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Spontaneous formation of dynamical patterns with fractal fronts in the cyclic lattice
Lotka-Volterra model
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Dynamical patterns, in the form of consecutive moving stripes or rings, are shown to develop spontaneously
in the cyclic lattice Lotka-Volterra model, when realized on square lattice, at thereaction limitedregime. Each
stripe consists of different particles~species! and the borderlines between consecutive stripes are fractal. The
interface widthw between the different species scales asw(L,t);La f (t/Lz), whereL is the linear size of the
interface,t is the time, anda andz are the static and dynamical critical exponents, respectively. The critical
exponents were computed asa50.4960.03 andz51.5360.13 and the propagating fronts show dynamical
characteristics similar to those of the Eden growth models.
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I. INTRODUCTION

The failure of the mean-field~MF! approximation to de-
scribe processes that are restricted on low-dimensional
ports has attracted considerable attention in recent y
@1–10#. The presence of the support limits the efficiency
~a! the internal diffusion and~b! the external stirring~if ap-
plicable! and drives the system away from the MF expec
behavior. In such cases, spatiotemporal, inhomogene
fluctuations appear, which may introduce anomalies in
temporal evolution and/or deviations from the MF stea
states@11–16#. Processes where non-MF behavior is ma
fested due to the presence of a support include chem
reactions on catalytic surfaces@17–26#, ecology @27–29#,
population dynamics@30–32#, and bacterial growth@33,34#.

In the field of heterogeneous catalysis, in particu
model studies of reactive dynamics taking place on lo
dimensional supports are most useful in the understandin
the different spatiotemporal phenomena that cannot be f
or partly explained by the MF theory. Such phenomena
cluded fluctuations of the local concentrations, cluster form
tions, spatiotemporal pattern formation, nonlinear osci
tions, etc., and are often observed in experiments@17–26#. A
very successful model that describes the catalytic oxida
of carbon, CO1 1

2 O2→CO2 on the Pt catalytic surface, wa
introduced by Ziff, Gulari, and Barshad in 1986@1#. This
minimal model predicts kinetic phase transitions@1–6#,
which correspond to poisoning phenomena seen in cata
experiments@19–21#. Similar models have also been pr
posed for the NO reduction on the surface of Pt@7–10#. The
major success of these models is that it became possib
isolate and to identify the different mechanisms that are
sponsible for the various spatiotemporal phenomena
served.

In ecology and population dynamics model studies sta
as early as 1920 with the pioneering works of Lotka@30# and
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Volterra @31#. To understand the dynamics of evolution
different species Lotka and Volterra proposed MF mod
that predict global conservative oscillations of the spec
concentrations. More recently, the study of population d
namics takes into account the species distribution in sp
interactions between individual species that are located in
same neighborhood, and mobility of the various species@35–
37#. These studies predict the formation of spatial comp
structures, phase transitions, multistability, oscillatory
gions, etc.

Along these lines, and to explore complexity imposed
the dynamics due to the existence of low-dimensional s
ports, in a recent paper, one of the current authors~A.P.! and
collaborators have introduced the~cyclic! lattice Lotka-
Volterra ~LLV ! model @15#. The LLV model is a minimal
complexity model, which can be directly implemented
lattice and involves only two reactive speciesX1 and X2
~adsorbed on a lattice support! and the empty sites of the
supportS. The various species are immobile on the latti
and they only react with their first neighbors. All reactiv
steps are bimolecular and the reactions occur via hard
interactions. Schematically, the LLV model has the followi
form:

X11X2→
ks

2X2 , ~1a!

X21S→
k1

2S, ~1b!

S1X1→
k2

2X1 . ~1c!

