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Stable spatiotemporal spinning solitons in a bimodal cubic-quintic medium
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We investigate the formation of stable spatiotemporal three-dimensional~3D! solitons~‘‘light bullets’’ ! with
internal vorticity ~‘‘spin’’ ! in a bimodal system described by coupled cubic-quintic nonlinear Schro¨dinger
equations. Two relevant versions of the model, for the linear and circular polarizations, are considered. In the
former case, an important ingredient of the model are four-wave-mixing terms, which give rise to a phase-
sensitive nonlinear coupling between two polarization components. Thresholds for the formation of both
spinning and nonspinning 3D solitons are found. Instability growth rates of perturbation eigenmodes with
different azimuthal indices are calculated as functions of the solitons’ propagation constant. As a result,
stability domains in the model’s parameter plane are identified for solitons with the values of the spins of their
componentss50 ands51, while all the solitons withs>2 are unstable. The solitons withs51 are stable
only if their energy exceeds a certain critical value, so that, in typical cases, the stability region occupies
.25% of their existence domain. Direct simulations of the full system produce results that are in perfect
agreement with the linear-stability analysis: stable 3D spinning solitons readily self-trap from initial Gaussian
pulses with embedded vorticity, and easily heal themselves if strong perturbations are imposed, while unstable
spinning solitons quickly split into a set of separating zero-spin fragments whose number is exactly equal to the
azimuthal index of the strongest unstable perturbation eigenmode.

DOI: 10.1103/PhysRevE.67.056608 PACS number~s!: 42.65.Tg
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I. INTRODUCTION

Solitons, i.e., self-supporting localized pulses, are ubiq
tous objects that occur in media of very different physi
nature. Among various realizations that solitons find in ph
ics, optical solitons may arguably be the most important o
@1–3#. A new topic in theoretical and experimental studies
optical solitons arespatiotemporal solitons~STSs, alias
‘‘light bullets’’ @4#, ‘‘superspikes’’@5#, or ‘‘multidimensional
simultons,’’ in the case of a two-color solitons in quadra
cally nonlinear media@6#!. These are completely localize
traveling pulses of light in planar waveguides or bulk med
that feature self-localization in both the longitudinal a
transverse directions. They are supported by simultane
balance of diffraction and dispersion by nonlinear pha
modulation. On one hand, STSs are physical objects of
damental interest, as examples of stable self-sustained lo
ized objects in two dimensions~2D! and, especially, in three
dimensional~3D! nonlinear media are rare in physics. On t
other hand, STSs~first of all, their 2D species! hold promise
for potential applications to ultrafast all-optical processi
devices, where each STS may represent an elementary b
information, provided thatstableSTSs can be formed from
pulses at reasonable energy levels in available optical m
rials @7#.

As well as spatial and temporal solitons, STSs can
supported by nonlinearities of different types. However,
ing 2D or 3D objects, they may be subject to instability d
to the possibility of wave collapse in multidimensional m
dia. In particular, the ubiquitous cubic~Kerr! nonlinearity
gives rise to collapse in both 2D and 3D cases@8,9#, which
makes the existence of stable STSs in uniform media w
1063-651X/2003/67~5!/056608~9!/$20.00 67 0566
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the pure cubic nonlinearity impossible. Stability of STSs c
be achieved in the case of saturable@5,10,11# or quadratic
@x (2)# @12–15# nonlinearity, as well as in graded-index Ke
media @16# and in engineered ‘‘tandem’’ structures built o
quadratically nonlinear slices periodically alternating w
linear layers@17#. The STS can also form in off-resonanc
two-level systems@18# and in media exhibiting self-induce
transparency@19#. While the majority of works on STSs
were dealing with solitons of the bright type, dark STSs we
considered too@20#.

Parallel to the theoretical activity, progress has been
cently made in experimental studies. For the first time, a
STS was observed in ax (2) optical crystal@21#. These ex-
periments employed the technique of achromatic pha
matching or tilted-pulse wave fronts, that was used earlie
the first experimental observation of temporal solitons
quadratically nonlinear crystals@22#. As the size of the avail-
ablex (2) crystals is a few centimeters, reliable observation
STSs is possible if their dispersion and diffraction leng
zdiffr andzdisp ~which should be of the same order of magn
tude, as both dispersion and diffraction are to be simu
neously balanced by the nonlinearity!, are &1 cm @21#. In
the usual paraxial approximation, the diffraction length
estimated aszdiffr;k(Dx)2, where k[2p/l is the carrier
wave number,l is the corresponding wavelength, andDx is
the transverse size of the STS and of the initial pulse fr
which it may self-trap~see below!. As the carrier wavelength
is &1 mm, this implies a constraintDx&30 mm ~which is
still sufficiently large in comparison with the underlyin
wavelength, hence the paraxial approximation applies!. The
dispersion length is estimated aszdisp;D(Dt)2, whereD is
the group-velocity-dispersion coefficient andDt is the tem-
©2003 The American Physical Society08-1
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MIHALACHE et al. PHYSICAL REVIEW E 67, 056608 ~2003!
poral width of the pulse. Assuming thatDt cannot be essen
tially smaller than 100 fs, the constraintzdisp&1 cm implies
a necessary size of the dispersion coefficientD;1 m/ps2.
As a matter of fact, these estimates apply not only tox2

