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Enhanced mobility of strongly localized modes in waveguide arrays by inversion of stability
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A model equation governing the amplitude of the electric field in an array of coupled optical waveguides
embedded in a material with Kerr nonlinearities is derived and explored. The equation is an extended discrete
nonlinear Schrdinger equation with intersite nonlinearities. Attention is turned towards localized solutions and
investigations are made from the viewpoint of the theory of discrete bredfbBsp. Stability analysis reveals
an inversion of stability between stationary one-site and symmetric or antisymmetric two-site solutions con-
nected to bifurcations with a pair of asymmetric intermediate DBs. The stability inversion leads to the exis-
tence of high-intensity narrow mobile solutions, which can propagate essentially radiationless. The direction
and transverse velocity of the mobile solutions can be controlled by appropriate perturbations. Such solutions
may have an important application for multiport switching, allowing unambiguous selection of output channel.
The derived equation also supports compact DBs, which in some sense yield the best possible solutions for
switching purposes.
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[. INTRODUCTION will motivate an extension of the DNLS model to incorporate
these effects. An approximate calculation for an array of slab

In a linear directional coupler power is periodically ex- waveguides shows that intersite nonlinearities can be up to
changed between two adjacent waveguides due to an evandge same order of magnitude as the on-site nonlinearity, pro-
cent field overlap of the modes of the waveguides. The totaYided the field penetration length is not negligible compared
power transferred is determined by the phase mismatch dP the waveguide spacing. Being an extension of the ordinary
the respective fields. Such a coupler can be used as a simgRNLS model, our model is evidently more realistic as more
optical switch[1]. For multiguide directional couplers, the €ffects are taken into account. It should though be noted that
successive spreading of a localized pulse has been demoparts of the parameter regimes where the most interesting
strated 2]. The presence of nonlinearities drastically change?henomena occur would mean approaching the limits of the
the characteristics of the couplers. Jensen derived an equassumptions made in the coupled-mode theory on which the
tion for two waveguides embedded in a nonlinear Kerr me-derivation of the model is based. However, the range of ad-
dium and showed that above a critical input a completeditional phenomena appearing as compared to the DNLS
power exchange between the Waveguides is not obt@Bied model motivates investigation also into these regimes. When
The nonlinear transmission characteristics of the device cali cOmes to applications, the properties of some solutions are
be utilized for the construction of optical logical gates. Simi-ideal for multiport switching, but whether they can be ex-
lar effects of power trapping have been observed in |argeperimentally realized is an issue that will be left for further
arrays of waveguides, using the discrete nonlinear ‘Schrgnvestigation.
dinger (DNLS) equation as a model equatipf,5]. Methods The outline of our presentation is as follows. In Sec. Il we
for controlling transverse propagating beams in both the lowderive an equation, originally derived in R¢8], extending
intensity continuumlike domaif6] and in the high-intensity the DNLS model to incorporate intersite nonlinearities and
discrete domaifi7] have been deviced and in the former casediscuss some of its general properties. In Sec. I, we present
experimentally verified. Arrays of nonlinear waveguides thussome numerical results concerning linear stability of station-
have an important application for multiport switching. ary solutions and demonstrate that the new equation exhibits

The model derived in this paper has some important disstrongly localized solutions with enhanced m0b|||ty that can
similarities as compared to earlier modgSs-7]. In contrast, be used to improve the performance of multiport switching.
e.g., to the recently experimentally studied Strucu[[@]s Finally, in Sec. IV, we will summarize our results and con-
where the waveguides themselves are constructed of a noglude.
linear material, we have instead assumed linear waveguides
embedded in a nonlinear medium as in the original model of Il. MODEL
Jenseri3]. This will tend to strengthen the effects of intersite

nonlinearities as compared to the on-site nonlinearity, and We will consider an array of identical optical waveguides
embedded in a nonlinear Kerr material as depicted in Fig. 1.