In particular, a particleX1 adsorbed on a lattice site chang
its state intoX2 when it is found in the neighborhood o
anotherX2 particle. Step~1a! is an autocatalytic reactive
step. A particleX2 desorbs leaving an empty siteS, if in the
neighborhood another empty siteS is found. This step~1b! is
a cooperative desorption step. Finally, a particleX1 can be
adsorbed on an empty lattice siteS if in the neighborhood
anotherX1 particle is found. This step~1c! is a cooperative
adsorption step.
©2003 The American Physical Society02-1
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A. PROVATA AND G. A. TSEKOURAS PHYSICAL REVIEW E67, 056602 ~2003!
The LLV model has been studied analytically and nume
cally and it exhibits simple conservative oscillations at t
MF level, while it demonstrates spatial concentration flu
tuations and fractal pattern formation when restricted
low-dimensional supports@15#.

Although in most natural processes the various spe
move in space via diffusion or other driving mechanisms,
explicitly ignore species mobility in the current study. Th
simplification is done in order to isolate the mechanisms
sponsible for the formation of complex structures and p
terns and to examine the influence of special boundary c
ditions on the LLV model. Even under this simplification w
show that for certain parameter values spontaneous for
tion of stripes is observed. Each stripe contains only partic
of one type~or color! and the stripes exhibit a global avera
motion in the direction perpendicular to their longer ax
with a constant average velocity. Due to the dynamics of
process immobile stripes cannot be created. Since in the
model the reactants are considered here as immobile, the
not diffuse from one lattice site to another, the motion of t
stripes is attributed to ‘‘chemical diffusion,’’ or ‘‘color diffu-
sion’’ as will be explained in the following section, and th
relative velocities depend on the reaction rates.

To understand the motion of the stripes and the forma
and motion of the fractal fronts between consecutive stri
we devote one section in examining more closely the de
opment of a fractal interface starting from a linear one~initial
condition! between two different species~e.g.,X1 and X2).
This problem is here addressed from the point of view
surface growth models. We further connect the growth
fractal interfaces in the LLV model with classical surfa
growth models@38–40#, such as the Eden model@41#, the
ballistic deposition model@42#, the solid-on-solid models
@39,43#, and the curvature driven models@44–46#.

In the following section we recall the main properties
the LLV model both at the MF level and by numerical sim
lations on a two-dimensional square lattice. In Sec. III
investigate the influence of boundary conditions on the e
lution of the LLV on a square lattice. We show that for ce
tain parameter values and under certain simple bound
conditions moving stripes are formed. In Sec. IV we exam
more closely the geometry of the boundaries between a
cent stripes and rings. We show that the width of the in
face grows following a scaling law, and the critical exp
nents describing the growth are similar to those of the E
model. In the concluding section, we summarize our m
results and discuss open problems.

II. THE LATTICE LOTKA-VOLTERRA MODEL: MEAN
FIELD APPROXIMATION AND SQUARE LATTICE

SIMULATIONS

The LLV model, Eqs.~1!, can be described in the MF
approximation via the kinetic rate equations@15#:

dx1

dt
5x1~2ksx21k2s!, ~2a!
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dx2

dt
5x2~ksx12k1s!, ~2b!

ds

dt
5s~2k2x11k1x2!, ~2c!

wherex1 , x2, ands correspond to the mean coverage of t
lattice with particlesX1 , X2, and empty sitesS, respectively.
In Eq. ~2!, the mean coverages satisfy identically the cons
vation condition

x11x21s5C15const. ~3!

It is natural for the constant to be chosen equal to 1,C1
51, corresponding to the interpretation ofx1 , x2, ands as
fractions of the overall lattice, respectively, occupied byX1
particles,X2 particles, or being empty. Using the conditio
Eq. ~3! with C151 it is possible to eliminate one of th
three variables, e.g.,s, from Eq.~3! and substituting into Eqs
~2! one obtains then the reduced system:

dx1

dt
5x1@k22k2x12~ks1k2!x2#, ~4a!

dx2

dt
5x2@2k11~k11ks!x11k1x2#. ~4b!

The reduced system, Eqs.~4!, admits four steady state solu
tions, three of which are trivial, and one nontrivial@15#:

x1s50, x2s50 ~empty lattice!, ~5a!

x1s51, x2s50 ~ lattice poisoned byX1!, ~5b!

x1s50, x2s51 ~ lattice poisoned byX2!, ~5c!

x1s5
k1

k11k21ks
, x2s5

k2

k11k21ks
. ~5d!