crystals, but also to all materials in which STS may be c
ated. A great challenge for the experimentalist is direct
servation of a fully localized 3D STS under these conditio

In addition to nonspinning solitons~that is, solitons with
zero topological charge!, spinning~vortex! solitons are also
possible in a variety of optical media. Starting with the sem
nal works of Ref.@23#, both delocalized~‘‘dark’’ ! and local-
ized ~‘‘bright’’ ! optical vortices in various 2D settings we
investigated@24–29#. In the 3D case, spinning solitons tak
the shape of a torus~‘‘doughnut’’! @30,31#. For bright vortex
solitons, stability is a major issue as, unlike their zero-s
counterparts, the spinning solitons are prone to destabi
tion by azimuthal perturbations. In the 2D case withx (2) and
saturable nonlinearities, the azimuthal instability was
vealed by simulations@25,26# and observed experimentall
@27#. As a result, a soliton with spin 1 splits into two or thre
fragments, each being a moving stable zero-spin soliton.
merical simulations of the 3D spinning STS in the purex (2)

model also demonstrate its instability-induced splitting in
separating zero-spin solitons@31#.

Nevertheless, the quadratic nonlinearity acting in com
nation with the self-defocusingcubic nonlinearity@32,33#
give rise to stable spinning 2D solitons~alias ring vortices!
with spinss51 and 2@34#, and to stable spinning doughnu
shaped 3D solitons withs51 @35#. All the 2D solitons with
s>3 and 3D solitons withs>2 are unstable. Similar 2D an
3D spinning solitons may also be stable in another mo
based on competing self-focusing cubic and self-defocus
quintic nonlinearities@36–38#. Optical nonlinearities of this
cubic-quintic~CQ! type has been recently reported in ch
cogenide glasses@39# and in organic materials@40#.

In the first simulations of 2D solitons withs51 in the CQ
model, it was found that they are robust, provided that th
power is not too small@41#. Later analysis, based on th
computation of linear-stability eigenvalues, has demonstra
that some of the 2D spinning solitons considered in Ref.@41#
are subject to a weak azimuthal instability. Nonetheless
another part of their existence region, with still larger po
ers, the solitons withs51 ands52 were confirmed to be
stable in thescalar ~single-component! 2D CQ model@36#
~concerning the stability of solitons withs51, see also Ref
@42#!.

Spinning 2D solitons were also considered in abimodal
~two component, also known as vectorial! model based on
two nonlinearly coupled nonlinear Schro¨dinger~NLS! equa-
tions, which take into regard two orthogonal polarizations
light. If the nonlinearity is saturable, and the nonlinear co
pling is of the cross-phase-modulation~XPM! type, two-
component solitons remain unstable against azimuthal
turbations, although it was demonstrated that the instab
of the soliton with opposite values of the spins in its tw
components,s152s2, may be essentially weaker than th
of the soliton withs15s2 @43# ~two-component solitons with
different vorticities in its components were also conside
in Ref. @29#!. On the other hand, the recent work@44# has
05660
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demonstrated that a two-component model of the CQ t
gives rise to stable 2D spinning solitons~a multidimensional
bimodal CQ model was first introduced in Ref.@45#; it shares
some features with a model of light propagation in a C
nonlinear medium equipped with a Bragg grating, where
two components represent right- and left-traveling wav
resonantly coupled by the Bragg reflection@46#!. The cubic
part of that model includes not only the XPM coupling, b
also the four-wave-mixing~FWM! term, which is a coheren
~phase-sensitive! nonlinear coupling between the two field
In the presence of the FWM terms, the vectorial spinn
solitons may only exist with equal values of the spins in
two components,s15s2. Stable 2D vortex solitons in both
the scalar and vectorial CQ models are readily generated
initial Gaussian pulses with embedded vorticity@44,47#.