The geometry of the waveguides is quite arbitrary, but it is
'Electronic address: mjn@ifm.liu.se the waveguides to motiyatg only nearest—neighb_or irjterac—
*Present address: Swedish Defense Research Adeyy, P.O.  tions. If further the electric field has a preferred direction of

Box 1165, S-581 11 Linkaing, Sweden; electronic address: polarizatione, like the TE and TM modes of the slab wave-
aneri@foi.se guide, the modes can be assumed to be real. With only a
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FIG. 1. An array of optical waveguides embedded in a nonlinear Qasz f dxdyneny €y, (50

material. The profiles of the different refractive indices across the
array are also shown. The linear refractive index of the array is
and the linear refractive index of a single isolated waveguiadeg is wEy
_ . o . Qu=—— | dxdynm,E2. 2 (5d)
The Kerr indexn, is zero inside the waveguides. 4= WehoC n1Cn,

single identical mode present in each waveguide, the field in
wE
the nth waveguide is QS:ToJ' j dxdynan,El. .E,
En:(\Pnflgnfl"'\Pngn"_q’n+lgn+1)ei(B27wt)é- (1)
wEn
¥, is the time-independent amplitude in waveguand&, :Tf fdxdyncnzgnilgﬁ. (5¢)
is the unperturbed mode, witf).,(r)=&,(r+d), d being a
translation vector between adjacent waveguigeandw are  The derived equation governs the evolution of the electric
the propagation constafwave numberand frequency asso- field in an array of nonlinear waveguides. In the c&e
ciated with the mode. The modes of the uncoupled wave-— Qs=0 it reduces to the DNLS equation. Note also that the
guide obey an orthonormality relation and can thus be noryell-known Ablowitz-Ladik (AL) term W2V,
malized. Using coupled-mode theory and expansion of the.y ) is contained in the equation. The AL equation is a
flelql in the orthonormal modes, the following relation can bespecial case of a fully integrable discrete version of the non-
derived([1,3]: linear Schidinger equatiorf9].

To demonstrate that the constafg and Qs cannot al-
ways be neglected in comparison @, we make an ap-
proximate calculation for an array of slab waveguides. The
integrals are to be carried out over the area between the
P’ is the perturbing polarization arising since the waveguidevaveguides, where the nonlinearity is present. With the sepa-
is not isolated and contains both linear contributions from théationd between the waveguides and the inverse penetration
adjacent waveguides and contributions from the nonlinealengthp= \/Bz—nczwz,ueo, wheren, is the linear part of the
response of the surrounding material. From the total refracrefractive index between the waveguides, the result is
tive index,n=n.+n,|E|?, of the array we get the total po-
larization, P=D— e,E=(n?—1)¢e,E. For a single isolated Qq pd Qs 1
waveguide the polarization B,= (n2— 1)e,E and hence the Qs = sinh(2pd)’ Qs = 2 costipd) (6)
perturbing polarization is

dw,

2
i—e‘(ﬂzwt)z_—lﬁ—f jdxdy&’ (ne-P'(r,t). (2)
dz do pt2 : e

It is clear that with large penetration length or closely spaced
waveguides these fractions are not negligible. However tak-
where only terms to first order in the Kerr index are kept. N9 pd.too small 1S n_ot reasonable w_|th|n the approximations

made in the derivation of the equation, since the overlap of

Plugging E.qs(l) and(3). Into Eq.(2), Wh'le. sticking to th‘? the modes is treated as a perturbation to an uncoupled wave-
nearest-neigbor approximation due to rapidly decaying fields

outside the waveguides, leads to the equation guide.

P’ =P—P,~(nZ—n2)egE+ 2nen,eo|E|E, (3)

n General properties

—i +QuV+Qu(Wy_ 1+ Wy 1) +2QaW | W |2

dz Most of the properties for Eq4) presented here are gen-
2 2 2 2 eralizations of properties of the DNLS equation, e.g., dis-
+2Qu[ 29 (| W - o[+ [V a )+ VR (YR 1+ V1 D] Cussed in Ref[10]. An important feature of the equation is

+2Qu[ 2| WA W1+ W)+ TX(WE L+ WF ) that it possesses quantities that are conserved as the system
evolves, i.e., as the fields propagate along the array. One
+ WY1 2 Y4 P |?]=0. (4)  such quantity is the Hamiltoniaig]
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H=H,+H,+H5, (7a) (A,—K,,K4,—Ks). This reduces the part of parameter
space that must be investigated to get a complete picture of

