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Spontaneous formation of dynamical patterns with fractal fronts in the cyclic lattice
Lotka-Volterra model
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Dynamical patterns, in the form of consecutive moving stripes or rings, are shown to develop spontaneously
in the cyclic lattice Lotka-Volterra model, when realized on square lattice, at#wtion limitedregime. Each
stripe consists of different particléspecieg and the borderlines between consecutive stripes are fractal. The
interface widthw between the different species scalesvgk,t) ~L*f(t/L%), whereL is the linear size of the
interface,t is the time, andx andz are the static and dynamical critical exponents, respectively. The critical
exponents were computed as=0.49+0.03 andz=1.53+0.13 and the propagating fronts show dynamical
characteristics similar to those of the Eden growth models.
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I. INTRODUCTION Volterra [31]. To understand the dynamics of evolution of
different species Lotka and \olterra proposed MF models
The failure of the mean-fieldMF) approximation to de- that predict global conservative oscillations of the species
scribe processes that are restricted on low-dimensional sugoncentrations. More recently, the study of population dy-
ports has attracted considerable attention in recent yeaf@mics takes into account the species distribution in space,
[1-10]. The presence of the support limits the efficiency ofinteractions between individual species that are located in the
(a) the internal diffusion andb) the external stirrindif ap- ~ Same neighborhood, and mobility of the various spef38s-
plicable and drives the system away from the MF expecte037]- These studies predllc_t the form_atlon. pf spaugl complex
behavior. In such cases, spatiotemporal, inhomogeneoﬁrucmres' phase transitions, multistability, oscillatory re-
fluctuations appear, which may introduce anomalies in thdlons, etc. . .
temporal evolution and/or deviations from the MF steadytheA(Ijor;%mize dllljneef(,) ‘;?3 ;?(ig(eprlw?:;e (;:fo{:)]v?/[e(j);:;)/e:’]n;ir())?‘lzeldsgn-
states[11-16. Processes where non-MF behavior is mani- ortsyin a recent paper, one of the current authar®) and P
fesied due to the presence of a support include chemic oIIak;orators have int}oduced theyclic) lattice Lotka—
reactions on catalytic surfacg47-26, ecology[27-29,

X ) . Volterra (LLV) model [15]. The LLV model is a minimal
population dynamic$30—-32, and bacterial growth33,34. o, jexity model, which can be directly implemented on
In the field of heterogeneous catalysis, in particular

) h ) 4 lattice and involves only two reactive speci®s and X,
model studies of reactive dynamics taking place on |°W'(adsorbed on a lattice supppdnd the empty sites of the
dimensional supports are most useful in the understanding Qf,pportS The various species are immobile on the lattice
the different spatiotemporal phenomena that cannot be fullynd they only react with their first neighbors. All reactive
or partly explained by the MF theory. Such phenomena insteps are bimolecular and the reactions occur via hard core
cluded fluctuations of the local concentrations, cluster formainteractions. Schematically, the LLV model has the following
tions, spatiotemporal pattern formation, nonlinear oscillaform:

tions, etc., and are often observed in experimghis-26. A

very successful model that describes the catalytic oxidation ks

of carbon, CG-$0,— CO, on the Pt catalytic surface, was X1+ Xa—2Xa, (1a)
introduced by Ziff, Gulari, and Barshad in 1986]. This Ky

m|n|mal model pred|ct§ klnetlc phase tranS|t|o[]$—6], _ X,+S— 28, (1b)
which correspond to poisoning phenomena seen in catalytic

