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Stable spatiotemporal spinning solitons in a bimodal cubic-quintic medium
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We investigate the formation of stable spatiotemporal three-dimendi@Dakolitons(“light bullets” ) with
internal vorticity (“spin” ) in a bimodal system described by coupled cubic-quintic nonlinear8iiger
equations. Two relevant versions of the model, for the linear and circular polarizations, are considered. In the
former case, an important ingredient of the model are four-wave-mixing terms, which give rise to a phase-
sensitive nonlinear coupling between two polarization components. Thresholds for the formation of both
spinning and nonspinning 3D solitons are found. Instability growth rates of perturbation eigenmodes with
different azimuthal indices are calculated as functions of the solitons’ propagation constant. As a result,
stability domains in the model’s parameter plane are identified for solitons with the values of the spins of their
components=0 ands=1, while all the solitons withs=2 are unstable. The solitons with=1 are stable
only if their energy exceeds a certain critical value, so that, in typical cases, the stability region occupies
=25% of their existence domain. Direct simulations of the full system produce results that are in perfect
agreement with the linear-stability analysis: stable 3D spinning solitons readily self-trap from initial Gaussian
pulses with embedded vorticity, and easily heal themselves if strong perturbations are imposed, while unstable
spinning solitons quickly split into a set of separating zero-spin fragments whose number is exactly equal to the
azimuthal index of the strongest unstable perturbation eigenmode.
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[. INTRODUCTION the pure cubic nonlinearity impossible. Stability of STSs can
be achieved in the case of saturapfe10,1] or quadratic
Solitons, i.e., self-supporting localized pulses, are ubiqui{ ] [12—15 nonlinearity, as well as in graded-index Kerr
tous objects that occur in media of very different physicalmedia[16] and in engineered “tandem” structures built of
nature. Among various realizations that solitons find in physquadratically nonlinear slices periodically alternating with
ics, optical solitons may arguably be the most important ondinear layers[17]. The STS can also form in off-resonance
[1-3]. A new topic in theoretical and experimental studies oftwo-level system$18] and in media exhibiting self-induced
optical solitons arespatiotemporal solitons(STSs, alias transparency[19]. While the majority of works on STSs
“light bullets” [4], “superspikes’[5], or “multidimensional ~ were dealing with solitons of the bright type, dark STSs were
simultons,” in the case of a two-color solitons in quadrati- considered to$20].
cally nonlinear medig6]). These are completely localized  Parallel to the theoretical activity, progress has been re-
traveling pulses of light in planar waveguides or bulk media,cently made in experimental studies. For the first ime, a 2D
that feature self-localization in both the longitudinal andSTS was observed in g optical crystal[21]. These ex-
transverse directions. They are supported by simultaneougeriments employed the technique of achromatic phase-
balance of diffraction and dispersion by nonlinear phasenatching or tilted-pulse wave fronts, that was used earlier in
modulation. On one hand, STSs are physical objects of funthe first experimental observation of temporal solitons in
damental interest, as examples of stable self-sustained locdluadratically nonlinear crystal22]. As the size of the avail-
ized objects in two dimensior@D) and, especially, in three- ablex?) crystals is a few centimeters, reliable observation of
dimensional3D) nonlinear media are rare in physics. On the STSs is possible if their dispersion and diffraction lengths
other hand, STSHirst of all, their 2D specigshold promise  Zgifir @ndZgs, (Which should be of the same order of magni-
for potential applications to ultrafast all-optical processingtude, as both dispersion and diffraction are to be simulta-
devices, where each STS may represent an elementary bit Beously balanced by the nonlineajityare <1 cm [21]. In
information, provided thastable STSs can be formed from the usual paraxial approximation, the diffraction length is
pulses at reasonable energy levels in available optical mat@stimated aggg,~k(Ax)?, wherek=2w/\ is the carrier
rials [7]. wave number) is the corresponding wavelength, afd is
As well as spatial and temporal solitons, STSs can béhe transverse size of the STS and of the initial pulse from
supported by nonlinearities of different types. However, bewhich it may self-trafisee below. As the carrier wavelength
ing 2D or 3D objects, they may be subject to instability dueis =1 um, this implies a constrainhkx=30 um (which is
to the possibility of wave collapse in multidimensional me- still sufficiently large in comparison with the underlying
dia. In particular, the ubiquitous cubi@err) nonlinearity = wavelength, hence the paraxial approximation appli€he
gives rise to collapse in both 2D and 3D caf@®)], which  dispersion length is estimated a§sp~D(At)2, whereD is
makes the existence of stable STSs in uniform media witlihe group-velocity-dispersion coefficient add is the tem-
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poral width of the pulse. Assuming thAt cannot be essen- demonstrated that a two-component model of the CQ type
tially smaller than 100 fs, the constrainfs;<1 cm implies  gives rise to stable 2D spinning solitoegmultidimensional
a necessary size of the dispersion coefficiBrt 1 m/p<. bimodal CQ model was first introduced in Rp£5]; it shares
As a matter of fact, these estimates apply not onlyyfo some features with a model of light propagation in a CQ
crystals, but also to all materials in which STS may be crenonlinear medium equipped with a Bragg grating, where the
ated. A great challenge for the experimentalist is direct obtwo components represent right- and left-traveling waves,
servation of a fully localized 3D STS under these conditionsresonantly coupled by the Bragg reflectipg#6]). The cubic