) 4 the equation.
Hy= 20 [Qul Wl + Qs Wi[], (7

) 5 IIl. RESULTS
Hy=2 [QoW Wh 1+ Qu(2|W |2 Wy |2+ WAV 2 . . . . .
n Here we will restrict our attention to localized solutions

and especially discrete breathe®Bs), which are time-
periodic spatially localized solutions. The time periodicity is
here replaced with periodicity along the waveguides, i.e., in
the variablez that plays the role of time in the Hamiltonian
formulation. The existence of DBs has been rigorously
proven by MacKay and Aubr12] for Hamiltonian systems,
provided that an anharmonicity condition and a nonreso-
dv, oH dUr oM nance condition with Iingar p.hor.10ns is fulfilled. The essen-
= (8) tials are that some nonlinearity is present and that the solu-
tion has no harmonics inside the linear spectrum. The linear
spectrum of Eq(10) is A = —2K,coq, whereq is the wave
number of the phonony,~e'9". Hence phonons exist in the
flequency rangéA | <2|K,|.
The proof of existence is based on continuation, by virtue
of the implicit function theorem, of trivial solutions from a
special parameter limit of the equation, the anticontinuous
limit, where the dynamics of the system is completely decou-
pled. For Eq.(10) we obtain this limit aK;=0, j=2,4,5,
N=2 W% (9 i.e., Ay ol h|?=0, with trivial solutionsy,=0 and i,
" =Ae'?, ¢ R. The idea of the proof is easily turned into

The conservation of norm is intimately connected to the@n efficient numerical scheme for calculating solutions. Sim-

phase mvarance ofEx), 1. th fact that 1V, 15 a0 646 81l soluton i he antcontiuous i an ue
solution so is{W¥.e'?} for V ¢ R. As a consequence the g 9

constantQ,, which connects the norm and the Hamiltonian,paths in parameter spaf£3,14.
can be made to vanish by the simple substitution
¥ —W¥ e Q1?2 Because of the phase invariance, 4.
also supports an important class of solutions with harmoni-
cally oscillating amplitude with frequencyk, which by a Extensive calculations, covering a large portion of param-
transformation to a rotating frame of reference can be treate@ter space, have been made for the most simple solutions in
with a stationary equation. The general transformatiorthe anticontinuous limit. It is convenient to identify different
¥ (2) =ay,(bz)e'®A =02 will result in a rescaling of the solutions by these initial configurations. With restriction to
parameters in Eq(4) according t0oQ;—A, Q»—Q,/b real solutions, each initial amplitude can be chosen from the
=K., andeHQj|a|2/b= K;, j=3,4,5. An important prop- sety, {0,= A} and hence each solution can be associated
erty of the transformation is that the linear and nonlineawith a coding sequence. Solutions originating from a con-
parameters can be scaledlependentlyTo reduce the num- figuration with one site excited with positive amplitude and
ber of independent parameters we here take— 2Qs|al?, the others at rest will be called one-site solutions and be
which scales the parameter in front of the self-interactingdenoted ¢+), where we omit starting and trailing zeros from
nonlinearity to Ky=—1. For stationaryy, the resulting the notation. Similary, solutions originating fromt(=)

+2QsW W (VF 2+ Wr2 )], (70

which is real and has the symmetiy({V¥,})=H{W¥\}).
Introducing the complex canonical variableg {,i¥}), Eq.

(4) can be obtained from the complex version of the Hamil-
ton equations of motion,

dZ:lg\p:’ ' "dz v,

An important difference compared to the AL model is that
there is no need for a deformed Poisson bracket to make
Hamiltonian formulation of the systefd1]. We will further
have a regular nornta conserved quantity which corre-
sponds to conservation ofPoynting power along the
waveguides,

A. Stability

equation is will be called symmetric or antisymmetric two-site solutions.
Other possible one-site and two-site configurations are
A+ Ko(hn_14 Uns1) — Unl Unl?+ 2K [ 200 (| hn—1|? equivalent to these through the phase invariance. Primarily
5 w2 ’ ) the stability properties, i.e., the behavior under small pertur-
F 1|2+ 5 (e i) 1+ 2Ks[ 2] | (-1 bations, have been investigated. To this end it is convenient