A standard linear stability analysis shows that the first th
states are saddle points, while the nontrivial one is a cen
Figure 1~a! depicts the phase portrait of the system for p
rameter valuesk150.9,k250.3,ks50.1 and for different ini-
tial conditions. The black solid line determines the part of t
phase space reserved to the system since the sum o
partial concentrations cannot exceed the value 1. The tra
tories are closed curves around the center and the positio
each trajectory depends solely on the initial conditions. T
temporal evolution of one trajectory, corresponding to init
conditions x1(t50)50.3, x2(t50)50.6, and s(t50)
50.1, is depicted in Fig. 1~b!. The motion consists of peri
odic, nonsymmetric oscillations and will be compared la
with the corresponding Monte Carlo simulations. It can
shown that the MF system possesses a second integr
motion C2 @47#,

2k1 ln x12k2 ln x22ks ln~12x12x2!5C2 ~6!

and thus the periodic motion extends in an infinite numbe
closed trajectories around the nontrivial steady state.
2-2
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SPONTANEOUS FORMATION OF DYNAMICAL PATTERNS . . . PHYSICAL REVIEW E 67, 056602 ~2003!
choice of the particular trajectory depends solely on the
tial conditions as may be seen from Fig. 1~a!.

When the system is realized on a low-dimensional surf
via Monte Carlo simulations, the dimensionality of the su
port and, in particular, the number of nearest neighbors p
a crucial role in the outcome of the reaction. We summar
here the most important steps in the Monte Carlo realiza
of the LLV on the lattice, for comparison with the growt
models that will be undertaken in the following section.

~1! At every microscopic step of the Monte Carlo proc
dure one site of the lattice is chosen at random.

~2! One of the nearest neighbors is also selected.
~3! If the original chosen site isX1 and the selected neigh

bor isX2 then the chosen site changes toX2 with probability
ks . If the original chosen site isX2 and the selected neighbo
is S then the chosen site changes toS with probability k1. If
the original chosen site isS and the selected neighbor isX1
then the chosen site changes toX1 with probability k2. Oth-
erwise the system remains unchanged.

~4! The algorithm returns to step~1!.

In the Monte Carlo procedure the unit of time is chosen
1/N, whereN is the total number of lattice sites~occupied
and empty!. For example, for square latticeN5L2, whereL

FIG. 1. ~a! The phase space of the lattice Lotka-Volterra mo
for three different initial conditions. Parameter values arek150.9,
k250.3, ks50.1. ~b! The temporal evolution for thex1 concentra-
tion, with the above parameters and for initial conditionsx1(t50)
50.3, x2(t50)50.6, ands(t50)50.1.
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is the linear size of the lattice. With this choice of microtim
in one Monte Carlo step all lattice sites are scanned once
the average.

For realizations on a one-dimensional lattice, it has be
shown@15,16# that the system develops domains of differe
colors~different particles or different phases! which compete
with each other and at the end only one color survives. W
the system is realized on a two-dimensional square lat
substrate the system develops local domains and each
main behaves as a local oscillator with specific characteri
frequency. However, the various domains have differ
phases and thus, globally, no oscillation are observed, in c
trast with the MF predictions@15#. In Fig. 2 the temporal
evolution of the concentration ofX1 is shown as a function
of time on a lattice of sizeL3L528328 and on a sublattice
of size l 3 l 525325. It is clear that while on the sublattic
the concentrations show oscillatory behavior, on the en
lattice the oscillations are suppressed. Moreover, it has b
shown @48# that the different species organize on local d
mains which present competing interactions and they h
fractal boundaries. In Fig. 3 four different snapshots dur
the temporal evolution of the system are presented. In
figure and hereafter theX1 particles are depicted in gray, th
X2 in white, and the empty sites in black. The initial cond
tion was a homogeneous infinite lattice with equal conc
trations of X1 ,X2 particles and empty sitesS. As time in-
creases, the system creates domains with fractal bound
@Figs. 3~b!–3~d!#. The fractal properties of the spatial stru
tures can be used to measure the size of the local oscilla
@48#. To assure infinite lattice size in Ref.@15#, periodic
boundary conditions were used using a variety of latt
sizes. The role of different boundaries and inhomogene
initial conditions will be investigated in the following sec
tion.

