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Simulation of nonlinear propagation of intense ultrafast laser pulses is a hard problem, because of the steep
spatial gradients and the temporal shocks that form during the propagation. In this study we adapt the iterative
grid distribution method of Ren and Waifd. Comput. Physl159, 246 (2000] to solve the two-dimensional
nonlinear Schrdinger equation with normal time dispersion, space-time focusing, and self-steepening. Our
simulations show that, after the asymmetric temporal pulse splitting, the rear peak self-focuses faster than the
front one. As a result, the collapse of the rear peak is arrested before that of the front peak. Unlike what has
sometimes been conjectured, however, collapse of the two peaks is not arrested through multiple splittings, but
rather through temporal dispersion.
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[. INTRODUCTION The method of dynamic rescaling works extremely well
for solutions of the NLS with radially symmetric initial con-
The nonlinear Schdinger equatior(NLS) ditions, in which case focusing by 10or more can easily be
realized(see, e.g., Fig. 3.5 ifl]). Although the method of
i(2,X,Y)+A g+ |g|?p=0 (1) dynamic rescaling has been extended to NLS’s with noniso-

tropic initial conditions[5] and to perturbed NLS'{e.g.,
is the model equation for the propagation of entinuous  NLS’s with normal time dispersiofi6]), in such cases dy-
wave) laser beams in Kerr media. Herg,is the electric field namic rescaling is considerably less efficient, because the
envelope,z is the axial distance in the direction of beam solution does not focus uniformly and/or it is not clear how
propagationx andy are the coordinates in the transversetg extract the physical focusing rate from the solution. The
plane, andA | =dy,+dyy is the diffraction term. It is well jterative grid redistributioflGR) method, developed by Ren
known that when the power, & norm, of the input beam is  and Wang, overcomes these difficulties by allowing the grid
sufficiently high, solutions of Eq(1) can self-focus and be- points to move independentiyather than uniformlyaccord-
come singular in a finite distance([1,2]. Because of the ing to a general variational minimization principle. This
infinitelly large gradients that exist at the singula_lrity, standardnethod has been showed to be highly effective for solving
numerical methods break down after the solution undergoegartial differential equation§PDE’s) with singular behavior
modera_te focusing3]. Ther_efore, as part of the research ef-guch as the NL1) and the Keller-Segal equations with
fort durlng the 1980s to find the blowu_p rate of the NLS, multiple blowup pointg7]. As we shall see, however, apply-
McLaughlin et al. developed the numerical method dy-  ing the IGR method to nonstationary NLS models that de-
nam|Ca| rescal|ng[4], Wh|Ch can reSOIVe the SO|utI0n near Scribe the propagation Of u|trash0rt pulses turns out to be
the singularity at extremely high amplitudes. This methodconsiderably more demanding.
exploits the known self-similar structure of the collapsing
part of the solution near the singularity, which relates the
shrinking transverse width of the solution to the increase in A. Simulations of ultrashort pulses
its norm. Therefore, the solution is computed on a fixed com- .
putational grid, which in physical space corresponds to a grid The NLS (1) d_oes not m_clude temporal effects. These
that shrinks uniformly toward the singularity. The focusing effects become Important in the case of uItrashprt Ias_er
rate of the grid points is determined dynamically from somepU|SeS‘ whose propagation can be modeled by the dimension-

norm of the solution [|V|y|%dxdy, max|y, etc). Be- less nonstationary NLE8]

cause the focusing rate of the grid points can be chosen to be (2,5, 0+ A, gt |20+ ey
the same as the physical focusing rate, in the transformed e “
variables the solution remains smooth and can thus be solved +ie[(|¢)2)— A, ] — €344=0, (2

using “standard” methods.

where nowy is also a function of timé. The dimensionless
*Electronic address: fibich@math.tau.ac.il parameters are given by
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1 1 c L girk Eq. (3) with the “original” IGR method improved on previ-
1=, €@ L Tno €T di 2‘““’, ous simulation results, these simulations could still not pro-
4r ok CgkoT NoCq T ceed much past the temporal splitting. Therefore, in this