2, % * 2 to split the amplitude in real and imaginary par{s,= X,
T ne ) T YRWnoat Y + gl +iy,. Denote the vector of real and imaginary parts joy
+ Uns1| ¥ns1|31=0. (10) =({x,}.{y.D" and define through the real and imaginary
parts of Eq.(10) an operatofr, such that~(#)=0 if ¢ is a
Noteworthy is also that the transformation solution. It is easily deduced that an infinitesimal nonstation-
—(—1)", brings a solution of Eq(10) for the param- ary perturbatione(z) = ({£,(2)},{ 7,(2)})! to the solutiony
eter values A,K,,K4,Ks) into a solution for is governed by the equatidief. Ref.[15])
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-0.1 " ' ' ' ' " ' (+,+) solutions are stable and the same holds below the
dash-dotted line for the+, —) solutions. All instabilities are
due to eigenvalues leaving the imaginary axis at the origin
along the real axis. In other regions of parameter space
(mainly in the first and the second quadpatite solutions
exhibit a more complex behavior, with, for example, com-
plex (Krein) instabilities. The interesting feature of the insta-
bilities is that the stability boundaries of the-§ and (+,
+) solutions, respectively, nearly coincide and that the sta-
bility is inverted across the boundaries. The insets show that
the stability boundaries do not exactly coincide, but there is a
02 . _ . . : . - small region of simultaneous instability for sméis|. The
~0.2 -0.1 0 0.1 0.2 boundaries do intersect and for lardéts| there will be a

Ks region of simultaneous stability. The intersection points are
(Ks,K4)=(—0.1470;-0.1316) and (0.1346,0.1291), re-
K,=0.2 and constant norV=2. The (+) solutions are stable spectwel_y. Stability INversion was first reported n Rf7]
above the solid line, the+,+) solutions are stable below the fpr a Kleln-G(_)rdon model W'_th a double-well on-site poten-
dashed line, and the+(,—) solutions are stable below the dash- tidl @nd has since been verified for other modés, 19. For
dotted line. The boundaries almost coincide and an inversion oPNLS-type models, a similar behavior has only recently
stability occurs between the solutions as the boundaries are crossdggen observed20], but in a model with apparently little
The insets show a detail of the boundaries. 50 sites were used in thghysical relevance.

Ky -01sf

FIG. 2. Regions of stability for¢) and (+,*) solutions for

calculations. In Figs. 3a) and 3b) the eigenvector corresponding to the
eigenvalue withA>0 (growing modg is plotted together
d [{&n} , {&} with the solutions at a point along the inversion boundary of
dz {7:} =JF'(¥) () 1) the (+) and (+,+) solutions. The growing modes are such

that one solution will grow towards something similar to the

whereJ is orthogonal and skew symmetric and the Jacobiarther. The behavior is the same along and nearby the entire
F'(y) is symmetric since the system is Hamiltonian. Theboundary as well as along the boundary with inversion be-
total matrix JF'(¢) is thus infinitesimally symplectic and tween (+) and (+,—) solutions. In the vicinity of the in-
must have the simultaneous eigenvaldes, =\* [16]. Be-  version boundaries we can thus have a narrow mobile DB
cause of the phase invariance there is alwaydaaible ei-  corresponding to a repeated transformation between two sta-
genvalue at the origin. For the given solution to be linearlytionary DBs. The phenomenon of low-radiation narrow mo-
stable(in fact marginally stablg all eigenvalues must lie on bile DBs has previously been observed in Klein-Gordon
the imaginary axis. models and to some extent explained by the existence of a

In Fig. 2, the stability of the different solutions is shown pair of intermediate DBs in the region where both solutions
for K,=0.2 and constant norovV=2 in a part of parameter are unstablg18]. A closer investigation of the inversion
space. The boundaries indicate where stability of the soluboundaries reveals the existence of a pair of stable stationary
tions is lost. The solid line is for theX) solutions, which asymmetric intermediate DBs, which we will dendig be-
are stable above this line. Below the dashed line thaéween the stability boundaries of the one-site and two-site

Q ®) ©

,'/)n 0 _ % . | d}n 0 ‘. \ s :'pn 0

-1

30 30

25 25 25
site (n) site (n) site (n)
FIG. 3. The solutior(solid), the real parfdashed and the imaginary pattiotted of the growing mode, fofa) the (+) solution andb)
the (+,+) solution. The imaginary part of the growing mode has been scaled by a factor of 50 to be seen better in the plot. The eigenvalues
and frequencies ark=0.0600 andA =2.4365 in(a) and A=0.0570 andA =2.4494 in(b). The Hamiltonian of both solutions &
= —2.2494. In(c) the stable intermediate DB is shown, with frequency 2.4442 and Hamiltoniaf{= —2.2497. The parameter values are

K,=0.2, K,=—0.1416,K5=—0.1 andV=2. The number of sites is 50.
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(a) —2.248 (b)-2.8224
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-2.25

