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Numerical simulations of self-focusing of ultrafast laser pulses

Gadi Fibich*
School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel

Weiqing Ren
Courant Institute of Mathematical Science, New York University, New York, New York 10012

Xiao-Ping Wang
Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kon

~Received 14 November 2002; published 7 May 2003!

Simulation of nonlinear propagation of intense ultrafast laser pulses is a hard problem, because of the steep
spatial gradients and the temporal shocks that form during the propagation. In this study we adapt the iterative
grid distribution method of Ren and Wang@J. Comput. Phys.159, 246 ~2000!# to solve the two-dimensional
nonlinear Schro¨dinger equation with normal time dispersion, space-time focusing, and self-steepening. Our
simulations show that, after the asymmetric temporal pulse splitting, the rear peak self-focuses faster than the
front one. As a result, the collapse of the rear peak is arrested before that of the front peak. Unlike what has
sometimes been conjectured, however, collapse of the two peaks is not arrested through multiple splittings, but
rather through temporal dispersion.

DOI: 10.1103/PhysRevE.67.056603 PACS number~s!: 42.25.Bs, 42.65.Sf, 42.65.Jx
m
se

-

ar
o
f-

S

r
o
ng
th

i
m
r
g

m

o

lv

ell
-

iso-

the
w
he
n
rid

is
ing

h
-
e-
be

se
ser
ion-
I. INTRODUCTION

The nonlinear Schro¨dinger equation~NLS!

icz~z,x,y!1D'c1ucu2c50 ~1!

is the model equation for the propagation of cw~continuous
wave! laser beams in Kerr media. Here,c is the electric field
envelope,z is the axial distance in the direction of bea
propagation,x and y are the coordinates in the transver
plane, andD'5]xx1]yy is the diffraction term. It is well
known that when the power, orL2 norm, of the input beam is
sufficiently high, solutions of Eq.~1! can self-focus and be
come singular in a finite distancez @1,2#. Because of the
infinitely large gradients that exist at the singularity, stand
numerical methods break down after the solution underg
moderate focusing@3#. Therefore, as part of the research e
fort during the 1980s to find the blowup rate of the NL
McLaughlin et al. developed the numerical method ofdy-
namical rescaling@4#, which can resolve the solution nea
the singularity at extremely high amplitudes. This meth
exploits the known self-similar structure of the collapsi
part of the solution near the singularity, which relates
shrinking transverse width of the solution to the increase
its norm. Therefore, the solution is computed on a fixed co
putational grid, which in physical space corresponds to a g
that shrinks uniformly toward the singularity. The focusin
rate of the grid points is determined dynamically from so
norm of the solution (* u¹ucu2dxdy, maxx,yucu, etc.!. Be-
cause the focusing rate of the grid points can be chosen t
the same as the physical focusing rate, in the transform
variables the solution remains smooth and can thus be so
using ‘‘standard’’ methods.

*Electronic address: fibich@math.tau.ac.il
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The method of dynamic rescaling works extremely w
for solutions of the NLS with radially symmetric initial con
ditions, in which case focusing by 1010 or more can easily be
realized~see, e.g., Fig. 3.5 in@1#!. Although the method of
dynamic rescaling has been extended to NLS’s with non
tropic initial conditions @5# and to perturbed NLS’s~e.g.,
NLS’s with normal time dispersion@6#!, in such cases dy-
namic rescaling is considerably less efficient, because
solution does not focus uniformly and/or it is not clear ho
to extract the physical focusing rate from the solution. T
iterative grid redistribution~IGR! method, developed by Re
and Wang, overcomes these difficulties by allowing the g
points to move independently~rather than uniformly! accord-
ing to a general variational minimization principle. Th
method has been showed to be highly effective for solv
partial differential equations~PDE’s! with singular behavior
such as the NLS~1! and the Keller-Segal equations wit
multiple blowup points@7#. As we shall see, however, apply
ing the IGR method to nonstationary NLS models that d
scribe the propagation of ultrashort pulses turns out to
considerably more demanding.