As it was mentioned above, in the 3D case, stable bri
spinning STSs withs51 have been recently identified i
both the scalar CQ models@38# and in one combining the
quadratic and self-defocusing cubic nonlinearities@35#. It is
relevant to stress that the only previously known physi
model that supports stable 3D vortex solitons was the fam
field-theory Skyrme model@48#, in which the spinning soli-
tons represent nucleons~this model has recently found a ne
application to two-component Bose-Einstein condensa
@49#!. In both the CQ and quadratic-cubic models, the sp
ning 3D solitons are stable provided that they are sufficien
broad ~i.e., their energy exceeds a certain threshold valu!,
otherwise they are subject to the usual azimuthal instab
@50#.

At present, the study of the formation of complex solito
structures, such as clusters of several 2D or 3D soliton
also of much interest@51#. Such complex structures might b
of importance for potential applications in future digita
imaging processing devices based on soliton light sp
Soliton clusters can be viewed as a nontrivial generaliza
of ‘‘spinning’’ solitons ~or doughnutlike vortices! and
necklace-ring beams@52,53#, and they also appear in th
study of active nonlinear systems such as driven optical c
ties @54#.

An issue of obvious interest is a generalization of the
spinning solitons to the case of a bimodal system includ
two polarizations of light, similar to the above-mentioned 2
model @44#. The aim of the present work is to construct b
modal bright 3D spinning solitons in the vectorial CQ mod
~including FWM terms! and to investigate their stability. In
this work, we consider the vectorial CQ model in two g
neric situations:~i! for two linear polarizations, when the
relative cubic-XPM coefficient isa52/3, and~ii ! two circu-
lar polarizations, whena52.

An inherent ingredient of any model based on the line
polarizations is the FWM term@1#. In the case of the long-
distance propagation in optical fibers, the FWM term is u
ally dropped because it effectively averages to zero due
rapid phase oscillations induced by the fiber’s birefringen
@1#. However, experiments with spatial~see, e.g., Ref.@55#!
and spatiotemporal@21# solitons imply a short propagatio
distance, which may be smaller than the birefringence b
length, hence the FWM terms must be kept in the model~as
it was done in the 2D case@44#!. As it was mentioned above
8-2
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STABLE SPATIOTEMPORAL SPINNING SOLITONS IN . . . PHYSICAL REVIEW E67, 056608 ~2003!
the FWM terms admit only bimodal spinning soliton wi
identical values of the vorticity in both components. Gen
ally, the effect of the FWM-inducedcoherentnonlinear cou-
pling between the components on the stability of bimo
solitons is quite an interesting issue by itself.

The model witha52, valid for circular polarizations
does not include FWM terms. In fact, this version of t
model applies not only to the case of two circular polariz
tions, but also to copropagation of two waves with differe
carrier wavelengths@1#.

The rest of the paper is organized as follows. In Sec.
the vectorial CQ model is formulated, and general res
concerning the existence of 3D spinning solitons in it a
displayed. Fundamental results for stability of the spinn
solitons, based on eigenvalues found from equations lin
ized around the stationary soliton solutions, are presente
Sec. III. Direct numerical simulations of the stability of th
spinning solitons are presented in Sec. IV. The results of
work are summarized in the concluding section.

II. THE VECTORIAL CUBIC-QUINTIC MODEL AND
STATIONARY SOLUTIONS FOR 3D SPINNING SOLITONS

We consider a bimodal system described by two non
early coupled NLS equations that incorporate the s
defocusing quintic nonlinearity. A general form of the corr
sponding CQ system was introduced in Ref.@45#. To
recapitulate the derivation, we assume that the physical~real!
electric field is a combination of two polarizations with com
plex amplitudesE1 andE2, oriented along mutually orthogo
nal transverse unit vectorse1,2:

E5E 1eif1e11E 2eif2e21c.c., ~1!

where c.c. stands for the complex-conjugate express
f1,252vt1(k6 1

2 Dk)z are rapidly varying phases of th
two waves with common carrier frequencyv and mean wave
numberk (t andz are time and propagation coordinates!, and
the small shifts6Dk/2 accounting for linear phase-velocit
birefringence. In the most relevant case of the isotropic n
linearity, the self-focusing cubic and self-defocusing quin
nonlinear corrections to the refractive index are proportion
respectively, to

E2[~E 1
2e2if11E 2

2e2if2!1c.c.12~ uE 1u21uE 2u2! ~2!