l

FIG. 2. Monte-Carlo simulations for the LLV model for th
same parameters as in Fig. 1. The dashed line corresponds t
time evolution of thex1 concentration over the full lattice while th
solid line corresponds to the temporal evolution of thex1 concen-
tration on the sublattice.
2-3
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A. PROVATA AND G. A. TSEKOURAS PHYSICAL REVIEW E67, 056602 ~2003!
III. THE ROLE OF INITIAL AND BOUNDARY
CONDITIONS

Boundary conditions play a significant role in nonline
dynamical system, with spatial extension. In reactive dyna
ics described using partial differential equations the bou
ary conditions may lead to the appearance of steady s
spatial patterns such as dots, stripes, helices, etc.@7,49,50#.
In the current study we show that the effects of vario
boundary conditions on the LLV model cause segregation
the complementary species near the boundary creating fi
layer of specific~complementary! color. This layer induces
then a second layer next to it and this way layered structu
are obtained. With the term ‘‘complementary species’’ w
mean species that interact with each other. In the cur
scheme, all three species interact with each other, howe
in each interaction only one species changes its nature, w
the other species plays the role of the catalyst. To be m
specific, in reaction~1a! X2 changes its nature, whileX1
plays the role of the catalyst. We say thatX2 are comple-
ments ofX1 because they tend to segregate and penetra
regions with high density ofX1. Similarly, S are considered
as complements ofX2 because they tend to concentrate a
penetrate in regions with high density ofX2. Finally, X1 are
the complements ofS.

In Fig. 4 the temporal evolution of an initially homoge
neous droplet is presented. In the first snapshot~initial con-
dition! a small cyclic droplet containing equal amounts ofX1
~gray!, X2 ~white!, andS~black!, homogeneously distributed
is set in an infinite pool of empty sitesS. As time increases
in the second snapshot, one layer~ring! of X1 particles~gray!
is growing in the borders of the infinite pool ofS and a
second ring ofX2 particles is nearly completed. The layer
X1 particles propagates within the black,S, regions. In the
third snapshot, a ring ofS ~complementary toX2) appears
which also propagates outwards following theX2 rings. In
the fourth snapshot another gray layer starts develop
Note that the thickness of the rings decreases with the

FIG. 3. Four different snapshots during the system evolution
Monte Carlo simulations. The system linear size isL5500 and the
parameters arek150.9, k250.3, ks50.1.
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tance from the pool. After the creation of five to six rings t
thickness of the inner rings is so small that they break w
the smallest fluctuation and at the center the homogene
droplet grows. The unicolored rings move in the direction
the radius with a radial velocity that depends on the kine
constants. In Fig. 4 all kinetic constants must have the sa
values, thus all the layers have the same radial velocity
consequently the patterns are statistically stable, until
outer propagating rings reach the end of the pool. If one
the kinetic constants is greater than the others then the
responding species will prevail and will absorb all species
the outer rings.

In Fig. 5 the temporal evolution of initially homogeneou
linear stripes is shown. The stripes are bordered by an
nite pool of S particles. Again, in the four snapshots th
formation of linear layers, with their axis parallel to the in

a

FIG. 4. ~Color online! Four different snapshots during the ev
lution of an initially homogeneous droplet. The system linear size
L5500 and the parameter values arek15k25ks51.

FIG. 5. Four snapshots in the development of linear diffus
fronts. Parameter values arek15k25ks51.
2-4
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SPONTANEOUS FORMATION OF DYNAMICAL PATTERNS . . . PHYSICAL REVIEW E 67, 056602 ~2003!
tial stripe axis are developed and all of them propagate w
the same velocity. Periodic boundary conditions are take
both x andy directions. The initially flat interfaces soon de
velop a rough profile that remains statistically stable, as w
be calculated in Sec. IV. The kinetic constants are ta
equal and thus the fronts move with the same velocity
their average thickness remains constant. The roughnes
the surface depends on the linear size of the layers and
layers will break only when the value of roughness me
square deviation will reach the layer thickness.