In addition to nonspinning solitonghat is, solitons with  part of that model includes not only the XPM coupling, but
zero topological chargespinning(vortex) solitons are also also the four-wave-mixingFWM) term, which is a coherent
possible in a variety of optical media. Starting with the semi-(phase-sensitiyenonlinear coupling between the two fields.
nal works of Ref[23], both delocalized“dark” ) and local- In the presence of the FWM terms, the vectorial spinning
ized (“bright” ) optical vortices in various 2D settings were solitons may only exist with equal values of the spins in its
investigated24—29. In the 3D case, spinning solitons take two componentss; =s,. Stable 2D vortex solitons in both
the shape of a torusdoughnut”) [30,31]. For bright vortex  the scalar and vectorial CQ models are readily generated by
solitons, stability is a major issue as, unlike their zero-spinnitial Gaussian pulses with embedded vortidit4,47.
counterparts, the spinning solitons are prone to destabiliza- As it was mentioned above, in the 3D case, stable bright
tion by azimuthal perturbations. In the 2D case witd and  spinning STSs withs=1 have been recently identified in
saturable nonlinearities, the azimuthal instability was re-oth the scalar CQ mode[88] and in one combining the
vealed by simulation$25,26) and observed experimentally quadratic and self-defocusing cubic nonlinearifi@s]. It is
[27]. As a result, a soliton with spin 1 splits into two or three relevant to stress that the only previously known physical
fragments, each being a moving stable zero-spin soliton. Numodel that supports stable 3D vortex solitons was the famous
merical simulations of the 3D spinning STS in the pyfé field-theory Skyrme moddK8], in which the spinning soli-
model also demonstrate its instability-induced splitting intotons represent nucleofithis model has recently found a new
separating zero-spin solitof31]. application to two-component Bose-Einstein condensation
Nevertheless, the quadratic nonlinearity acting in combi{49]). In both the CQ and quadratic-cubic models, the spin-
nation with the sellefocusingcubic nonlinearity[32,33  ning 3D solitons are stable provided that they are sufficiently
give rise to stable spinning 2D solitorialias ring vortices  broad (i.e., their energy exceeds a certain threshold value
with spinss=1 and 2[34], and to stable spinning doughnut- otherwise they are subject to the usual azimuthal instability
shaped 3D solitons wite=1 [35]. All the 2D solitons with  [50].
s=3 and 3D solitons witls=2 are unstable. Similar 2D and At present, the study of the formation of complex soliton
3D spinning solitons may also be stable in another modelstructures, such as clusters of several 2D or 3D solitons is
based on competing self-focusing cubic and self-defocusinglso of much intereg61]. Such complex structures might be
quintic nonlinearitie§ 36—38. Optical nonlinearities of this of importance for potential applications in future digital-
cubic-quintic(CQ) type has been recently reported in chal-imaging processing devices based on soliton light spots.
cogenide glassd89] and in organic materialgt0]. Soliton clusters can be viewed as a nontrivial generalization
In the first simulations of 2D solitons wits=1 inthe CQ  of “spinning” solitons (or doughnutlike vortices and
model, it was found that they are robust, provided that theinecklace-ring beam§52,53, and they also appear in the
power is not too smal[41]. Later analysis, based on the study of active nonlinear systems such as driven optical cavi-
computation of linear-stability eigenvalues, has demonstrateties [54].
that some of the 2D spinning solitons considered in R&f] An issue of obvious interest is a generalization of the 3D
are subject to a weak azimuthal instability. Nonetheless, irspinning solitons to the case of a bimodal system including
another part of their existence region, with still larger pow-two polarizations of light, similar to the above-mentioned 2D
ers, the solitons witls=1 ands=2 were confirmed to be model[44]. The aim of the present work is to construct bi-
stable in thescalar (single-component2D CQ model[36] modal bright 3D spinning solitons in the vectorial CQ model
(concerning the stability of solitons with=1, see also Ref. (including FWM term$ and to investigate their stability. In
[42]). this work, we consider the vectorial CQ model in two ge-
Spinning 2D solitons were also considered ibimodal  neric situations:(i) for two linear polarizations, when the
(two component, also known as vectoyiahodel based on relative cubic-XPM coefficient ise=2/3, and(ii) two circu-
two nonlinearly coupled nonlinear Schiinger (NLS) equa- lar polarizations, whem=2.
tions, which take into regard two orthogonal polarizations of An inherent ingredient of any model based on the linear
light. If the nonlinearity is saturable, and the nonlinear cou-polarizations is the FWM terrfil]. In the case of the long-
pling is of the cross-phase-modulatigXPM) type, two- distance propagation in optical fibers, the FWM term is usu-
component solitons remain unstable against azimuthal peglly dropped because it effectively averages to zero due to
turbations, although it was demonstrated that the instabilityapid phase oscillations induced by the fiber’s birefringence
of the soliton with opposite values of the spins in its two[1]. However, experiments with spatiédee, e.g., Ref55])
componentss; = —S,, may be essentially weaker than that and spatiotempordl21] solitons imply a short propagation
of the soliton withs; =s, [43] (two-component solitons with distance, which may be smaller than the birefringence beat
different vorticities in its components were also consideredength, hence the FWM terms must be kept in the madsl|
in Ref. [29]). On the other hand, the recent wdé4] has it was done in the 2D cagd4]). As it was mentioned above,
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the FWM terms admit only bimodal spinning soliton with
identical values of the vorticity in both components. Gener-
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ally, the effect of the FWM-inducedoherentonlinear cou- axs gYe T
pling between the components on the stability of bimodal
solitons is quite an interesting issue by itself. +