A. Simulations of ultrashort pulses

The NLS ~1! does not include temporal effects. The
effects become important in the case of ultrashort la
pulses, whose propagation can be modeled by the dimens
less nonstationary NLS@8#

icz~z,x,y,t !1D'c1ucu2c1e1czz

1 i e2@~ ucu2c! t2D'c t#2e3c tt50, ~2!

where nowc is also a function of timet. The dimensionless
parameters are given by
©2003 The American Physical Society03-1
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e15
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2k0
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, e25
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cgk0T

c

n0cg
, e35

Ldiffkvv

T2
,

wherer 0 andT are the transverse width and temporal du
tion of the input pulse, respectively,k5vn0(v)/c, k0

5k(v0), cg
215(dk/dv)v0

, andLdiff5r 0
2k0 is the diffraction

length. In the case of ultrashort laser pulsese1 is consider-
ably smaller thane2 ande3 @8#. Therefore it is reasonable t
neglect the nonparaxial terme1czz, in which case Eq.~2!
reduces to

icz~z,x,y,t !1D'c1ucu2c

1 i e2@~ ucu2c! t2D'c t#2e3c tt50. ~3!

The scalar equation~2! does not take into account the ve
torial nature of the electric field. Since the magnitude
vectorial effects is alsoO(e1) @9–11#, neglecting vectorial
effects is justified within the framework of Eq.~3!.

Self-focusing in the two-dimensional~2D! NLS, Eq. ~1!,
is highly sensitive to small perturbations. A general meth
for analyzing the effect of small perturbations in the 2
NLS, calledmodulation theory, was developed in@1,12#. Ap-
plication of modulation theory to Eq.~2! showed that the
self-focusing pulse would undergo anasymmetric tempora
splitting @8#. Such asymmetric splitting was later observ
experimentally, as well as in numerical simulations of p
turbed NLS equations that are equivalent to Eq.~3! ~see@13–
15#!. After asymmetric temporal splitting the solution deve
ops temporal shocks. As a result, standard numer
methods break down shortly after the pulse splitting. In or
to find the postsplitting dynamics we decided to solve Eq.~3!
using the IGR method. It turned out that solving Eq.~3! is
considerably more demanding than solving the station
NLS, because in addition to the extra dimension and the h
resolution near the two peaks, one needs to have suffic

global resolutionfor resolving the temporal oscillations that
develop over the whole domain. As a result, although solvin

by
r
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Eq. ~3! with the ‘‘original’’ IGR method improved on previ-
ous simulation results, these simulations could still not p
ceed much past the temporal splitting. Therefore, in t
study we improved the IGR method by introducing a hig
order finite-difference scheme on nonuniform grids. This i
provement enabled us to present numerical simulations
ultrashort pulse propagation well beyond the asymme
temporal splitting.

B. Organization

The paper is organized as follows. In Sec. II we revie
the original IGR method, which was introduced in@7#. In
Sec. III we describe two accuracy improvements that
needed for resolving shocklike structures and strong osc
tions in the nonstationary NLS: the use of a high-ord
scheme on a nonuniform grid, and of an orthogonal grid.
Sec. IV we use the improved IGR method to solve the tim
dispersive NLS

icz~z,x,y,t !1D'c2e3c tt1ucu2c50. ~4!

We begin with Eq.~4!, since most research on propagation
ultrashort pulses has been carried out within the framew
of this equation. In addition, for many years the postsplitti
dynamics remained a matter of debate, since ‘‘standard’’
merical methods broke down shortly after the splitting. I
deed, the first reliable simulations of Eq.~4! which could go
beyond the pulse splitting were obtained only recently
@16#. The results obtained using the IGR method agree qu
tatively with those of@16#, which were obtained using a dif
ferent numerical method, thus providing support for the v
lidity of the results obtained with these two methods. We a
add to the results of@16# by showing that temporal disper
sion becomes the dominant mechanism after the pulse s
ting and therefore thatthe arrest of collapse of the two peak
is predominantly a linear time-dispersion effect. Finally, we
present simulations with the initial conditions used
Zharovaet al. @17#, which go beyond the pulse splitting. Ou
e
ri-
FIG. 1. On-axis amplitudeuc(z,r 50,t)u for
the solution of Eq.~4! with the initial condition
~10! and A51.75. The right column shows th
corresponding solution in the computational va
able of t ~only one-fourth of the grid points are
shown!.
3-2
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FIG. 2. Same as Fig. 1 withA52.
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simulations show that the secondary splittings observed
@17# were a numerical artifact.

In Sec. V we apply the improved IGR method to solve t
full model equation~3!. Our results confirm the observatio
made in@13# that after the asymmetric pulse splitting there
a reversal in the relative heights of the two peaks. Using
IGR method, however, we were able to continue the num
cal integration even further, and therefore to observe the
rest of collapse in Eq.~3!. As in the case of Eq.~4!, temporal
dispersion becomes the dominant mechanism after the p
splitting, and the arrest of the collapse of the two peaks
predominantly a linear time-dispersion effect.