In Fig. 6 the initial conditions are shown in the first sna
shot. The three species occupy initially one third of the cir
each. During evolution a spiral pattern appears propaga
outwards, while in the interior a homogeneous droplet is c
ated, surrounded by rings of different colors.

In all the above examples the existence of boundary c
ditions gave rise to a variety of spatiotemporal structur
These structures arise spontaneously, due~a! to the competi-
tion between the different species,~b! the boundary condi-
tions, and~c! the lattice geometry and the boundary geo
etry. In the following section we simplify as much a
possible~a! the interaction, keeping only two species,X1 and
X2 and~b! the geometry, keeping only a flat initial interfac
between the two species. This restriction on the LLV mo
we call the ‘‘two-species restricted LLV model.’’ This sim
plification will allow to obtain quantitative results on th
interface development and will contribute to the understa
ing of the spontaneous development of the fractal bounda
and the various spatial structures.

IV. FRONT PROPAGATION

In the case of the ‘‘two-species restricted LLV mode
where only particlesX1 andX2 participate, the reaction rule
are the same as in the general Monte Carlo procedure
scribed in Sec. II, but with the absence of one species,S in
the current example. Since the speciesS is not present in the

FIG. 6. ~Color online! Four snapshots in the development
spiral fronts. Parameter values arek15k25ks51.
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initial state it can neither be created nor destroyed. Th
specifically for the current example, the Monte Carlo proc
dure is as follows.

~1! Initially, on the square lattice, the growing surfac
consists of a line of sizeL which contains onlyX2 particles.
The X1 particles represent the free space beyond the sur
or interface.

~2! At every time unit, a site is chosen at random. The s
can either beX1 or X2. If the chosen site site isX2 then no
reaction takes place and the algorithm returns to step~2!.

~3! Once a particleX1 is chosen, one of the neighbo
particles is also selected at random.

~4! If the selected neighbor isX2, the selectedX1 neigh-
bor becomesX2 with given constant probability~propor-
tional to the kinetic constant!. The height of the correspond
ing column grows then by one unit.

~5! The algorithm returns to step~2!.
The propagation of the interfaces in the ‘‘two-species

stricted LLV model’’ resembles very closely the surfa
growth of the first variation of the Eden model@41,40#. We
consider Eden growth in 111 dimensions. Let us callL the
linear size of the substrate where the deposition takes p
andh( i ,t) the local height of the deposit at timet. The sur-
face growth in this variation of the Eden model takes pla
as follows.

~1! Initially only one line ofL particles is deposited an
this corresponds to the~linear! surface or interface, att50.
Every particle occupies one site. Above this interface
space consists of empty cells or sites.

~2! At every time unit one surface site is randomly ch
sen.

~3! One of the free nearest neighbor sites is random
selected.

~4! The selected free neighbor becomes then occup
with given constant probability and the height of the cor
sponding column grows by one unit.

~5! The algorithm returns to step~2!.
The two models appear to be equivalent, with the o

difference being that in the LLV model during each time st
any particle may be selected independently of its color (X1
or X2) or its proximity to the interface. In contrast, in th
Eden model only surface sites are chosen during the upda
process. This difference results in important delays in
development of the fractal interface of the LLV model
compared with the growth of the Eden model. These del
do not alter the spatiotemporal scaling exponents in L
which are very close to the Eden model exponents. It sho
be noted that the Eden model itself shows a robustness i
scaling behavior under a variety of modifications in
growth mechanisms@38,40,41#.

The same exponents are theoretically derived from
Kardar, Parisi, and Zhang~KPZ! equation in 111 spatial
dimensions, which involves nonlinear reactive terms and
scribes the growth of a variety of models with interactio
between adjacent growing sites@51#.

