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Enhanced mobility of strongly localized modes in waveguide arrays by inversion of stability

Michael Öster,* Magnus Johansson,† and Anders Eriksson‡

Department of Physics and Measurement Technology (IFM), Linko¨ping University, S-581 83 Linko¨ping, Sweden
~Received 19 December 2002; published 9 May 2003!

A model equation governing the amplitude of the electric field in an array of coupled optical waveguides
embedded in a material with Kerr nonlinearities is derived and explored. The equation is an extended discrete
nonlinear Schro¨dinger equation with intersite nonlinearities. Attention is turned towards localized solutions and
investigations are made from the viewpoint of the theory of discrete breathers~DBs!. Stability analysis reveals
an inversion of stability between stationary one-site and symmetric or antisymmetric two-site solutions con-
nected to bifurcations with a pair of asymmetric intermediate DBs. The stability inversion leads to the exis-
tence of high-intensity narrow mobile solutions, which can propagate essentially radiationless. The direction
and transverse velocity of the mobile solutions can be controlled by appropriate perturbations. Such solutions
may have an important application for multiport switching, allowing unambiguous selection of output channel.
The derived equation also supports compact DBs, which in some sense yield the best possible solutions for
switching purposes.
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I. INTRODUCTION

In a linear directional coupler power is periodically e
changed between two adjacent waveguides due to an eva
cent field overlap of the modes of the waveguides. The t
power transferred is determined by the phase mismatc
the respective fields. Such a coupler can be used as a si
optical switch@1#. For multiguide directional couplers, th
successive spreading of a localized pulse has been de
strated@2#. The presence of nonlinearities drastically chang
the characteristics of the couplers. Jensen derived an e
tion for two waveguides embedded in a nonlinear Kerr m
dium and showed that above a critical input a compl
power exchange between the waveguides is not obtained@3#.
The nonlinear transmission characteristics of the device
be utilized for the construction of optical logical gates. Sim
lar effects of power trapping have been observed in lar
arrays of waveguides, using the discrete nonlinear Sc¨-
dinger~DNLS! equation as a model equation@4,5#. Methods
for controlling transverse propagating beams in both the lo
intensity continuumlike domain@6# and in the high-intensity
discrete domain@7# have been deviced and in the former ca
experimentally verified. Arrays of nonlinear waveguides th
have an important application for multiport switching.

The model derived in this paper has some important
similarities as compared to earlier models@5–7#. In contrast,
e.g., to the recently experimentally studied structures@6#,
where the waveguides themselves are constructed of a
linear material, we have instead assumed linear wavegu
embedded in a nonlinear medium as in the original mode
Jensen@3#. This will tend to strengthen the effects of intersi
nonlinearities as compared to the on-site nonlinearity,
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will motivate an extension of the DNLS model to incorpora
these effects. An approximate calculation for an array of s
waveguides shows that intersite nonlinearities can be u
the same order of magnitude as the on-site nonlinearity, p
vided the field penetration length is not negligible compa
to the waveguide spacing. Being an extension of the ordin
DNLS model, our model is evidently more realistic as mo
effects are taken into account. It should though be noted
parts of the parameter regimes where the most interes
phenomena occur would mean approaching the limits of
assumptions made in the coupled-mode theory on which
derivation of the model is based. However, the range of
ditional phenomena appearing as compared to the DN
model motivates investigation also into these regimes. W
it comes to applications, the properties of some solutions
ideal for multiport switching, but whether they can be e
perimentally realized is an issue that will be left for furth
investigation.

The outline of our presentation is as follows. In Sec. II w
derive an equation, originally derived in Ref.@8#, extending
the DNLS model to incorporate intersite nonlinearities a
discuss some of its general properties. In Sec. III, we pres
some numerical results concerning linear stability of stati
ary solutions and demonstrate that the new equation exh
strongly localized solutions with enhanced mobility that c
be used to improve the performance of multiport switchin
Finally, in Sec. IV, we will summarize our results and co
clude.

II. MODEL

We will consider an array of identical optical waveguid
embedded in a nonlinear Kerr material as depicted in Fig
The geometry of the waveguides is quite arbitrary, but it
assumed that the fields are decaying sufficiently fast out
the waveguides to motivate only nearest-neighbor inter
tions. If further the electric field has a preferred direction
polarizationê, like the TE and TM modes of the slab wave
guide, the modes can be assumed to be real. With on
©2003 The American Physical Society06-1
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single identical mode present in each waveguide, the fiel
the nth waveguide is

En5~Cn21En211CnEn1Cn11En11!ei (bz2vt)ê. ~1!