experiments19—-21. Similar models have also been pro- Ky

posed for the NO reduction on the surface of Pt10]. The S+X;—2X,. (1o

major success of these models is that it became possible to
isolate and to identify the different mechanisms that are retn particular, a particleX,; adsorbed on a lattice site changes
sponsible for the various spatiotemporal phenomena obts state intoX, when it is found in the neighborhood of
served. anotherX, particle. Step(1a) is an autocatalytic reactive
In ecology and population dynamics model studies startedtep. A particleX, desorbs leaving an empty si&if in the
as early as 1920 with the pioneering works of LofB8] and  neighborhood another empty sias found. This steflb) is
a cooperative desorption step. Finally, a parti¥lecan be
adsorbed on an empty lattice sieif in the neighborhood
*Corresponding author. anotherX; particle is found. This steflc) is a cooperative
Email address: aprovata@limnos.chem.demokritos.gr adsorption step.
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The LLV model has been studied analytically and numeri- dx,
cally and it exhibits simple conservative oscillations at the gt~ Xelkxai—kas), (2b)
MF level, while it demonstrates spatial concentration fluc-
tuations and fractal pattern formation when restricted on s
low-dimensional supportgl5]. gt = S(—kaXatkaxa), (20
Although in most natural processes the various species
move in space via diffusion or other driving mechanisms, WaNhereXL Xz, ands Correspond to the mean coverage of the
explicitly ignore species mobility in the current study. This |attice with particlesX;, X,, and empty site§, respectively.

simplification is done in order to isolate the mechanisms rein Eq. (2), the mean coverages satisfy identically the conser-
sponsible for the formation of complex structures and patyation condition

terns and to examine the influence of special boundary con-

ditions on the LLV model. Even under this simplification we X1+ X,+s=Cl=const. 3)
show that for certain parameter values spontaneous forma-

tion of stripes is observed. Each stripe contains only particle iS natural for the constant to be chosen equal tdC1,
of one type(or colon and the stripes exhibit a global average =1, corresponding to the interpretationf, x,, ands as
motion in the direction perpendicular to their longer axis,fractions of the overall lattice, respectively, occupiedy
with a constant average velocity. Due to the dynamics of tharticles,X; particles, or being empty. Using the condition
process immobile stripes cannot be created. Since in the LL¥d- (3) with C1=1 it is possible to eliminate one of the
model the reactants are considered here as immobile, they doree variables, e.gs, from Eq.(3) and substituting into Egs.
not diffuse from one lattice site to another, the motion of the(2) one obtains then the reduced system:

stripes is attributed to “chemical diffusion,” or “color diffu- dx
1

sion” as will be explained in the following section, and the —= =Xy [Ko— KoXq — (Ks+ Ko)Xs ], (4a)
relative velocities depend on the reaction rates. dt
To understand the motion of the stripes and the formation q
and motion of the fractal fronts between consecutive stripes X2
e e —— =X —kq+ (ki +Kg) X1 +KiX5]. 4h
we devote one section in examining more closely the devel- ar el ket ket kexatkaxe] (4b)

opment of a fractal interface starting from a linear ¢inéial ]

condition between two different specidg.g.,X; andX,). The reduced system, Ec{g‘)_, _adm|ts four steady state solu-
This problem is here addressed from the point of view oftions, three of which are trivial, and one nontrivjab:
surface growth models. We further connect the growth of X1=0, X,=0 (empty lattice (58
fractal interfaces in the LLV model with classical surface Is7 5 72s Pty ’

growth modelg38—40, such as the Eden modpgtl], the _ _ - ;

ballistic deposition mode[42], the solid-on-solid models X1s=1, Xp=0  (lattice poisoned by ), (5b)
[39,43, and the curvature driven moddk4 —44.

In the following section we recall the main properties of
the LLV model both at the MF level and by numerical simu- Ky k,
lations on a two-dimensional square lattice. In Sec. Il we X ok ST TRk (50d)
investigate the influence of boundary conditions on the evo- 17721 0s 177271 0s
lution of the LLV on a square lattice. We show that for cer- A standard linear stability analysis shows that the first three

tain parameter value_s and under certain simple boundargtates are saddle points, while the nontrivial one is a center.
conditions moving stripes are formed. In Sec. IV we examin