The model witha=2, valid for circular polarizations,

does not include FWM terms. In fact, this version of the
model applies not only to the case of two circular polariza- +
tions, but also to copropagation of two waves with different

carrier wavelengthfl].

The rest of the paper is organized as follows. In Sec. “‘4—|ere,u~£1 andv~£, are properly normalized amplitudes

the vectorial CQ model is formulated, and general result of the two modes, the asterisk stands for the complex conju-
concerning the existence of 3D spinning solitons in it are” . 3) (5) ) . P n
ation, x**/ and x'>’ are effective coefficients of the cubic

displayed. Fundamental results for stability of the spinnin gnd quintic nonfinearities— Ak is a normalized birefrin-

solitons, based on eigenvalues found from equations linea ¢ dX Y lized i d
ized around the stationary soliton solutions, are presented gence parame er, andX, Y are normalized propagation an

Sec. Ill. Direct numerical simulations of the stability of the ransverse spatial coordinates, ahds the normalized tem-

spinning solitons are presented in Sec. IV. The results of tthrSa.l V.?”?bl.ef ";'1 thfg Tgfgrence fram((ja o]f the clarrler \(/jvgve.
work are summarized in the concluding section. _Simitarly, 1 the field Is compose of cireuar modes
aligned with transverse vectoes = (e; i ez)/\/f, which are

subject to relationsef=e5=0 and e;-&,=1, so thatE
=£,e%e, +E €?%e_+c.c.and

U2 | —

6 3
|U|4+§|U|Z|U|2+§|U|4)U

gl =L Wk

1 )
(3lv|?+2|ul?)u?v* + ge‘2'ﬁzv3(u*)2 =0. (4)

Il. THE VECTORIAL CUBIC-QUINTIC MODEL AND
STATIONARY SOLUTIONS FOR 3D SPINNING SOLITONS

We consider a bimodal system described by two nonlin-
early coupled NLS equations that incorporate the self-
defocusing quintic nonlinearity. A general form of the corre-
sponding CQ system was introduced in Ré¢45]. To
recapitulate the derivation, we assume that the phyéiea)  Again assuming isotropy of the cubic and quintic nonlineari-
electric field is a combination of two polarizations with com- ties, straightforward analysis using expressi®h and its
plex amplitudest; and&,, oriented along mutually orthogo- square leads to the following coupled equations which, un-
nal transverse unit vectoes ,: like Egs.(3) and(4), do not contain FWM terms:

E?=2[&, £ e+ )t cc]+2(|E.)2+]E-1D). (B)