. study we improved the IGR method by introducing a high-
wherer, andT are the transverse width and temporal dura-grger finite-difference scheme on nonuniform grids. This im-
tion of the input pulse, respectiveljk=wno(w)/C, Ko provement enabled us to present numerical simulations of
=k(wo), ¢q'=(dK/dw),,, andLg=rgke is the diffraction  ylrrashort pulse propagation well beyond the asymmetric
length. In the case of ultrashort laser pulggsis consider- temporal splitting.
ably smaller thare, and €5 [8]. Therefore it is reasonable to

neglect the nonparaxial termy y,,, in which case Eq(2) B. Organization
reduces to . . .
The paper is organized as follows. In Sec. Il we review
U (Z,X,Y, )+ A g+ | ]2y the original IGR method, which was introduced [iA]. In
_ Sec. Il we describe two accuracy improvements that are
+ie[(|¢]°0)— AL ]~ e3¢ =0. (3)  needed for resolving shocklike structures and strong oscilla-

tions in the nonstationary NLS: the use of a high-order

The scalar equatiof®) does not take into account the vec- scheme on a nonuniform grid, and of an orthogonal grid. In
torial nature of the electric field. Since the magnitude OfSec_ IV we use the improved IGR method to So|ve the time_
vectorial effects is als®(e;) [9-11], neglecting vectorial dispersive NLS
effects is justified within the framework of EQ3).

Self-focusing in the two-dimensioné2D) NLS, Eq. (1), i,(Z, %Y, 1)+ A — ez + | 9] 2=0. (4)
is highly sensitive to small perturbations. A general method
for analyzing the effect of small perturbations in the 2D We begin with Eq(4), since most research on propagation of
NLS, calledmodulation theorywas developed ifil,12]. Ap-  ultrashort pulses has been carried out within the framework
plication of modulation theory to Eq2) showed that the of this equation. In addition, for many years the postsplitting
self-focusing pulse would undergo @asymmetric temporal dynamics remained a matter of debate, since “standard” nu-
splitting [8]. Such asymmetric splitting was later observedmerical methods broke down shortly after the splitting. In-
experimentally, as well as in numerical simulations of per-deed, the first reliable simulations of BE¢) which could go
turbed NLS equations that are equivalent to &)(see[13—  beyond the pulse splitting were obtained only recently in
15]). After asymmetric temporal splitting the solution devel- [16]. The results obtained using the IGR method agree quali-
ops temporal shocks. As a result, standard numericahtively with those of 16], which were obtained using a dif-
methods break down shortly after the pulse splitting. In ordefferent numerical method, thus providing support for the va-
to find the postsplitting dynamics we decided to solve By.  lidity of the results obtained with these two methods. We also
using the IGR method. It turned out that solving E8) is  add to the results of16] by showing that temporal disper-
considerably more demanding than solving the stationargion becomes the dominant mechanism after the pulse split-
NLS, because in addition to the extra dimension and the higling and therefore thahe arrest of collapse of the two peaks
resolution near the two peaks, one needs to have sufficieid predominantly a linear time-dispersion effeEinally, we
global resolutionfor resolving the temporal oscillations that present simulations with the initial conditions used by
develop over the whole domain. As a result, although solvingzharovaet al.[17], which go beyond the pulse splitting. Our
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FIG. 1. On-axis amplitudey(z,r=0;)| for
the solution of Eq.(4) with the initial condition
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simulations show that the secondary splittings observed in  A. Grid distribution based on the variational principle

[17] were a numerical artifact. In two (or highe) spatial dimensions, mesh distribution is
In Sec. V we apply the improved IGR method to solve the,q a1y obtained using a variational approach, specifically by
full model equation(3). Our results confirm the observation minimizing a functional of the coordinate mapping between

made in[13] that after the asymmetric pulse splitting there is o physical domain and the computational domain. The

a reversal in the relative heights of the two peaks. Using th_‘f'unctional is chosen so that the minimum is suitably influ-
IGR method, however, we were able to continue the numerig~oq by the desired properties of the solutigw) of the

cal integration even further, and therefore to observe the appg itself.
rest of collapse in Eq3). As in the case of Eq4), temporal
dispersion becomes the dominant mechanism after the pulgg
splitting, and the arrest of the collapse of the two peaks i%
predominantly a linear time-dispersion effect.

