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Nonlinear optical effects in a two-dimensional photonic crystal containing one-dimensional
Kerr defects

M. Bahl}* N.-C. Panoil, and R. M. Osgood, Jr?
!Department of Electrical Engineering, Columbia University, New York, New York 10027
’Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027
3Brookhaven National Laboratories, Upton, New York 11973
(Received 11 December 2002; revised manuscript received 12 February 2003; published 9 May 2003

The nonlinear optical effects induced by a one-dimensi@h) line defect, made of Kerr material, in a 2D
photonic crystal are studied. Comprehensale initio numerical simulations based on the finite-difference
time-domain method show efficient third-harmonic generation in a photonic crystal waveguide consisting of
the 1D defect line. The relationship between the third harmonic generation process and the nonlinear modal
properties of the waveguide is discussed. We investigate optical limiting in such a device, that is, control of the
transmitted power as a function of the Kerr-induced variation of the refractive index. Power dependent spectral
changes in such a device and its use as a frequency selector are also examined.
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[. INTRODUCTION One promising approach, which is suitable for ultrafast
devices, is to employ intrinsi@err) nonlinearities in the PC
During the last decade the physical properties of photonienaterial. A Kerr material having a nonlinear refractive index
crystals (PC9 have been a fruitful research area. PCs ardeads to a nonlinear PBG, whose band structure can be con-
dielectric structures whose spatial modulation of refractivetrolled by the intensity of the input optical signal. Kerr-active
index leads to a profound change of the photon dispersioflefects can be embedded in the PC to form waveguides or
relation[1—3]. Photonic crystals can be seen as the opticalesonant cavities. The enhanced driving fields present at
analog of semiconductors, i.e., photonic band (RIBG) ma- thgsg defgcts can mdupe effects.wnh potgnugl applications:
terials display gaps in their photon density of states. Further€fficient higher harmonic generation or switching at reduced
more, defects in their periodic structure can introduce localOPtical energies. For instance, giant third-harmonic genera-
ized stategmodes within the band gap§4]. This analogy tion (THG) in a (1D) PC-based_mlcrocawt{/lG] has been
has helped drive research efforts to find technological app“[ecently de'.“"r?s”ated- Thus., It has been shown .that the
cations for PBG materials. Thus, two-dimensiof@D) and strong localization of the optical field near the cavity can

: . . lead to an enhanced THG efficiency; this enhanced TH in-
(3D) PCs at optical frequencies have been fabricated Overthteensity at the frequency of the cavity mode can be three

past few years and several optical-device applications hav rders of magnitude higher as compared to the intensity of

been proposed and demonstrated. For instance, it has begfy, T generated at other frequencies within the band gap. In

demonstrated that linear defects in PBG materials can act gg,, analysis, we focus on effects induced by a 1D nonlinear
efficient waveguides, transmitting light around sharp corner ey defect émbedded in a 2D linear PC.

with relatively small lossef5,6]. Furthermore, under certain - The influence of the Kerr defects inserted in a 1D PC on
circumstances, pointlike defects in PBG materials behave age transmission properties of a slab of crystal was first stud-
resonant microcavities that can be used to efficiently couplged in[17] and a dynamical shift in the location of the band
light into PBG-based waveguides. This effect can be used tgap, due to the nonlinear medium response, was reported.
design resonant add-drop filtdrg|] and other integrated op- Also, the existence of stable nonlinear localized mddes-
tical component$8—12. Potentially, these applications can tons in weaklymodulated 2D and 3D PCs, with Kerr non-
lead to the design of new compact integrated optoelectronitinearity, was predicted in Ref18]. Recently, the existence
or all-optical circuits. of new types of nonlinear guiding modes was reported in
One emerging area of research in PCs is dynamical corRefs.[19,20. These modes are created by inserting a 1D
trol of their optical properties. Several studies have showrKerr defect in a linear 2D PC and are localized, by the de-
that external variation of the PC refractive index can lead tdfect, in a direction transverse to the waveguide axis.
changes in the band-gap structure of the material. These ef- In this article, we study the properties of such nonlinear
fects include changes in the refractive index through variamodes and their applications to THG and optical limiting.
tion in temperatur¢l3], the electro-optic effedtl4], charge- Our approach avoids any approximations to the underlying
carrier injection, or photorefractidri5]. The main drawback governing equations, thus allowing a first-principles analysis.
of all these schemes is that they are generally rather slown exact treatment is necessary since small variations in the
compared to the speeds required by modern communicatiorield can cause a major change in the optical properties of
systems. such a structure. The paper is organized as follows. In Sec. II
we describe the crystal geometry and introduce the numeri-
cal method used here, i.e., the finite-difference time-domain
*Electronic address: mayank.bahl@columbia.edu (FDTD) method, and the modifications needed to incorporate
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FIG. 1. A PC with a column of nonlinear defect rods. The
dashed lines show the boundaries of the PC-based perfectly 05
matched layer. The parameters of the PC are as follows: lattice k [n/a)
constanta=0.58 um, radius of the lattice rods=0.18, radius of y
the defect rods 4=0.1a, and dielectric constant of the lattice rods
and linear part of the dielectric constant of the defect reds
=11.56.