and (E2)2.
Following the lines of the standard derivation of the co

responding system of coupled NLS equations@1# and using
the expression~2! and its square, we arrive at the system
equations that are valid under the usual paraxial and slo
varying envelope-amplitude approximations:

i
]u

]Z
1S ]2u

]X2
1

]2u

]Y2
1

]2u

]T2D 1bu1x (3)F S uuu21
2

3
uvu2Du

1
1

3
v2 u* G2x (5)F S uuu41

6

5
uuu2uvu21

3

5
uvu4Du

1
1

5
~3uuu212uvu2!v2u* 1

1

5
e2ibZu3~v* !2G50, ~3!
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]v
]Z

1S ]2v

]X2
1

]2v

]Y2
1

]2v

]T2D 2bv1x (3)F S uvu21
2

3
uuu2D v

1
1

3
u2v* G2x (5)F S uvu41

6

5
uvu2uuu21

3

5
uuu4D v

1
1

5
~3uvu212uuu2!u2v* 1

1

5
e22ibZv3~u* !2G50. ~4!

Here,u;E1 and v;E2 are properly normalized amplitude
of the two modes, the asterisk stands for the complex co
gation, x (3) and x (5) are effective coefficients of the cubi
and quintic nonlinearities,b;Dk is a normalized birefrin-
gence parameter,Z andX,Y are normalized propagation an
transverse spatial coordinates, andT is the normalized tem-
poral variable in the reference frame of the carrier wave.

Similarly, if the field is composed of circular modesE6

aligned with transverse vectorse65(e16 ie2)/A2, which are
subject to relationse1

25e2
250 and e1•e251, so that E

5E1eif1e11E2eif2e21c.c. and

E252@E1E2ei (f11f2)1c.c.#12~ uE1u21uE2u2!. ~5!

Again assuming isotropy of the cubic and quintic nonlinea
ties, straightforward analysis using expression~5! and its
square leads to the following coupled equations which,
like Eqs.~3! and ~4!, do not contain FWM terms:

i
]u

]Z
1S ]2u

]X2
1

]2u

]Y2
1

]2u

]T2D 1bu1x (3)~ uuu212uvu2!u

2x (5)~ uuu416uuu2uvu213uvu4!u50, ~6!

i
]v
]Z

1S ]2v

]X2
1

]2v

]Y2
1

]2v

]T2D 2bv1x (3)~ uvu212uuu2!v

2x (5)~ uvu416uvu2uuu213uuu4!v50, ~7!

where, this time,u andv are properly normalized amplitude
E6 .

Our simulations have demonstrated that quintic XP
terms in Eq.~3! through Eq.~7!, as well as quintic FWM
terms in Eqs.~3! and ~4!, do not affect stability of spin-
carrying STSs in any conspicuous way@particularly, the last
FWM terms in the latter equations are negligible due to b
the small numerical factor 1/5 and oscillating factors e
(62ibz)]. On the other hand, the influence of the cubic XP
and FWM terms was found to be more essential. For t
reason, and aiming to present results in a sufficiently co
pact form, we adopt the following simplified but adequa
model, which includes SPM, XPM, and FWM cubic term
and only SPM quintic ones:
8-3
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iuZ1uXX1uYY1uTT1bu1~ uuu21auvu2!u1gv2u*

2uuu4u50, ~8!

ivZ1vXX1vYY1vTT2bv1~ uvu21auuu2!v1gu2v*

2uvu4v50. ~9!

We will consider two specific versions of the system, vi
with a52/3 andg51/3 for the case of two orthogonal linea
polarizations and witha52 andg50 for the case of two
circular polarizations. Thus, in either case, we are left w
the single control parameterb in Eqs.~8! and ~9!.

Stationary solutions to Eqs.~8! and ~9! are sought for in
the forms u5U(r ,T)exp(ikZ1isu) and v5V(r ,T)exp(ikZ
1isu), wherer and u is the polar coordinates in the plan
(X,Y), k are the wave number shift, and the integers is the
spin ~recall that the presence of the FWM terms dictates
choice of identical vorticities in both components!. The func-
tions U andV may be taken real, obeying equations

]2U

]r 2
1

1

r

]U

]r
1

]2U

]T2
2

s2

r 2
U1~b2k!U1~U21aV2!U2U5

1gV2U50,

]2V

]r 2
1

1

r

]V

]r
1

]2V

]T2
2

s2

r 2
V1~2b2k!V1~aU21V2!V

2V51gU2V50, ~10!

following from Eqs.~8! and ~9!.
Equations~8! and ~9! conserve the net energy~which is

proportional to the number of photons trapped in the fiel!,

E5E E E ~ uuu21uvu2!dXdYdT[Eu1Ev , ~11!

the Hamiltonian

H5E E E H F uuXu21uuYu21uuTu21uvXu21uvYu2

1uvTu22buuu21buvu22
1

2
g~u* 2v21u2v* 2!G

1F2
1

2
~ uuu412auuu2uvu21uvu4!