Let x and ¢ denote the physical and computational coor-
nates, respectively, on the computational donia RY.
one-to-one coordinate transformation Onis denoted by

x=x(£), £e. ®
Il. ADAPTIVE METHOD BASED ON THE ITERATIVE

GRID REDISTRIBUTION . . . .
The functionals used in existing variational approaches for

We now briefly review the adaptive mesh method, whichmesh generation and adaptation can usually be expressed in

is based on an iterative grid generation procediie the form
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FIG. 4. Contour plot of (z=0.136 299 024,t)| in the simulation of Fig. 3, in physical variablé¢eft) and computational variables
(right).

DE (755 B. An iterative grid redistribution procedure

_ ij’s 98 . . . .
E(§) 0 i‘jzaﬁ g ox ol dx, (6) Let us first define therid mapping:
where G=(g;;), G~ 1=(g'’) are symmetric positive defi- T: (% u())—= (& v(§)=(£ux(8)).
nite matrices that are monitor functions in a matrix form.

Normally, we Choosegi,j:é\i'j'i_uxluxj- The coordinate Here x=x(&) is determined from Eq(7) with a monitor

. . matrix involving u(x).
transformation and the mesh are determined from the Euler- gu()

. If the monitor matrixG is properly chosen, the resulting
Lagrange equation

mesh should concentrate more grid points in the regions with
V(G lvg=o. (7) large variations. This also means thd) should be better

behaved than the original functiar(x) in the sense that the
We note that more terms can be added to the functi@ab  variation of the monitor function in the new variables is re-
control other properties of the mesh, such as orthogonality ofluced. However, ir{7], we show that in some cases the
the mesh and the alignment of the mesh lines with a preresulting improvement is very limited. A natural idea for fur-

scribed vector field18]. ther improvement is to repeat the same procedure (&) .
In fact, this process can be repeated until a satisfactO£y
sl A=1_75' ' ' ' ' "] is achieved. Based on this intuition, an iterative grid redistri-
oo} 1 bution procedure is introduced by applying the grid mapping
a0 1 T iteratively: (1) Let uX(x) be the function aftek iterations;
2of 1 (2) determine the mapping*1(¢) from uX(x) according to
04 oaes oar oaTs o odas o Eq. (7) where the monitor matrix* is defined usingi*(x);
: : : and(3) defineuX" (&) :=uX(x(¢)).
J7 a2 ] For example, after two iterations, we have
31000 B
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FIG. 6. Enlarged view ofi(z,r =0t)| in the simulation of Fig.
FIG. 5. ma&vy,tM as a function of, for the simulations of Figs. 3, showing decay of maximum amplitude and emergence of small
1-3. structures.
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on the uniform grid. Denote the mesh sihe=x;—x; 1.
From Taylor expansion, we have

(X, X)) = T(é1, v1(€1)—T(&2,05(£)).

In the first iteration, we determine a grid mappix@,) and
v1(&1)=u(x(&1)). In the second iteration, we havg(é¢,)
andvy(§2) =v1(£1(2)).

The result of the iteration is to flatten out the monitor
function gradually. In fact, it*(x) andx¥(£) converge, then
we must haved— x* (¢)= ¢ and u— u* (x).

U(Xj11) —U(Xi—1)
hi+hi

X(h?, 1= hi 1hi+h?)/6.

u’(xp)= —u”(x))(hj 1 —hj)/2—u"(x;)

®

In general,h;, ;#h; on a nonuniform grid. Therefore, the
scheme has a similar accuracy as a first order scheme. How-

] ] ) o _ever, we can obtain a more accurate scheme with the follow-

adaptive method for solving nonstationary NLS equations
whose solution isf=i(r,t,z). Recall that these are initial
value problems inz, in which t plays the role of a third
spatial variable.

The procedure is as follows.