E=&,e'%1e,+ £,e'%2e,+ C.C., (1)
where c.c. stands for the complex-conjugate expression,  du u  du  du 312 )
¢1=— wt+ (k= 1AK)z are rapidly varying phases of the !5z T yJ’mJ“ﬁ +Bu+ X (Jul*+2[v]*)u

two waves with common carrier frequeneyand mean wave

numberk (t andz are time and propagation coordinatesnd —x®(|u|*+6]ul?|v|?+3[v|*)u=0, (6)

the small shifts+ Ak/2 accounting for linear phase-velocity

birefringence. In the most relevant case of the isotropic non-

Iinea_rity, the self-_focusing cubic and self-defocusing qgintic v P2 % 0% , , ,

nonlinear corrections to the refractive index are proportional, =t et et — Bu+ xO(|[v]?+2|u?)v

respectively, to oxXe oY oaT
E2=(£2e? 14 £26292) 4 c.o4 2(|€1)2 4|62 (2 = x®(Jo[*+6[v[?ul?+3Ju|Hv =0, (7)

and E2)2.

Following the lines of the standard derivation of the cor-where, this timey andv are properly normalized amplitudes
responding system of coupled NLS equatiphfand using £. .
the expression2) and its square, we arrive at the system of Our simulations have demonstrated that quintic XPM
equations that are valid under the usual paraxial and slowlyerms in Eq.(3) through Eq.(7), as well as quintic FWM
varying envelope-amplitude approximations: terms in Egs.(3) and (4), do not affect stability of spin-
carrying STSs in any conspicuous wparticularly, the last

gu [du Pu U 3) 2. 2 1 FWM terms in the latter equations are negligible due to both
i+ | —+—+—|+Bu+ x| |u*+ 5|v|?|u . o
dZ |\ 9x2 gY2 T2 3 the small numerical factor 1/5 and oscillating factors exp
(£2i82)]. On the other hand, the influence of the cubic XPM
N 1,0 o ay 6 2. 3 . and FWM terms was found to be more essential. For this
Ut U | = x| Ul glulffu[*+ glol*u reason, and aiming to present results in a sufficiently com-

pact form, we adopt the following simplified but adequate
model, which includes SPM, XPM, and FWM cubic terms,

=0, and only SPM quintic ones:

)

1 1 ..
+ §(3|u|2+ 2|v|?)v?u* + gez'f”zu3(v*)2
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iUz + Uyt Uyy+ Uprt Bu+ (Jul?+ alv]|?)u+ yo2u* works [34—-36,3§, it is very likely that the solitons witls
. >2 are unstable, therefore we concentrated on the study of
= [ul*u=0, (8 the stability of the spinning solitons with=1 and 2. In fact,

it was found that, as well as in the corresponding 3D scalar
model (see Ref[38]) and in its quadratic-cubic counterpart
—|v|*v=0. (9)  [35], only the spinning STS witls=1 may be stablépro-
vided that its energy is sufficiently large

We will consider two specific versions of the system, viz., As well as in the scalar CQ modg30,38, the existence
with a=2/3 andy=1/3 for the case of two orthogonal linear region of the two-componefttectoria) 3D spinning solitons
polarizations and withv=2 andy=0 for the case of two s |imited by maximum wave number shikyee, Such that
circular polarizations. Thus, in either case, we are left withat . — . the outer size of STS diverges, but the size of its

the single control parametg in Egs.(8) and(9). _internal hole remains finite. This means thatkat & et
Statlonarz solutions to Eq¢8) and (9) are sought for in 6 5= 0 soliton goes over into a uniform continuous-wave
the formsu=U(r, T)exp(xZ+isf) and v =V(r, T)exp(«Z  giate \while bright solitons wits=1 turn over into a cylin-

+isf), wherer and ¢ is the polar coordinates in the plane drical dark soliton. However, an important difference from

(X.’Y)' « are the wave number shift, and the mteg.es the the single-component model is that, in the vectorial one in-
spin (recall that the presence of the FWM terms dictates th%ludin the EWM terms depends on the birefringence
choice of identical vorticities in both component§he func- 9 Koftset 4€P 9

ivz+vxx+vyy+v-|-1-—ﬂv+(|v|2+ a|u|2)v+ yu?o*

tionsU andV may be taken real, obeying equations paramgter,B. . . .