: rigure 1a) depicts the phase portrait of the system for pa-
more closely the geometry of the boundaries between ad]aré?neter valueilzo.gkzpz O.3kf=0.1 and for di);ferent ini-p

cent stripes and fings. we S.hOW that the width .O.f the Inter'tial conditions. The black solid line determines the part of the
face grows .fo_llowmg a scaling Ia_w,_and the critical expo- hase space reserved to the system since the sum of the
nendtsldescrr:blng thf g_rovvth are similar to those of the Ed(.a’_'Fartial concentrations cannot exceed the value 1. The trajec-
:re]guﬁs' ;r;]dt ;Szzgg lép'gr? ;r%(g;g?r;swe summarize our maify, eg are closed curves around the center and thg _position of
' each trajectory depends solely on the initial conditions. The
temporal evolution of one trajectory, corresponding to initial
conditions x4(t=0)=0.3, x,(t=0)=0.6, and s(t=0)

X1s=0, X,s=1 (lattice poisoned by,),  (5¢)

IIl. THE LATTICE LOTKA-VOLTERRA MODEL: MEAN =0.1, is depicted in Fig. (b). The motion consists of peri-

FIELD APPROXIMATION AND SQUARE LATTICE odic, nonsymmetric oscillations and will be compared later
SIMULATIONS with the corresponding Monte Carlo simulations. It can be

The LLV model, Egs.(1), can be described in the MF shoyvn that the MF system possesses a second integral of

approximation via the kinetic rate equatidris]: motion C2 [47],
—kqInx;—ksInx,—kgIN(1—X%;—%,)=C2 (6)

%:X (— KXy +KyS) (23 and thus the periodic motion extends in an infinite number of

dt ~ 71 stz Rk closed trajectories around the nontrivial steady state. The
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0.0 0 2(‘)0 4(‘)0 is the linear size of the lattice. With this choice of microtime,
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the average.

FIG. 1. (8 The phase space of the lattice Lotka-Volterra model  For realizations on a one-dimensional lattice, it has been
for three different initial conditions. Parameter values leye0.9,  shown[15,16 that the system develops domains of different
kz=0.3, ks=0.1. (b) The temporal evolution for the; concentra-  co|ors (different particles or different phaseshich compete
tion, with the above parameters and for initial conditionét=0) \yjth each other and at the end only one color survives. When
=0.3,%,(t=0)=0.6, anas(t=0)=0.1. the system is realized on a two-dimensional square lattice

_ ) ) ~ substrate the system develops local domains and each do-
choice of the particular trajectory depends solely on the iniynain behaves as a local oscillator with specific characteristic

tial conditions as may be seen from Figall frequency. However, the various domains have different

~ When the system is realized on a low-dimensional surfacgases and thus, globally, no oscillation are observed, in con-
via Monte Carlo simulations, the dimensionality of the SUP-trast with the MF prediction$15]. In Fig. 2 the temporal
port ar_1d, In pa_lrt|cular, the number of near_est neighbors P'f’*y volution of the concentration of; is shown as a function
a crucial role in the outcome of the reaction. We summarize

. . < ~of time on a lattice of sizé& X L=28x 28 and on a sublattice

here the most important steps in the Monte Carlo realizatior, . 5 a5 1 . .

of the LLV on the lattice, for comparison with the growth of sizel X1=2X2>. It is clear that while on the sublattice

models that will be under’taken in the following section the concentrations show oscillatory behavior, on the entire
' lattice the oscillations are suppressed. Moreover, it has been

, ) shown[48] that the different species organize on local do-
(1) At every microscopic step of the Monte Carlo proce- yains which present competing interactions and they have
dure one site of the lattice IS chosen. at random. fractal boundaries. In Fig. 3 four different snapshots during
(2) One of _th_e nearest ne_lgh_bors is also selected. _ the temporal evolution of the system are presented. In this
(3) If the original chosen'sne ¥, and the _selected n.e.'gh' figure and hereafter thé, particles are depicted in gray, the
bor is X, then the chosen site changesdpwith probability X, in white, and the empty sites in black. The initial condi-
Ks. If the original chosen site i, and the selected neighbor tion was a’homogeneous infinite lattice with equal concen-
s Sth_er_1 the chosen site_ changeswiith probab_ility Ky. _If trations of X;,X, particles and empty siteS. As time in-
the original chosep site & and the.selected 'f‘?'ghborxi creases, the system creates domains with fractal boundaries
then the chosen site changesXtpwith probability k,. Oth- [Figs. 3b)—3(d)]. The fractal properties of the spatial struc-
erwise the system remains unchanged. tures can be used to measure the size of the local oscillators
(4) The algorithm returns to stefd). [48]. To assure infinite lattice size in Ref15], periodic

boundary conditions were used using a variety of lattice
In the Monte Carlo procedure the unit of time is chosen asizes. The role of different boundaries and inhomogeneous