FIG. 2. The localized defect modeolid line) within the photo-
nic band gap for our photonic crystal with a line defect. The param-
eters of the photonic crystal are those in Fig. 1.

nonlinear materials. In Sec. I, we discuss the characteristicgpectra_ For most of this article we consider long crystals
of THG by the 1D nonlinear line defect. In the subsequentyith a large number of defect rods along the longitudinal
section, we analyze the power limiting behavior induced bygirection. Consequently, the guiding mode contains a large
such nonlinear modes. In this same section we also discusgymber of discrete states; however, its fine spectral structure
the tunability and frequency selectivity of potential devicesjs not resolved over the simulation times used in our compu-
that exploit the properties of these nonlinear modes. Finallyiations. This is not a limitation of our approach but rather a
we conclude with a summary and discussion of our resultssimpiification introduced to reduce the computational time.
In fact, in the last part of Sec. 1V, the discrete modal spec-
Il NUMERICAL APPROACH trum is con_sidergd in detail when the properties of a small
crystal are investigated.

Our numerical simulations use a 2D rather than a 3D ge- In order to simulate light propagation within this PC
ometry for the PC. This reduces the computation time constructure, we used the FDTD methffil], which solves the
siderably, while still capturing the essential physics of thecomplete set of Maxwell's equations on a spatial grid that
problem. We consider a lattice of rods, with 55 rows and 20contains the structure of interest. Since the FDTD method is
columns, made from a linear optical material having a col-well known and widely used in many areas of computational
umn of Kerr-active defect rods. Tleeaxis is aligned with the  electromagneticsfor a detailed presentation of the FDTD
rods. The electric field is polarized along this akldV po-  method, see Ref22]), we present here only those features
larization and propagates in thefy) plane. concerning its application to structures containing nonlinear

The geometry of the PC and its dimensions are presentematerials. The Kerr effect is modeled by introducing an
in Fig. 1. Its dimensions and linear dielectric constant intensity-dependent change of the refractive index:
=11.56 were chosen such that the first band gap is centered
at A=1.55um. As Fig. 2 illustrates, by inserting a line de- Nl
fect made fromlinear material into the photonic crystal, a An= 1+1/gy @
guiding defect mode is formed within the first band gap. The
band diagram of Fig. 2 is constructed using only the lineakyhereAn is the change in the refractive indexis the local
optical properties of the crystal and assumes an infinite crysntensity of light and is proportional tE|2, 1. is the satu-
tal. The minimum guiding frequency isw.=1.282  ration intensity of the nonlinearity, am, is proportional to

X 10" Hz and corresponds to the center of the Brillouin the third-order nonlinear susceptibiligf>). Equation(1) can
zone, k=0, whereas the maximum frequencydg=1.437  pe cast in a dimensionless form,

X 10' Hz and corresponds to the boundary of the Brillouin
zone, k= 7/a. This gives a mode bandwidth dfw=1.55

X 10'* Hz. For a shorter crystal, the structure of the guiding =
mode consists of a number of discrete crystal states or 1+alul?

modes, usually equal to the number of Kerr rods within the .

line defect in the crystal. For a sufficiently short crystal, Here,n, andu(x,y) are the dimensionless nonlinear refrac-

these discrete modes can be resolved in the transmissidive index and the dimensionless field amplitude, respec-

n,|ul?