1
1

3
~ uuu61uvu6!G J dXdYdT, ~12!

momentum~equal to zero for the solutions considered!, and
angular momentum in the transverse plane@2#.

We have numerically found one-parameter families of s
tionary 3D spinning solitons, which have the shape of vor
tori with a hole ~supported by a phase dislocation! in the
center. A standard band-matrix numerical algorithm was u
to deal with the corresponding two-point boundary-va
problem based on Eqs.~10!. According to results of previous
05660
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works @34–36,38#, it is very likely that the solitons withs
.2 are unstable, therefore we concentrated on the stud
the stability of the spinning solitons withs51 and 2. In fact,
it was found that, as well as in the corresponding 3D sca
model ~see Ref.@38#! and in its quadratic-cubic counterpa
@35#, only the spinning STS withs51 may be stable~pro-
vided that its energy is sufficiently large!.

As well as in the scalar CQ model@30,38#, the existence
region of the two-component~vectorial! 3D spinning solitons
is limited by maximum wave number shiftkoffset, such that
at k5koffset the outer size of STS diverges, but the size of
internal hole remains finite. This means that atk5 koffset,
the s50 soliton goes over into a uniform continuous-wa
state, while bright solitons withs>1 turn over into a cylin-
drical dark soliton. However, an important difference fro
the single-component model is that, in the vectorial one
cluding the FWM terms,koffset depends on the birefringenc
parameterb.

In Fig. 1, we summarize outputs of extensive numeri
calculations aimed at detecting domains of existence and
ear stability of the spinning solitons in the vectorial C
model including the FWM terms@the one witha52/3 and
g51/3 in Eqs.~8! and~9!; details of the stability analysis ar
given below#. The domains are presented in a comprehens
form in the parametric plane (k,b). The upper continuous
curve is the linekoffset(b), which is the common existenc
border of all the bright solitons irrespective of the value ofs,
while the lower continuous curve and the dash-dotted
near it are lower borders of the existence domain of the s
tons for different values ofs. The two dashed lines in Fig. 1
mark the lower stability boundaries for the solitons withs
50 and 1. Thus, the zero-spin solitons are stable in a la
part of their existence domain, while the spinning solito
with s51 are stable in a relatively narrow~in terms ofk)
region abutting on the upper existence border; particula
the s51 solitons are stable fork.0.5 if b50. In these
stability regions, the solitons are broad@‘‘heavy,’’ with large
values of their energy~11!, see Figs. 2 and 3#.

In Figs. 2 and 3, we plot the curvesk5k(E) and H
5H(E) corresponding to the families of the zero-spin a
spinning STSs for the model witha52/3 andg51/3. To
display the results, we have selected two representative
ues of the birefringence parameter,b50 andb50.2. For the
sake of comparison, we also plot the corresponding cur
for the single-component~scalar! STSs ~the ones withv
[0, that we callsimple solitons!. Obviously, they are par-
ticular solutions of the present model.

We see that the vectorial STSs~aliascomposite solitons!
bifurcate from the corresponding simple ones at certain v
ues ofk. Note that the composite solitons appear as unsta
solutions, and~in the cases50 ands51) they get stabilized
at larger values ofk. An essential feature of all the 3D sol
tons, which is evident in Figs. 2 and 3, is the presence o
finite minimum energy~threshold! necessary for their exis
tence, the threshold values increasing withs. The full and
dashed lines in Figs. 2 and 3 correspond to solutions that
stable and unstable, respectively, against small perturbati
according to results presented below. In particular, the sta
8-4
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STABLE SPATIOTEMPORAL SPINNING SOLITONS IN . . . PHYSICAL REVIEW E67, 056608 ~2003!
ity of the s50 solitons completely agrees with the know
Vakhitov-Kolokolov criterion, which states that the fund
mental (s50) soliton branch may only undergo a stabili
change at a point wheredE/dk vanishes@56#. Global stabil-
ity of the solitons may be estimated by their ‘‘chemical p
tential,’’ i.e., the ratio of the Hamiltonian to the energy~num-
ber of photons!. As is obvious from Figs. 2~b! and 3~b!, this
ratio always takes a smaller~more negative! value for the
composite solitons, hence they are expected to be m
stable in the global sense, according to the well-known p
ciple stating that the system prefers to minimize its Ham
tonian for a fixed value of the energy~number of photons!
@9#.