Cn is the time-independent amplitude in waveguiden andEn
is the unperturbed mode, withEn61(r)5En(r7d), d being a
translation vector between adjacent waveguides.b andv are
the propagation constant~wave number! and frequency asso
ciated with the mode. The modes of the uncoupled wa
guide obey an orthonormality relation and can thus be n
malized. Using coupled-mode theory and expansion of
field in the orthonormal modes, the following relation can
derived@1,3#:

i
dCn

dz
ei (bz2vt)5

21

4v

]2

]t2E E dxdyEn~r!ê•P8~r,t !. ~2!

P8 is the perturbing polarization arising since the wavegu
is not isolated and contains both linear contributions from
adjacent waveguides and contributions from the nonlin
response of the surrounding material. From the total refr
tive index,n5nc1n2uEu2, of the array we get the total po
larization, P5D2e0E5(n221)e0E. For a single isolated
waveguide the polarization isPn5(nn

221)e0E and hence the
perturbing polarization is

P85P2Pn'~nc
22nn

2!e0E12ncn2e0uEu2E, ~3!

where only terms to first order in the Kerr indexn2 are kept.
Plugging Eqs.~1! and ~3! into Eq. ~2!, while sticking to the
nearest-neigbor approximation due to rapidly decaying fie
outside the waveguides, leads to the equation

2 i
dCn

dz
1Q1Cn1Q2~Cn211Cn11!12Q3CnuCnu2

12Q4@2Cn~ uCn21u21uCn11u2!1Cn* ~Cn21
2 1Cn11

2 !#

12Q5@2uCnu2~Cn211Cn11!1Cn
2~Cn21* 1Cn11* !

1Cn21uCn21u21Cn11uCn11u2#50. ~4!

FIG. 1. An array of optical waveguides embedded in a nonlin
material. The profiles of the different refractive indices across
array are also shown. The linear refractive index of the array isnc

and the linear refractive index of a single isolated waveguide isnn .
The Kerr indexn2 is zero inside the waveguides.
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The coupling constantsQ1–Q5 are given by overlap inte-
grals of the modes,

Q15
ve0

4 E E dxdy~nc
22nn

2!E n
2 , ~5a!

Q25
ve0

4 E E dxdy~nc
22nn

2!En61En , ~5b!

Q35
ve0

4 E E dxdyncn2E n
4 , ~5c!

Q45
ve0

4 E E dxdyncn2E n61
2 E n

2 , ~5d!

Q55
ve0

4 E E dxdyncn2E n61
3 En

5
ve0

4 E E dxdyncn2En61E n
3 . ~5e!

The derived equation governs the evolution of the elec
field in an array of nonlinear waveguides. In the caseQ4
5Q550 it reduces to the DNLS equation. Note also that t
well-known Ablowitz-Ladik ~AL ! term uCnu2(Cn21
1Cn11) is contained in the equation. The AL equation is
special case of a fully integrable discrete version of the n
linear Schro¨dinger equation@9#.

To demonstrate that the constantsQ4 and Q5 cannot al-
ways be neglected in comparison toQ3, we make an ap-
proximate calculation for an array of slab waveguides. T
integrals are to be carried out over the area between
waveguides, where the nonlinearity is present. With the se
rationd between the waveguides and the inverse penetra
lengthp5Ab22nc

2v2me0, wherenc is the linear part of the
refractive index between the waveguides, the result is

Q4

Q3
5

pd

sinh~2pd!
,

Q5

Q3
5

1

2 cosh~pd!
. ~6!

It is clear that with large penetration length or closely spac
waveguides these fractions are not negligible. However t
ing pd too small is not reasonable within the approximatio
made in the derivation of the equation, since the overlap
the modes is treated as a perturbation to an uncoupled w
guide.

General properties

Most of the properties for Eq.~4! presented here are gen
eralizations of properties of the DNLS equation, e.g., d
cussed in Ref.@10#. An important feature of the equation i
that it possesses quantities that are conserved as the sy
evolves, i.e., as the fields propagate along the array.
such quantity is the Hamiltonian@8#

r
e

6-2



il

a
ke

th

e
n
io

n

te
io

a

in

n

er
e of

s

is
, in
n
sly

so-
n-

olu-
ear

e

tue
a
us

ou-

o
im-
se
ng

m-
s in
t

to
the
ted
n-

nd
be

m

s.
are
rily

tur-
ient

ry

n-
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H5H11H21H2* , ~7a!