(1) Given an initial conditiony(r,t,z=0), the initial grid
transformsr (p, 7), t(p,7) are determined from the iterative
remeshing, which in turn gives an initial condition in the wherea=1/h; ;—1/(h+h;;1) and b=1/(h;+h;; 1) —1/h;.
computational domaii(r (p,7),t(p,7),z=0). The solution  Obviously, this is a more accurate scheme than(Bgsince
Y(p,7,Z*) cannot meet a certain smoothness criterion. Eq. (9) does not have a@®(h;) order term any more. We call

(2) Generate a new mesh by iterative remeshing, startinghis the modified central differend®1CD) scheme. On the
with ¢(p,7,z*). The remeshing iteration stops if the crite- uniform grid, the MCD scheme is the same as the CD
rion in (1) is satisfied. Interpolation is used to generate thescheme. But the MCD scheme is much more accurate than
solution at the new grid points. the CD scheme on the nonuniform grid.

(3) Go to (1) to continue the integration.

C. Adaptive procedure for solving nonlinear
Schrodinger equations

u’(xj)=[au(xj,+1)+bu(xj_;)—(a+bju(x;)]

—u”(x)hih;.1/6, C)

IIl. HIGH-ORDER SCHEME ON ORTHOGONAL GRIDS B. Orthogonal grid

Orthogonal grids offer significant advantages in numerical
simulations of PDE’s. In general, the accuracy of the finite-

dition to the extra dimension and the high resolution near thggzirreanccef; (i:the?gi]f?zrgnrc]:ggce:?e%neoigt? ggggg{i%::dtﬁ.e-rhri\zlc?uhs-
focal points, one also needs to resolve global oscillation a8 y P

well as shocklike temporal structures. To overcome these dil‘§eCtI0n can be easily implemented on the orthogonal and

ficulties we introduce two accuracy improvements: the use o¥ectangular grid. The orthogonal grid can be achieved by

a high-accuracy, modified central difference scheme and of éreonci:wtg d?ee%()snggror::tcgritgbt)eeO?:iélgc}sr;ﬁlc;eegﬁr ddol?T?:iEails
globally orthogonal grid. P y.

rectangular, effectively this means that we obtain the two-
dimensional grid as a product of two one-dimensional grids.
With the implementation of the high-accuracy scheme, we

It is easy to see that the usual central differefi€®) are able to compute solutions with much higher accuracy,
scheme has lower accuracy on the nonuniform grid than thawhich is significant in our simulations.

Solving Eq.(3) turns out to be considerably more de-
manding than solving the stationary NI(§), because in ad-

A. High-accuracy finite-difference scheme on nonuniform gird
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IV. TIME-DISPERSIVE NLS of eacht cross section to full 3D dynamics. Therefore, it was

Until recently most studies of propagation of ultrashortzgﬁggszg Ir6] that the two peaks would not necessarily

pulses considered the time dispersive NLS mddglWhen Temporal splitting of ultrashort pulses was observed ex-

time dispersion is anomalou33(<0).the pulse undergoes erimentally in[22,14. In these experiments secondary
tEemp40r_aI 2nd3[;rgnsverse colr\lnlfmsressrl]c_)nh _Inﬁeed, n thhat Cagf)littings were also observed at even higher input powers.
q.(_) is the 3DJi.e., (X’yit)] , Which Is known to have Nevertheless, these observations do not imply that solutions
SO'U“OF‘S that become singular n f|n|te'd|sta|fz:Q]. The of Eqg. (4) undergo multiple splittings, because these second-
dynamics in the case of normal time dispersiag0) is _ary splittings were observed at such high powers where the
”_‘“Ch more_comphcated, h(_)wever_, becz_ause of the Opp(.)s'R(?alidity of Eq. (4) breaks down, as additional physical
signs of diffraction and time dispersion. The queSt'onmechanisms become importaf3,15,23. Recently, Ger-
whether small normal time dispersion can arrest Singu"”‘rit}fnaschewskiet al. [16] used an a(':iap’tivé mesh re,finement

formation has defied research efforts for many years. I, o
: ) . : ethod to solve Eq(4) beyond the pulse splitting. These
[17,19 & reduced ordinary differential equation for the €VO- simulations show that after the pulse splitting the two peaks

lution of the pulse width aty,, the time of the initial .peak,. continue to self-focus, resulting in the formation of temporal
'Yhocks. The two peaks do not undergo a similar secondary