1/N, whereN is the total number of lattice sitg®@ccupied initial conditions will be investigated in the following sec-
and empty. For example, for square lattidé=L2, whereL tion.
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FIG. 3. Four different snapshots during the system evolution via
Monte Carlo simulations. The system linear siz& is500 and the
parameters ark; =0.9,k,=0.3,k,=0.1. FIG. 4. (Color online Four different snapshots during the evo-

lution of an initially homogeneous droplet. The system linear size is

IIl. THE ROLE OF INITIAL AND BOUNDARY L =500 and the parameter values &=k, =ks=1.

CONDITIONS . . L
tance from the pool. After the creation of five to six rings the

Boundary conditions play a significant role in nonlinear thickness of the inner rings is so small that they break with
dynamical system, with spatial extension. In reactive dynamthe smallest fluctuation and at the center the homogeneous
ics described using partial differential equations the bounddroplet grows. The unicolored rings move in the direction of
ary conditions may lead to the appearance of steady statBe radius with a radial velocity that depends on the kinetic
spatial patterns such as dots, stripes, helices,[249,50. constants. In Fig. 4 all kinetic constants must have the same
In the current study we show that the effects of variousvalues, thus all the layers have the same radial velocity and
boundary conditions on the LLV model cause segregation ofonsequently the patterns are statistically stable, until the
the complementary species near the boundary creating first@uter propagating rings reach the end of the pool. If one of
layer of specific(complementary color. This layer induces the kinetic constants is greater than the others then the cor-
then a second layer next to it and this way layered structuretesponding species will prevail and will absorb all species on
are obtained. With the term “complementary species” wethe outer rings.
mean species that interact with each other. In the current In Fig. 5 the temporal evolution of initially homogeneous
scheme, all three species interact with each other, howeveipear stripes is shown. The stripes are bordered by an infi-
in each interaction only one species changes its nature, whikite pool of S particles. Again, in the four snapshots the
the other species plays the role of the catalyst. To be mortormation of linear layers, with their axis parallel to the ini-
specific, in reaction(1la X, changes its nature, whilX;
plays the role of the catalyst. We say th& are comple- 1=0(Mcs) =25 (MCS)

ments ofX; because they tend to segregate and penetrate ii
regions with high density oX,. Similarly, S are considered
as complements oX, because they tend to concentrate and
penetrate in regions with high density X§. Finally, X, are
=50 (MCS) =75 (MCS)
third snapshot, a ring of (complementary toX,) appears . l.
which also propagates outwards following tRe rings. In
the fourth snapshot another gray layer starts developing. FIG. 5. Four snapshots in the development of linear diffusing

the complements ob.
In Fig. 4 the temporal evolution of an initially homoge-
Note that the thickness of the rings decreases with the digronts. Parameter values ake=k,=k,=1.

neous droplet is presented. In the first snapsimitial con-
dition) a small cyclic droplet containing equal amounts<gf
(gray), X, (white), andS (black, homogeneously distributed,
is set in an infinite pool of empty site$ As time increases,
in the second snapshot, one layeng) of X, particles(gray)

is growing in the borders of the infinite pool & and a
second ring oiX, particles is nearly completed. The layer of
X, particles propagates within the blacg, regions. In the
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1=0 (WCS) 1=20(MCS) initial state it can neither be created nor destroyed. Thus,
specifically for the current example, the Monte Carlo proce-
dure is as follows.