H15(
n

@Q1uCnu21Q3uCnu4#, ~7b!

H25(
n

@Q2CnCn11* 1Q4~2uCnu2uCn11u21Cn
2Cn11* 2 !

12Q5CnCn11~Cn*
21Cn11* 2 !#, ~7c!

which is real and has the symmetryH($Cn%)5H($Cn* %).
Introducing the complex canonical variables (Cn ,iCn* ), Eq.
~4! can be obtained from the complex version of the Ham
ton equations of motion,

i
dCn

dz
5

]H
]Cn*

, 2 i
dCn*

dz
5

]H
]Cn

. ~8!

An important difference compared to the AL model is th
there is no need for a deformed Poisson bracket to ma
Hamiltonian formulation of the system@11#. We will further
have a regular norm~a conserved quantity!, which corre-
sponds to conservation of~Poynting! power along the
waveguides,

N5(
n

uCnu2. ~9!

The conservation of norm is intimately connected to
phase invariance of Eq.~4!, i.e., the fact that if$Cn% is a
solution so is$Cneif% for ; fPR. As a consequence th
constantQ1, which connects the norm and the Hamiltonia
can be made to vanish by the simple substitut
Cn°Cne2 iQ1z. Because of the phase invariance, Eq.~4!
also supports an important class of solutions with harmo
cally oscillating amplitude with frequencyL, which by a
transformation to a rotating frame of reference can be trea
with a stationary equation. The general transformat
Cn(z)5acn(bz)ei (bL2Q1)z will result in a rescaling of the
parameters in Eq.~4! according to Q1°L, Q2°Q2 /b
5K2, andQj°Qj uau2/b5K j , j 53,4,5. An important prop-
erty of the transformation is that the linear and nonline
parameters can be scaledindependently. To reduce the num-
ber of independent parameters we here takeb522Q3uau2,
which scales the parameter in front of the self-interact
nonlinearity to 2K3521. For stationarycn the resulting
equation is

Lcn1K2~cn211cn11!2cnucnu212K4@2cn~ ucn21u2

1ucn11u2!1cn* ~cn21
2 1cn11

2 !#12K5@2ucnu2~cn21

1cn11!1cn
2~cn21* 1cn11* !1cn21ucn21u2

1cn11ucn11u2#50. ~10!

Noteworthy is also that the transformatio
cn°(21)ncn brings a solution of Eq.~10! for the param-
eter values (L,K2 ,K4 ,K5) into a solution for
05660
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(L,2K2 ,K4 ,2K5). This reduces the part of paramet
space that must be investigated to get a complete pictur
the equation.

III. RESULTS

Here we will restrict our attention to localized solution
and especially discrete breathers~DBs!, which are time-
periodic spatially localized solutions. The time periodicity
here replaced with periodicity along the waveguides, i.e.
the variablez that plays the role of time in the Hamiltonia
formulation. The existence of DBs has been rigorou
proven by MacKay and Aubry@12# for Hamiltonian systems,
provided that an anharmonicity condition and a nonre
nance condition with linear phonons is fulfilled. The esse
tials are that some nonlinearity is present and that the s
tion has no harmonics inside the linear spectrum. The lin
spectrum of Eq.~10! is L522K2cosq, whereq is the wave
number of the phonon,cn;eiqn. Hence phonons exist in th
frequency rangeuLu<2uK2u.

The proof of existence is based on continuation, by vir
of the implicit function theorem, of trivial solutions from
special parameter limit of the equation, the anticontinuo
limit, where the dynamics of the system is completely dec
pled. For Eq.~10! we obtain this limit asK j50, j 52,4,5,
i.e., Lcn2cnucnu250, with trivial solutionscn50 andcn

5ALeif, fPR. The idea of the proof is easily turned int
an efficient numerical scheme for calculating solutions. S
ply take a trivial solution in the anticontinuous limit and u
it as an initial guess in an iterative Newton method followi
paths in parameter space@13,14#.