In Fig. 4, plotted are the curvesk5k(E) andH5H(E)
pertaining to the zero-spin and spinning STSs in the ot
version of the model, witha52 and g50 ~which corre-
sponds to the circular polarizations!. From the comparison o
this figure and Fig. 2, we conclude that there is no qualita
difference between both versions of the model.

III. STABILITY OF THE THREE-DIMENSIONAL
SPINNING SOLITONS

The most revealing information on the stability of solito
is provided by the analysis of Eqs.~8! and ~9! linearized
about the stationary solution. To this end, we seek for p
turbation eigenmodes in a general form

u~Z,r ,T,u!2U~r ,T!exp@ i ~su1kZ!#

5 f ~r ,T!exp$lnZ1 i @~s1n!u1kZ#%1g* ~r ,T!

3exp$ln* Z1 i @~s2n!u1kZ#%, ~13!

FIG. 1. Domains of existence and stability of two-compone
solitons with the values of the spinss50, 1, and 2 of their compo-
nents. The lower and upper continuous curves and the lower d
dotted one border the existence regions. The two dashed lines
the stability domains; see further explanations in the text. This
ure and the ones displayed below, except for Figs. 4 and 7, pe
to the model with the linear polarizations (a52/3 andg51/3).
05660
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v~Z,r ,T,u!2V~r ,T!exp@ i ~su1kZ!#

5p~r ,T!exp$lnZ1 i @~s1n!u1kZ#%1q* ~r ,T!

3exp$ln* Z1 i @~s2n!u1kZ#%, ~14!

where n.0 is an arbitrary integer azimuthal index of th
perturbation andln is the ~complex! eigenvalue that should
be found. This form of the infinitesimal perturbation is
closed one~no other values of the perturbation azimuth
index butn ands2n are generated!. The functionsf, g andp,
q which appear in Eqs.~13! and ~14! obey the following
equations:

ilnf 1
d2f

dr2
1r 21

d f

dr
1

d2f

dT2
2~s1n!2r 22f 1~b2k! f

1~2U21aV223U4! f 1~U21gV222U4!g

1~a12g!UVp1aUVq50, ~15!

2 ilng1
d2g

dr2
1r 21

dg

dr
1

d2g

dT2
2~s2n!2r 22g1~b2k!g

1~2U21aV223U4!g1~U21gV222U4! f

1~a12g!)UVq1aUVp50, ~16!

t

h-
ark
-
in

FIG. 2. The wave numberk ~a! and HamiltonianH ~b! of the
three-dimensional two-component solitons, with different values
the spins of their components, vs the soliton’s energyE, for b
50.

FIG. 3. The same as in Fig. 2, but forb50.2.
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ilnp1
d2p

dr2
1r 21

dp

dr
1

d2p

dT2
2~s1n!2r 22p1~2b2k!p

1~aU212V223V4!p1~gU21V222V4!q

1~a12g!UV f1aUVg50, ~17!

2 ilnq1
d2q

dr2
1r 21

dq

dr
1

d2q

dT2
2~s2n!2r 22q1~2b2k!q

1~aU212V223V4!q1~gU21V222V4!p

1~a12g!UVg1aUV f50. ~18!

The solutions of these equations must decay exponential
r→` and T→`. At r→0, f and p must vanish asr us1nu,
whereasg andq vanish asr us2nu.

To solve Eq.~15! through Eq.~18! and to find the eigen-
values, we used a known numerical procedure@25,26,57#,
which has produced results presented in Fig. 5. The m
persistent unstable eigenmode hasn52, for boths51 and
s52. As is seen in Fig. 5~a!, the instability of the soliton
with s51, accounted for by Rel(n52) disappears with the
increase ofk at a stability-change pointkst'0.54, and the
stability region extends up tok5koffset'0.74, corresponding
to the upper continuous line in Fig. 1, i.e., up to infinite
broad solitons with infinite energy, as it was explain

FIG. 4. The same as in Fig. 2, but for the model with tw
circular polarizations (a52 andg50).

FIG. 5. The instability growth rate, Rel, of the perturbation
eigenmodes corresponding to different values of the azimutha
dex n ~the value is attached to each curve! vs the soliton’s wave-
numberk: ~a! s51; ~b! s52. Hereb50.2. The point at which the
size of the solitons diverges~the border of their existence region! is
marked by the vertical arrow.
05660
at

st

above. This result implies that a vectorial~two-component!
optical vortex of the dark-soliton type, that may be regard
as an infinitely broads51 spinning dark cylindrical soliton
of the present type, is stable too.