_ ) : splitting. Rather, they “decay into secondary structures ap-
two temporal peaks which continue to focus.[IY] it was earing in the outer parts of the far edges while they dis-

conjectured that the new peaks would continue to split int erse.” Similar results were also obtained by Coleman and
“progressively smaller scale” and therefore that small NOr-g ilem using a dynamic mesh refinement metf@x4.

mal time dispersion arrests self-focusing through multiple
splitting. Numerical simulations of Eq4) [19-21,6,22,1%
showed that self-focusing of the two peaks leads to the for- A. Results
mation of temporal shocks at the peak ed@eE® Fig. 1L As

it in all the ab di hich q° dard” In Figures 1-3 we present simulations of the time-
aresutt, in all the above studies, which used “stanaar r""'dispersive NLS(4) performed using the IGR method, with
merical methods, the simulations could not go beyond the

) ) =1/32 and the initial condition
shock formation and were thus unable to determine whetheer3 /32 and the initial conditions

secondary splittings occur and whether the solution ulti-

arrests the collapse &t,. As a result, the pulse splits into

mately becomes singular. [8] a reduced system of PDE's 1ox10*f ' ' — z-0.s0a015518 |

/1 — - 2=0.1503015522

for self-focusing in Eq(4) was derived which is valid for all A 1 201508018525

A -+ z=0.1503015529

t cross sections. Analysis of the reduced system showed the
while self-focusing is arrested in the near vicinity tgf, it
continues elsewhere. However, the validity of the reducet
system breaks down as the shock edges of the two peal
form. Therefore, one cannot use the reduced system to pr 7 72 Sy
dict whether multiple splitting would occur and/or whether
the solution ultimately becomes singular. Analysis of the re-  FIG. 10. Enlarged view of(z,r=04)| for the simulation of
duced system did reveal, however, that temporal splitting isig. 9, showing decay of maximum amplitude and emergence of
associated with the transition from independent 2D collapsemall structures.

[w(zr=0,t)|
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_ x2+y? 5 after focusing by 19the solution appears to be sufficiently
4//O:A\/2 exp{ - T—t ) (10) smooth in the computational temporal and radial variables
(Fig. 4).

The observed dynamics agrees with the simulation results
We use the values df=1.75,A=2, andA=3, whose peak ©Of Germaschewsket al. [16] and of Coleman and Sulem
power att=0 is 1.6%,, 2.15., and 4.8®,, respectively, [24], namely, that after the pulse splitting the two peaks con-
where P, is the threshold power for collapgé]. In these tinue to focus, but later decay into small temporal oscilla-
simulations we integrate the equation on a domfairt] tions. The overall arrest of collapse by small normal time
=[0,4]%[0,12A/32] with an initial uniform mesh of 100 dispersion can be clearly seen in Figs. 5 and 6. Since the
% 300. With the IGR we reached the smallest mesh size ofimulations in[16] and in[24] were done using a different
Sr=2.1x10"3, st=1.4863<10* for the simulation of numerical method, this agreement provides strong support
Fig. 1, 6r=1.0197x10 %, 6t=6.4876<10 ° for Fig. 2, for the validity of the results obtained with these two meth-
and6r=1.911x10 6, 5t=4.048< 10/ for Fig. 3. We also  ods.
plot the solution in the computational temporal variable In addition to “confirming” the results of the two meth-
(Figs. 1-3, right columngto show that there is enough reso- ods, in this study we add insight into the interpretation of the
lution in the oscillatory and shocklike regions. Indeed, evemumerical results by plotting the relative magnitudes of time
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08 0 05 40 200 0 20 400 FIG. 12. Same as Fig. 1 for the solution of

100 100 Eqg. (3).
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—1t2/32], whose peak power at=0 is 4.3 . In their simu-
o lations the temporal splitting was followed by a secondary
10"} ] splitting, leading Zharovat al. to the conjecture that small

) normal time dispersion arrests collapse through multiple
splittings. Although it has been suspected that these second-
ary splittings were a numerical artifact due to under-
resolution, this specific problem turned out to be computa-
tionally hard. In fact, even Germaschewsitial. [16] could
not continue the simulation of the “Zharova problem” be-
yond the pulse splitting, due to under-resolution. In Figs.
9-11 we present simulations of the Zharova problem that go
0 . . . beyond the pulse splitting. Our simulations reveal a dynam-
0.45 0.46 047 0.48 ics similar to the one observed earlier. In particular, there are
no secondary splittings. Note that in the computational vari-
ables the solution remains relatively smooth even after the
pulse splitting(Fig. 11).