Classically the growth of interfaces is studied using t
height h of the deposit and the ‘‘interface width’’w. The
average height of the deposit is defined as
2-5
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h̄~ t !5
1

L (
i 51

L

h~ i ,t !, ~7!

while the interface widthw is defined as

w2~L,t !5
1

L (
i 51

L

@h~ i ,t !2h̄~ t !#2. ~8!

Typically, the interface width takes the form

w~L,t !5La f S t

LzD , ~9!

where f (t/Lz) is a scaling function that has the followin
form:

f ~u!5ub for u!1

5const for u@1. ~10!

Consequently, the interface width behaves with time a

w~L,t !;tb for t!t

;La for t@t. ~11!

The exponentsb anda are called thecritical exponents.
In particular, b describes the short time behavior and
called thegrowth exponent, while a describes the stead
state behavior and is called theroughness exponent. The sys-
tem passes from short to long time behavior at thecrossover
time t, which also depends on the system size via thedy-
namic exponent z,

t;Lz. ~12!

The exponentsa, b, and z are not independent. It can b
shown thatz5a/b @40#.

To determine the exponentsa andb in the ‘‘two-species
restricted LLV model,’’ we have performed simulations o
the two-species restricted model using lattice sizes rang

FIG. 7. The roughnessw as a function of time for different
values of the system sizeL. The parameter values arek15k25ks

51.
05660
g

from L5100, . . . ,2000. The results are shown in Figs. 7 a
8. In Fig. 7 the value of the interface widthw is calculated as
a function of time, for various values of the linear sizeL. It is
easy to identify a first power law growth regime followed b
a saturation regime. The size of the power law regime gro
with the system size and for the case ofL52000 ~longest
simulation! it extends into seven scales of magnitude. T
value calculated for the exponentb is 0.3260.02. For com-
parison, in the same figure, the dashed line follows an ex
power law with exponentbEden51/3, which corresponds to
the growth exponent of the Eden model in 111 dimensions.

In Fig. 8 the saturation value ofw is shown as a function
of the system sizeL. The solid line is the power law fit to the
data and has as exponenta50.4960.03. For comparison
the dashed line represents an exact power law with expo
aEden50.5, which corresponds to the roughness exponen
the Eden model in 111 dimensions. From the values of th
exponentsa and b the value of the dynamic exponentz is
calculated asz51.5360.13. For comparison with the Ede
model,zEden51.5.

From Figs. 7 and 8 the calculation of the effective diff
sionn and effective noise correlatorD in relation to the KPZ
equation is possible@51–53#. These coefficients enter th
(111)-dimensional KPZ equation as follows:

]h~x,t !

]t
5n¹2h~x,t !1

l

2
@¹h~x,t !#21h~x,t !, ~13!

whereh(x,t) denotes the interface~or front! height at sub-
strate positionx at time t, as in Eqs.~7!–~12!. h(x,t) repre-
sents a Gaussian noise with average:

^h~x,t !&50 ~14!

and covariance

^h~x,t !h~x8,t8!&5Dd~x2x8!d~ t2t8!. ~15!

In particular, in (111) dimensions the KPZ equation is ex
actly solvable and it can be shown@52,53# that at the
asymptotic limit, the interface width, as defined by Eq.~8!, is

FIG. 8. The roughnessw as a function of the system sizeL at the
infinite time limit. The parameter values arek15k25ks51.
2-6
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^w~L !&5S D

24n D 1/2

L1/2, t→`, ~16!

and that

^w~ t !&5
D

A2pn
tb, t!t. ~17!

At the intermediate scaling regime, where the nonlinea
can be neglected (l50), the value ofb51/4, while at the
onset of the nonlinear regime (lÞ0), b51/3 @52#. To esti-
mate the values ofn and D we calculate from Fig. 7 the
values w/t1/45(D/A2pn)1/2 as a function of time. In a
double logarithmic scale, at the intermediate regime,
quantity is constant in the time interval 10 (MC),t
,200 (MC) and it takes the value (D/A2pn)1/251.96
60.02. Similarly the asymptotic valuesw(L)/L1/2

5(D/24n)1/250.6160.01 are calculated from Fig. 8. The
the effective values of the diffusion coefficient and the no
correlator are estimated as (n,D)5(1.162,10.38). The value
of n is very important for the determination of the range
validity of the reaction limited regime when regular diffusio
of particles is included in the system. In such cases if
regular diffusion constant is smaller than this effective dif
sion, the reaction limited regime is justified.