In Fig. 1, we summarize outputs of extensive numerical
2U 10U 82U <2 calculations aimed at detecting domains of existence and lin-
— +———=U+(B—k)U+(U?+aV?)U—-U> ear stability of the spinning solitons in the vectorial CQ

+ —_——
orz T g1 r? model including the FWM termfthe one witha=2/3 and

v=1/3 in Egs.(8) and(9); details of the stability analysis are
given below. The domains are presented in a comprehensive
form in the parametric planex(B). The upper continuous

+yV2U=0,

‘92_V+ E ﬂJr az_v_ S—2V+(—,8—K)V+(aU2+V2)V curve is the Iinexoﬁsel(,B), _which is the common existence
gré r ar 512 2 border of all the bright solitons irrespective of the valuesof
while the lower continuous curve and the dash-dotted one
—V5+ yU?V=0, (10 near it are lower borders of the existence domain of the soli-
) tons for different values of. The two dashed lines in Fig. 1
following from Egs.(8) and (9). ~ mark the lower stability boundaries for the solitons with
Equations(8) and (9) conserve the net enerdwhich is  —g and 1. Thus, the zero-spin solitons are stable in a larger

proportional to the number of photons trapped in the field part of their existence domain, while the spinning solitons
with s=1 are stable in a relatively narro(in terms of k)
E:f f J'(|u|2+|v|2)dXdeTEEu+ E,, (11) region abutting on the upper existence border; particularly,
the s=1 solitons are stable fok>0.5 if 8=0. In these
- stability regions, the solitons are broHtheavy,” with large
the Hamiltonian values of their energyll), see Figs. 2 and]3
In Figs. 2 and 3, we plot the curves=«(E) and H
Hzf j f [ [uy |2+ [uy |2+ [ur]?+ o2+ |vy|? =H(E) corresponding to the families of the zero-spin and
spinning STSs for the model witk=2/3 andy=1/3. To
1 display the results, we have selected two representative val-
+lor]?= Blul?+ Blv|*~ PRACH 2v2+ut*?) ues of the birefringence parametgr0 and@=0.2. For the
sake of comparison, we also plot the corresponding curves

1. .4 ol 12 4 for the single-componentscalaj STSs (the ones withv
- §(|u| +2a|ul?|v|?+]|v]*) =0, that we callsimple solitons Obviously, they are par-
ticular solutions of the present model.

We see that the vectorial ST$alias composite solitons
bifurcate from the corresponding simple ones at certain val-
ues ofx. Note that the composite solitons appear as unstable
momentum(equal to zero for the solutions considereand  solutions, andin the cases=0 ands=1) they get stabilized
angular momentum in the transverse plaag at larger values of. An essential feature of all the 3D soli-

We have numerically found one-parameter families of statons, which is evident in Figs. 2 and 3, is the presence of a
tionary 3D spinning solitons, which have the shape of vortexXinite minimum energy(threshold necessary for their exis-
tori with a hole (supported by a phase dislocatioim the tence, the threshold values increasing wsthThe full and
center. A standard band-matrix numerical algorithm was usedashed lines in Figs. 2 and 3 correspond to solutions that are
to deal with the corresponding two-point boundary-valuestable and unstable, respectively, against small perturbations,
problem based on Eq6L0). According to results of previous according to results presented below. In particular, the stabil-

+

1
+3([ul®+[v]®) ]dXdeT, (12)
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c 5 Y composite solitons
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\ /;/ S=1 ,2
0.2+ W L FIG. 2. The wave numbet (a) and HamiltonianH (b) of the
gy = three-dimensional two-component solitons, with different values o
7 S=0 hree-dimensional l ith diff lues of
7 the spins of their components, vs the soliton’s enelgyfor 8
y
=0.
0.% L : .
.0 0.2 04 0.6 v(Z,r,T,0)—V(r,TYexdi(sO+«Z)]
birefringence =p(r,T)exp{A\,Z+i[(s+n) O+ «Z]}+q*(r,T)

FIG. 1. Domains of existence and stability of two-component
solitons with the values of the spiss=0, 1, and 2 of their compo-
nents. The lower and upper continuous curves and the lower daskyheren>0 is an arbitrary integer azimuthal index of the
dotted one border the existence regions. The two dashed lines magerturbation and ,, is the (complex eigenvalue that should
the stability domains; see further explanations in the text. This fighe found. This form of the infinitesimal perturbation is a
ure and the ones displayed below, except for Figs. 4 and 7, pertaifjgsed one(no other values of the perturbation azimuthal

Xexp\y Z+i[(s—n) 6+ kZ]}, (14

to the model with the linear polarizations € 2/3 andy=1/3).

mental 6=0) soliton branch may only undergo a stability
change at a point whei@E/d« vanisheg56]. Global stabil-

ity of the solitons may be estimated by their “chemical po-”\n‘ch

tential,” i.e., the ratio of the Hamiltonian to the energyum-
ber of photong As is obvious from Figs. @) and 3b), this
ratio always takes a smallémore negative value for the

index butn ands—n are generatedThe functiond, g andp,

ity of the s=0 solitons completely agrees with the known d Which appear in Eqs(13) and (14) obey the following
Vakhitov-Kolokolov criterion, which states that the funda- €quations:

?f 2f
—4r 4+
d

r2 dr  d72

— —(s+n)%r 2f+(

+(2U%+ aV2—3UH T+ (U%+ yV2—2U%g

composite solitons, hence they are expected to be more +(a+2y)UVp+aUVQq=0,
stable in the global sense, according to the well-known prin-

ciple stating that the system prefers to minimize its Hamil-
tonian for a fixed value of the energpumber of photons
[9].