2
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tively, and«a is a dimensionless coefficient. The relationship  In order to reduce reflections from the boundaries of the

between the field intensityand the normalized field is PC, we employed a PC-based perfectly matched I&3eiL)
5 method[24]. Thus, the PML that terminates the computa-
I=pul?, (3 tional domain contains seven rows of the crystal in the lon-

gitudinal direction, and two rows on each side of and trans-
verse to the line defect. The area containing the PML rods is
delineated in Fig. 1 by a dashed line. As compared to the
Pin=,8f [u(x,0)|%dx. (4)  case when the PC is terminated simply by a standard PML,
this approach reduces the reflections from the boundaries by
Here, P, is the total power per unit length launched into the @ much as three orders of magnitude. The efficiency of this
crystal and the integral is taken along the phase front of th@Pproach stems from an improved matching of the propaga-
input field. The input fieldi(x,0) is normalized such that the tion constants of the modes propagating in the PC and the
integral in Eq.(4) is equal to 1um. In our computations, for decaying waves in the PML. We chose to place the PML
simplicity, we assume that the fields are much less than thtoundary at the midpoint between two rods since it is known

where the constamg is determined from the initial condition

required for saturation, i.e., 'It;JMbLe[?Aj optimum location for minimum reflection from the
’ 1 Finally, the time step in the FDTD simulations is an im-
Umax< o ©) portant component of the numerical method. In linear optical

materials, the smallest step is determined by the Courant
Thus, the change in the refractive index is simply given by stability limit [22]. However, when regions containing non-
o linear materials are introduced into the computational do-
An=n,|ul?, (6)  main, this limit is no longer valid; there is then m@opriori
. criterion to determine the time step. Therefore, for a fixed set

wheren,=n,, so that the required input parameters are theof input parameters, we reduced the time step until additional
input powerP;,, and the nonlinear refractive inde. changes caused no further alteration of the computed results.

In order to include optical nonlinearity into the FDTD In fact, in certain cases, we had to reduce the time step to
algorithm, a nonlinear polarization term is added to the lineaone-tenth of the corresponding Courant limit.
polarization term in Maxwell’s equations. Thus, the linear

polarization term is given by
. HARMONIC GENERATION

pL= fof YB(t—7)E(r,7)dr 7 Consider an optical pulse, whose central frequency is at or
slightly detuned from that of the guiding modelkat 0 and
. o . whose intensity is high enough to induce appreciable
222utg?er;%rg:]nseeagfpfr:gr'nzgté?s'mteiggit\?:r: g\yodels an InStanta.c'hanges in the nonlinear rgfractive index. .When.such a pulse
is launched into a photonic crystal, the light will be trans-
PNL= e x| E(r, 1) |2E(T 1), ®) versely confined and guided by the line defect with the
waveguide properties changed from those at low input
whereyx®)(t) is the third-order susceptibility and= (x,y) is power. In addition, we will show below that Kerr-active de-
the position vector. The electric field is related to the dis-fects can generate a third harmonic with relatively high con-

placement vector by version efficiency. An obvious advantage of using line de-
fects of Kerr active materials as opposed to previously

D—P-—PNt proposed schemes, e.g., pointlike Kerr defects or Kerr-active

E= € ' ©) microcavities embedded in 1D line defects, is that one ob-

tains a larger active region where the TH is generated, and,

The above equations, coupled with the Maxwell equa-consequently, higher efficiencies.
tions, can then be solved iteratively by using Yee's central- To investigate these phenomena, we launched Gaussian
difference scheme to yield the field distribution over the fi-pulses, in both time and space, into the photonic crystal.
nite grid [22]. These nonlinear FDTD simulations were These pulses had a full width at half maximum of 17.6 fs,
performed using the commercially available softwarecorresponding to a power spectral width dfw,=9.5
FULLWAVE [23]. X 10' Hz. This value was chosen such that the spectral

The grid used to discretize Maxwell’'s equations containechandwidth of the pulses fit within the band gap and the entire
N, =508 points in thex direction; there were five computa- range of frequencies in the guiding mode is covered. An
tional points across a nonlinear r¢itie smallest structures in increase in the pulse bandwidth, such that a part of the pulse
the PQ. Along the longitudinal directiony, Ny,=1620 lies in the continuum band, would inject unwanted radiation
points. Our numerical computations showed that the fieldénto the PC and is thus avoided. In contrast, a pulse with a
reached a negligible value after a distance of ten rods, in amaller bandwidth would have a smaller frequency overlap
direction perpendicular to the defect line. Therefore, we weravith the guiding mode, so that a lesser amount of radiation
able to use a relatively small number of rods in the transverseould be coupled into the crystal. Therefore, in this respect,
direction. the pulse bandwidth we chose was optimal for our numerical
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investigations. The center frequency of the pulse, ol ' @)
=1.263x 10" Hz, is slightly detuned from the defect mode
frequency atk=0, .. The input pulse was focused to a
spot having a ¥ width of the lattice perioda at a point
situated at 0.& from the input facet of the crystal. We varied
both the power of the input pulse and the nonlinear refractive
index of the defect rods.