-2.251 —2.8228 . . . .
—0.142 —0.1415 ~0.141 —0.12664 —-0.12662 ~0.1266 —0.12658
K4 K4

FIG. 4. Bifurcation diagrams with Hamiltonian as a function of the param€gerin () Ks=—0.1 and in(b) Ks=—0.18. Common
parameters ar&,=0.2 and N=2. The different solutions and the bifurcation points are indicated in the figure. Stdighed lines
correspond to stabl@unstable solutions.

solutions[see Fig. &)]. This intermediate solution emerges |,,_4| (and equivalently for sitesn+M—1 andm+M).
from a bifurcation at the stability boundaries as can be seeNote thatK, andKs must have opposite signs for the exis-
in Fig. 4. The intermediate DBs also exist in the region oftence of compact DBs. Solving for a one-site compact DB
simultaneous stabilitpf the two stationary solutions, but it the equation at siten results in the conditior],|>=A,

is unstable in this case. Note that the solution with the smallwhich also will be the norm\V=N of the solution. Hence
est value of the Hamiltonian is always stable. This observathis solution exists on the plane,+2KsN=0 in parameter
tion is a rigorous result for the DNLS equation, where aspace. On either side of this plane the effective coupling,
ground state, i.e. a minimizer of the Hamiltonian for a givenwith sgnK¢¢) = —sgnm—1/¢), has different signs. Note
norm, is Lyapunov stablé¢see Ref.[21], and references that the line of zero effective coupling<= —0.05 in Fig. 2
therein. The ground state of the DNLS equation correspondseparates the two different inversion boundaries. Solving for
to a one-site solution at the anticontinuous limit and is con-a two-site compact DB gives two different real solutions, one
jectured to be essentially unique. We immediately see thagymmetric and one antisymmetric. With the nanf=N we
neither of these is the case for Ed0). First, the stability of get Y= JYN/2 and Yme1=* JIN/2 together with constraints
the one-site solution is lost and instead one of the two-sitgyq the parametersk,+KsN=0 and A= =*3K,—3NK,
solutions(or the intermediate solutigmminimizes the Hamil- +N/2. For the Symmetric two-site solutions the surface of
tonian and second, as a consequence, there is a boundafyjstence Ks= —0.1 in Fig. 2 intersects with the boundary
where the Hamiltonian is equal for two solutiofsee Fig.  of stability inversion. At these intersection points we can

4(b)]. Hence equality of the Hamiltonian for thet) and  expect extremely narrow mobile solutions to eXiste also
(+,=*) solutions is connected to inversion of stability. This Fig. 3b)].

also explains why the narrow mobile DB is essentially radia-
tionless, since the transformation connected to the motion .
occurs between stationary solutions of equal Hamiltonian B. Mobility
and norm. To investigate the dynamical properties of the DBs we
For application to multiport switching, it is preferrable integrate the nonstationary equivalent of Ef§0) with sta-
with narrow beams to allow unambiguous selection of outputionary solutions as initial conditions. To induce mobility
channel. From this point of view it is therefore highly inter- some perturbation is needed, and especially if the stationary
esting that Eq(10) supportscompactDBs, i.e., solutions that  solution is real the perturbation must be to the imaginary part
are strictly zero outside an interval. The properties of com-of the amplitude. To see this, consider that from a Hamil-
pact DBs have been investigated from a mathematical viewtonian viewpoint the real part of the amplitude corresponds
point in similar models in Ref{22], but to our knowledge to a position variable and the imaginary part to a momentum
this is the first report of such solutions in a physically real-variable. A marginal mode perturbation as described in Refs.
izable DNLS-type model. AM-site compact DB is an exci- [23,24 is a suitable perturbation. The marginal modes are
tation such thatjy,,;=0 for j<s—1 andj=M and ¢, | the eigenvectors missing from the subspace of the two col-
#0 for j=0,1,... M—1. From Eq.(10) at siten=m—1 liding eigenvalues at the stability boundary of a solution. It
we then get was proven that these grow linearly in tirf@ and appeared
to be the best wayvery little phonon radiationto put the
Keir= Ko+ 2Kg| | 2=0. (120 DB into motion. Away from the point of instability the per-
turbation to a stable DB needs to have an amplitude above a

The quantityK .z, when zero, describes a decoupling of sitesthreshold. A second method to induce mobility is to apply a
n<m from sitesn=m and may be taken as an approximatelinear phase gradient to a stationary solution, i.e.,
effective coupling between sitem—1 and m for small  ¢,—,€", ke]—m,m]. This method was investigated,
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(a) L (b)
9 1
¥l [Tn)?0.25
0.5
1] /
L 50
= 40 40
z 20 z )
0o 10 site (n) 00 site (n)