In Fig. 4, plotted are the curves= «(E) andH=H(E)

—iN,g+

pertaining to the zero-spin and spinning STSs in the other

version of the model, withw=2 and y=0 (which corre-
sponds to the circular polarizationgrom the comparison of

this figure and Fig. 2, we conclude that there is no qualitative

difference between both versions of the model.

lll. STABILITY OF THE THREE-DIMENSIONAL
SPINNING SOLITONS

The most revealing information on the stability of solitons
is provided by the analysis of Eq$8) and (9) linearized
about the stationary solution. To this end, we seek for per
turbation eigenmodes in a general form

u(Z,r,T,0)—U(r,T)exdi(sf+«2Z)]
=f(r,T)expgA\pZ+i[(s+n)O+kZ]}+g*(r,T)

XexpNrZ+i[(s—n)6+«Z]}, (13

056608-5

ve number

£

2

d<g

ar

dr  d712

d d?
+rt 9,29

+(2U%+ aV2—3U%g+ (U%+ yV2—2U%f

+(a+27))UVg+aUVp=0,

0.8

0.6

0.4}

0.0

0.2

(a)

composite solitons

Hamiltonian

Suo S=1 simple solitons

2000 4000
energy

0 6000

1000

-1000

-2000+

-3000

B—x)f

(15

(s—n)?r2g+(B—«)g

composite solitons

(16)
(b)
[ .. simple solitons 1
\\:‘\\ S=2
Nl
S=1
S=2

0

2000 4000
energy

FIG. 3. The same as in Fig. 2, but fgr=0.2.

6000



MIHALACHE et al. PHYSICAL REVIEW E 67, 056608 (2003
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FIG. 4. The same as in Fig. 2, but for the model with two 4, 10
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) , > 0 . >
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iN,p+ ar? +r ar + o (stn)r “p+(—B—«)p s i
+(aU?+2V2—3VHp+ (yU2+V2—2V4q 20 -20
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FIG. 6. Formation of the two-component soliton with 1 from
. 2 o a Gaussian input with a trapped vortex and initial enefgy
—IAnQ+ F+r dr + ﬁ_(s_ N q+(=p—x)q =6670 in the cas@=0.2. Shown are the gray-scale plots of the
field: the intensity distribution in the initigla) (at Z=0) and final

+(aU?+ 2V2—3V4)q—|—(yU2+V2— 2V4)p (b) (at Z=200) pulses, and the corresponding phase figgsnd
(d). Thewv field undergoes similar evolution.

g dq dq

+(a+2y)UVg+aUVI=0. (18

above. This result implies that a vectorialvo-component
y %tptical vortex of the dark-soliton type, that may be regarded
as an infinitely broag=1 spinning dark cylindrical soliton
of the present type, is stable too.

For the birefringence taking values in the intervat 8

< 0.2, the relative width of the stability region of the bright
Yolitons withs=1 is (Koftset— Ksp! Kofiset~ 25% [see Figs. 1
and Fa)]. It is slightly larger than the relative size of the
soliton stability region that was found in the scalar counter-
part of the model[38]. No stability region exists for the

The solutions of these equations must decay exponentiall
r—o and T—o. At r—0, f and p must vanish ag/s*"l,
whereasy andq vanish as/s™".

To solve Eq.(15) through Eq.(18) and to find the eigen-
values, we used a known numerical procedi228,26,57,
which has produced results presented in Fig. 5. The mo
persistent unstable eigenmode mes2, for boths=1 and
s=2. As is seen in Fig. ®), the instability of the soliton
with s=1, accounted for by Re(n=2) disappears with the

increase ofx at a stability-change points~0.54, and the  gqjitons withs=2 [see Fig. )], in full accordance with

stability region extends up W= ofiser=0.74, corresponding \hat had been found earlier for the 3D spatiotemporal spin-

to the upper continuous line in Flg 1, i.e., up to |nf|n|te|y ning solitons withs= 2 in both the CQ and quadratiC'CUbiC
broad solitons with infinite energy, as it was explained[35] scalar models.