A. Stability

Extensive calculations, covering a large portion of para
eter space, have been made for the most simple solution
the anticontinuous limit. It is convenient to identify differen
solutions by these initial configurations. With restriction
real solutions, each initial amplitude can be chosen from
setcnP$0,6AL% and hence each solution can be associa
with a coding sequence. Solutions originating from a co
figuration with one site excited with positive amplitude a
the others at rest will be called one-site solutions and
denoted (1), where we omit starting and trailing zeros fro
the notation. Similary, solutions originating from (1,6)
will be called symmetric or antisymmetric two-site solution
Other possible one-site and two-site configurations
equivalent to these through the phase invariance. Prima
the stability properties, i.e., the behavior under small per
bations, have been investigated. To this end it is conven
to split the amplitude in real and imaginary parts,cn5xn
1 iyn . Denote the vector of real and imaginary parts byc
5($xn%,$yn%)

t and define through the real and imagina
parts of Eq.~10! an operatorF, such thatF(c)50 if c is a
solution. It is easily deduced that an infinitesimal nonstatio
ary perturbatione(z)5($jn(z)%,$hn(z)%) t to the solutionc
is governed by the equation~cf. Ref. @15#!
6-3
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d

dzS $jn%

$hn%
D 5J F8~c! S $jn%

$hn%
D , ~11!

whereJ is orthogonal and skew symmetric and the Jacob
F8(c) is symmetric since the system is Hamiltonian. T
total matrix JF8(c) is thus infinitesimally symplectic and
must have the simultaneous eigenvalues6l,6l* @16#. Be-
cause of the phase invariance there is always a~double! ei-
genvalue at the origin. For the given solution to be linea
stable~in fact marginally stable!, all eigenvalues must lie on
the imaginary axis.

In Fig. 2, the stability of the different solutions is show
for K250.2 and constant normN52 in a part of paramete
space. The boundaries indicate where stability of the s
tions is lost. The solid line is for the (1) solutions, which
are stable above this line. Below the dashed line

FIG. 2. Regions of stability for (1) and (1,6) solutions for
K250.2 and constant normN52. The (1) solutions are stable
above the solid line, the (1,1) solutions are stable below th
dashed line, and the (1,2) solutions are stable below the das
dotted line. The boundaries almost coincide and an inversion
stability occurs between the solutions as the boundaries are cro
The insets show a detail of the boundaries. 50 sites were used i
calculations.
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(1,1) solutions are stable and the same holds below
dash-dotted line for the (1,2) solutions. All instabilities are
due to eigenvalues leaving the imaginary axis at the ori
along the real axis. In other regions of parameter sp
~mainly in the first and the second quadrant! the solutions
exhibit a more complex behavior, with, for example, com
plex ~Krein! instabilities. The interesting feature of the inst
bilities is that the stability boundaries of the (1) and (1,
6) solutions, respectively, nearly coincide and that the s
bility is inverted across the boundaries. The insets show
the stability boundaries do not exactly coincide, but there
small region of simultaneous instability for smalluK5u. The
boundaries do intersect and for largeruK5u there will be a
region of simultaneous stability. The intersection points
(K5 ,K4)5(20.1470,20.1316) and (0.1340,20.1291), re-
spectively. Stability inversion was first reported in Ref.@17#
for a Klein-Gordon model with a double-well on-site pote
tial and has since been verified for other models@18,19#. For
DNLS-type models, a similar behavior has only recen
been observed@20#, but in a model with apparently little
physical relevance.

In Figs. 3~a! and 3~b! the eigenvector corresponding to th
eigenvalue withl.0 ~growing mode! is plotted together
with the solutions at a point along the inversion boundary
the (1) and (1,1) solutions. The growing modes are suc
that one solution will grow towards something similar to t
other. The behavior is the same along and nearby the e
boundary as well as along the boundary with inversion
tween (1) and (1,2) solutions. In the vicinity of the in-
version boundaries we can thus have a narrow mobile
corresponding to a repeated transformation between two
tionary DBs. The phenomenon of low-radiation narrow m
bile DBs has previously been observed in Klein-Gord
models and to some extent explained by the existence
pair of intermediate DBs in the region where both solutio
are unstable@18#. A closer investigation of the inversion
boundaries reveals the existence of a pair of stable statio
asymmetric intermediate DBs, which we will denote~i!, be-
tween the stability boundaries of the one-site and two-