Since the FDTD method completely describes the dynam-
ics of the full electromagnetic field, no approximations are
made when this method is employed. To be more specific,
we avoid the approximations that are usually made in the
slowly varying amplitude formalism. As a consequence, the 0 25 5 75
influence of effects such as self-phase modulation, cross
phase modulation, or four-wave mixing on the higher har-
monic generation process are treated in a unitary mannel 44 . . . .
Furthermore, our FDTD-based numerical simulations show (b)
that the electric field varies significantly across the defect
rods, an effect which has not always been considered ir
some earlier studie$20]. For example, our computation
shows that the variation of the field between two grid points
within the defect rods can be as high as 20%. Therefore, ir
these situations, one cannot apply the effective discrete eque . o
tion model introduced recently in R€R5], since it assumes 107 - TR e ]
that the fields across the defect rods are constant. Moreove e,
since the defect rods are closely spaced, one cannot use tt
coupled-resonator optical waveguide€ROW) approach
[26,27], a powerful method that can provide analytic results ] 5 10 15 20
but that is accurate only when the distance between the de
fect rods is rather large, such that the defect modes assoc.

ated with t_h_ese defect rods are weakly coupled. . FIG. 3. (a) The output spectral density of the optical field for
The efficiency of the THG process was determined bynzzo.l,umzlw andP,,=1 W/um. (b) The ratio of the peak in-

computing the fields at a series of distances from the SOUrC@sity of the third harmonic and the fundamental wave vs propa-
along the waveguide. These field data were then Fouriegation distance fon,=1 um?/W (O), n,=0.1 um?W (V), and
transformed and squared to obtain the power spectral densify,—5 ,m2/w (x). The input power, in all cases, waB;,

(PSD. The power at the TH and the fundamental is then=1 wyum.
calculated by integrating the PSD in the frequency domain
aroundwg and 3w, respectively. The power at the TH is determine the value oh, for which the conversion effi-
then normalized to the power at the fundamental. A typicakiency is highest. First, at low values of, increasing the
example of the spectral output is shown in Figa)3lt shows  Kerr coefficient of the defect rods enhances the nonlinear
that a degenerate four-wave mixing process, viz., THGconversion process, thus increasing the generated TH. On the
yields a pulse at 3. other hand, for large Kerr nonlinearities, as we show in the
Figure 3b) shows the efficiency of the conversion processnext section, the transmitted power sharply decreases with
as a function of distance along the waveguide for three difthe increase of the input power, which, in turn, decreases the
ferent Kerr coefficients. The field increases at the input faceTHG efficiency.
and then peaks before attaining an almost constant value, A spatial mapping of the TH field shows that it is confined
which then slowly decreases over the remaining length of thén the transverse direction. This apparent confinement occurs
crystal. The initial transient phase in FigbBis due, in part, despite the fact that the frequency of the TH is within the
to the optical clamping phenomena of the fundamental; thigontinuum of the PC. This shows that the rate of THG at the
will be discussed in the next section. The conversion effidefect rods is far greater than the rate at which it diffracts
ciency, which can be calculated from the data in Figp)3is  through the crystal and therefore the TH appears spatially
significant. For example, the THG efficiency calculated thisconfined. To analyze the degree of this apparent confinement,
way is 1% for n,=1 um?/W and an input power of the generated TH was monitored at several locations in the
1 W/um. The relatively high conversion efficiency is due, in transverse direction, after the pulse had propagated eight
part, to the tight lateral confinement of the fundamental inrows along the longitudinal direction. The first monitor point
the defect line. was located at the defect rod while the remaining points were
The data in Fig. @) also show that there is a clear opti- at the first three periods from the defect line, on both sides in
mum in the THG efficiency. In particular, Fig.(t9 shows the transverse direction. Then, as before, we determined the
that the THG efficiency is sensitive to the variation of the PSD of the fields at these monitoring points and the power in
Kerr coefficient of the defect rods. Two competing factorsthe TH was calculated. The results are shown in Fig. 4. The

i

—_
oI
o

Spectral intensity [W/um

Frequency [1014 Hz]