From the results it is evident that the front propagation
the LLV reaction and the surface growth in the Eden mo
have same critical exponents. When one considers only
two-species restricted LLV model, only one reactive para
eterk is relevant. The front roughness does not depend on
reactive constant, only on the rules of interaction betwe
the neighbor particles, which are described by the Mo
Carlo reactive scheme in Sec. II. The value of the reac
constant determines only the velocity of the front propa
tion.

The full LLV model is more complex because in ea
realization many fronts participate, competing with one a
other. The parameter values here play a key role: when
three parameters (k1 ,k2 ,ks) have the same value, all front
propagate with the same velocity, independently of the co
When the parameters have different values the differ
fronts propagate with different velocities depending on
colors of the interacting particles. Thus, even in a fully d
veloped, initially random LLV system, as in Fig. 3, the bo
ders of the different clusters have the same roughness sc
properties, even though the reactive constantsk1 , k2, andks
are different. That is mainly the reason for the robustnes
the size of the local oscillators under relatively large var
tions of the parameters, reported in previous works@48#.

Other growth models studied in the literature, such as
ballistic deposition model@42#, the solid-on-solid models
@39,43#, the curvature driven models@44–46#, etc., present a
variety of critical exponents depending on the spec
growth ~or deposition! rules. Alternatively, other reactive
models, either involving multimolecular reactions or/and d
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ferent reaction rules between neighbors are expected to
duce, in general, different domain growth exponents.

V. CONCLUSIONS

In the current study the influence of initial and bounda
conditions on the LLV model is studied. It is shown th
starting from an initial homogeneous mixture~droplet! of
X1 , X2 andS particles, in contact with a reservoir of one o
the species~e.g.,S), the system spontaneously forms seve
unicolor layers propagating sequentially inside the reserv
This segregation phenomenon is dynamical and canno
observed in equilibrium. As the layers propagate through
reservoir, their size shrinks with the distance from the res
voir and when their size tends to zero the usual LLV frac
structures appear. We have seen that other boundary co
tions lead to linear front propagation with surface roughe
ing and to spiral formation and motion.

It must be stressed here that the stripe and spiral for
tion is due to the interaction between the different spec
and is not due to any particle diffusion.~Note that the react-
ing particles are immobile on the lattice.! One can consider
the evolution as ‘‘color diffusion’’ or ‘‘chemical diffusion’’
due to interactions between neighboring particles. Also
term ‘‘diffusion’’ is not used to denote the normal Brownia
motion but rather as a general term of motion of the color
the lattice.

For the simplest case of the two species restricted L
where fronts of one color propagate inside the complem
tary color, it was shown that the front propagation betwe
the different colors has the same critical exponents with
Eden model and the KPZ equation in 111 dimensions and
that the roughness properties of the fronts do not depend
the parametersk1 , k2, andks . This provides an explanation
of the robustness of the size of the local oscillators un
variations in the parameter values. From the similarity of
two-species restricted LLV model with the Eden model a
the KPZ equation the effective ‘‘color’’ diffusion coefficien
and noise correlator are estimated.

In the LLV model only three reactive species have be
used, interacting cyclically. If more species are involved
cyclic interactions then the dynamics is further complexifi
and the system can present frozen patterns even in two
mensions. The geometry of the substrate also plays a
important role in the outcome of any dynamical process
Especially in heterogeneous catalysis there might be dif
ent support geometries and phase transitions between t
reactions at terrace edges, diffusion of the various specie
the support with different diffusion constants, etc. Extern
factors, such as temperature and pressure, also influ
drastically the outcome of the reactions. Further studies
needed in order to fully understand how the support prop
ties and/or the mobility of the species modify the patte
structure and influence the steady states and the temp
evolution of dynamical systems.
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