For the birefringence taking values in the interval 0,b
,0.2, the relative width of the stability region of the brig
solitons withs51 is (koffset2kst)/koffset'25% @see Figs. 1
and 5~a!#. It is slightly larger than the relative size of th
soliton stability region that was found in the scalar count
part of the model@38#. No stability region exists for the
solitons with s52 @see Fig. 5~b!#, in full accordance with
what had been found earlier for the 3D spatiotemporal sp
ning solitons withs52 in both the CQ and quadratic-cub
@35# scalar models.

In the case when the spinning solitons considered here
unstable, their instability isoscillatory @58#. The correspond-
ing frequency Iml ~which is not shown in Fig. 5! is of the
same order of magnitude as Rel at the maximum-instability
point, andl is purely imaginary atk>kst. This feature is
also similar to what is known about the solitons in the sca
CQ model@38#.

IV. DIRECT NUMERICAL SIMULATIONS

It is necessary to check how the above results for
stability, based on the calculation of eigenvalues from
linearized equations, match to direct simulations of the f
nonlinear Eqs.~8! and~9!. To this end, the simulations wer
carried out by dint of the standard Crank-Nicholson schem
which implies solving the equations by means of the Pic

n-

FIG. 6. Formation of the two-component soliton withs51 from
a Gaussian input with a trapped vortex and initial energyE
56670 in the caseb50.2. Shown are the gray-scale plots of theu
field: the intensity distribution in the initial~a! ~at Z50) and final
~b! ~at Z5200) pulses, and the corresponding phase fields~c! and
~d!. Thev field undergoes similar evolution.
8-6
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iteration method@59#, the resulting linear system bein
handled by means of the Gauss-Seidel iterative scheme
achieve good convergence, we needed, typically, ten Pi
iterations and four Gauss-Seidel iterations. In most cases
employed the transverse-grid’s stepsizeDX5DY5DT
50.2, and the longitudinal step sizeDZ50.02. To avoid
distortion of the instability development under the action
very small perturbations introduced by the Cartesian com
tational mesh, we explicitly added larger random pertur
tions to the initial state, cf. simulations of the stability
zero-spin solitons performed in the model with satura
nonlinearity in Ref.@11#.

To test the robustness of the sufficiently broad~heavy!
spinning solitons withs51, which were found above to b
stable against small perturbations in the model witha52/3
and g51/3 ~corresponding to two linear polarizations!, we
simulated self-trapping of a soliton from an initial Gaussi
pulse with the energyE056670@see Eq.~11!#, onto which a

FIG. 7. The same as in Fig. 6, but for the model with circu
polarizations (a52 andg50), the initial energy of the Gaussia
pulse with the trapped vorticity beingE54110.

FIG. 8. The recovery of the stationary soliton withs51, which
was perturbed by strong random noise atZ50: ~a! the intensity
distribution in the initial perturbed soliton;~b! the same in the self-
cleared one atZ5100. The parameters arek50.55 andb50.2.
The numerical simulations were performed in the box@221,21#
3@221,21#3@221,21#.
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phase dislocation withs51 was superimposed. Figure
shows gray-scale plots of the distribution of the intensity a
phase of theu field in the transverse (x,y) plane, for both the
input Gaussian with the trapped vortex~at Z50) and the
emerging spinning soliton withs51 atZ5200. Thev field,
which is not displayed here, shows similar behavior.

In Fig. 7, we show the formation of a stable spinnin
soliton with s51 in the other version of the model, witha
52 andg50, corresponding to two circular polarization
Here the energy of the input Gaussian with the embed
vorticity is E054110. As before, the behavior of thev com-
ponent is similar to that of theu component, which is dis-
played in Fig. 7.

Thus, the robustness of the 3D STSs~vortex tori! is at-
tested to by the fact, obvious from Figs. 6 and 7, that th
can be generated from initial Gaussian pulses with
trapped vortex, whose shape is far from the exact form of
soliton. We conclude from Figs. 6 and 7 that the input Gau
ian reshapes itself, which leads to redistribution of the
energy between the two components; some energy loss
curs, which is caused by emission of radiation in the cou
of the formation of the stable spinning soliton.