In the case when the spinning solitons considered here are

b . e .
04 @ 04 0l unstable, their instability isscillatory[58]. The correspond-
st ing frequency Im (which is not shown in Fig. bis of the
same order of magnitude as Rat the maximum-instability
3 02 \ 3 02 point, and is purely imaginary at= xg. This feature is
also similar to what is known about the solitons in the scalar
1 CQ model[38].
%5 - 0.50 075 o
. . B 0.25 0.50 0.756
wave number wave number IV. DIRECT NUMERICAL SIMULATIONS
FIG. 5. The instability growth rate, Re of the perturbation It is necessary to check how the above results for the

eigenmodes corresponding to different values of the azimuthal inStability, based on the calculation of eigenvalues from the
dex n (the value is attached to each curwes the soliton’s wave- linearized equations, match to direct simulations of the full
numberk: (a) s=1; (b) s=2. Heref=0.2. The point at which the nonlinear Eqs(8) and(9). To this end, the simulations were

size of the solitons divergdshe border of their existence regjis  carried out by dint of the standard Crank-Nicholson scheme,
marked by the vertical arrow. which implies solving the equations by means of the Picard
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20 (a) 20 (b)

(b)

FIG. 9. Isosurface plots illustrating the evolution of the unstable
20 soliton withs=1, k=0.4, andB=0.2. () Z=0; (b) Z=60. The
numerical simulations were performed in the same box as in Fig. 8.

phase dislocation witts=1 was superimposed. Figure 6
shows gray-scale plots of the distribution of the intensity and
phase of thei field in the transversex(y) plane, for both the
input Gaussian with the trapped vortéat Z=0) and the
emerging spinning soliton wite=1 atZ=200. Thev field,
which is not displayed here, shows similar behavior.

In Fig. 7, we show the formation of a stable spinning
soliton withs=1 in the other version of the model, with
=2 andy=0, corresponding to two circular polarizations.
Here the energy of the input Gaussian with the embedded

FIG. 7. The same as in Fig. 6, but for the model with circular vorticity is E,=4110. As before, the behavior of thecom-
polarizations ¢=2 andy=0), the initial energy of the Gaussian ponent is similar to that of the component, which is dis-
pulse with the trapped vorticity being=4110. played in Fig. 7.

Thus, the robustness of the 3D ST@srtex torj is at-
iteration method[59], the resulting linear system being tested to by the fact, obvious from Figs. 6 and 7, that they
handled by means of the Gauss-Seidel iterative scheme. T&n be generated from initial Gaussian pulses with the
achieve good convergence, we needed, typically, ten Picaiiapped vortex, whose shape is far from the exact form of the
iterations and four Gauss-Seidel iterations. In most cases, weoliton. We conclude from Figs. 6 and 7 that the input Gauss-
employed the transverse-grid’s stepsizeX=AY=AT ian reshapes itself, which leads to redistribution of the net
=0.2, and the longitudinal step siz&Z=0.02. To avoid energy between the two components; some energy loss oc-
distortion of the instability development under the action ofcurs, which is caused by emission of radiation in the course
very small perturbations introduced by the Cartesian compuef the formation of the stable spinning soliton.
tational mesh, we explicitly added larger random perturba- One might assume that, very generally speaking, the
tions to the initial state, cf. simulations of the stability of vorticity-carrying soliton is not an absolutely stable object,
zero-spin solitons performed in the model with saturablebut rather a metastable one. Indeed, it is suggested by Figs.
nonlinearity in Ref[11]. 2(a), 3(a), and 4a) that the value of the Hamiltonian of the

To test the robustness of the sufficiently bradgeavy  Spinning STS is, generalljarger than that of its zero-spin
spinning solitons witks=1, which were found above to be counterpart containing the same number of photons, hence
stable against small perturbations in the model with2/3 ~ one may be wondering if a very strong initial perturbation
and y=1/3 (corresponding to two linear polarizationsve ~ could provoke rearrangement of the spinning soliton into a
simulated self-trapping of a soliton from an initial Gaussianz€ro-spin one, the angular momentum being carried away
pulse with the energf,=6670[see Eq(11)], onto which a  With emitted radiation. An implication of this question is that

the stability of the 3D spinning STSs witi* 1 against small
(b)

perturbations is provided for by effective potential barriers
FIG. 8. The recovery of the stationary soliton witk 1, which

(a) (b)
was perturbed by strong random noiseZat 0: (a) the intensity

distribution in the initial perturbed solitorib) the same in the self- FIG. 10. Isosurface plots showing the fragmentation of the un-

-10 0 -10 0 10 20
X X

cleared one aZ=100. The parameters are=0.55 andB=0.2.
The numerical simulations were performed in the Hoex21,21]
X[ =212 X[ —21,21.

