates in the direction specified by the associated g
velocity.
9-7
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Another way to observe nondiffracting beams in cryst
is to use the frequency-shift holographic method@30#. A
transparent crystal is illuminated through one of the side s
faces and the light is scattered from the beam due to
photoelastic effect. A holographic recording of the transm
ted light can then be used to yield tomographic cuts of
beam pattern within the bulk crystal.

V. DISCUSSION

Nondiffracting waves feature two characteristic propert
that distinguish them from other modes of acoustic wa
propagation:~1! The wave pattern remains invariant und
propagation within the region defined by the geometry of
transducer aperture. This is due to the fact that all the w
components share a common phase velocity along the ax
propagation, thus retaining their mutual interference patt
unchanged.~2! The wave energy is focused to the axis
propagation, not merely into a single spot as for Gauss
type waves, but along a focal line, whose length is de
mined by the transducer.

The transducer proposed above is suited for the detec
of the transverse wave pattern on the opposite surface o
crystal, so as to confirm the formation of the intended n
diffracting wave. On the other hand, probably a more ch
acteristic phenomenon occurs inside the bulk crystal wh
the acoustic energy is focused to the propagation axis. If
crystal features nonlinear behavior, such effects should o
take place in the regions of high amplitude; nondiffracti
waves would therefore allow the study of nonlinear acou
effects, such as harmonic generation or soliton format
@31#, that only occur in a limited region inside the crysta
They may also be conceived of being useful for study
novel effects in piezoelastic crystals, such as acou
memory @32# or dispersively backward propagating wav
@33#. A very high acoustic power may even cause irreversi
structural changes to occur on the propagation axis while
formation of the focal line is only weakly affected by th
nonlinearity since the wave amplitude away from the axis
much lower. Similarly, acousto-optic coupling is also e
hanced where the acoustic amplitude is high, thus allow
the optical detection of effects arising near the focal line

Conclusions

We have considered nondiffracting wave propagation
anisotropic crystals and analyzed the physical propertie
nondiffracting waves based on their asymptotic represe
tion. This has lead to a straightforward interpretation in ter
of plane waves that have well-defined wave vectors
group velocities. The asymptotic representation also rev
phonon focusing, caustic, and internal-diffraction effects t
occur in anisotropic materials.

We have also considered the excitation of nondiffract
waves using an interdigital-type transducer that may be
signed using the asymptotic properties of the specific be
form. Although similar devices~computer-generated holo
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grams! have been widely used in optics, the presence of
isotropy and several acoustic modes leads to a much m
complicated situation, and numerical modeling is requir
for the optimization of the local transducer structure.

Experimental research on anisotropic elastic wave pro
gation has recently benefitted from new imaging metho
The generation and detection of nondiffracting wave mo
is a new challenge for experimental research; we hope
our results will stimulate further experiments.
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APPENDIX: OSCILLATORY INTEGRAL

Consider an integral on a closed curve, parametrized
u, and given as@34#

I 5E f ~u!eiaf(u)du, ~A1!

where f is real. The contribution of a small interval@u0
2e,u01e# of the integration path, centered atu0 is

I u0 ,e' f ~u0!eiaf(u0)E
2e

e

eia[ jf8(u0)1j2f9(u0)/2]dj.

~A2!

Since the integral is dominated byj50, it is highly oscilla-
tory, except forf850. If f850, the value of the integral is
approximately

E
2e

e

eiaj2f9/2dj'E
2`

`

eiaj2f9/2dj5e6 ip/4A 2p

auf9u
,

~A3!

where ‘‘6 ’’ refers to the sign off9(u0). We have changed
the integration variable toj5@A(p/auf9u)#t. The integra-
tion limits have been extended from@2e,e# to @2`,`#
since for sufficiently larger, the main contribution arises
from an infinitesimal interval around the origin. Iff8Þ0,
the oscillating integrand averages to zero. Therefore, the t
contribution of eachf9Þ0 is

I'A 2p

auf9~u0!u
f ~u0!eiaf(u0)e6 ip/4. ~A4!

This result is valid for a large enough parametera. It should
be noted that a rapidly changingf (u) or a low absolute value
of uf9(u)u requires a very large value ofa.
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