One might assume that, very generally speaking,
vorticity-carrying soliton is not an absolutely stable obje
but rather a metastable one. Indeed, it is suggested by F
2~a!, 3~a!, and 4~a! that the value of the Hamiltonian of th
spinning STS is, generally,larger than that of its zero-spin
counterpart containing the same number of photons, he
one may be wondering if a very strong initial perturbati
could provoke rearrangement of the spinning soliton into
zero-spin one, the angular momentum being carried aw
with emitted radiation. An implication of this question is th
the stability of the 3D spinning STSs withs51 against small
perturbations is provided for by effective potential barrie

r

FIG. 9. Isosurface plots illustrating the evolution of the unsta
soliton with s51, k50.4, andb50.2. ~a! Z50; ~b! Z560. The
numerical simulations were performed in the same box as in Fig

FIG. 10. Isosurface plots showing the fragmentation of the
stable soliton withs52, k50.44, andb50.2. ~a! Z50, ~b! Z
590. The numerical simulations were performed in the bo
@230,30#3@230,30#3@230,30#.
8-7
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separating them from the solitons withs50.
Further numerical results demonstrate that, in terms

this consideration, the spinning and nonspinning STSs
separated by extremely high barriers, which make the tra
tion processsÞ0→s50 practically impossible. To illustrate
this point, in Fig. 8, we display the intensity distribution
inside a strongly perturbed initial soliton withs51 ~the am-
plitude of the random perturbation is. 30% of the soliton’s
amplitude!, and in a finally established soliton. As it is obv
ous from Fig. 8, the soliton is able to completely heal t
damage, remaining a truly stable object. In fact, a stro
perturbation can transform the spinning STS into a zero-s
one only if the perturbation removes the soliton’s vorticity

In cases when the vectorial solitons withs51 ands52
are unstable against small perturbations, typical scenario
the nonlinear instability development are illustrated by Fi
9–11. The azimuthal instability eventually breaks the u
stable spinning STS into a few stable zero-spin ones, wh
then fly out tangentially relative to the circular crest of t
original soliton, quite similar to what is known about th
instability-induced breakup of the scalar 2D vortex solito
@25,26,36,37#, vectorial 2D vortex solitons@44#, and scalar
3D spinning ones@38# in the CQ model. Thus, the initia
internal angular momentum of the unstable torus-shaped
tex STS is converted into the orbital momentum of t
emerging nonspinning fragments.

Analyzing results of many simulations, we have co
cluded that the number of the fragments is, roughly, twice
original spins, and the dependence of the fragments’ num
on other parameters being fairly weak. We stress that res
of direct simulations~particularly, those shown in Figs
9–11! are in perfect agreement with the stability analy
based on the linearized equations: in all the cases, the n
ber of the instability-generated fragments ispreciselyequal

FIG. 11. The same as in Fig. 10, but fork50.31 andb50.2. ~a!
Z50; ~b! Z550. The numerical simulations were performed in t
same box as in Fig. 10.
J
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to the azimuthal index of the perturbation eigenmode that
the largest instability growth rate~namely,n52,3, and 4 in
Figs. 9–11, respectively!.

V. CONCLUSION

In this work, it has been shown that stable spatiotempo
solitons with intrinsic vorticity, that were recently found i
the model of bulk media with nonlinear response combin
self-focusing cubic and self-defocusing quintic terms, c
also be found in a bimodal system that takes into regard
polarizations of light. Two basic versions of the bimodal sy
tem were considered, corresponding to linear and circu
polarizations. The former one includes four-wave-mixi
terms, hence two-component vortex solitons may only h
equal values of spinss in both components, and the resul
depend, in a nontrivial way, on the birefringence parame
~the previously considered single-component model had
free parameters!. Families of two-component spinning sol
tons were found to bifurcate from one-component solito
Then, the vectorial solitons with the values of the spinss
50 ands51 of their components become stable. Compu
tion of eigenvalues shows that the stability region of t
vectorial solitons withs51 occupies approximately 25% o
their existence domain, which islarger than in the case of
scalar solitons. Another advantage of the vectorial soliton
that they have a smaller value of the Hamiltonian for t
same energy~number of photons!, i.e., they have a smalle
value of the chemical potential, hence they are more sta
than their single-component counterparts in the global se
Direct simulations completely confirm predictions of th
linear-stability analysis. In fact, the stable vectorial solito
with s51 are strongattractors, as they readily self-trap from
initial Gaussian pulses with embedded vorticity, and eas
restore themselves after imposing strong perturbations. If
spinning solitons are unstable, they break up into separa
zero-spin solitons whose number is exactly equal to the
muthal index of the strongest unstable perturbation eig
mode.
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