II. ADAPTIVE METHOD BASED ON THE ITERATIVE
GRID REDISTRIBUTION

We now briefly review the adaptive mesh method, wh
is based on an iterative grid generation procedure@7#.
05660
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A. Grid distribution based on the variational principle

In two ~or higher! spatial dimensions, mesh distribution
usually obtained using a variational approach, specifically
minimizing a functional of the coordinate mapping betwe
the physical domain and the computational domain. T
functional is chosen so that the minimum is suitably infl
enced by the desired properties of the solutionu(x) of the
PDE itself.

Let x andj denote the physical and computational coo
dinates, respectively, on the computational domainVPRd.
A one-to-one coordinate transformation onV is denoted by

x5x~j!, jPV. ~5!

The functionals used in existing variational approaches
mesh generation and adaptation can usually be express
the form
FIG. 3. Same as Fig. 1 withA53.
3-3
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FIG. 4. Contour plot ofuc(z50.136 299 024,r ,t)u in the simulation of Fig. 3, in physical variables~left! and computational variable
~right!.
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E~j!5 E
V

(
i , j ,a,b

gi , j
]ja

]xi

]jb

]xj
dx, ~6!

where G5(gi , j ), G215(gi , j ) are symmetric positive defi
nite matrices that are monitor functions in a matrix for
Normally, we choosegi , j5d i , j1uxi

uxj
. The coordinate

transformation and the mesh are determined from the Eu
Lagrange equation

“•~G21
“j!50. ~7!

We note that more terms can be added to the functional~6! to
control other properties of the mesh, such as orthogonalit
the mesh and the alignment of the mesh lines with a p
scribed vector field@18#.

FIG. 5. maxx,y,tucu as a function ofz, for the simulations of Figs.
1–3.
05660
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B. An iterative grid redistribution procedure

Let us first define thegrid mapping:

T: „x, u~x!…→„j, v~j!…5~j,u„x~j!…!.

Here x5x(j) is determined from Eq.~7! with a monitor
matrix involving u(x).

If the monitor matrixG is properly chosen, the resultin
mesh should concentrate more grid points in the regions w
large variations. This also means thatv(j) should be better
behaved than the original functionu(x) in the sense that the
variation of the monitor function in the new variables is r
duced. However, in@7#, we show that in some cases th
resulting improvement is very limited. A natural idea for fu
ther improvement is to repeat the same procedure forv(j).
In fact, this process can be repeated until a satisfactoryv(j)
is achieved. Based on this intuition, an iterative grid redis
bution procedure is introduced by applying the grid mapp
T iteratively: ~1! Let uk(x) be the function afterk iterations;
~2! determine the mappingxk11(j) from uk(x) according to
Eq. ~7! where the monitor matrixwk is defined usinguk(x);
and ~3! defineuk11(j)ªuk

„x(j)….
For example, after two iterations, we have

FIG. 6. Enlarged view ofuc(z,r 50,t)u in the simulation of Fig.
3, showing decay of maximum amplitude and emergence of sm
structures.
3-4
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FIG. 7. maxx,y,tue3cttu ~solid!, maxx,y,tuD'cu
~dotted!, and maxx,y,tuD'c1ucu2cu ~dashed! as a
function of z, for the simulations of Figs. 1–3.
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cy,
„x, u~x!…→T
„j1 , v1~j1!…→T

„j2 ,v2~j2!….

In the first iteration, we determine a grid mappingx(j1) and
v1(j1)5u„x(j1)…. In the second iteration, we havej1(j2)
andv2(j2)5v1„j1(j2)….

The result of the iteration is to flatten out the monit
function gradually. In fact, ifuk(x) andxk(j) converge, then
we must havexk→x* (j)5j anduk→u* (x).

C. Adaptive procedure for solving nonlinear
Schrödinger equations

We now incorporate the iterative remeshing into a sta
adaptive method for solving nonstationary NLS equatio
whose solution isc5c(r ,t,z). Recall that these are initia
value problems inz, in which t plays the role of a third
spatial variable.