stable soliton withs=2, x=0.44, and3=0.2. (a) Z=0, (b) Z
=90. The numerical simulations were performed in the box

[—30,30 X[ — 30,30 X[ — 30,30.
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(a) (b) to the azimuthal index of the perturbation eigenmode that has
the largest instability growth rat@amely,n=2,3, and 4 in
Figs. 9—11, respectively

V. CONCLUSION

In this work, it has been shown that stable spatiotemporal
solitons with intrinsic vorticity, that were recently found in
FIG. 11. The same as in Fig. 10, but fer-0.31 andg=0.2. (a) the model_ of bulk_medla with nonlmegr response combining
Z=0; (b) Z=50. The numerical simulations were performed in the self-focusing QUb'C _and self-defocusing qumf{lc terms, can
same box as in Fig. 10. also be found in a bimodal system that takes into regard two
polarizations of light. Two basic versions of the bimodal sys-
separating them from the solitons wish- 0. tem were considered, corresponding to linear and circular

Further numerical results demonstrate that, in terms OEeoIarizations. The former one includeg four-wave-mixing
this consideration, the spinning and nonspinning STSs ar rms, hence two-component vortex solitons may only have

separated by extremely high barriers, which make the transgqual gallues of SF!”.S :n both cotrﬁpobner}ts, and the resultts
tion process+# 0—s=0 practically impossible. To illustrate epend, In a nontrivial way, on the birefringence parameter

this point, in Fig. 8, we display the intensity distributions gzg p;?;ﬁﬁg;ggﬁﬁizrsegfstlvr\],gligr%mgr?;in; r?nont?gl Z%(Iji-no
inside a strongly perturbed initial soliton wigh=1 (the am- tons F\)/vere found to bifurcate from onpe-com opnent golitons
plitude of the random perturbation 48 30% of the soliton’s P ’

amplitude, and in a finally established soliton. As it is obvi- Then, the vectorial solitons with the values of the spins

ous from Fig. 8, the soliton is able to completely heal the.:0 ands=1 of their components become stable. Computa-

damage, remaining a truly stable object. In fact, a stron ion of eigenvalues shows that the stability region of the
, . , . . o : ) 0
perturbation can transform the spinning STS into a zero—spit ectorial solitons withs=1 occupies approximately 25% of

one only if the perturbation removes the soliton’s vorticity. sci{afzgﬁfgﬁse g\gg}tﬁg‘r’ Eﬂ‘/ﬁ;?gig IEZT/érétg;?alcsaslio?Ts i
In cases when the vectorial solitons wik-1 ands=2 : 9

are unstable against small perturbations, typical scenarios 6t";at they have a smaller value pf the Hamiltonian for the
Same energynumber of photons i.e., they have a smaller

the nonlinear instability development are illustrated by F'gs'value of the chemical potential, hence they are more stable

9-11. The azimuthal instability eventually breaks the un- han their single-component counterparts in the global sense

stable spinning STS into a few stable zero-spin ones, whic irect simulzgtions C(F))m letel confiF;m redicti(g)]ns of the .

then fly out tangentially relative to the circular crest of the L ompletely P . .
linear-stability analysis. In fact, the stable vectorial solitons

original soliton, quite similar to what is known about the with s=1 are stronattractor thev readilv self-trap from
instability-induced breakup of the scalar 2D vortex solitons, S~ ~ are strongifiractors as fhey readily sefi-rap 1ro

[25,26,36,37, vectorial 2D vortex soliton§44], and scalar initial Gaussian pulses with embedded vorticity, and easily
3D ’spi’nni,ng’ oneq38] in the CQ model Thlzls the initial "eStore themselves after imposing strong perturbations. If the

internal angular momentum of the unstable torus-shaped Vo§pinning solitons are unstable, they break up into separating
tex STS is converted into the orbital momentum of theZ€'9~SPIN solitons whose number is exactly equal to thg azt-
emerging nonspinning fragments muthal index of the strongest unstable perturbation eigen-

Analyzing results of many simulations, we have con—mOde'
cluded that the number of the fragments is, roughly, twice the
original spins, and the dependence of the fragments’ number
on other parameters being fairly weak. We stress that results D. Mihalache and D. Mazilu acknowledge support from
of direct simulations(particularly, those shown in Figs. Deutsche ForschungsgemeinscH8¥G). The work of I. T.
9-11 are in perfect agreement with the stability analysiswas supported by Grant No. 1999459 from the U.S.-Israel
based on the linearized equations: in all the cases, the nunBinational Science Foundation and by a matching grant from
ber of the instability-generated fragmentspigciselyequal  the Tel Aviv University.
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