of
ed.
the
envalues

re
FIG. 3. The solution~solid!, the real part~dashed!, and the imaginary part~dotted! of the growing mode, for~a! the (1) solution and~b!
the (1,1) solution. The imaginary part of the growing mode has been scaled by a factor of 50 to be seen better in the plot. The eig
and frequencies arel50.0600 andL52.4365 in ~a! and l50.0570 andL52.4494 in ~b!. The Hamiltonian of both solutions isH
522.2494. In~c! the stable intermediate DB is shown, with frequencyL52.4442 and HamiltonianH522.2497. The parameter values a
K250.2, K4520.1416,K5520.1 andN52. The number of sites is 50.
6-4
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FIG. 4. Bifurcation diagrams with Hamiltonian as a function of the parameterK4. In ~a! K5520.1 and in~b! K5520.18. Common
parameters areK250.2 andN52. The different solutions and the bifurcation points are indicated in the figure. Solid~dashed! lines
correspond to stable~unstable! solutions.
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solutions@see Fig. 3~c!#. This intermediate solution emerge
from a bifurcation at the stability boundaries as can be s
in Fig. 4. The intermediate DBs also exist in the region
simultaneous stabilityof the two stationary solutions, but
is unstable in this case. Note that the solution with the sm
est value of the Hamiltonian is always stable. This obser
tion is a rigorous result for the DNLS equation, where
ground state, i.e. a minimizer of the Hamiltonian for a giv
norm, is Lyapunov stable~see Ref.@21#, and references
therein!. The ground state of the DNLS equation correspon
to a one-site solution at the anticontinuous limit and is c
jectured to be essentially unique. We immediately see
neither of these is the case for Eq.~10!. First, the stability of
the one-site solution is lost and instead one of the two-
solutions~or the intermediate solution! minimizes the Hamil-
tonian and second, as a consequence, there is a boun
where the Hamiltonian is equal for two solutions@see Fig.
4~b!#. Hence equality of the Hamiltonian for the (1) and
(1,6) solutions is connected to inversion of stability. Th
also explains why the narrow mobile DB is essentially rad
tionless, since the transformation connected to the mo
occurs between stationary solutions of equal Hamilton
and norm.

For application to multiport switching, it is preferrab
with narrow beams to allow unambiguous selection of out
channel. From this point of view it is therefore highly inte
esting that Eq.~10! supportscompactDBs, i.e., solutions tha
are strictly zero outside an interval. The properties of co
pact DBs have been investigated from a mathematical vi
point in similar models in Ref.@22#, but to our knowledge
this is the first report of such solutions in a physically re
izable DNLS-type model. AnM-site compact DB is an exci
tation such thatcm1 j50 for j <21 and j >M and cm1 j
Þ0 for j 50,1, . . . ,M21. From Eq.~10! at siten5m21
we then get

Keff5K212K5ucmu250. ~12!

The quantityKeff , when zero, describes a decoupling of si
n,m from sitesn>m and may be taken as an approxima
effective coupling between sitesm21 and m for small
05660
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ucm21u ~and equivalently for sitesm1M21 and m1M ).
Note thatK2 andK5 must have opposite signs for the exi
tence of compact DBs. Solving for a one-site compact D
the equation at sitem results in the conditionucmu25L,
which also will be the normN5N of the solution. Hence
this solution exists on the planeK212K5N50 in parameter
space. On either side of this plane the effective coupli
with sgn(Keff)52sgn(cm21 /cm), has different signs. Note
that the line of zero effective coupling (K5520.05 in Fig. 2!
separates the two different inversion boundaries. Solving
a two-site compact DB gives two different real solutions, o
symmetric and one antisymmetric. With the normN5N we
get cm5AN/2 andcm1156AN/2 together with constraints
on the parameters:K21K5N50 and L563K223NK4
1N/2. For the symmetric two-site solutions the surface
existence (K5520.1 in Fig. 2! intersects with the boundar
of stability inversion. At these intersection points we c
expect extremely narrow mobile solutions to exist@see also
Fig. 3~b!#.