The procedure is as follows.
~1! Given an initial conditionc(r ,t,z50), the initial grid

transformsr (r,t), t(r,t) are determined from the iterativ
remeshing, which in turn gives an initial condition in th
computational domainc„r (r,t),t(r,t),z50…. The solution
c(r,t,z* ) cannot meet a certain smoothness criterion.

~2! Generate a new mesh by iterative remeshing, star
with c(r,t,z* ). The remeshing iteration stops if the crit
rion in ~1! is satisfied. Interpolation is used to generate
solution at the new grid points.

~3! Go to ~1! to continue the integration.

III. HIGH-ORDER SCHEME ON ORTHOGONAL GRIDS

Solving Eq. ~3! turns out to be considerably more d
manding than solving the stationary NLS~1!, because in ad-
dition to the extra dimension and the high resolution near
focal points, one also needs to resolve global oscillation
well as shocklike temporal structures. To overcome these
ficulties we introduce two accuracy improvements: the use
a high-accuracy, modified central difference scheme and
globally orthogonal grid.

A. High-accuracy finite-difference scheme on nonuniform gird

It is easy to see that the usual central difference~CD!
scheme has lower accuracy on the nonuniform grid than
05660
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on the uniform grid. Denote the mesh sizehi5xi2xi 21.
From Taylor expansion, we have

u8~xi !5
u~xi 11!2u~xi 21!

hi1hi 11
2u9~xi !~hi 112hi !/22u-~xi !

3~hi 11
2 2hi 11hi1hi

2!/6. ~8!

In general,hi 11Þhi on a nonuniform grid. Therefore, th
scheme has a similar accuracy as a first order scheme. H
ever, we can obtain a more accurate scheme with the foll
ing difference formula:

u8~xi !5@au~xi 11!1bu~xi 21!2~a1b!u~xi !#

2u-~xi !hihi 11/6, ~9!

where a51/hi 1121/(hi1hi11) and b51/(hi1hi 11)21/hi .
Obviously, this is a more accurate scheme than Eq.~8! since
Eq. ~9! does not have anO(hi) order term any more. We cal
this the modified central difference~MCD! scheme. On the
uniform grid, the MCD scheme is the same as the C
scheme. But the MCD scheme is much more accurate t
the CD scheme on the nonuniform grid.

B. Orthogonal grid

Orthogonal grids offer significant advantages in numeri
simulations of PDE’s. In general, the accuracy of the fini
difference schemes is highest on orthogonal grids. The h
accuracy finite-difference scheme introduced in the previ
section can be easily implemented on the orthogonal
rectangular grid. The orthogonal grid can be achieved
choosing the monitor matrix to be diagonal; each diago
element depends on one variable only. Since our domai
rectangular, effectively this means that we obtain the tw
dimensional grid as a product of two one-dimensional gri
With the implementation of the high-accuracy scheme,
are able to compute solutions with much higher accura
which is significant in our simulations.
FIG. 8. Cross-sectional power* uc(z,x,y,t)u2 dxdy, for the simulation of Fig. 1.
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FIG. 9. Same as Fig. 1 for the ‘‘Zharova prob
lem’’ ~see details in text!.
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IV. TIME-DISPERSIVE NLS

Until recently most studies of propagation of ultrash
pulses considered the time dispersive NLS model~4!. When
time dispersion is anomalous (e3,0) the pulse undergoe
temporal and transverse compression. Indeed, in that
Eq. ~4! is the 3D@i.e., (x,y,t)] NLS, which is known to have
solutions that become singular in finite distancez @2#. The
dynamics in the case of normal time dispersion (e3.0) is
much more complicated, however, because of the oppo
signs of diffraction and time dispersion. The questi
whether small normal time dispersion can arrest singula
formation has defied research efforts for many years.
@17,19# a reduced ordinary differential equation for the ev
lution of the pulse width attm , the time of the initial peak,
was derived which showed that small normal time dispers
arrests the collapse attm . As a result, the pulse splits int
two temporal peaks which continue to focus. In@17# it was
conjectured that the new peaks would continue to split i
‘‘progressively smaller scale’’ and therefore that small n
mal time dispersion arrests self-focusing through multi
splitting. Numerical simulations of Eq.~4! @19–21,6,22,14#
showed that self-focusing of the two peaks leads to the
mation of temporal shocks at the peak edges~see Fig. 1!. As
a result, in all the above studies, which used ‘‘standard’’ n
merical methods, the simulations could not go beyond
shock formation and were thus unable to determine whe
secondary splittings occur and whether the solution u
mately becomes singular. In@6# a reduced system of PDE’
for self-focusing in Eq.~4! was derived which is valid for al
t cross sections. Analysis of the reduced system showed
while self-focusing is arrested in the near vicinity oftm , it
continues elsewhere. However, the validity of the redu
system breaks down as the shock edges of the two p
form. Therefore, one cannot use the reduced system to
dict whether multiple splitting would occur and/or wheth
the solution ultimately becomes singular. Analysis of the
duced system did reveal, however, that temporal splitting
associated with the transition from independent 2D colla
05660
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of eacht cross section to full 3D dynamics. Therefore, it w
suggested in@6# that the two peaks would not necessar
split again.