FIG. 5. () The solution in Fig. 8) with the linear phase gradiekt=0.1. (b) A typical low-intensity mobile solution of the DNLS
equation for the parameteks,=0.2, K,=Ks=0, N'=0.47, andk=0.1. The frequency is\ =0.4761. Periodic boundary conditions are
used and the accuracy of each component of the solution 8210

e.g., in Ref[7] and will due to its simplicity be our primary has a higher contrast, 0.5@C<0.87, depending oi., as
choice for inducing mobility. The phase gradient perturbationcompared to 0.4&C<0.45 for the DNLS solution. 0.5 is
also has the benefit of preserving the norm. the best lower bound that can be achieved for propagating
In Fig. 5, a comparison between a mobile DB of Ef0))  high-intensity solutions, since this occurs when the station-
and the DNLS equation is shown. The low-intensity DB of ary two-site solution involved is compact. For switching pur-
the DNLS equation is extended over several sites as oppos%ses a high contrast is ideal. The upper bound can be im-
to the narrow hlgh-lntenSIty solution of EmO) The latter proved by Considering solutions where the pianes of
has its analog in the DNLS equation but there high-intensityexistence of the compact one-site and two-site solutions are
solutions have very poor mobility. The enhanced mobility forcjoser. In Ref[7] better lower bounds o€ are achieved by
solutions of Eq.(10) may be explained by the presence of gisplacing a trapped high-intensity DNLS solution an integer
stability inversion. Since the resulting moving DB is essen-yumber of waveguides by a collision with a low-intensity
t|a”y radiationleSS |t can, in principle, propagate |ndef|n|te|y transverse propagating Soiution_
Simulations for up tez~ 10> show no noticeable change i The strength of the applied phase gradient can be used to
the solution. Some radiation is inevitable due to the perturcontrol the motion of the mobile DB. Although the norm is
bation and numerical inaccuracies. For the solutions of Fig. preserved by the perturbation the Hamiltonian will increase,
with pel’iOdiC boundary Conditions, the excitations will giVing excess energy'iot actual energy, Sinc’H is not the
propagate against a background ¢f|> ~10"'-10"%in (8  energy of the systefmio the stationary solution. Since the
and|y,|* ~107°-10° in (b). A more relevant measure for perturbation is symmetry breaking, the energy will be carried
switching purposes is the contrast of the output defineGway in either direction, depending on the signkofs ki-
by  C=[¢n (L)|?/[¢hn - 1(L) >+ (L)[*+]dn +1(L)?],  netic energy of the mobile DB. A larger phase gradient will
wheren, is the site with maximum power arz=L is the result in a higher transverse velocity, ([v] is sites per
total length of the waveguides. Obviously the solutiorfdn ~ waveguide length For smallk it roughly holds thatke=v