B. Mobility

To investigate the dynamical properties of the DBs
integrate the nonstationary equivalent of Eq.~10! with sta-
tionary solutions as initial conditions. To induce mobili
some perturbation is needed, and especially if the station
solution is real the perturbation must be to the imaginary p
of the amplitude. To see this, consider that from a Ham
tonian viewpoint the real part of the amplitude correspon
to a position variable and the imaginary part to a moment
variable. A marginal mode perturbation as described in R
@23,24# is a suitable perturbation. The marginal modes
the eigenvectors missing from the subspace of the two
liding eigenvalues at the stability boundary of a solution.
was proven that these grow linearly in time~z! and appeared
to be the best way~very little phonon radiation! to put the
DB into motion. Away from the point of instability the per
turbation to a stable DB needs to have an amplitude abo
threshold. A second method to induce mobility is to apply
linear phase gradient to a stationary solution, i.
cn°cneikn, kP] 2p,p]. This method was investigated
6-5
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FIG. 5. ~a! The solution in Fig. 3~a! with the linear phase gradientk50.1. ~b! A typical low-intensity mobile solution of the DNLS
equation for the parametersK250.2, K45K550, N50.47, andk50.1. The frequency isL50.4761. Periodic boundary conditions a
used and the accuracy of each component of the solution is 10212.
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e.g., in Ref.@7# and will due to its simplicity be our primary
choice for inducing mobility. The phase gradient perturbat
also has the benefit of preserving the norm.

In Fig. 5, a comparison between a mobile DB of Eq.~10!
and the DNLS equation is shown. The low-intensity DB
the DNLS equation is extended over several sites as opp
to the narrow high-intensity solution of Eq.~10!. The latter
has its analog in the DNLS equation but there high-inten
solutions have very poor mobility. The enhanced mobility
solutions of Eq.~10! may be explained by the presence
stability inversion. Since the resulting moving DB is esse
tially radiationless it can, in principle, propagate indefinite
Simulations for up toz;105 show no noticeable change i
the solution. Some radiation is inevitable due to the per
bation and numerical inaccuracies. For the solutions of Fi
with periodic boundary conditions, the excitations w
propagate against a background ofucnu2 ;1027–1028 in ~a!
and ucnu2 ;1025–1026 in ~b!. A more relevant measure fo
switching purposes is the contrast of the output defin
by C5ucne

(L)u2/@ ucne21(L)u21ucne
(L)u21ucne11(L)u2#,

wherene is the site with maximum power andz5L is the
total length of the waveguides. Obviously the solution in~a!
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has a higher contrast, 0.50<C<0.87, depending onL, as
compared to 0.41<C<0.45 for the DNLS solution. 0.5 is
the best lower bound that can be achieved for propaga
high-intensity solutions, since this occurs when the stati
ary two-site solution involved is compact. For switching pu
poses a high contrast is ideal. The upper bound can be
proved by considering solutions where the planes
existence of the compact one-site and two-site solutions
closer. In Ref.@7# better lower bounds onC are achieved by
displacing a trapped high-intensity DNLS solution an integ
number of waveguides by a collision with a low-intensi
transverse propagating solution.

The strength of the applied phase gradient can be use
control the motion of the mobile DB. Although the norm
preserved by the perturbation the Hamiltonian will increa
giving excess energy~not actual energy, sinceH is not the
energy of the system! to the stationary solution. Since th
perturbation is symmetry breaking, the energy will be carr
away in either direction, depending on the sign ofk, as ki-
netic energy of the mobile DB. A larger phase gradient w
result in a higher transverse velocity,v (@v# is sites per
waveguide length!. For smallk it roughly holds thatk}v
FIG. 6. ~a! Displacement of the center of energy for different phase gradients with the one-site solution in Fig. 3~a! as initial solution.
Note thatk is proportional to the slope in the figure, i.e., the transverse velocity.~b! Center of energy for fixed phase gradient,k50.2, and
different initial one-site solutions in the vicinity of the inversion boundary. Common parameters areK250.2, K5520.1, andN52. At
K4520.135 the perturbation is below the threshold, atK4520.137 it is near the threshold, and atK4520.14 it is above the threshold.
6-6
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@see Fig. 6~a!#. The constant of proportionality depends o
the initial stationary solution, since the same phase grad
will give different changes to the Hamiltonian,DH. A more
general relation for smallk, supported by numerical simula
tions, isDH}v2, which indicates that the excess energy
deed is carried away as kinetic energy. Hence an effec
massm* of the mobile DB can be defined by the relatio
DH5m* v2/2 ~see also Refs.@23,24#!.