Temporal splitting of ultrashort pulses was observed
perimentally in @22,14#. In these experiments seconda
splittings were also observed at even higher input pow
Nevertheless, these observations do not imply that solut
of Eq. ~4! undergo multiple splittings, because these seco
ary splittings were observed at such high powers where
validity of Eq. ~4! breaks down, as additional physic
mechanisms become important@13,15,23#. Recently, Ger-
maschewskiet al. @16# used an adaptive mesh refineme
method to solve Eq.~4! beyond the pulse splitting. Thes
simulations show that after the pulse splitting the two pe
continue to self-focus, resulting in the formation of tempo
shocks. The two peaks do not undergo a similar second
splitting. Rather, they ‘‘decay into secondary structures
pearing in the outer parts of the far edges while they d
perse.’’ Similar results were also obtained by Coleman a
Sulem using a dynamic mesh refinement method@24#.

A. Results

In Figures 1–3 we present simulations of the tim
dispersive NLS~4! performed using the IGR method, wit
e351/32 and the initial conditions

FIG. 10. Enlarged view ofuc(z,r 50,t)u for the simulation of
Fig. 9, showing decay of maximum amplitude and emergence
small structures.
3-6
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FIG. 11. Contour plot of uc(z
50.150 301 552 9,r ,t)u for the simulation of
Fig. 10, in physical variables~left! and computa-
tional variables~right!.
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x21y2

2
2t2D . ~10!

We use the values ofA51.75,A52, andA53, whose peak
power att50 is 1.65Pc , 2.15Pc , and 4.83Pc , respectively,
where Pc is the threshold power for collapse@1#. In these
simulations we integrate the equation on a domain@r ,t#
5@0,4#3@0,12/A32# with an initial uniform mesh of 100
3300. With the IGR we reached the smallest mesh size
dr 52.131023, dt51.486331024 for the simulation of
Fig. 1, dr 51.019731024, dt56.487631026 for Fig. 2,
anddr 51.91131026, dt54.04831027 for Fig. 3. We also
plot the solution in the computational temporal variab
~Figs. 1–3, right columns! to show that there is enough res
lution in the oscillatory and shocklike regions. Indeed, ev
05660
of

n

after focusing by 105 the solution appears to be sufficient
smooth in the computational temporal and radial variab
~Fig. 4!.

The observed dynamics agrees with the simulation res
of Germaschewskiet al. @16# and of Coleman and Sulem
@24#, namely, that after the pulse splitting the two peaks c
tinue to focus, but later decay into small temporal oscil
tions. The overall arrest of collapse by small normal tim
dispersion can be clearly seen in Figs. 5 and 6. Since
simulations in@16# and in @24# were done using a differen
numerical method, this agreement provides strong sup
for the validity of the results obtained with these two me
ods.

In addition to ‘‘confirming’’ the results of the two meth
ods, in this study we add insight into the interpretation of t
numerical results by plotting the relative magnitudes of tim
f
FIG. 12. Same as Fig. 1 for the solution o
Eq. ~3!.
3-7
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FIBICH, REN, AND WANG PHYSICAL REVIEW E67, 056603 ~2003!
dispersion, diffraction, and nonlinearity~see Fig. 7!, reveal-
ing the following dynamics. Initially time dispersion is neg
ligible, i.e.,

e3c tt!D'c1ucu2c,

and eacht cross section@i.e., the transverse (x,y) plane for a
given t] self-focuses independently according to Eq.~1!. As
diffraction and nonlinearity become larger they nearly b
ance each other@1#. As a result, the time dispersion becom
comparable to the balance of diffraction and nonlinea
while still being small compared with each of them sep
rately, i.e.,

e3c tt'D'c1ucu2c, e3c tt!D'c,ucu2c,

and it leads to the arrest of collapse followed by tempo
splitting @6#. As the two new peaks self-focus and devel
shock edges, the time dispersion becomes larger than
balance of diffraction and nonlinearity, i.e.,

e3c tt@D'c1ucu2c.