(1) Initially, on the square lattice, the growing surface
consists of a line of sizé which contains onlyX, particles.
The X, particles represent the free space beyond the surface
or interface.

(2) At every time unit, a site is chosen at random. The site
can either beX; or X,. If the chosen site site X, then no
=10 (MC5) HOMEE) reaction takes place and the algorithm returns to &2¢p

(3) Once a particleX; is chosen, one of the neighbor
particles is also selected at random.

(4) If the selected neighbor iX,, the selectecX; neigh-
bor becomesX, with given constant probabilitfpropor-
tional to the kinetic constantThe height of the correspond-
ing column grows then by one unit.

(5) The algorithm returns to ste(2).

The propagation of the interfaces in the “two-species re-

FIG. 6. (Color onliné Four snapshots in the development of Stricted LLV model” resembles very closely the surface
spiral fronts. Parameter values drg=k,=k,=1. growth of the first variation of the Eden modd1,40Q. We

consider Eden growth in£1 dimensions. Let us call the
tial stripe axis are developed and all of them propagate withinear size of the substrate where the deposition takes place
the same velocity. Periodic boundary conditions are taken imndh(i,t) the local height of the deposit at tinteThe sur-
both x andy directions. The initially flat interfaces soon de- face growth in this variation of the Eden model takes place
velop a rough profile that remains statistically stable, as willas follows.
be calculated in Sec. IV. The kinetic constants are taken (1) Initially only one line ofL particles is deposited and
equal and thus the fronts move with the same velocity anghis corresponds to th@inean surface or interface, at=0.
their average thickness remains constant. The roughness plery particle occupies one site. Above this interface the
the surface depends on the linear size of the layers and tf!ﬁ)ace consists of empty cells or sites.

layers will break only when the value of roughness mean (2) At every time unit one surface site is randomly cho-
square deviation will reach the layer thickness. sen.

In Flg 6 the initial conditions are shown in the first shap- (3) One of the free nearest neighbor sites is random]y
shot. The three species occupy initially one third of the circlesglected.
each. During evolution a spiral pattern appears propagating (4) The selected free neighbor becomes then occupied

outwards, while in the.interior a homogeneous droplet is crewjith given constant probability and the height of the corre-
ated, surrounded by rings of different colors. sponding column grows by one unit.

In all the above examples the existence of boundary con- (5) The algorithm returns to ste(®).
ditions gave rise to a variety of spatiotemporal structures. The two models appear to be equivalent, with the only
These structures arise spontaneously, @¢o the competi-  difference being that in the LLV model during each time step
tion between the different specie®) the boundary condi- any particle may be selected independently of its coXy (
tions, and(c) the lattice geometry and the boundary geom-or ) or its proximity to the interface. In contrast, in the
etry. In the following section we simplify as much as gden model only surface sites are chosen during the updating
possible(a) the interaction, keeping only two specié§,and  process. This difference results in important delays in the
X, and(b) the geometry, keeping only a flat initial interface gevelopment of the fractal interface of the LLV model as
between the two species. This restriction on the LLV modelompared with the growth of the Eden model. These delays
we call the “two-species restricted LLV model.” This sim- o not alter the spatiotemporal scaling exponents in LLV,
plification will allow to obtain quantitative results on the \which are very close to the Eden model exponents. It should
interface development and will contribute to the understandpe noted that the Eden model itself shows a robustness in its
ing of the spontaneous development of the fractal boundariescaling behavior under a variety of modifications in its

and the various spatial structures. growth mechanismE38,40,41.
The same exponents are theoretically derived from the
IV. FRONT PROPAGATION Kardar, Parisi, and ZhangKPZ) equation in 1 spatial

dimensions, which involves nonlinear reactive terms and de-
In the case of the “two-species restricted LLV model,” scribes the growth of a variety of models with interactions
where only particleX; andX, participate, the reaction rules between adjacent growing sitgs1].
are the same as in the general Monte Carlo procedure de- Classically the growth of interfaces is studied using the
scribed in Sec. Il, but with the absence of one spe@dn, height h of the deposit and the “interface widthiv. The
the current example. Since the specids not present in the average height of the deposit is defined as
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FIG. 7. The roughnesw as a function of time for different
values of the system side The parameter values akg=k,=Kks
=1.