THG efficiency

Distance [um]
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2.5x107F—— . . . . IV. OPTICAL LIMITING AND FREQUENCY SELECTION

10 X One interesting potential application of nonlinear photo-
2 nic crystals is that of optical limiting. In the version of the
- device studied here, a change in the index of the material,
2% caused by the input pulse, shifts the frequency spectrum of
x *x | the propagating defect mode, thus modifying the device
® Distancem] transmission. The process will be controlled by the nonlinear
Kerr coefficientn, and by the input poweP;,, . Since in an
experimental setup, andP;, are free parameters, we stud-
ied the influence of these two parameters on the characteris-
05} ] tics of the optical limiting process.

Optical limiting was studied by first launching pulses into
the crystal while varying the input power. In addition, limit-

Normalized power

1.5}

Spectral intensity of the TH [arb. units]

0 R Rt TPVVN e N . . . . .
6.2 .21 6.00 6.05 6.04 6.95 ing was glﬁo efxar(rjur.]ed for d|fferecr)1t ch0|ce$I of Kerr coeffi
Frequency [10™ Hz] cients, with a fixed input power. Our crystal geometry was

chosen such that, at the frequency of the defect mode, the
FIG. 4. The spectral density of the optical field at three trans-Crystal is essentially transparent for very low input powers.
verse positions with respect to the line defect: at the defect lind=igures %a)—5(c) show the transverse spatial distribution of
(continuous ling one period from the defect lin@lotted ling, and  |E|? for an input peak pulse power &,=1 W/um at three
two periods from the defect linédashed ling In the inset, the different propagation times, or distances along the defect
normalized power of the TH vs the transverse distance. line. As is shown in the figure, at the end of the crystal the
transmitted intensity has decreased to less than one-half of

power in the TH at the first three periods, normalized to thd€ INput intensity. Limiting is even more evident in Figs.
power of the TH at the defect line, is presented in the inset2(@—5(f) which show the same intensity distribution for an

As this figure illustrates, the TH is strongly confined along'?]'outt powe_r[tongT 10 \t/\:#‘m Itn tth!s case,ttrt]we u:\;[vensné/ of ;
the transverse direction, almost vanishing after a few Iatticé € transmitted pulse at the output IS more than two orders o
magnitude smaller than the input intensity.

constants. Similar calculations, for other propagation dis- One factor that determines this behavior is the frequency

tances, show that the TH remains confined near the defe h - . .
. ' . . ift of the guiding mode, induced by the change in the re-
line. This characteristic of the THG process renders it usef ractive index. Thus, as the mode is shifted in frequency, the

for potentigl applications in integ_rated frequency .converto_rsove”ap between the bandwidth of the mode and the band-
Interestingly, the group velocity associated with the dis-jqth of the pulse changes, leading to a variation of the
persion curve of the guiding mode shown in Fig. 2, given byamount of power coupled into the crystal. The frequency

vg=Jw/Jk, is extremely small, especially near the edge andshift sw(k), at a particulark, can be evaluated by using
the center of the Brillouin zone. This was observed by reperturbation theory; the result is

cording the time required for a pulse to cross a particular

monitoring point. Since the power flUX of the propagating

mode is directly proportional to the product of the group 5w(k):_K‘”(k) on (10
velocity and the field intensity, the field intensity within the n '’

crystal will be enhanced over that in free space, for the same

= 2 i
pgwg: 2?);_ \I/:v(;r ;X;Q;F}Iig’ldf?gfen;twg/zv ?Qgirﬁgt:p?(ten where « is the ratio between the energy of the mode con-
b oy Y bp y tained in the regions wher@n+ 0 and the total energy of the

times that at the input facet of the crystal. This strong €N mode. This equation shows that for self-focusing materials

Czrnsﬁgrr?ent of the optical field leads to high harmonic con-(n2>0) the mode is shifted to lower frequencies. Equation