() (b)
TE
20
10 ¢
] — — —
0 100 200 300 400 500 0 100 200 300 400 500
z z

FIG. 6. (a) Displacement of the center of energy for different phase gradients with the one-site solution itaFas Bitial solution.
Note thatk is proportional to the slope in the figure, i.e., the transverse veldbityCenter of energy for fixed phase gradient 0.2, and
different initial one-site solutions in the vicinity of the inversion boundary. Common parameteks,ar@.2, Ks=—0.1, andN=2. At
K,=—0.135 the perturbation is below the thresholdKat= —0.137 it is near the threshold, andkat= —0.14 it is above the threshold.
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[see Fig. 63)]. The constant of proportionality depends on are interesting from several other points of view. First, we
the initial stationary solution, since the same phase gradieritave presented what we believe to be the first example of
will give different changes to the Hamiltonia,X. A more  strictly compact solutions in a DNLS-like model which
general relation for smakl, supported by numerical simula- might be experimentally realizabl€Our model was not in-
tions, isAH>v?, which indicates that the excess energy in-cluded in the class of models previously shol@2] to pos-
deed is carried away as kinetic energy. Hence an effectiveess compact solutiondn fact, the full complexity of the
massm* of the mobile DB can be defined by the relation model studied here is not at all necessary for obtaining com-
AH=m*v?/2 (see also Refd23,24). pact solutions; the only necessary ingredients are the simul-
In the vicinity of the inversion boundary a stable solution taneous presence of the on-site nonlinearity and the last two
can be put into motion if the perturbation is large enoughterms in theQs part of Eq.(4). Second, to our knowledge
i.e., there is a threshold to surmount to induce mobility. If theour model is also the first example of a realistic DNLS-like
size of the perturbation is below the threshold, the DB willmodel where inversion of stability between site-centered and
just oscillate without moving. For larger perturbations thebond-centered solutions has been observed and analyzed. In
resulting moving DB will still show good mobility. In Fig. this aspect, the crucial ingredient was shown to be the pres-
6(b), the displacement of the center of energy is shown forence of theQ, part of Eqg.(4) (as inversion of stability was
solutions with varying distance from the inversion boundary.found also forQs;=0). Also, to the best of our knowledge,
Note the different behavior when the perturbation is belowthe scenario illustrated in Fig.(4) with a regime ofsimul-
above, or approximately at the threshold. The motions aréaneous stabilityfor site-centered and bond-centered breath-
not entirely radiationless, not even for the relatively largeers has not been observed in any earlier studied model.
perturbation, and hence the mobile solutions will eventually Although we believe that this is the first time that our
get trapped. When perturbing an unstable solution there is nmodel (4) has been considered and analyzed in its full gen-
threshold and the mobility remains very good, although somerality, it is interesting to note that for a particular choice of

radiation will still escape. parameter values it coincides with models previously derived
in completely different contexts. Namely, fo®,=Qsg
IV. CONCLUSIONS =Q3/2, itis equivalent to an equation derived in Re&5] as

) . ~arotating-wave approximation to a Fermi-Pasta-Ulam chain.

A model equation for arrays of nonlinear coupled optical| jkewise, for the same parameter values it is a subclass of a
W_avegmdes has been derived qnd e_xamlned in the cor!text ffodel proposed in Ref26] to describe energy transport in
discrete breathers. The phase invariance of the equation leg, exciton-phonottor vibron-phonoi coupled system mod-
us to investigate stationary solutions and especially their Stasling a-helical proteins, taking into account both acoustic
bility properties, revealing_an invgrsion of stability bgtweenand optic phonons. In both these papers, the equation is ana-
symmetric or antisymmetric two-site DBs and one-site DBSyy e through soliton perturbation theory from the integrable
Narrow solutions with enhanced mobility exist at the inver- pp|owitz-Ladik model, and the tendency of the off-diagonal
sion boundaries corresponding to a transformation betweeRgnlinear terms to enhance mobility compared to the pure
the ste}tionary squFions, yia an asymmgt.ric intermet;iiate DByn-site DNLS model is noted. Note, however, that the pa-
emerging from a bifurcation at the stability boundaries. ~  rameter regime of main interest in our work is quite far from

Our work was primarily motivated by the desire to obtain hege special values.
highly localized beam_s Wi_th extremely g_ood mobili_ty, which  Ag 3 final remark, we point out that in analyzing the sta-
could be used for switching purposes in waveguide arrays,jjity regimes and bifurcation diagrams we have compared
Thus, we found that taking into account additional nonlinears|tions continued at constant norm rather than at constant
terms, which normally are neglected in the standard DNLSrequency, which is often done. In particular, this allows for
treatment, could lead to a drastic enhancement of the mobik, interpretation of the difference in the Hamiltonian of the
ity of narrow solutions. In our model, such effects may ariseyreathers as a “Peierls-Nabarro-like” energy barrier that
when the field_penetrat_ion length is not negligible compared;pouid be minimized in order to optimize the mobility. A
to the waveguide spacing. Furthermore, even compact solujmilar comparison between breathers at constant frequency
tions corresponding to complete beam localization in ongyqoy|d not allow for such an interpretation, since the breather
single (or several waveguidés) could be found when the fequency generally changes in the movement. Still, we have
Kerr index of the nonlinear material, or equivalently, the in- analyzed also the counterparts to the stability diagrams for

tensity of the field, is largécf. Eq. (12)]. continuation at constant frequency; these results will appear
A priori, we believe that our assumptions are not Umea"elsewhere{zﬂ.

istic, and we should note that in parts of the parameter re-

gime where the interesting phenomena appear, the intersite

nonl!near |n'terac.t|ons are still con&deraply smaller than the ACKNOWLEDGMENTS

on-site nonlinearity. However, whether this regime is experi-
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