_ o1&
h(t)=1 2, h(i.b), ()
i=1
while the interface widtlw is defined as
AL=1 2 [h(i,H—h(t)]> ®)
Typically, the interface width takes the form
w(L,t)= L“f( LZ), 9

where f(t/L?) is a scaling function that has the following
form:

f(uy=uf for u<1l

=const for u>1. (10

Consequently, the interface width behaves with time as

w(L,t)~t? for t<r

~L* for t>r. (11

The exponent® and « are called theeritical exponents

In particular, B8 describes the short time behavior and is

called thegrowth exponentwhile o describes the steady
state behavior and is called thmughness exponerithe sys-
tem passes from short to long time behavior atdtussover
time 7, which also depends on the system size viadke
namic exponent,z
T~L% (12

The exponentsy, 8, andz are not independent. It can be
shown thatz= a/B [40].

To determine the exponentsand g in the “two-species

PHYSICAL REVIEW E67, 056602 (2003

Inw

L5

FIG. 8. The roughness as a function of the system sikeat the
infinite time limit. The parameter values ske=k,=k,=1.

fromL =100, ... 2000. The results are shown in Figs. 7 and
8. In Fig. 7 the value of the interface widthis calculated as

a function of time, for various values of the linear slzdt is
easy to identify a first power law growth regime followed by
a saturation regime. The size of the power law regime grows
with the system size and for the caselof 2000 (longest
simulation it extends into seven scales of magnitude. The
value calculated for the exponeftis 0.32+0.02. For com-
parison, in the same figure, the dashed line follows an exact
power law with exponenBgq.,= 1/3, which corresponds to
the growth exponent of the Eden model ir-1 dimensions.

In Fig. 8 the saturation value @f is shown as a function
of the system sizé. The solid line is the power law fit to the
data and has as exponemt=0.49+0.03. For comparison,
the dashed line represents an exact power law with exponent
agqen= 0.5, which corresponds to the roughness exponent of
the Eden model in £1 dimensions. From the values of the
exponentse and B the value of the dynamic exponents
calculated ag=1.53+0.13. For comparison with the Eden
model, zg 4= 1.5.

From Figs. 7 and 8 the calculation of the effective diffu-
sion v and effective noise correlat® in relation to the KPZ
equation is possibl¢51-53. These coefficients enter the
(1+1)-dimensional KPZ equation as follows:

dh(x,t)
at

N
=vV2h(x,t)+ E[Vh(x,t)]z-I— n(x,t), (13

whereh(x,t) denotes the interfacér front) height at sub-
strate positiorx at timet, as in Eqs(7)—(12). n(x,t) repre-
sents a Gaussian noise with average:
(n(x,1))=0 (14

and covariance
(p(x,t)p(x",t"))=DS(x—x")8(t—t"). (15

In particular, in (+1) dimensions the KPZ equation is ex-

restricted LLV model,” we have performed simulations on actly solvable and it can be showib2,53 that at the
the two-species restricted model using lattice sizes rangingsymptotic limit, the interface width, as defined by E&), is
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D \12 " ferent reaction rules between neighbors are expected to pro-
(WL))=|5,-] LY too, (16)  duce, in general, different domain growth exponents.
24y
and that V. CONCLUSIONS
_ In the current study the influence of initial and boundary
w(t)y= th, t<r. 1 . . . :
(w(t)) V2my T (7 conditions on the LLV model is studied. It is shown that