In the vicinity of the inversion boundary a stable soluti
can be put into motion if the perturbation is large enou
i.e., there is a threshold to surmount to induce mobility. If t
size of the perturbation is below the threshold, the DB w
just oscillate without moving. For larger perturbations t
resulting moving DB will still show good mobility. In Fig
6~b!, the displacement of the center of energy is shown
solutions with varying distance from the inversion bounda
Note the different behavior when the perturbation is belo
above, or approximately at the threshold. The motions
not entirely radiationless, not even for the relatively lar
perturbation, and hence the mobile solutions will eventua
get trapped. When perturbing an unstable solution there i
threshold and the mobility remains very good, although so
radiation will still escape.

IV. CONCLUSIONS

A model equation for arrays of nonlinear coupled optic
waveguides has been derived and examined in the conte
discrete breathers. The phase invariance of the equation
us to investigate stationary solutions and especially their
bility properties, revealing an inversion of stability betwe
symmetric or antisymmetric two-site DBs and one-site DB
Narrow solutions with enhanced mobility exist at the inve
sion boundaries corresponding to a transformation betw
the stationary solutions, via an asymmetric intermediate
emerging from a bifurcation at the stability boundaries.

Our work was primarily motivated by the desire to obta
highly localized beams with extremely good mobility, whic
could be used for switching purposes in waveguide arra
Thus, we found that taking into account additional nonline
terms, which normally are neglected in the standard DN
treatment, could lead to a drastic enhancement of the mo
ity of narrow solutions. In our model, such effects may ar
when the field penetration length is not negligible compa
to the waveguide spacing. Furthermore, even compact s
tions corresponding to complete beam localization in o
single ~or several! waveguide~s! could be found when the
Kerr index of the nonlinear material, or equivalently, the
tensity of the field, is large@cf. Eq. ~12!#.

A priori, we believe that our assumptions are not unre
istic, and we should note that in parts of the parameter
gime where the interesting phenomena appear, the inte
nonlinear interactions are still considerably smaller than
on-site nonlinearity. However, whether this regime is expe
mentally available is an issue that needs further invest
tion.

Leaving aside the nonlinear optics application, our res
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are interesting from several other points of view. First,
have presented what we believe to be the first example
strictly compact solutions in a DNLS-like model whic
might be experimentally realizable.~Our model was not in-
cluded in the class of models previously shown@22# to pos-
sess compact solutions.! In fact, the full complexity of the
model studied here is not at all necessary for obtaining co
pact solutions; the only necessary ingredients are the sim
taneous presence of the on-site nonlinearity and the last
terms in theQ5 part of Eq.~4!. Second, to our knowledge
our model is also the first example of a realistic DNLS-li
model where inversion of stability between site-centered
bond-centered solutions has been observed and analyze
this aspect, the crucial ingredient was shown to be the p
ence of theQ4 part of Eq.~4! ~as inversion of stability was
found also forQ550). Also, to the best of our knowledge
the scenario illustrated in Fig. 4~b! with a regime ofsimul-
taneous stabilityfor site-centered and bond-centered brea
ers has not been observed in any earlier studied model.

Although we believe that this is the first time that o
model ~4! has been considered and analyzed in its full g
erality, it is interesting to note that for a particular choice
parameter values it coincides with models previously deriv
in completely different contexts. Namely, forQ45Q5
5Q3/2, it is equivalent to an equation derived in Ref.@25# as
a rotating-wave approximation to a Fermi-Pasta-Ulam cha
Likewise, for the same parameter values it is a subclass
model proposed in Ref.@26# to describe energy transport i
an exciton-phonon~or vibron-phonon! coupled system mod
eling a-helical proteins, taking into account both acous
and optic phonons. In both these papers, the equation is
lyzed through soliton perturbation theory from the integra
Ablowitz-Ladik model, and the tendency of the off-diagon
nonlinear terms to enhance mobility compared to the p
on-site DNLS model is noted. Note, however, that the p
rameter regime of main interest in our work is quite far fro
these special values.

As a final remark, we point out that in analyzing the s
bility regimes and bifurcation diagrams we have compa
solutions continued at constant norm rather than at cons
frequency, which is often done. In particular, this allows f
an interpretation of the difference in the Hamiltonian of t
breathers as a ‘‘Peierls-Nabarro-like’’ energy barrier th
should be minimized in order to optimize the mobility.
similar comparison between breathers at constant freque
would not allow for such an interpretation, since the breat
frequency generally changes in the movement. Still, we h
analyzed also the counterparts to the stability diagrams
continuation at constant frequency; these results will app
elsewhere@27#.
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