) - _ (10) can be used to calculate the change in the refractive
Figure 3b) shows that the- efficiency ,Of t,he THG IS index of the small rodsAng,, required to shift the highest
strongly dependent on the nonlinear refractive indgxand, guiding frequencyw, to frequencies lower than that of the
implicitly, on the power in the defect mode. Other factorsjnnyt: this would give an estimation for the change in the
also determine the efficiency of the THG. For example, dugefractive index required for the extinction of the transmitted
to the fact that the shape and position of the defect mode igower. However, since the field distribution corresponding to
the band gap affect the degree of confinement of the fiel& particular mode cannot be determined rigorously when the
near wo and the amount of power that is coupled into thePC contains nonlinear material, we chose another method to
crystal, the parameters of the defect line will also influencecalculateAn,, : we determined the band structure of the PC
the efficiency of the THG process. Also, as will be clear fromfor increasing values of the refractive index of the small
the results in the next section, the input power plays an imfods, and found the value of the refractive index change at
portant role in setting the transmission properties of the cryswhich the threshold condition described above is met. The
tal in the defect region and, consequently, the efficiency ofesult isAn.,~1.3. This value is smaller than the change of
the THG process. the refractive index in the case presented in Figd)-55(f),
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& 02+
T 01 051
0- 0
-05 0 0.5 1 -0.5 0 0.5 1 FIG. 5. The field intensity near
0.4 — ) 0.04 the defect line at three different
T 03 0.03 - ©) propagation times: the first row
5 corresponds t@t;=32.7 um, the
g 027 0.02 second toct,=98.3 um, and the
S, i =
c 014 0.01 - third tq ct;=196.6um. The
w ‘ graphs in the left column are for
0- 0- an input power ofP;,=1 W/um
05 0 0.5 1 0.5 0 0.5 1 while the graphs on the right col-
0.4 © 0.04 - umn are forP;,=10 W/um. n,
c _ 2
T 034 0.03 - 0.2 um?/W for both cases.
5
g 0.2 0.02
S,
Ng 0.1 4 . 0.01
0- 0 -1 T A| 1
-0.5 0 0.5 1 -0.5 0 0.5 1
X [um] X [pm]

which isAn=2.0, so it explains the reduction in the inten- then normalized to the power in the fundamental at the input.

sity of the transmitted pulse observed in these figures.

The inset in Fig. 6 contains a plot of the normalized trans-

To study the behavior of the crystal systematically, wemitted power vs the input power for,= 0.2 um?/W, a typi-
repeated the computations for a range of launch powers anthl value, for example, in GaAlAs semiconductors; the plot
Kerr coefficients; the resulting transmitted powers are plottecshows a marked decrease in the normalized transmitted
in Fig. 6. The transmitted power, in each case, was found bpower with increasing input powers. For instance, the nor-

integrating the PSD over the frequencies negr and was

Normalized transmitted power

_2_

10

-3

107k

Transmitted power
=
O

0 10 20 30 40 50
o Input power [W/um]

2

4 5 6 7 8

3
Kerr coefficient n, [umzNV]

malized transmitted power decreases by about three orders of
magnitude when the input power is increased from 1 to
25 W/um. For a crystal with a thickness of 2m and the
same input pulse shape as in Sec. lll, this corresponds to a
switching energy of about 350 fJ. This demonstrates that
small changes in the input power can induce large variations
of the transmitted power.

Furthermore, the guided power strongly depends on the
nonlinear refractive index. In fact, we observed that for large
values of the Kerr coefficient,, the energy launched into
the crystal remains confined at the first few defect rods. The
fields at each of these defect sites resemble a localized point-
like defect mode. Figure 6 shows that the transmitted power,
for an input power of 5 Wim, is reduced by three orders of
magnitude as compared to that at the input, if the Kerr coef-
ficient isn,=7.5 um?/W. At high Kerr coefficients, a satu-
rationlike behavior is observed, with the transmitted power
remaining essentially unchanged with a further increase in
the Kerr coefficient. Note that fdP;,=1 W/um the satura-
tion of the transmitted power occurs at a value of the Kerr
coefficientn,~ 1.5 um?/W, a value that corresponds to in-

FIG. 6. The ratio of the power in the guiding mode to the input duced changes in the refractive indér~1.5, that s, close

power atwq vs the Kerr coefficienn, for three different launch

powers: P;,=1 W/um (O),

Pin=3 W/um (X),

and P,

to An.,. Moreover, as the Kerr coefficient increases, another
phenomenon is observed, namely, the propagating field be-