. ) ) . ) _ starting from an initial homogeneous mixtutdropled of

At the intermediate scaling regime, where the_nonllneantyxl' X, and S particles, in contact with a reservoir of one of
can be neglected\(=0), the value of3=1/4, while at the  the speciege.qg.,S), the system spontaneously forms several
onset of the nonlinear regime ¢ 0), B=1/3[52]. To esti-  ynicolor layers propagating sequentially inside the reservoir.
mate the values of and D we calculate from Fig. 7 the This segregation phenomenon is dynamical and cannot be
values w/t¥*=(D/\27v)"2 as a function of time. In a observed in equilibrium. As the layers propagate through the
double logarithmic scale, at the intermediate regime, thigeservoir, their size shrinks with the distance from the reser-
quantity is constant in the time interval 10 (M€}  voir and when their size tends to zero the usual LLV fractal
<200 (MC) and it takes the valueD(\2mv)¥?=1.96 structures appear. We have seen that other boundary condi-
+0.02. Similarly the asymptotic valuesw(L)/LY?>  tions lead to linear front propagation with surface roughen-
=(D/24v)Y?=0.61+0.01 are calculated from Fig. 8. Then, ing and to spiral formation and motion.
the effective values of the diffusion coefficient and the noise It must be stressed here that the stripe and spiral forma-
correlator are estimated as,0)=(1.162,10.38). The value tion is due to the interaction between the different species
of v is very important for the determination of the range of and is not due to any particle diffusiofNote that the react-
validity of the reaction limited regime when regular diffusion ing particles are immobile on the latti¢geédne can consider
of particles is included in the system. In such cases if thghe evolution as “color diffusion” or “chemical diffusion”
regular diffusion constant is smaller than this effective diffu-due to interactions between neighboring particles. Also the
sion, the reaction limited regime is justified. term “diffusion” is not used to denote the normal Brownian

From the results it is evident that the front propagation inmotion but rather as a general term of motion of the color on
the LLV reaction and the surface growth in the Eden modethe lattice.
have same critical exponents. When one considers only the For the simplest case of the two species restricted LLV,
two-species restricted LLV model, only one reactive paramwhere fronts of one color propagate inside the complemen-
eterk is relevant. The front roughness does not depend on thiary color, it was shown that the front propagation between
reactive constant, only on the rules of interaction betweerthe different colors has the same critical exponents with the
the neighbor particles, which are described by the Mont&eden model and the KPZ equation irt1 dimensions and
Carlo reactive scheme in Sec. Il. The value of the reactiveéhat the roughness properties of the fronts do not depend on
constant determines only the velocity of the front propagathe parameterk;, k,, andks. This provides an explanation
tion. of the robustness of the size of the local oscillators under

The full LLV model is more complex because in each variations in the parameter values. From the similarity of the
realization many fronts participate, competing with one antwo-species restricted LLV model with the Eden model and
other. The parameter values here play a key role: when ththe KPZ equation the effective “color” diffusion coefficient
three parameters(,k,,k;) have the same value, all fronts and noise correlator are estimated.
propagate with the same velocity, independently of the color. In the LLV model only three reactive species have been
When the parameters have different values the differentised, interacting cyclically. If more species are involved in
fronts propagate with different velocities depending on thecyclic interactions then the dynamics is further complexified
colors of the interacting particles. Thus, even in a fully de-and the system can present frozen patterns even in two di-
veloped, initially random LLV system, as in Fig. 3, the bor- mensions. The geometry of the substrate also plays a very
ders of the different clusters have the same roughness scalimgportant role in the outcome of any dynamical processes.
properties, even though the reactive constinisk,, andkg Especially in heterogeneous catalysis there might be differ-
are different. That is mainly the reason for the robustness oént support geometries and phase transitions between them,
the size of the local oscillators under relatively large varia-reactions at terrace edges, diffusion of the various species on
tions of the parameters, reported in previous wi#Ag. the support with different diffusion constants, etc. External

Other growth models studied in the literature, such as théactors, such as temperature and pressure, also influence
ballistic deposition mode[42], the solid-on-solid models drastically the outcome of the reactions. Further studies are
[39,43, the curvature driven modeld4—46, etc., present a needed in order to fully understand how the support proper-
variety of critical exponents depending on the specificties and/or the mobility of the species modify the pattern
growth (or deposition rules. Alternatively, other reactive structure and influence the steady states and the temporal
models, either involving multimolecular reactions or/and dif- evolution of dynamical systems.
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