FIG. 13. maxy ey (solid, max,J|A ¢ (dots,
ma)g(,y,t|AJ_¢+|lM2$| (dashey and ma%y,t|52[(|‘M2’ﬁ)t_AJ_¢t]| (dash-
dotg, for the simulation of Fig. 12.

V. FULL MODEL
dispersion, diffraction, and nonlinearifgee Fig. 7, reveal-
ing the following dynamics. Initially time dispersion is neg-
ligible, i.e.,

The insight gained from the simulations of Ed) is use-
ful for understanding the self-focusing dynamics in the more
comprehensive physical modéd). In Fig. 12 we present
st <A, gt |2, _srieruiI;a]ittiglwsC(;);dliEt?c;(r?)iSwgere e3=_1/32:alnd62=0.091A/3_2.

g(10) with A=1.75. We integrate

and eacht cross sectioffi.e., the transversex(y) plane fora  on a domair{r,t]=[0,4] X[ —12//32,124/32] with an ini-
givent] self-focuses independently according to Et). As  tial uniform grid of 100<600. Because the solution of Eq.
diffraction and nonlinearity become larger they nearly bal-(3) is not symmetric irt, the number of grid points in the
ance each othdd]. As a result, the time dispersion becomesvariable is twice the number in our simulations of E4).
comparable to the balance of diffraction and nonlinearity The results of the simulation confirm the theoretical pre-
while still being small compared with each of them sepa-diction made in[8] that the pulse splits in an asymmetric

rately, i.e., fashion, with the front peak being lower than the rear peak,
and also the observation first made[ i8] that the(highep
e3Un~A U+ Y%y, <A, ¥ Y%y, rear peak becomes lower than the front peak with further

) ropagation. Our simulations reveal that the arrest of col-
and it leads to the arrest of collapse followed by temporaﬁlpse of the rear peak is done in an oscillatory manner which
splitting [6]. As the two new peaks self-focus and developjs reminiscent of the symmetric caé®. Note that the solu-

shock edges, the time dispersion becomes larger than thgyy in the rescaled variables remains reasonably smooth,

balance of diffraction and nonlinearity, i.e., even when the physical solution develops very steep gradi-
ents(Fig. 12.
e3> A | Y+ Y%y When we plot the relative magnitudes of the various

mechanisms we see that, as in the case of the time-dispersive

Therefore the postshock dynamics is dominated, to leadingNLs (4), after the asymmetric pulse splitting linear time dis-
order, by the 1D linear Schdinger equation #,— ezt  persion becomes the dominant mechanisee Fig. 1% The
=0, and the pulse undergoes temporal dispersion, whickagnitude of the:, symmetry-breaking terms becomes com-
leads to the disintegration of the shocks and to temporgharable to the sum of diffraction and nonlinearity just after
oscillations near the shocks. Note that at this stage the crosgre pulse splitting, but subsequently becomes small again.
sectional power is above criticéee Fig. 8 This does not \we thus conclude that these symmetry-breaking terms have
imply, however, that the pulse would self-focus radially, an important effect only during the pulse splitting event.
since this conclusion would hold when the dominant meChaNote, however, that the last conclusion is valid Wr@fl
nisms are nonlinearity and dif‘fl’action, whereas at this Stag% €3, whereas for |0nger pu's@ can be |arger than boﬂfh
the dominant mechanism is temporal dispersion, which leadgng ¢, [8].
to temporal spreading. Ultimately, the power of aitross
sections goes below critical and the amplitude of the pulse
decays to zero, as diffraction, dispersion, and nonlinearity
are all of equal magnitude.

We recall that in[17] Zharovaet al. solved Eq.(4) with In this study we showed that the IGR method can be used
e3=1, and the initial conditiony,=4 exd—(x*+y?)/2 to solve time-dispersive NLS equations with near-

VI. FINAL REMARK
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