=5 W/um (O). The dotted lines are a guide to the eye. The insetcomes highly confined at the defect rods. In fact, the overlap
shows a plot of the normalized transmitted power vs the inpubetween the fields at neighboring rods decreases and each
power forn,=0.2 um?/W. defect rod tends to behave as a point defect. Consequently,
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FIG. 7. The ratio of the power in the guiding mode to the input Frequency [1 o4 Hz]
power atwg vs the Kerr coefficienn, for two different values of
the pulse spectral width:Aw,=6.3X 108 Hz (O) and Aw FIG. 8. The PSD of the guiding mode at the crystal output vs
=Aw,/3=2.1x 10"z (O). In both casesP;,=1 W/um. frequency for five different Kerr  coefficients: n,

=0.5 um?/W (O), n,=1 um?/W (X), n,=1.9 um?/W (A), n,
) _ o ) - =25 um?/W (*), and n,=5 um?/W (+). The input power was
based on an analogy with the tight binding model in solidp, =1 w/um. The dotted lines are a guide to the eye.
state physics, the transmitted power in such a case will be

reduced. Thus, above a nonlinearityrof~ 3.5 um?/W, for

all three input powers, the transmitted power does not d by the | Thi b dil in Fi
change significantly with any further increase in the Kerr&Nd NOt by the input power. This can be readily seen in Fig.

coefficient and, apparently, saturates. 8. Thus, by using the data prese.nteq in Fig. 6, one can esti-
We mention that, for pulses with smaller bandwidths, Mate that tht_a change in refractive index that Ieac_is to the
steeper switching curves are observed. This phenomenon fgduency shift displayed by the curves corresponding,to
illustrated in Fig. 7, which shows the switching curves that=0.5 um’/W andn,=5 xm?W in Fig. 8 isAn~0.1. On
correspond to two pulses with different bandwidths but withthe other hand, numerical calculations of the band structure
the same input power. As seen in Fig. 7, the switching curvéhow that in order to obtain the same frequency shift of the
that corresponds to the pulse with a smaller bandwidth iguiding mode band one has to increase the refractive index
steeper than the one that corresponds to a pulse with a largey An~0.07, that is, in agreement with the above estimate.
bandwidth. This result is a consequence of the fact that, iin contrast, had we used the input power to calculate the
order to switch a pulse with a smaller bandwidth, one rechange in the refractive index, we would have obtained
quires a smaller shift in the frequency of the guiding mode~1. Therefore, while thénput power changes the band
band, and, consequently, a smaller change in the refractivgructure at the input facet of the crystal, leading to strong
index. Furthermore, Fig. 7 shows that for pulses with theyariations in the amount of power coupled into the crystal,
same input power, the transmitted power decreases with dgne spectral properties of the transmitted pulse are deter-
creasing bandwidth of the pulse. This phenomenon can bgined py the influence of thieansmitted poweon the guid-
understood by noting that the transmitted power decreasqﬁg mode. The shift in the frequency of the guiding mode

with decreasing overlap between the bandwidth of the pUISBand as, is increased from 0.5 to 5,0m?/W, corresponds

and the sp_ectral width of the r_node. Thus, for a given fre'to a wavelength shift aA\A =40 nm in the peak of the output
guency shift of the mode, this spectral overlap will be

. - spectrum.
sm_lzilﬂzrffrcgrcﬁgl:;zs\/v g? tilrgagl;lejirdibnzndmvgglg]sﬁand can also be These results show that significant frequency shifts can be

controlled via the change in either input power ros. We achieved at reasonable input powers using the defect band-

examined this effect in detail by calculating the PSD of the!Vidth of the crystal efficiently. Since the defect mode is

guided mode at different Kerr coefficients; the results ard’0@d, this effect can be used to “tune” short pulses. For
plotted in Fig. 8. The calculation was made for a fixed input€X@mple, in the case considered here, the width of the defect
power of 1 Wjum. The figure shows that as the nonlinear mode is~6 THz, thus allowing a significant frequency shift
shift in the refractive indexAn, varies, i.e.n, increases ata across the transform limited bandwidth of a 0.15 ps pulse.
fixed input power, the peak frequency of the guided mode at The detailed frequency shifting behavior of the defect
the end of the crystal decreases; alternatively, the same bgode can be examined by studying propagation through a
havior is obtained if the input power is varied. Importantly, shorter crystal. To do this, we propagated pulses of different
the mode frequency shift is induced by the transmitted powepowers in a crystal containing only seven rows. As explained
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NE al [ _ three channels, in a 10 Gigabits WDM transmission line with
= ; § 4 N an interchannel separation of 0.8 nm.

u,; 3.5 i'i % 5 it 1 As a final remark, we point out that the line defects in-

1 | = { . . . .