Therefore,the postshock dynamics is dominated, to lead
order, by the 1D linear Schro¨dinger equation icz2e3c tt
50, and the pulse undergoes temporal dispersion, wh
leads to the disintegration of the shocks and to temp
oscillations near the shocks. Note that at this stage the cr
sectional power is above critical~see Fig. 8!. This does not
imply, however, that the pulse would self-focus radial
since this conclusion would hold when the dominant mec
nisms are nonlinearity and diffraction, whereas at this st
the dominant mechanism is temporal dispersion, which le
to temporal spreading. Ultimately, the power of allt cross
sections goes below critical and the amplitude of the pu
decays to zero, as diffraction, dispersion, and nonlinea
are all of equal magnitude.

We recall that in@17# Zharovaet al. solved Eq.~4! with
e351, and the initial conditionc054 exp@2(x21y2)/2

FIG. 13. maxx,y,tue3cttu ~solid!, maxx,y,tuD'cu ~dots!,
maxx,y,tuD'c1ucu2cu ~dashes!, and maxx,y,tue2@(ucu2c)t2D'ct#u ~dash-
dots!, for the simulation of Fig. 12.
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2t2/32#, whose peak power att50 is 4.3Pc . In their simu-
lations the temporal splitting was followed by a seconda
splitting, leading Zharovaet al. to the conjecture that sma
normal time dispersion arrests collapse through multi
splittings. Although it has been suspected that these sec
ary splittings were a numerical artifact due to unde
resolution, this specific problem turned out to be compu
tionally hard. In fact, even Germaschewskiet al. @16# could
not continue the simulation of the ‘‘Zharova problem’’ be
yond the pulse splitting, due to under-resolution. In Fig
9–11 we present simulations of the Zharova problem tha
beyond the pulse splitting. Our simulations reveal a dyna
ics similar to the one observed earlier. In particular, there
no secondary splittings. Note that in the computational va
ables the solution remains relatively smooth even after
pulse splitting~Fig. 11!.

V. FULL MODEL

The insight gained from the simulations of Eq.~4! is use-
ful for understanding the self-focusing dynamics in the mo
comprehensive physical model~3!. In Fig. 12 we present
simulations of Eq.~3! wheree351/32 ande250.001/A32.
The initial condition is Eq.~10! with A51.75. We integrate
on a domain@r ,t#5@0,4#3@212/A32,12/A32# with an ini-
tial uniform grid of 1003600. Because the solution of Eq
~3! is not symmetric int, the number of grid points in thet
variable is twice the number in our simulations of Eq.~4!.

The results of the simulation confirm the theoretical p
diction made in@8# that the pulse splits in an asymmetr
fashion, with the front peak being lower than the rear pe
and also the observation first made in@13# that the~higher!
rear peak becomes lower than the front peak with furt
propagation. Our simulations reveal that the arrest of c
lapse of the rear peak is done in an oscillatory manner wh
is reminiscent of the symmetric case~4!. Note that the solu-
tion in the rescaled variables remains reasonably smo
even when the physical solution develops very steep gr
ents~Fig. 12!.

When we plot the relative magnitudes of the vario
mechanisms we see that, as in the case of the time-dispe
NLS ~4!, after the asymmetric pulse splitting linear time di
persion becomes the dominant mechanism~see Fig. 13!. The
magnitude of thee2 symmetry-breaking terms becomes com
parable to the sum of diffraction and nonlinearity just af
the pulse splitting, but subsequently becomes small ag
We thus conclude that these symmetry-breaking terms h
an important effect only during the pulse splitting eve
Note, however, that the last conclusion is valid whene2
!e3, whereas for longer pulsese2 can be larger than bothe3
ande1 @8#.

VI. FINAL REMARK

In this study we showed that the IGR method can be u
to solve time-dispersive NLS equations with nea
3-8
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singularities and shocks. The IGR method gives more con
of the grid distributions~by grid mapping iteration! than
other moving mesh methods. In addition, it is easier
implement than local refinement methods. Indeed, the I
method allowed us to solve the Zharova problem beyond
pulse splitting. We believe, therefore, that the IGR meth
can be successfully applied to other problems in nonlin
optics where singularities or shocks develop.
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