o i i'i z - vestigated here can be incorporated into more complex inte-
> 3T i \i £ grated optoelectronic devices. For instance, one can take ad-
2 gl ! il g’ g <Al ] vantage of the nonlinear phase shifts induced by line defects
£ 1 oolE e 213 215 and use them for one arm in a Mach-Zehnder interferometer
s 2 i ii i Frequency [10' Hz] [28] or as the active region of a FabrysBeresonator. The

3 ) 1! advantage of using a line defect instead of a CRQ

g 9 i suggested in Ref28]) is that this choice can lead to larger
§ 4 nonlinear phase shifts per unit length and, therefore, to more
'S , compact devices.

€ osf .

2 \

2 2.05 2.I1 2.|15 2.|2 2.I25 .“2.3 V. CONCLUSIONS
Frequency [1014 Hz]
In this article we have demonstrated the effects produced
FIG. 9. The PSD of the optical field after propagating through aby 1D defects made from a material with Kerr-type nonlin-
crystal, containing seven rows, for four different input powers: €arities, which are embedded in a 2D PC. We have demon-
Pi,=3 W/um (dash-dox, P;,=7 W/um (solid), P;,=10 W/um strated that, by achieving a strong confinement of the guiding
(dot), and Pj,=15 W/um (dash. The inset plots the calculated mode in the defect line, one enhances the efficiency of the
PSD, around the central spectral peak. The Kerr coefficient waghird-harmonic generation process. The characteristics of this
n;=0.2 um*/W. process and its dependence on the parameters of the defect
rods have been discussed and explained. All numerical simu-
lations have been performed starting from the complete
in Sec. Il, the defect mode of a shorter crystal is composed dflaxwell’s equations, thus avoiding common approximations
well resolved spectral peaks. This structure is seen clearly ithat are made when one investigates the propagation of
Fig. 9, which shows the transmitted spectra of the crystal atvaves in nonlinear media. Also, we have discussed the im-
four different input powers, fon,=0.2 um?/W. The calcu-  plications of our results to the design of integrated all-optical
lations were also repeated for crystals with a larger numbedevices, namely, frequency selectors and third-harmonic gen-
of defects and the PSD of the corresponding output pulsesrators.
displayed a greater number of more closely spaced peaks. We have also demonstrated that, due to the nonlinear re-
The peaks become narrower on increasing the number &fponse of Kerr material embedded into the 2D PC, the trans-
defects and those at higher frequencies are suppressed so thatted power in the defect line is strongly dependent on the
the overall bandwidth of the mode is reduced. input power. This phenomenon can be used in all-optical
Figure 9 also shows the shift in the frequency of the de-devices. These results could also be extended to materials
fect mode band with varying input powers. The frequencywith x(®) nonlinearities. Higher efficiencies for second-
shift of the peaks has an approximately linear dependence dmrmonic and TH generatiofusing sum frequency genera-
the input power and is almost the same for each peak. Thusipn) are expected in similar structures with J%") defects
each increase of 5 Wm in the input power induces a fre- in a linear 2D PC due to the highly enhanced fields.
quency shift of~0.3 THz in the central peak. Another char-  Finally, we mention that the phenomena discussed here
acteristic of the PSD in Fig. 9 is that, as the input powercan be translated to photonic crystal fib@P€F3, consisting
increases, the relative power distribution among the peaksf a periodic lattice of air holes that run along an optical
changes. This behavior is also at the origin of the overalfiber. Thus, by incorporating nonlinear materials in such de-
downward shift in the PSD shown in Fig. 8. Notice that in vices, one can take advantage of the strongly confined modes
the case shown in Fig. 8, the PSD corresponds to a long&upported by the PCF. This strong localization enhances the
crystal so that the fine structure of the mode spectra is ndtonlinear behavior of these modes, an effect that can have
resolved. Furthermore, as the power increases, the width, ifnportant technological applications.
frequency, of each peak decreases; we attribute this behavior
to the fact that as the power increases the light becomes more
confined at the defect rods, so that there is less energy loss in ACKNOWLEDGMENTS
the_ transyerse direction. .However, we are presently investi- The authors thank Hongling Rao, R. Scarmozzino, T. Izu-
gating this phenomenon in more detail. Moreover, note thaf 5 and F. Pizzuto for many useful discussions on the
the narrow peaks of 0.5 THz, seen in these small crystalsspTp method. This work has been supported by the NIST
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